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Abstract Recently a number of computational approaches

have been developed for the prediction of protein–protein

interactions. Complete genome sequencing projects have

provided the vast amount of information needed for these

analyses. These methods utilize the structural, genomic, and

biological context of proteins and genes in complete ge-

nomes to predict protein interaction networks and functional

linkages between proteins. Given that experimental tech-

niques remain expensive, time-consuming, and labor-

intensive, these methods represent an important advance in

proteomics. Some of these approaches utilize sequence data

alone to predict interactions, while others combine multiple

computational and experimental datasets to accurately build

protein interaction maps for complete genomes. These

methods represent a complementary approach to current

high-throughput projects whose aim is to delineate protein

interaction maps in complete genomes. We will describe a

number of computational protocols for protein interaction

prediction based on the structural, genomic, and biological

context of proteins in complete genomes, and detail

methods for protein interaction network visualization and

analysis.
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Introduction

One of the current goals of proteomics is to map the protein

interaction networks of a large number of model organisms

[1]. Protein–protein interaction information allows the

function of a protein to be defined by its position in a

complex web of interacting proteins. Access to such

information will greatly aid biological research and

potentially make the discovery of novel drug targets much

easier. Previously the detection of protein–protein inter-

actions was limited to labor-intensive experimental

techniques such as co-immunoprecipitation or affinity

chromatography. High-throughput experimental techniques

such as yeast two-hybrid and mass spectrometry have now

also become available for large-scale detection of protein

interactions. These methods however, may not be generally

applicable to all proteins in all organisms, and may also be

prone to systematic error. Recently, a number of comple-

mentary computational approaches have been developed

for the large-scale prediction of protein–protein interac-

tions based on protein sequence, structure and evolutionary

relationships in complete genomes.

Initially computational prediction of protein–protein

interactions was strictly limited to proteins whose three-

dimensional structures had been determined. These methods

predicted protein–protein interaction based on the structural

context of proteins. Recent advances in complete genome
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sequencing have however provided a wealth of genomic

information. It is now possible to establish the genomic

context of a given gene in a complete genome [2, 3]. A gene

is no longer thought of as a single protein-coding entity but

as part of a coordinated network of interacting proteins. The

potential for two proteins to interact is not only specified by

the physical and structural properties of their structures, but

is also encoded at a genomic level. For example, interacting

genes are generally co-expressed [4–6] (both temporally

and spatially). In other words, the fact that two proteins have

the physical potential to interact is meaningless unless they

are present in the same part of the cell at the same time.

Other examples of genomic context include the co-locali-

zation of genes on chromosomes, the complete fusion of

pairs of genes, correlated mutations between interacting

protein families, and phylogenetic gene profiles. Even in the

absence of structural or sequence information, one can

detect the evolutionary fingerprints of pairs of interacting

proteins from their genomic context. A number of these

computational approaches also take advantage of high-

throughput experimental information such as gene-expres-

sion data, cellular locality and molecular complex

information [7, 8]. These hybrid computational approaches

exploit both the genomic and biological context of genes

and proteins in complete genomes in order to predict

interactions.

Here, we will describe computational methods and

resources available for protein–protein interaction predic-

tion that exploit the structural, genomic and biological

contexts of proteins in complete genomes. In addition to

algorithms and methods for interaction prediction, a number

of useful databases pertaining to protein–protein interaction

will be described. These databases combine a large amount

of data from both computational and experimental tech-

niques. Finally, a number of tools for protein interaction

network visualization and analysis will be described.

Methods are presented in historical order together with

online access information. Detailed computational proto-

cols are also provided for each method.

Structural Context Approaches

Computational prediction of protein–protein interactions

consists of two main areas (i) the mapping of protein–

protein interactions, i.e., determining whether two proteins

are likely to interact and (ii) the understanding of the

mechanism of protein–protein interactions and the identi-

fication of residues in proteins which are involved in those

interactions. The first successful computational analyses of

protein–protein interactions, used the structural context of

proteins in order to analyze known protein interaction

interfaces in order to determine physical rules determining

protein–protein interaction specificity. Unlike other com-

putational methods that use an evolutionary or genomic

context to predict interaction, structural approaches tend to

be more limited in terms of scale, as only a small pro-

portion of protein sequences have accurate three-

dimensional structures deposited in the Protein Databank

(PDB) [9]. However, structural approaches allow for a

much more detailed analysis of protein interactions than

the genome-context based approaches. Structural approa-

ches can determine, not only whether two proteins interact,

but also the physical characteristics of the interaction, and

residues (sites) at the protein interface which mediate the

interaction.

The identification of protein interaction sites is impor-

tant for functional genomics, analysis of metabolic and

signal transduction networks and also rational drug design.

The first attempt to describe the characteristics of protein

interaction sites was undertaken in 1975 by Chothia and

Janin. With data from only three complexes, they sug-

gested that the residues which form the interface are

closely packed, tend to be hydrophobic and that comple-

mentarity may be an important factor in predicting which

proteins can interact [10].

Later studies with larger datasets extended and devel-

oped their work to try to identify other characteristics of the

interaction site that are sufficiently different from the rest

of the protein to be identifiable, and thus be predictive.

Further analysis of the hydrophobicity distribution of

amino acids can be used to predict interaction sites since

interacting regions tend to be the most hydrophobic clus-

ters on the surface of the protein [11–14]. This type of

analysis yields a 60% success rate at predicting interacting

sites. In general, hydrophobic residues such as Leu, Ile,

Val, Phe, Tyr, and Met are over-represented at interaction

sites, whereas polar residues such as Lys, Asp, and Glu (but

not Arg) are under-represented [15, 16]. Other parameters

which have been analyzed for their importance in identi-

fying those residues in a protein which form the interaction

site include the accessible surface area and residue com-

position [17, 18]. It has also become apparent that a

distinction must be made between different types of com-

plexes. Interaction sites on stable and transient complexes

have different properties [18]. Another study [19] indicates

that the residue composition can be used to identify six

different types of protein–protein interfaces, from domain-

domain interfaces in the same protein to inter-protein

contact surfaces.

Further studies, [18, 20] using a six-parameter analysis

(solvation potential, residue interface potential, hydropho-

bicity, planarity, protrusion and accessible surface area),

have indicated that none of these parameters individually
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could be definitively used as a prediction method. Using a

combined score from all six parameters yielded accurate

predictions for 66% of 59 structures [21]. All interfaces

tend to be planar and be surface accessible, the other

parameters differed between complex types. Studies are

also carried out to classify different types of protein–pro-

tein interfaces based on sequence and structural features

and to generate non-redundant datasets of protein–protein

interfaces from the known protein complexes. Such data-

sets provide the convenient resource for finding the

interface motifs shared among homologous proteins and

the possible binding orientations [22–24]. Computational

resources for the prediction and analysis of protein–protein

interactions using structural features are described below

(see section Structure Based Prediction of Interactions and

Table 1).

Shape complementarity is primarily used in docking

studies which focus on finding the best fit of the two

interacting proteins using rigid- and soft-body searches

[51–53]. Electrostatic complementarity between interfaces

(Fig. 1) plays an important role in determining the best fit

of two interacting proteins [52]. Interfaces between anti-

body-antigen complexes and transient heterodimers tend to

have the least shape complementarity, while homodimers,

enzyme-inhibitor complexes and permanent heterodimers

are the most complementary [18]. The docking algorithms

are further improved using the benchmark dataset [54].

Further, the performance of protein–protein docking

methods is also assessed by a community wide experiment

known as The Critical Assessment of Predicted Interactions

(CAPRI) [55]. CAPRI is a blind test, which aims to assess

the capability of different protein–protein docking methods

to predict the mode of interactions between two proteins

based on their 3D structures. The methods are evaluated by

comparing the predictions with the unpublished experi-

mental structures of the complexes.

However, other research [56] has indicated that the

chemico-physical properties of interacting surfaces are

difficult to distinguish from those of the whole protein

surface. It has been suggested that instead of using patch

analysis, it may be better to use interface contacts [19], i.e.,

residues whose closest atoms are annotated in PDB as

being less than 6 Å apart. They argue that the analysis of

surface patches may miss slightly buried residues with long

side-chains, while other residues identified as being part of

a patch may in fact not be important, or may not form

contacts at all.

Some methods are based on the fact that the residues at

the interface critical for the binding are evolutionary con-

served. These methods utilize the evolutionary information

contained in the multiple sequence alignment and analyze

amino acid characteristics of neighboring residues using

neural networks. Multiple sequence alignments can help to

identify specific family structures which are conserved

within a subfamily but differ between subfamilies. These

regions are interpreted as being interaction sites which may

endow specificity of ligand interaction [57–59]. Two

groups [60, 61] have trained neural networks with sequence

profiles of spatial neighbors of a target residue with solvent

exposure to predict whether a residue will be part of an

interaction site. Both of their methods gave approximately

a 70% accurate prediction rate. The validity of using

sequence profiles has been verified by results which dem-

onstrate that the majority of interacting residues are

clustered in sequence segments of several contacting resi-

dues [62].

Methods have also been developed to validate predicted

protein–protein interactions against experimentally deter-

mined 3D structures [25, 63]. Given a known three-

dimensional structure, they map homologs of the interact-

ing proteins onto the structure and using empirical

potentials and test whether the homologous proteins pre-

serve the interactions from the known structure. However,

the number of experimentally determined structures for

complexes is small, and of the 2,590 interactions predicted

by large-scale methods, only 59 could be mapped onto

their set of interacting complexes. Of these, 59% had

domains that appeared to be in direct contact, thus

increasing the probability that these predicted protein–

protein interactions are biologically correct. Computational

methods [31] for the prediction of protein–protein inter-

actions based on this (and other structural approaches) are

described below (see section Structure Based Prediction of

Interactions).

Genomic Context Approaches

Co-localization

One of the first methods for predicting protein–protein

interactions from the genomic context of genes utilizes the

idea of co-localization, or gene neighborhood (Fig. 2a).

Such methods exploit the notion that genes which physi-

cally interact (or are functionally associated) will be kept in

close physical proximity to each other on the genome [44,

64–66]. The most apparent case of this phenomenon

involves bacterial and archaeal operons, where genes that

work together are generally transcribed on the same poly-

cistronic mRNA. In these cases, proteins involved in the

same process or pathway are frequently encoded on the

same polycistronic messenger. Moreover, operons which

encode for co-regulated genes are usually conserved.

Operons are rare in eukaryotic species [67, 68]. How-

ever, genes involved in the same biological process or

pathway are frequently situated in close genomic proximity
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[65]. It is hence possible to predict functional or physical

interaction between genes that are repeatedly observed in

close proximity (e.g. within 500 bp) across many genomes.

This method has been successfully used to identify new

members of metabolic pathways [65]. Like many of the

genome-context approaches, this method becomes more

Table 1 Methods and databases for computational prediction of protein–protein interactions

Resource Type of resource WWW address (URL) Ref

Structural context interaction prediction

Protein–Protein Interaction

Server

Structure based interaction prediction http://www.biochem.ucl.ac.uk/bsm/PP/server/ [18]

InterPreTS Structure based interaction prediction http://www.russell.embl.de/interprets/ [25]

Genomic context interaction prediction

AllFUSE Gene fusions http://www.ebi.ac.uk/research/cgg/allfuse/ [26]

STRING Gene Co-Localization, gene-fusion, phylogenetic

profiles

http://www.bork.embl-heidelberg.de/STRING/ [27]

WIT Orthology/phylogenetic profiles/gene co-localization http://wit.mcs.anl.gov/WIT2/ [28]

Predictome Gene Co-Localization, gene-fusion, phylogenetic

profiles

http://predictome.bu.edu/ [29]

COGs Orthology/phylogenetic profiles http://www.ncbi.nlm.nih.gov/COG/ [30]

Biological context interaction prediction

GeneCensus Combined predictions (bayesian network) http://genecensus.org/intint/ [8]

Pathway databases

PathGuide Lists of Pathway Databases http://www.pathguide.org/ [31]

Reactome Core Human Pathways http://www.reactome.org [32]

EcoCyc Metabolic pathway analysis http://ecocyc.pangeasystems.com/ecocyc/ [31]

KEGG Metabolic/regulatory pathway analysis and

reconstruction

http://www.genome.ad.jp/kegg/ [33]

SigPath Signaling pathways http://www.sigpath.org/ [34]

MIPS Pathways, complexes, cellular locations http://www.mips.biochem.mpg.de/proj/yeast/

pathways/index.html

[35]

Protein interaction databases

BIND Interactions, complexes, pathways http://www.bind.ca/ [36]

DIP Database of protein interactions http://dip.doe-mbi.ucla.edu/ [37]

INTACT Database of protein interactions http://www.ebi.ac.uk/intact/index.html [38]

MINT Database of protein interactions http://160.80.34.4/mint/ [39]

3did Database of domain-domain interactions http://gatealoy.pcb.ub.es/3did/ [40]

PIBASE Database of structurally defined interfaces http://alto.compbio.ucsf.edu/pibase/ [24]

SCOPPI Database of structural classification of protein–

protein interfaces

http://www.scoppi.org/ [41]

iPfam Database of domain-domain interactions http://www.sanger.ac.uk/Software/Pfam/iPfam/ [42]

DIMA Database of domain-domain interactions http://mips.gsf.de/genre/proj/dima [43]

Prolinks Database of protein functional linkages http://mysql5.mbi.ucla.edu/cgi-bin/functionator/

pronav

[44]

Gene-expression databases

SMD Gene expression data http://genome-www5.stanford.edu/ [45]

Array Express Gene expression data http://www.ebi.ac.uk/arrayexpress/ [46]

GEO Gene expression data http://www.ncbi.nlm.nih.gov/geo/ [47]

Visualization tools for protein interactions

BioLayout Interaction Network Visualization http://www.biolayout.org/ [48]

Cytoscape Interaction Network Visualization http://www.cytoscape.org/ [49]

VisANT Interaction Network Visualization http://visant.bu.edu/ [50]
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powerful with larger numbers of genomes. This approach

and a number of online resources that implement it will be

described in detail below (see section Gene-neighborhood

Based Interaction Prediction).

Phylogenetic Profiles

A relatively simple, yet powerful, form of genomic con-

text is the co-occurrence of pairs of genes across multiple

genomes. Two of the main driving forces in genome

evolution are gene genesis and gene loss [69, 70]. The

fact that a pair of genes remains together across many

disparate species represents a concerted evolutionary

effort that suggests that these genes are functionally

associated (i.e. same biological process or pathway) or

physically interacting. This criterion is less stringent than

that of gene co-localization, where gene pairs must not

only be present, but also situated close to each other on

the genome. Homologous genes can be termed either

orthologs or paralogs. In general the term ortholog is

used to describe genes that are related by a speciation

event, i.e. perform analogous functions in different

organisms and are related to a single common ancestor

gene in an ancestor species. The term paralog is used to

describe homologous genes that have arisen following a

gene duplication event, i.e., perform similar functions in

the same organism. Classifying homologous genes as

either paralogs or orthologs is difficult in the absence of

accurate phylogenetic or speciation information [71].

Classification of genes in this way allows the inference of

a phylogenetic context for a given gene.

The analysis of phylogenetic context in this fashion has

been termed phylogenetic profiling [72]. These profiles can

be as simple as a binary representation of the presence or

absence of a gene across multiple genomes [72–74]

(Fig. 2b). A library of these profiles may then be scanned

to find genes that exhibit identical (or highly similar)

phylogenetic patterns to each other. Pairs of genes detected

in this fashion are hence candidates for physical interaction

or functional association. This method has been used not

only to infer physical interaction [72], but also to predict

the cellular localization of gene products [75, 76]. Phylo-

genetic profiles can also be constructed for protein domains

instead of entire proteins [77].

This system is not however without flaw. First, the

strength of any inference made using such profiles is

heavily dependent on the number and distribution of ge-

nomes used to build the profile. A pair of genes with

similar profiles across many of bacterial, archaeal and

eukaryotic genomes is much more likely to interact than

genes found to co-occur in a small number of closely

related species. Second, evolutionary processes such as

lineage-specific gene loss, horizontal gene transfer, non-

orthologous gene-displacement [78] and the extensive

expansion of many eukaryotic gene families can make

orthology assignment across genomes very difficult. Also,

shared phylogenetic relationships between two proteins can

sometime produce false correlations [79]. However, given

the increasing number of completely sequenced genomes,

the accuracy of these predictions is expected to improve

over time. The details of this approach and online-resour-

ces for phylogenetic profile-based prediction of protein

interaction are described below (see section Phylogenetic

Profile Based Prediction of Interaction).

Gene Fusion

Genome context approaches to the prediction of protein–

protein interaction also include the analysis of gene fusion

across complete genomes. This method is complementary

to both co-localization of genes and phylogenetic profiles

and uses both gene location and phylogenetic analysis to

infer function or interaction. A gene fusion event represents

the physical fusion of two separate parent genes into a

single multi-functional gene. This is the ultimate form of

gene co-localization, i.e., interacting genes are not just kept

in close proximity on the genome, but are also physically

joined into a single entity (Fig. 2a). It has been suggested

that the driving force behind these events is to lower the

regulational load of multiple interacting gene products

[80]. Gene fusion events hence provide an elegant way to

Fig. 1 Three-dimensional structure of the T7 bacteriophage RNA

polymerase complexed with T7 lysozyme. The multi-colored struc-

ture on the left is RNA polymerase, shown with a transparent blue

molecular surface. The lysozyme is shown on the right in gray with its

associated transparent surface. The interaction interface is highlighted

in yellow on both surfaces. This figure was produced using PDB

structure 1ARO and PyMol
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computationally detect functional and physical interactions

between proteins [80, 81]. FusionDB is such a resource

which provides an in-depth analysis of bacterial and ar-

chael gene fusion events and can help in identifying

potential protein–protein interactions as well as regulatory

and metabolic pathways [82].

Gene fusion events are detected by cross-species

sequence comparison. Fused (composite) proteins in a

given reference genome are detected by searching for un-

fused component protein sequences, that are homologous

to the reference protein, but not to each other. These un-

fused query sequences align to different regions of the

reference protein, indicating that it is a composite protein

resulting from a gene fusion event [80]. Once again, pre-

dictions of this type are complicated by a number of issues.

The largest hindrance is the presence of so called promis-

cuous domains. These domains (such as helix-turn-helix

(HTH) and DnaJ) are highly abundant in eukaryotic

organisms. The domain complexity of eukaryotic proteins

coupled with the presence of promiscuous domains and

large degrees of paralogy can hamper the accurate detec-

tion of gene fusion events [83].

Although the method is not generally applicable to all

genes, i.e., it requires that an observable fusion event can

be detected between gene pairs, it has been successfully

applied to a large number of genomes (including eukary-

otes) [26]. The basic gene fusion detection method and

online resources such as the AllFUSE database [26], will

be described in detail below (see section Gene Fusion

Prediction of Protein Interactions).
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Fig. 2 Overview of genome context approaches. (A) Gene neigh-

borhood plots for eight complete genomes, showing a pair of genes

(red and blue) which are in close physical proximity in all eight

genomes. A gene fusion event between two genes (yellow and light
blue) in two genomes is also shown. (B) Example phylogenetic

profiles of selected genes from the previous panel. These three pairs

of genes have the same patterns of co-occurrence in all eight

genomes, and may physically interact based on this evidence. (C)

Two protein family alignments are shown with conserved regions

highlighted (in red and blue). Correlated mutations (shown in green)

are present in two identical sub-trees for each family, which indicates

that these sites may be involved in mediating interactions between

proteins from each family
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In-Silico Two-Hybrid

The in-silico two-hybrid (i2h) approach has much in common

with the other genome-context approaches, but also indirectly

assesses structural properties of proteins that potentially

interact. It has previously been shown that a mutation in the

sequence of one protein in a pair of interacting proteins is

frequently mirrored by a compensatory mutation in its

interacting partner (Fig. 2c). The detection of such correlated

mutations can not only be used to predict protein–protein

interactions, but also has the potential to identify specific

residues involved at the interaction sites [84].

Previous analyses [85] involved searching for correla-

tion of residue mutations between sequences in the same

protein family alignment (intra-family). The in-silico two-

hybrid method extends this approach by searching for such

mutations across different protein families or domain

families [86]. Prediction of protein–protein interactions

using this approach is achieved by taking pairs of protein

family alignments and concatenating these alignments into

a single cross-family alignment. A position-specific matrix

is then built from this alignment, and a correlation function

is then applied to detect residues which are correlated both

within and across families. Correlated sites that potentially

indicate protein interaction are returned with a score. The

method suffers due to the computational complexity of

constructing the large numbers of alignments needed, and

poor quality alignments can dramatically increase noise in

the procedure [84]. However the method is similar to the

gene fusion approach, as a single accurate prediction

between two proteins can infer interaction between all

members of both families used.

Biological Context Approaches

High-throughput experimental techniques now provide

access to a more detailed view of protein interactions at a

genomic level [87]. Gene expression analysis allows one to

not only determine which genes are active in a given state,

but also sets of genes which are co-regulated in many dif-

ferent states. It has been shown that many interacting

proteins are co-expressed according to microarray analyses

[4–6]. Current gene-expression methods now allow for

every coding gene of a genome to be placed on a single

microarray, allowing the activity of every gene to be

monitored across different states or time-points. Although

these methods cannot directly be used to determine whether

or not two proteins interact or not, a number of computa-

tional approaches have been developed that use this

information towards the prediction of protein–protein

interaction and gene regulatory networks [4–6]. Other high-

throughput experimental techniques such as yeast two-

hybrid specifically test a bait protein for interactions against

a set of prey proteins. The bait and prey consist of fusion

constructs that activate a reporter gene if they interact with

each other. While this method is not as accurate as other

techniques such as co-immunoprecipitation, affinity chro-

matography or gel-overlay assays, it can be applied rapidly

to genome-scale studies of protein–protein interactions.

Many of these high-throughput methods for investigat-

ing the biological context of genes and proteins are

inherently noisy. For example, some proteins in yeast two-

hybrid assays appear to detect a large number of spurious

interactions (false-positives). Gene expression techniques

suffer from a number of problems also, such as cross

hybridization and poor signal-to-noise ratios. Recently

however, research has shown that multiple datasets per-

taining to the biological context of genes and proteins can

be combined using machine learning techniques [8, 88].

Using Bayesian network analysis it is hence possible to

computationally combine multiple noisy datasets in such a

way that protein–protein interactions can be more reliably

predicted. In this method each source of interaction evi-

dence is compared against samples of known positive

(proteins in the same complex) and negative (proteins in

different cellular locations) interactions, allowing a statis-

tical reliability index to be built for each data source. When

this information is applied genome-wide, a prediction can

be made for every protein pair in a genome by combining

different sets of independent evidence according to their

calculated reliability. Protein interactions predicted in this

way have been shown to be as reliable as pure experimental

techniques, while simultaneously covering a larger pro-

portion of genes than most experimental methods [8].

A number of available resources for protein–protein

interaction data, gene expression data and Bayesian net-

work analysis of multiple interaction datasets will be

described below (see section Prediction of Protein Inter-

actions from High-throughput Biological Datasets).

Data-Sources and Visualization Techniques

Computational biology is a data-rich research field. The

advent of complete genome sequencing and high-

throughput experimental techniques has created an enor-

mous amount of data. In order for these data to be both

informative and useful, they must be stored in a sensible

and accessible way, and tools must be made available to

visualize and exchange this information. A number of

initiatives are tackling these problems by creating freely

accessible databases storing a wide variety of biological

information including protein–protein interactions.

Recently, a number of research groups have created visu-

alization tools for biological networks. These tools provide
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a new way to analyze protein–protein interaction networks,

provide a multitude of different ways to represent inter-

actions and can overlay other biological information onto

these networks. A number of databases that store protein–

protein interactions, molecular complexes and pathways

will be described later (see section Data resources for

Protein–Protein Interactions and Table 1). Finally, we will

detail methods for the visualization and analysis of pro-

tein–protein interaction networks (see section Tools for

Protein–Protein Interaction Visualization).

Methods

In this section we will describe computational resources

and methods for the prediction of protein–protein interac-

tions. These methods will be detailed in chronological

order. Within each section a number of on-line computa-

tional resources are described that allow one to perform

this type of analysis interactively. Resources mentioned in

this section are further summarized below (see Table 1).

Structure Based Prediction of Interactions

The Protein–Protein Interaction Server at University

College London (UCL) provides a simple web-based

interface for exploring protein–protein interaction inter-

faces, given three-dimensional structures [18]. This server

takes into account the following information for interaction

analysis: accessible surface area, planarity, length &

breadth, secondary structure, hydrogen bonds, salt bridges,

gap volume, gap volume index, bridging water molecules

and interface residues. This resource (Table 1) is very

useful for exploring the protein–protein interaction poten-

tial of two protein structures identified through docking or

shape-complementarity.

The structural bioinformatics group at EMBL Heidel-

berg provides the InterPreTS server for protein–protein

interaction prediction [25]. Using this resource (Table 1)

one can submit pairs of sequences that are then compared

to the three-dimensional structures of known protein–pro-

tein interactions. This resource utilizes a pre-built

Database of Interacting Domains (DBID) and an empirical

scoring system to test whether a sequence pair fits a known

three-dimensional structure of an interacting pair of

proteins.

Gene-Neighborhood Based Interaction Prediction

Co-localization of genes across multiple genomes provides

a fingerprint that they may physically interact [65].

Analysis of conserved gene locations across multiple ge-

nomes (Fig. 2a) can hence be used to predict protein

interaction networks and metabolic pathways [89]. A

number of excellent resources exist that allow one to

determine whether two proteins may interact using this

approach. The most notable of these are STRING (Search

Tool for Recurring Instances of the Neighborhood of

Genes) [27] and WIT (What is There?) [28]. The STRING

database (Fig. 3) provides a web interface giving com-

prehensive access to gene neighborhood information [90]

for 356,775 genes in 110 complete genomes (Fig. 3).

Similarly, the Predictome database at Boston University

[29] provides a comprehensive web interface to predictions

of this type. The WIT database provides access to protein

family information, metabolic pathway reconstruction and

gene co-localization information. Using these resources

allows detailed pre-computed gene neighborhood infor-

mation to be analyzed for evidence of protein–protein

interaction (Table 1). The actual protocols used for these

analyses can vary considerably, a general protocol adapted

from WIT [28] is described below:

1. In order to assess whether pairs of orthologous genes

share a common gene neighborhood across multiple

genomes one needs (a) protein sequences/genomic

locations and (b) orthology mappings between proteins

from multiple genomes.

2. Orthology mappings are generated by searching for

pairs of close bi-directional best hits (PCBBH). These

are a specific form of bi-directional best hit (see

section Phylogenetic Profile Based Prediction of

Interaction), a commonly used method for orthology

assignment. For a given pair of proteins a and b in

genome X, a bi-directional best hit to genes a0 and b0 in
genome Y is defined as follows:

a. The best BLAST hit for protein a in genome X is

protein a0 in genome Y.

b. The best BLAST hit for protein b in genome X is

protein b0 in genome Y.

c. The genes of proteins a and b are situated within

300 bp in genome X.

d. The genes of proteins a0 and b0 are situated within

300 bp in genome Y.

3. Genes that satisfy the above criteria can be considered

as having a conserved gene neighborhood across two

genomes. When this procedure is repeated across

multiple genomes it becomes possible to identify genes

which are significantly co-localized across many

genomes, and are hence likely to either physically

interact or be functionally associated.

4. The PCBBH criteria are quite strict, and it is also

possible to perform the procedure using Pairs of Close

Homologs (PCHs).
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5. Sets of PCBBHs or PCHs in multiple genomes are

typically scored for significance based on the number

and phylogenetic distribution of genomes in which they

are co-localized. Phylogenetic distance can be estimated

by examining a 16S rRNA phylogenetic tree.

6. A common score (coupling score) for the likelihood

that two genes interact based on summing individual

scores from multiple genomes is then calculated.

7. Finally, candidate genes that have significant coupling

scores are candidates for either physical interaction, or

functional association.

Phylogenetic Profile Based Prediction of Interaction

Phylogenetic profile based prediction of protein interac-

tions (Fig. 2b) has been shown to be an accurate and

widely applicable method. Perhaps the easiest way to

utilize this information for prediction of protein interac-

tion is to use precomputed phylogenetic profiles for

proteins of interest. The Clusters of Orthologous Groups

(COGs) resource at the National Center for Biotechnology

Information (NCBI) contains large numbers of profiles for

a variety of bacterial and archaeal organisms and also S.

cerevisiae [30, 91]. Other excellent resources for com-

bined computational predictions of protein interactions

using phylogenetic profiles are available from the

STRING [27] resource at EMBL Heidelberg and from

Predictome [29] (Table 1). Using the web interfaces to

these resources, it is relatively straightforward to find

groups of proteins with similar or identical phylogenetic

profiles, indicating proteins that physically interact or are

functionally associated (Fig. 3). For a more detailed

analysis of specific proteins of interest a general protocol

is described below:

Fig. 3 Screenshots from the STRING web resource. The left panel

illustrates the STRING representation of gene neighborhood and gene

fusion. The right panel shows a typical phylogenetic profile for

multiple genes and genomes. Finally, the inset shows a predicted

protein interaction map generated from gene neighborhood, gene

fusion, and phylogenetic profile methods combined
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1. For each genome to be analyzed, a FASTA sequence

file containing all protein sequences is assembled.

2. All protein sequences in each genome are compared

against all other sequences using a sequence similarity

search algorithm such as BLASTp [92]. A variety of

other sequence similarity search tools could also be

used at this step.

3. Orthology between proteins in different genomes is

assigned as follows:

• Two proteins (from different genomes) are orthol-

ogous if they were each other’s highest scoring

BLAST hit when searched against the other

genome. This is frequently referred to as a

bidirectional best hit (BBH).

• This process is repeated to assign (if possible) an

ortholog for each protein in a given genome, to a

protein in all other genomes.

4. All orthology assignments made in this way are stored

for post-processing.

5. A phylogenetic profile for a protein can then be

constructed by representing the presence or absence of

an ortholog for that protein across all genomes

analyzed. Frequently, this is represented by a simple

binary vector with ‘1’ indicating presence and ‘0’

representing absence of a gene in each genome

(Fig. 2b).

6. All profiles are compared to all other profiles using a

clustering procedure. A distance measure (such as

Pearson correlation of Euclidean distance) between

each profile and all other profiles is used to group

profiles according to how similar they are. Finally,

protein profiles that are highly similar or identical to

each other represent candidate proteins that physically

or functionally interact.

Gene Fusion Prediction of Protein Interactions

Gene fusion is a relatively common evolutionary phe-

nomenon [26]. A detected gene fusion between two genes

indicates that their protein products may physically interact

or be involved in the same biological process or pathway

[80, 81]. One extreme example of this is the aromatic

amino acid biosynthesis pathway in S. cerevisiae. In yeast a

single fused gene encodes the entire pathway of these five

normally separate genes [80]. Prediction of protein inter-

actions using gene fusion has been successful in a number

of areas, including the prediction of novel protein inter-

actions involved in important biological processes in

Drosophila melanogaster [93].

A comprehensive set of fused genes and inferred pro-

tein–protein interactions is available from the AllFUSE

database [26] at the European Bioinformatics Institute

(EBI), the STRING database at EMBL Heidelberg [27]

(Fig. 3) and the Predictome database at Boston University

[29] (Table 1). Using the AllFUSE resource one can search

for potential interactions for a given protein sequence from

a database of 24 complete genomes. A general protocol for

gene fusion based prediction of protein–protein interac-

tions can be described as follows [80]:

1. This analysis requires two genomes, a query and a

reference. One searches for gene fusion (composite)

proteins in the reference genome using protein

sequences from the query genome. Sequences from

both genomes need to be assembled into FASTA

format for this analysis.

2. Each protein in the query genome is then interactively

searched against each protein from the reference

genome using a sequence similarity search tool such

as BLASTp [92] using an expectation-value (E-value)

threshold to eliminate similarities which may have

arisen by chance.

3. All significant similarities detected in this way are then

stored in a binary matrix which for each protein pair

stores ‘1’ for significant similarity or ‘0’ for no

detectable similarity. The matrix may be symmetrified

by post-processing with a more sensitive sequence

search tool such as Smith-Waterman [94] to clear up

ambiguities.

4. Finding evidence of a gene fusion event in the

reference species extends of the previous symmetrifi-

cation problem to one of transitivity [80]. In this case

one searches for instances where query proteins A and

B match a reference protein C, but do not match each

other (i.e. A,C; B,C but A=B). These triangular

inequalities are resolved once again by using the more

accurate Smith-Waterman algorithm to double check

that no detectable significant similarity exists between

A and B. Further analysis using alignment geometry

can then verify that proteins A and B are orthologous

to different regions of a composite fusion protein but

not to each other [95].

5. Candidate fusion proteins detected in this way provide

evidence that proteins A and B may physically

interact.

Although this method is not generally applicable to all

genes, and suffers from the high levels of paralogy usually

present in eukaryotic genomes [96]. This approach has

been shown to have an accuracy as high as 90% and readily

detects well-known interacting proteins (e.g., tryptophan

synthase a and b subunits) and many proteins previously

shown to form complexes. As such this method represents

a useful way to build interaction networks for proteins of

interest within and across genomes.
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Prediction of Protein Interactions from High-

Throughput Biological Datasets

Gene expression analysis allows for all genes from a given

genome to be placed on a single microarray, allowing

many gene-expression experiments to be carried out rap-

idly and in parallel. Recently, efforts have been made to

standardize data formats for reporting the results of gene

expression experiments. The Minimum Information About

a Microarray Experiment (MIAME) [97] standard allows

different laboratories to effectively and accurately

exchange microarray expression information. Using such

standards, it has become easier for a number of publicly

accessible resources to distribute microarray data

(Table 1).

The Stanford Microarray Database (SMD) [45] pro-

vides access to raw data from public microarray

experiments, as well as a number of software tools for

utilizing this data. Currently, 140 experiments are indexed

in the SMD web resource. The MicroArray group at the

European Bioinformatics Institute provides ArrayExpress

[46], a publicly available gene expression data in MIAME

format for over 66 publicly available experiments and also

integrated tools for expression profile analysis. Finally, the

Gene Expression Omnibus (GEO) [47] database at the

NCBI contains data from over 300 large-scale publicly

available microarray and SAGE experiments, for which all

data is linked into the NCBI protein, nucleotide and

genomic databases.

Using these resources, it is hence possible to select a

number of datasets for an organism of interest, and extract

gene expression profiles for some or all genes. Proteins

whose genes exhibit very similar patterns of expression

across multiple states or experiments [98] may then be

considered candidates for functional association and pos-

sibly direct physical interaction [4–6]. Gene expression

analysis becomes much more reliable with more expression

data. For example, genes that have high correlation across

10 experiments are much more likely to be related func-

tionally than genes correlating across two experiments.

Gene expression data is relatively susceptible to noise, and

great care must be taken to minimize and filter this from

any analysis. This data can, however, be very powerful

when combined with analyses involving regulatory net-

work reconstruction, and with other methods of detection

of functional association and interaction of proteins [8].

The Bayesian networks approach (see section Biological

Context Approaches), which combines data from multiple

biological datasets is a useful way to minimize this noise

and perform reliable protein–protein interaction prediction

in S. cerevisiae [8]. Validation of the method indicates that

it can successfully recover large numbers of previously

known protein–protein interactions (Fig. 4) and many

novel interaction predictions. The results of this analysis

are available from the GeneCensus web site at Yale Uni-

versity (Table 1). These predictions are remarkable as they

illustrate that combining multiple independent and noisy

datasets in an intelligent way does not necessarily increase

noise in the combined protein interaction predictions

(assuming orthogonal error between datasets). This is also

an excellent example of a combined computational and

experimental approach, as interactions predicted using this

approach appear to be more reliable than many pure

experimental approaches [8].

Tools for Protein–Protein Interaction Visualization

Network and pathway visualization tools are computer

programs that can automatically generate a diagram of a

network or pathway. Perhaps the simplest representation of

a protein–protein interaction network is a graph composed

of nodes (proteins) connected by edges (interactions).

Some of the first visualization tools were developed for

browsing metabolic pathways. For example, a pathway

drawing tool is present in the ACeDB database [99] and in

EcoCyc [31]. In many cases these representations are

clickable so that one can select a member of a pathway or a

small molecule and get further information about that

entity. Many of these initial visualization tools are static,

and generated semi-automatically. The Kyoto Encyclope-

dia of Genes and Genomes (KEGG) [33], BioCarta and

SigPath [34] websites (Table 1), are examples of this type

of visualization. Other more advanced methods can

dynamically generate pathway diagrams from raw infor-

mation in a biological database, such as the EcoCyc and

WIT databases (see Table 1). Recently, many of the above

databases have started providing their data in BioPAX or

Cytoscape SIF format for easy visualization.

A number of purely automatic and general algorithms

based on a layout algorithm to organize graph of nodes and

edges into an aesthetically pleasing layout have been

developed for visualizing biological networks. In graph

terms this usually means minimizing the number of edges

that cross each other, and grouping groups of nodes that are

highly connected to each other. Typically, a well-organized

graph layout will allow the user to identify global features

of their data that may not have been previously apparent.

An example layout algorithm is the Spring Embedder

algorithm. This method models the graph as a physical

system where nodes are spheres connected by springs

(edges). Nodes are initially organized in a random state,

and forces between connected spheres (due to springs),

push the system into a lower-energy more stable state.

Other methods such as the Weighted Fruchterman-Rhein-

gold algorithm [95], represent the graph as a system of
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nodes which exert an attractive force (similar to a spring)

between nodes connected by an edge and a distance-

dependant repulsive force between all nodes. Additionally

the weighted algorithm allows the attractive forces between

node to be modulated using weights, and the energy of the

entire system is controlled using a temperature function.

Other layout algorithms, can involve arranging nodes

hierarchically, in a circular fashion or in less structured

formats. It is important to choose the best layout algorithm

for the type of graph being visualized. For example, a

highly connected interaction network will not assume a

meaningful graph layout when a hierarchical layout algo-

rithm is used.

The visualization tools for biological networks are

BioLayout [48], Cytoscape [49] and VisANT [50]

(Table 1). BioLayout and Cytoscope are commonly used

tools, which are written using the JAVA programming

language and are hence portable across a wide variety of

computer environments. Both tools also allow the inter-

active editing of graphs, through the movement of nodes,

node labeling and the ability to change the appearance of

nodes and edges. Additionally both tools can export

publication quality high-resolution graph images. Bio-

Layout utilizes the weighted Fruchterman-Rheingold

layout algorithm, and has a number of options for graph

customization, data-overlay, export and graph analysis,

including conventional 2-D rendering (Fig. 5a) and

hardware-accelerated 3-D rendering (Fig. 5b). Cytoscape

provides a number of different layout algorithms for

producing useful visualizations and a number of plugins

and import options for representing data such as gene

expression (Fig. 6). Specifically, circular, hierarchical,

organic, embedded and random layouts are available.

Circular and hierarchical algorithms try to layout a net-

work as their names suggest. Organic and embedded are

two versions of a force-directed layout algorithm. Types

of plugins that are currently available for Cytoscape

include one that allows reading PSI files (see section Data

resources for Protein–Protein Interactions) and one called

ActiveModules that finds regions of a molecular

Cyto. ribosome
(large subunit)

Cytosolic
ribosome

(small subunit)

26S
Proteasome

F0/F1 ATP
Synthase

Pre-replicative
complex 

RNA 
polymerase I

Mitochondrial 
Ribosome

(large subunit)

TFIIH

H+-transporting
ATPase 

TRAPP

RSC

SRB

Fig. 4 Bayesian network

predictions of protein–protein

interactions. Experimentally

validated gold-standard
protein–protein interactions

(blue and green lines) between

S. cerevisiae proteins (green
dots) are shown as an

interaction network. Bayesian

network analysis prediction of

protein–protein interaction

successfully recovers a

significant subset of these

interactions (green lines). The

gold-standard interactions are

derived from MIPS and well-

known complexes are annotated
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interaction network that are correlated across multiple

gene expression experiments. Both of these methods are

suitable for small to medium sized networks (less than

1,000 nodes), although it may not be long before both

layout and visualization techniques become available for

the analysis of much larger graphs.

Data Resources for Protein–Protein Interactions

Current computational and experimental methods for pro-

tein–protein interaction prediction have been generating

large amounts of data. It is imperative that this data be

stored in a consistent and reliable way so that it may be
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Fig. 5 Example graphs from

BioLayout. (a) A genetic

regulatory network of E. coli
genes. Genes are represented by

circles (nodes) connected by
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represented by lines (edges).

Nodes are colored according to

biochemical pathway

assignments. Nodes in the

center of the graph are not
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(edges) across multiple
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useful for biological research. A number of databases are

now publicly available for making both protein interaction

and pathway information accessible. The PathGuide data-

base [100] is a web resource aiming to capture information

about all these resources in one searchable list. Two of the

largest and most comprehensive interaction databases now

available are the Biomolecular Interaction Network Data-

base (BIND) [36] and the Database of Interacting Proteins

(DIP) [37]. DIP is based at UCLA and currently contains

over 56,000 experimentally determined protein–protein

interactions for over 19,000 proteins in 154 organisms.

Interactions in DIP are curated both manually (by expert

curators) and automatically (text-mining approaches).

BIND, at the University of Toronto, not only stores and

curates pair-wise protein–protein interactions, but also

molecular complex information and biological pathways.

Currently, BIND contains over 188,000 protein–protein

and protein-DNA interactions, 3,705 molecular complexes,

and 8 pathways encompassing. Other databases include

3did [40], PIBASE [24], SCOPPI [41], iPfam [42], DIMA

[43] and Prolinks [44].

A number of initiatives are currently underway to ensure

that these data from different interaction databases are

stored in a consistent and exchangeable format [101]. The

Proteomics Standards Initiative (PSI) [102] has created a

standard format for the exchange of protein–protein inter-

action data (PSI MI), while the BioPAX format aims to

capture protein–protein interactions, molecular complexes
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Fig. 6 Example graph from Cytoscape. A number of the important

features of CytoScape are represented in this graph layout. Nodes in

this case represent genes and edges represent either genetic (green,

cyan) interactions, protein–protein interactions (blue), or protein-

DNA interactions (red). Nodes are colored according to the gene

expression of that gene in a Gal4 knockout experiment, with blue

representing highly significant fold-change of a gene, and red

indicating no significant fold-change. Node shapes are determined

by the annotation of each gene, diamonds for signal transduction

genes, triangles for meiosis, Pol III transcription, mating response,

and DNA repair. Circles represent genes that were not assigned to any

of these categories
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and pathway information in a single consistent ontology

and exchange format (http://www.biopax.org). Another

commonly used format is the Systems Biology Markup

Language (SBML) [103]. Access information for DIP,

BIND and a number of other interaction and pathway da-

tabases are detailed further below (see Table 1).
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