
[16:59 4/7/03 Bioinformatics-btn249.tex] Page: 1625 1625–1631

BIOINFORMATICS ORIGINAL PAPER Vol. 24 no. 14 2008, pages 1625–1631
doi:10.1093/bioinformatics/btn249

Systems biology

InteroPORC: automated inference of highly conserved protein
interaction networks
Magali Michaut1,2,∗, Samuel Kerrien2, Luisa Montecchi-Palazzi2, Franck Chauvat1,
Corinne Cassier-Chauvat1,3, Jean-Christophe Aude1, Pierre Legrain1 and
Henning Hermjakob2

1CEA, IBITECS, Gif sur Yvette, F-91191, France, 2EMBL-EBI, Wellcome Trust Genome Campus, Hinxton,
Cambridge CB10 1SD, UK and 3CNRS, URA 2096, Gif sur Yvette, F-91191, France

Received on February 18, 2008; revised and accepted on May 26, 2008

Associate Editor: Burkhard Rost

ABSTRACT

Motivation: Protein–protein interaction networks provide insights
into the relationships between the proteins of an organism thereby
contributing to a better understanding of cellular processes.
Nevertheless, large-scale interaction networks are available for
only a few model organisms. Thus, interologs are useful for
a systematic transfer of protein interaction networks between
organisms. However, no standard tool is available so far for that
purpose.
Results: In this study, we present an automated prediction tool
developed for all sequenced genomes available in Integr8. We
also have developed a second method to predict protein–protein
interactions in the widely used cyanobacterium Synechocystis. Using
these methods, we have constructed a new network of 8783 inferred
interactions for Synechocystis.
Availability: InteroPORC is open-source, downloadable and usable
through a web interface at http://biodev.extra.cea.fr/interoporc/
Contact: michaut.bioinfo@gmail.com
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Biological organisms live in complex interaction with their
constantly fluctuating environment. Changes in regulatory networks
have been observed in a number of organisms when they are under
specific conditions or stressed by some environmental alterations,
leading to modifications of their metabolism. The understanding
of these phenomena depends not only on the knowledge of the
numerous molecular effectors involved such as genes and proteins
but also on the understanding of the functional relationships between
them.

Experimental approaches used to decipher protein–protein
interaction (PPI) networks are described in Shoemaker and
Panchenko (2007a). To complement these experimental techniques,
a number of computational methods have been developed to predict
PPIs (Shoemaker and Panchenko, 2007b). Large-scale PPI networks
are only available for a limited number of model organisms,
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thus systematic inference of PPIs has become a central task of
functional genomics. Consequently, we have investigated network
inference using the interolog concept originally introduced by
Walhout et al. (2000) which combines known PPIs from one or
more source species and orthology relationships between the source
and target species to predict PPIs in the target species.

Since the original introduction of the interolog concept, such
interactome transfers have been performed for different species
and using different ortholog identification methods. Matthews et al.
(2001) have transferred two large-scale, two-hybrid interaction maps
of Saccharomyces cerevisiae onto Caenorhabditis elegans. PPI maps
have been constructed for various organisms (Yu et al., 2004) based
on the S.cerevisiae interactome. Based on the InParanoid (Remm
et al., 2001) algorithm to identify orthologs, human networks have
been inferred from several model organisms (Huang et al., 2004,
2007; Lehner and Fraser, 2004; Persico et al., 2005). Brown and
Jurisica (2005) have developed the web-based database OPHID
containing human PPIs using BLASTP and the reciprocal best hit
approach (Jordan et al., 2002). Maps have also been generated for
Plasmodium falciparum (Wuchty and Ipsaro, 2007) or Helicobacter
pylori (Wojcik et al., 2002).

Such transfers have been done only for a limited number of
species and no standard method or software seems to emerge. Each
study was based on a combination of selected species and orthology
computation methods. Yet a common tool usable for a large number
of species would greatly facilitate comparative studies, leading to a
better understanding of the extent of evolutionary conservation of
PPI networks. Such a method would be of great help to decipher
PPI networks in the wealth of organisms with a newly sequenced
genome or still lacking identified PPIs. It usually takes several years
to carry out genome-wide detection of PPIs. Consequently, we have
developed an automated tool, interoPORC, to predict PPIs for all
organisms present in the Integr8 database (Kersey et al., 2005). This
database systematically provides all deciphered genomes and their
corresponding proteomes (655 organisms in release 75).

Through a multidisciplinary approach, we have investigated
the biological responses to environmental stresses using the
model cyanobacterium Synechocystis PCC6803. Cyanobacteria are
the most abundant photosynthetic organisms on Earth and their
living conditions are frequently challenged by changes in nutrient
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availability and exposure to pollutants. Synechocystis is a unicellular
prokaryote with a small fully sequenced genome (3600 genes)
(Kaneko et al., 1996) easily manipulable with replicating plasmids
(Domain et al., 2004; Mazouni et al., 2004). It shares a wealth
of homologous proteins with plants. Thus, lessons learned from
stress responses in Synechocystis should greatly facilitate the
understanding of how plants face environmental challenges. We
used our interoPORC prediction tool based on orthologous protein
clusters to predict PPIs for Synechocystis. In addition, we developed
a second prediction method which was more flexible but required
more computational resources. This method, called interoBH, was
based on pairwise sequence comparisons. It was also applied to
Synechocystis, starting with a limited set of source species. We
selected several model organisms whose interactomes have already
been investigated, namely S.cerevisiae, Escherichia coli, Homo
sapiens, Arabidopsis thaliana, C.elegans, Drosophila melanogaster
and H.pylori, which are representative of the overall biodiversity of
living organisms. The use of both methods enabled us to construct
a new network of 8783 PPIs for Synechocystis.

2 METHODS

2.1 Data sources
All selected genomes and proteomes were collected from Integr8 (Kersey
et al., 2005). For E.coli and H.pylori, all the proteomes from the various
sequenced strains were merged to generate a global proteome for each
single species because PPIs are sometimes reported at the species rather than
the strain taxonomic level. Furthermore, for proteins having multiple splice
variants, we have only considered the longest product of the genes encoding
them. The experimental PPI datasets from the three manually curated
databases DIP (February 19, 2007) (Xenarios et al., 2002), IntAct (April 13,
2007) (Kerrien et al., 2007a) and MINT (April 5, 2007) (Chatr-Aryamontri
et al., 2007), which provide tabular data files in the MITAB25 tabular format
(Kerrien et al., 2007b), were downloaded. We merged all PPIs and removed
duplications. Finally, we extracted physical interactions occurring in each
of the seven species selected, without considering self-interactions. A total
of 139 325 PPIs were included in our investigation (Table 1). We collected
sequence similarities from the CluSTr database (Petryszak et al., 2005). The
PORC orthology data were available from Integr8 (Kersey et al., 2005).
The functional annotation of Synechocystis proteins is described in the GOA
(Camon et al., 2004) file available from Integr8.

2.2 Prediction methods
For both prediction methods, we used the sequence similarity to identify
putative orthologous proteins between species. Based on the interolog
concept, we combined interaction datasets with orthology information to
transfer PPIs from different species onto Synechocystis.

2.2.1 InteroBH We considered homologous proteins as putative orthologs
between Synechocystis and each source organism. This method was called
interoBH since it was based on a best hit approach. Homology predictions
were derived from pairwise Smith–Waterman similarities with an E-value
for each sequence comparison (Saebo et al., 2005). To select the best
sequence homologies, sequence comparisons with an E-value less than
1E-10, a standard cutoff value, were considered (Martin et al., 2002; Yu et al.,
2004). For each protein, we selected in each of the other organisms the best
matching sequence as a homolog. In addition, if the former protein was the
best matching sequence of another protein in the same species, we added the
latter as another homolog. In this way, we modified the reciprocal best-hit

Table 1. Source interactions

Relevant organisms Proteins Interactions

S.cerevisiae 5780 54560
A.thaliana 758 1406
E.coli 3853 22023
H.sapiens 9234 26587
D.melanogaster 8636 27476
C.elegans 3275 5636
H.pylori 783 1637

For each organism, the number of interacting proteins and the number of PPIs collected
in the databases IntAct, MINT and DIP are indicated.

approach in such a way that a given protein could have several homologs,
considered as putative orthologs, in a single organism.

We then investigated each species separately. Let us take a transfer
of S.cerevisiae interactome onto Synechocystis as an example. For each
binary interaction occurring in yeast, we considered each interacting protein
and looked for putative orthologs in Synechocystis. If both interacting
proteins had a putative ortholog in Synechocystis, we transferred the PPI
to these two putative orthologs. If a protein had several putative orthologs
in Synechocystis, then we predicted all possible PPIs as putative PPIs. We
used the joint E-value (Yu et al., 2004) to assess the quality of the predicted
PPIs. The joint E-value was defined as the geometric mean of the individual
E-values of both putative orthologs.

2.2.2 InteroPORC InteroBH was generalized leading to a new method
called interoPORC since it was based on the new PORC data (putative
orthologous clusters) defined as orthologous families from Integr8. These
clusters are of paramount interest since, unlike previously defined clusters
(Koonin et al., 1998), they contain all sequenced organisms (556 bacteria, 59
eukaryota and 50 archaea in the release 75). Each entry in PORC represents
a cluster of genes grouped by the similarity of their longest protein product.
We used 215 733 clusters, containing 1 548 235 proteins. According to the
PORC construction process, a cluster contains at most a single protein from
a given species and a protein can be assigned only to a single cluster. In other
words, it is impossible to find several proteins of the same species in a single
cluster. When sequence comparisons were insufficient, the PORC algorithm
did not attempt to resolve potential ambiguity using phylogenetic trees or
network comparison (Bandyopadhyay et al., 2006). The clusters were split
according to the weakest sequence similarity in order to respect the ‘one
gene per species per cluster’ rule (Kersey et al., 2005).

The inference process was similar to that of interoBH, orthologous groups
of proteins were used instead of binary orthology relationships between two
species. The process was broken down into two steps. In the first step,
called up-casting, we abstracted PPIs onto orthologous cluster links. For
a given source PPI, if both proteins belonged to a cluster, we constructed
a link between these two clusters. In the second step, called down-casting,
we projected these cluster links onto target species to predict new PPIs.
Practically, for a given link between two clusters, if both clusters contained
a protein from the target species, we inferred a PPI between these proteins
unless this PPI had been used as a source PPI to construct the cluster link.

2.3 Supporting evidence analysis
In order to support some of the predicted PPIs, we explored the following
approaches: (i) PPI explanation on the basis of interacting domain
annotation; (ii) sharing of functional annotations for both interacting proteins;
(iii) prediction by several species; (iv) identification of source PPI by several
experimental techniques; (v) comparison with experimentally identified
interactions.
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2.3.1 Domain–domain interaction score Interacting domain annotation
was used to identify the predicted PPIs associated with domain pairs
indicative of true interactions. We retrieved the Pfam domain composition of
all proteins of Synechocystis from UniprotKB (Bairoch et al., 2005). Then we
collected a list of domain–domain interactions (DDI) derived from iPFAM
structures (Finn et al., 2005). We combined both types of information to
compute a list of Synechocystis proteins that potentially interact together
based on DDIs. Since we wanted to favor domain pairs that rarely occur in
all protein pairs, we defined a score SP , calculated using Equation (1). It is
noteworthy that 78% of Synechocystis proteins were annotated with a single
domain. Nevertheless, when a protein had several domains, we calculated
the PPI score as the maximum score of all possible domain pairs.

Sp =Max
d∈D

(
1

count
(
d
)
)

(1)

D is the set of domain pairs constructed with the domain lists of both proteins
of the PPI, p and count(d) is the number of occurrences of this domain pair d
in all protein pairs of Synechocystis. We generated a set of 5000 random PPIs
(Supplementary Material). Given that 95% of the scores were below 0.5, we
considered all scores above this threshold as highly relevant.

2.3.2 Common Gene Ontology annotation Since interacting proteins
either share similar functions or operate in the same biological process
(Huang et al., 2007), we considered both molecular function (MF) and
biological process (BP) ontologies of the Gene Ontology (GO) (Ashburner
et al., 2000) and calculated semantic similarities between both proteins using
the measure defined in Lubovac et al. (2006). We generated a set of 5000
random PPIs. Since 95% of random PPIs had a similarity below 0.23 for
both MF and BP ontologies (Supplementary Material), we used this cutoff
to identify PPIs with high semantic similarities.

2.3.3 Conserved interologs Some interactions were predicted several
times from different source species using the interoBH method, which led
us to think that they were meaningful (Lehner and Fraser, 2004). Similarly,
different source interactions enabled us to construct a unique link between
two clusters during the interoPORC process. The PPIs predicted from several
source species were thus more likely to be valid. We therefore extracted the
interactions predicted by several organisms.

2.3.4 Multiple experimental identification methods We examined the
different kinds of experimental techniques which have been used to
identify each source interaction. All experimental identification methods
have different weaknesses and biases (Hakes et al., 2008; von Mering et al.,
2002). Nevertheless, when an interaction has been detected by different
methods, it is more likely to be genuine. In the MITAB25 format, a
detection method is associated with each interaction using the PSI controlled
vocabularies (Kerrien et al., 2007b). We defined groups of methods as
all children terms of the following controlled vocabulary terms: MI:0401
(biochemical), MI:0090 (Y2H), MI:0013 (biophysical), MI:0428 (imaging),
MI:0254 (genetic), MI:0255 (transcription), MI:0063 (prediction), MI:0362
(inference), MI:0686 (unspecified). The list of all terms and their associated
group is available in Supplementary Material file 1. Some of them do not
appear in the source interaction data for the specific source (e.g. unspecified,
transcription, genetic).

2.3.5 Comparison with experimental data On the one hand, we identified
the predicted interactions that were present in the source dataset constructed
from IntAct, MINT or DIP from low-throughput experiments. On the other
hand, we analyzed all predicted interactions that overlap with the large-scale
study recently published (Sato et al., 2007).

Fig. 1. Conservation of orthologous proteins in the seven selected species
as predicted by each method.

3 RESULTS
To construct a PPI network for Synechocystis, we have developed
two prediction methods, which combined known interactions from
source species with putative orthology relationships. These two
methods mainly differed in the way orthology relationships were
constructed (see Methods), using either a pairwise approach based
on best hits, interoBH or putative orthologous clusters, interoPORC.
After showing some results about the orthology calculation, we
will present the results of both prediction and interaction analysis
methods, to end with the tool developed.

3.1 Orthology calculation
For each Synechocystis protein, putative orthologs were identified
in the seven other species selected as reference organisms. We noted
that the interoPORC method predicted more proteins with putative
orthologs in only one species compared to the interoBH approach
(Fig. 1). A smaller number of proteins were found to have putative
orthologs across several species using interoPORC. This can be
explained by the fact that the selected species are evolutionary
distant not only from Synechocystis but also from each other. Thus
only highly conserved proteins were found in a cluster with several
of the selected species.

3.2 Interactions derived with InteroBH
We combined interaction dataset and orthology information to
transfer interactions from seven source species onto Synechocystis
separately (Table 2). Combining all results, we obtained a global
set of 8586 interactions among 998 proteins (28% of the proteome
of Synechocystis). This network was called interoBH_LOW. To
assess the quality of the resulting interologs, we used the joint
E-value defined in Yu et al. (2004). Since all sequence comparisons
considered had an E-value less than the standard cutoff value of
1E-10, the joint E-value of each interolog was greater than 1E-10.
Furthermore, it has been shown that a threshold of 1E-70 for
the joint E-value enables a transfer of interactions with greater
confidence (Yu et al., 2004). Thus we considered all interologs
with a joint E-value less than 1E-70 as a specific dataset called
interoBH_HIGH. It should be noted that the orthology construction
process used in the interoPORC method only considered sequence
comparisons with a joint E-value less than 1E-40. Another dataset
called interoBH_MEDIUM was considered for all interactions with
a joint E-value less than this value.
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Table 2. Number of PPIs predicted in Synechocystis by interoBH

interoBH_HIGH interoBH_MEDIUM interoBH_LOW

Source species Inter Prot Inter Prot Inter Prot

S.cerevisiae 955 299 1826 360 3558 438
A.thaliana 0 0 5 7 10 11
E.coli 1775 61 3183 744 4894 825
H.sapiens 26 26 69 74 194 150
D.melanogaster 14 16 30 37 97 95
C.elegans 1 2 3 6 21 35
H.pylori 199 75 164 117 251 160
Total 2870 1031 5280 1345 9025 1714
Non-redundant 2748 741 5070 884 8586 998

For each source species, the number of predicted interactions (Inter) and the number of
proteins (Prot) involved in these predicted interactions are indicated. The Total line
indicates the sum of all line values, whereas the Non-redundant line indicates the
numbers of distinct interactions or proteins.

Not surprisingly, the number of predicted interactions was highly
dependent on the number of available interactions in the source
organism (Tables 1 and 2). It was also dependent on the evolutionary
proximity to Synechocystis. Indeed, with almost the same number
of source interactions, we transferred many more PPIs between
the bacterium E.coli and the cyanobacterium Synechocystis than
between H.sapiens and Synechocystis. It confirmed the recent result
of (Brown and Jurisica, 2007) who showed that the number of
interactions predicted by the interolog concept depends on the
evolutionary distance between the organisms studied.

3.3 Interactions derived with InteroPORC
Using the interoPORC method, we predicted a dataset of 1446
interactions between 384 proteins in Synechocystis. In some cases,
different source PPIs have been used to construct a single link
between two clusters. In such a case, the predicted PPI was inferred
from several source species.

3.4 Supporting evidence
In order to support some of the predicted interactions,
we explored different methods based on interacting domain
annotation, functional annotation, conservation across organisms,
experimental techniques and experimentally identified interactions
(see Methods).

3.4.1 Interacting domain annotation Within the union of
interoPORC and interoBH_LOW, 177 interacting proteins shared
a pair of domains from the set of known domain interactions.
This set of PPIs included 39 associated with DDIs that had a
highly relevant score (see Methods) increasing our confidence in
these predicted interactions (Table 3). Itzhaki et al. (2006) have
shown that DDIs frequently occur in protein complexes and are
evolutionary conserved. Indeed, we observed some interconnected
subgraphs representing complexes such as the RNA polymerase or
the ATP synthase (Supplementary Fig. 1). Furthermore, Itzhaki et al.
found that the number of PPIs explained by DDIs in the different
PPI networks ranged from 6% to 20% only. Consequently, PPIs
supported by DDIs are strengthened but PPIs not supported by DDIs
are not necessarily weakened.

Table 3. Predicted PPIs associated with DDIs

Prediction sets H M L P

Total PPIs 2748 5070 8586 1446
PPIs with known domains 2689 4939 8197 1399
PPIs associated with DDI(s) 60 100 172 37
PPIs with highly relevant score 18 27 38 16

The DDI annotation is described for H: interoBH_HIGH, M: interoBH_MEDIUM, L:
interoBH_LOW and P: interoPORC in terms of number of PPIs.

Fig. 2. Percentages of PPIs supported by different methods. iPFAM: PPIs
explained by DDIs; GO MF (GO BP): interactions with similar terms in
the MF (BP) ontology of GO; Conserved: interactions predicted by different
source species; MEI: PPIs predicted from source PPIs identified by multiple
experimental identification techniques; Exp: PPIs experimentally identified.

3.4.2 Functional annotation For the MF ontology, all networks
derived with interoBH contained 17% of the interactions with similar
annotation between their interacting proteins. The interoPORC
network resulted in a slightly higher percentage (Fig. 2). For the BP
ontology, interoBH networks resulted in about 26% of interactions
with a similar annotation compared to 35% with the interoPORC
network.

3.4.3 Conserved interologs The different datasets contained
about 5% of conserved interologs (Fig. 2). We identified more
conserved interologs in the interoBH_HIGH network. This was
consistent with the fact that this network had been defined
using a more stringent sequence comparison cutoff. There were
seven highly conserved interactions transferred from three and
four organisms. All 258 conserved interactions are represented
in Supplementary Figure 2 between 167 proteins, including two
highly connected chaperone proteins. This stressed the fact that
interactions with a chaperone are detected with high-throughput
identification techniques. This could be due to chaperone function
that is used to bind to a number of proteins to assist their
folding. However, non-specific binding cannot be ruled out. We
noticed that 75% of all partners of the first chaperone groL1
(slr2076) do not share any GO term with it. These interactions
were transferred from high-throughput detection methods such
as two-hybrid or co-immunoprecipitation. We also examined
existing data on the other highly connected chaperone protein
dnaK2 (sll0170), and found that these predicted interactions
were derived from interactions detected by different assays
such as X-ray crystallography, molecular sieving, blue native
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PAGE (polyacrylamide gel electrophoresis) or enzyme linked
immunosorbent assay. This is consistent with the much higher rate
of interacting partners sharing GO terms (40%).

3.4.4 Multiple experimental identification methods A total of
491 PPIs were transferred from source interactions identified by
different experimental methods. The interoBH networks had 6% of
interactions coming from several methods whereas the interoPORC
network had 4% of such interactions (Fig. 2).

3.4.5 Comparison with experimental data Among all predicted
interactions, 10 were among the 185 Synechocystis PPIs reported
in the experimental datasets obtained from IntAct, MINT and DIP.
To evaluate the significance of this overlap, we computed the
probability of finding randomly an overlap greater than the one
observed. We found according to a hypergeometric model that the
probability was less than 1E-4 (Supplementary Material). Thus, the
experimental results corroborated our predictions.

A further experimental study led to a new large-scale dataset of
3236 interactions between 1920 proteins (Sato et al., 2007). When
we considered only the proteins included in this study, we had 3904
predicted PPIs instead of the 8783 PPIs predicted by interoPORC or
interoBH_LOW. Among this predicted subset, Sato et al. identified
25 interactions, which was significant (P-value <1E-18). It is
important to note that large-scale experimental datasets obtained
with the same technique have an overlap smaller than 10% of the
total number of interactions (Arifuzzaman et al., 2006), emphasizing
the high false negative rate. We are currently investigating this
comparison more in depth. Together, 35 predicted interactions have
been experimentally identified (Supplementary Fig. 3).

Among the 8783 PPIs predicted by interoPORC or
interoBH_LOW, we identified a core set of 3495 interactions
supported either by interacting domain annotation, functional
annotation, conservation across species, multiple experimental
techniques or experimental identification (Supplementary Material
file 2).

3.5 A tool of use for all sequenced genomes
Since the quality of the predictions depends on the quality of the
source data, it was important to separate the prediction process and
the source data used. We developed a stand-alone tool that can be
applied to different source data, for example to high-quality PPIs
and private datasets. In addition, interoPORC can be run on all
platforms since it has been developed in Java (the source code is
also available). Moreover, we have provided result files in standard
formats (PSI25-XML and MITAB25) in order to interface easily
with existing tools.

We also wanted to provide a tool that was fast and easy to use.
Consequently, we have set up a web interface where predictions
can be run just by giving a species identifier. We use source PPIs
from IntAct, MINT and DIP as well as PORC data from Integr8.
All source data are updated as soon as a new version is publicly
available for any database.

As an illustration, we applied interoPORC to several
representative organisms (Table 4). For example, we predicted
1678 interactions in the widely studied cyanobacterium Anabaena
PCC7120, a model organism without any large-scale interaction
dataset so far. All predicted PPIs are available on the web interface.
First, we noted that we obtained 1% more PPIs for Synechocystis

Table 4. New PPIs for several organisms representative of the biodiversity
predicted with interoPORC

Superkingdom Species Taxid Proteome Curated New

Archaea P.kodakaraensis 69014 2301 0 221
Archaea T.volcanium 273116 1523 0 208
Eukaryota R.norvegicus 10116 12028 2178 13469
Eukaryota A.fumigatus 330879 9629 0 17225
Eukaryota P.falciparum 36329 5283 2737 4026
Bacteria B.subtilis 224308 4105 0 2160
Bacteria Synechocystis sp. 1148 3506 185 1463
Bacteria Anabaena sp. 103690 6070 1 1678

For each species, the superkingdom, the name (Species), the taxonomic identifier (taxid),
the size of the proteome (Proteome), the number of PPIs in the source databases
(Curated) and the number of new predicted PPIs (New) are indicated.

(1463 instead of 1446) than with the previous interoPORC prediction
involving only the seven species with the largest PPI networks being
involved (Table 3). Furthermore, the number of predicted PPIs was
higher for eukaryota as compared to both archeae and bacteria. This
can be due to the larger size of their proteome but also to the smaller
evolutionary distance between source and target organisms since
83% of the source PPIs used occur in eukaryota (data not shown).
This corroborates the results of Brown and Jurisica (2007) showing
that the number of predicted PPIs decreases as the evolutionary
distance increases.

Consequently, interoPORC is of great interest for every organism
with a newly sequenced genome for which no large-scale
interactome has been determined yet. It provides a raw picture of
possible PPIs, which can be experimentally validated. For most
species, a global PPI dataset is yet to be determined, emphasizing
the value of this tool that quickly and easily gives new insights into
PPI networks in a large number of organisms.

3.6 Discussion
In this study we have developed two new prediction methods,
interoPORC and interoBH to infer PPIs. They are based on the
interolog concept, combining source PPIs in several species with
orthology relationships. The interoPORC method can be used to
predict PPIs in the ever-increasing number of organisms with
a newly sequenced genome where large-scale analyses remained
to be carried out. In these organisms, it is now possible to
quickly get a raw picture of possible interactions using the open-
source automated tool interoPORC which can be run through a
web interface or downloaded for stand-alone use. Moreover, with
the increasing availability of PPI networks, recent studies have
shown the benefit of PPI network comparison across evolution
(Kalaev et al., 2008). However, large PPI networks are available
for only a few model organisms so far. Therefore, interoPORC is of
great interest for constructing new networks, leading to improved
comparative studies.

The interoBH datasets tended to contain the interoPORC dataset
when the cutoff on the joint E-value decreased. The overlaps
with the interoPORC amounted to 580 (40%), 1069 (74%) and
1249 (86%) interactions for interoBH_HIGH, interoBH_MEDIUM
and interoBH_LOW, respectively. We noted that the two methods
differed in the way orthology was calculated. Several putative
orthologs were detected with the interoBH approach while only one
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protein was selected as a putative ortholog with the interoPORC
method. To understand better the differences between the two
approaches and assess to what extent the results were comparable,
we investigated further the interoBH approach using the common
reciprocal best-hit approach (Jordan et al., 2002), noted as
interoRBH. Only one protein could be selected as a putative
ortholog akin to the interoPORC approach. The proportion of
interactions predicted only by the interoBH_MEDIUM method was
highly reduced when considering interoRBH_MEDIUM, whereas
the intersection between interoRBH_MEDIUM and interoPORC
was only slightly reduced compared to interoBH_MEDIUM and
interoPORC (data not shown). This confirmed that the additional
interactions predicted by interoBH came from the choice to keep
several putative orthologs. Moreover the interoPORC interactions
have a lower joint E-value than the interoBH_LOW interactions
(P-value <0.008, Supplementary Material). Consequently, the
interoPORC method can be seen as a way to obtain a highly
conserved interaction dataset.

It is worth noting that some interactions predicted by interoBH
but not by interoRBH have been experimentally observed (Sato
et al., 2007) and are thus relevant. Nevertheless, interoBH led to
a higher number of predicted interactions than interoRBH. Thus
we may expect a higher number of false positives as previously
discussed in Yu et al. (2004). The interoPORC method proved to be
a more stringent automated approach for all sequenced organisms.
This raises the question of the tradeoff between the general and
automatic nature versus the coverage and sensitivity of the different
approaches. We propose here an automated tool of use for all species
and we completed these stringent results with a more sensitive
method for the particular species we were investigating.

The combined use of interoPORC and interoBH_LOW, enabled
us to predict a global new network of 8783 PPIs for Synechocystis
among which 3495 have been supported by different methods.
Among these, 25 predicted PPIs have been identified in a new
recently published large-scale dataset (Sato et al., 2007). Both
experimental and computational approaches have weaknesses and
miss lots of interactions. Thus it is highly interesting to have such
computational methods at one’s disposal to complete experimental
datasets and identify interactions that may have escaped the
experimental detection with high-throughput methods.
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