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The determinants of binding specificities of peptide recognition domains and their evolution

remain important problems in molecular systems biology. Here, we present a new methodology to

analyze the coevolution between a domain and its ligands by combining high-throughput phage

display with deep sequencing. First, from a library of PDZ domains with diversity introduced at

ten positions in the binding site, we evolved domains for binding to 15 distinct peptide ligands.

Interestingly, for a given peptide many different functional domains emerged, which exhibited

only limited sequence homology, showing that many different binding sites can recognize a given

peptide. Subsequently, we used peptide-phage libraries and deep sequencing to map the specificity

profiles of these evolved domains at high resolution, and we found that the domains recognize

their cognate peptides with high affinity but low specificity. Our analysis reveals two aspects of

evolution of new binding specificities. First, we were able to identify some common features

amongst domains raised against a common peptide. Second, our analysis suggests that

cooperative interactions between multiple binding site residues lead to a diversity of binding

profiles with considerable plasticity. The details of intramolecular cooperativity remain to be

elucidated, but nonetheless, we have established a general methodology that can be used to

explore protein evolution in a systematic yet rapid manner.

Introduction

Protein–protein interactions are involved in essentially all

cellular processes, and hence, there is intense interest in under-

standing how these interactions have evolved.1 A better

characterization of these evolutionary processes would

enhance our fundamental understanding of cell function,

and also, would aid the design of synthetic proteins with novel

functions.2,3 However, efforts to understand natural protein–

protein interactions have been stymied by the complex nature

of these systems, which often include dozens of residues on

either side of the interaction interface and usually depend on

intricate structural features of the interacting partners.4,5

In this regard, peptide recognition modules (PRMs) have

served as useful model systems, because they represent some of

the simplest types of protein–protein interactions, and yet,

they are central to the regulation of numerous cellular

functions.1,6,7 PRMs recognize short linear stretches of

primary sequence in other proteins and serve to assemble

multi-protein complexes. Dozens of PRM families have been

identified in the human genome and each family may contain

up to hundreds of distinct members. Each family is defined by

a common fold and a core recognition motif, but sequence

differences amongst family members confer differences in

specificity which in turn adapt each member to a distinct

functional niche.

Amongst PRM families, the PDZ domain family is

particularly noteworthy, because it is amongst the most

prevalent PRM folds in metazoans (e.g. the human genome

contains over 250 PDZ domains in over 100 proteins).8

Furthermore, most PDZ domains recognize C-terminal

sequences by using a common binding cleft that lies between

a b-strand (b2) and an a-helix (a2) and is blocked at one end

by a ‘‘carboxylate-binding’’ loop.9 The peptide ligand inserts

between strand b2 and helix a2 as an additional b-strand, and
the C terminus interacts with the carboxylate-binding loop.10

We and others have studied PDZ domain specificity using

peptide libraries to gain insights into the functions of

individual domains, and also, in the hopes that specificity

analyses may reveal general rules about relationships between

structure and function.11–14 Eventually, if enough information

is obtained about a large number of PDZ domains, it may be

possible to predict specificity on the basis of primary sequence

and to engineer novel specificities by computational design,

and on a broader scale, knowledge gained from the PDZ

domain family may help to elucidate the fundamental

principles that govern protein–protein interactions.

With these goals in mind, two recent large-scale studies have

tackled the issue of PDZ domain specificity on a family-wide

scale. In one study, MacBeath and colleagues used synthetic

peptides to map interactions between 85 mouse PDZ domains

and several hundred natural ligands.15 In our own study, we

a Banting and Best Department of Medical Research, Department of
Molecular Genetics, and the Terrence Donnelly Center for Cellular
and Biomolecular Research, University of Toronto,
160 College Street, Toronto, Ontario, Canada M5S 3E1.
E-mail: sachdev.sidhu@utoronto.ca

bDepartment of Molecular Biology, Genentech, 1 DNA Way,
South San Francisco, CA 94080, USA

w Electronic supplementary information (ESI) available: Supplementary
Figures. See DOI: 10.1039/c0mb00061b

METHOD www.rsc.org/molecularbiosystems | Molecular BioSystems

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

T
or

on
to

 o
n 

11
 A

ug
us

t 2
01

0
Pu

bl
is

he
d 

on
 1

1 
A

ug
us

t 2
01

0 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

0M
B

00
06

1B
View Online

http://dx.doi.org/10.1039/C0MB00061B


Mol. BioSyst. This journal is c The Royal Society of Chemistry 2010

used peptide-phage libraries to map specificity profiles for 82

worm and human PDZ domains.16 Each of these studies shed

light on the functional diversity of the natural PDZ domain

family and enabled the development of algorithms that can

predict specificities for binding sites that are similar to those of

mapped PDZ domains.16,17 However, even these large data

sets do not provide a fully predictive understanding of the

relationships between PDZ domain sequence and specificity,

and unfortunately, the findings do not provide general insights

into protein–protein interactions.

Having conducted a large-scale analysis of PDZ domain

specificity by phage display, we have arrived at the sobering

conclusion that even exhaustive knowledge of natural PDZ

domain specificity may not be sufficient to achieve a complete

understanding of the relationships between PDZ structure and

function. This is due to a fundamental limitation of natural

protein sequence space. Even amongst large domain families

with hundreds of members, the natural diversity represents

only a sparse sampling of the sequence space that is

compatible with the family fold. In the case of human PDZ

domains, the average sequence identity is less than 30% and

there are only a few positions conserved among all domains.

Consequently, it has thus far proven impossible to accurately

define the minimum changes necessary to interconvert between

different natural PDZ domain specificities, aside from some

simple changes that are mediated by single amino acid

residues,16 and furthermore, natural PDZ sequence space

provides little insight into non-natural specificities that could

be supported by the PDZ domain fold.

Confronted by the limitations of natural protein sequence

space, we have turned to ‘‘synthetic’’ PDZ domains designed

to specifically address key questions about the evolution of

protein–protein interactions. Recently, we adapted the Erbin

PDZ domain (Erbin-PDZ) as a model system to explore

protein evolution. We displayed Erbin-PDZ on phage and

constructed a large combinatorial library by randomizing 10

positions that we defined as the core peptide-binding site.18

The library contained approximately 109 members and was

subjected to a selection for protease resistance to enrich for

structured domains. Remarkably, 61 out of 237 randomly

chosen domains proved to be functional for C-terminal

peptide recognition. Thus, the PDZ domain fold is

‘‘hardwired’’ for C-terminal peptide recognition, because

one-quarter of our structured repertoire was functional,

despite being heavily mutated and not being subjected to

any selective pressure for function.

Detailed analysis of our family of 61 synthetic domains

revealed at least 14 distinct specificity classes,18 which was

comparable to the 16 classes defined for the 82 natural

domains mapped by phage display.16 Approximately half of

the specificity classes for the synthetic domains matched those

of natural domains and the other half represented novel

specificities not observed in nature. Thus, the functional

diversity of the synthetic PDZ domain family, derived in weeks

without any selection for function, was equal to that of the

natural family, which has evolved for function over more than

one billion years.19 Importantly, the synthetic domain family

was derived from a well-defined library restricted to mutations

at only ten positions in the peptide-binding site, and thus, the

synthetic system is as functionally complex as the natural

system but structurally much simpler. Our synthetic approach

established a general methodology that can be used to expand

our database of synthetic PDZ domains and corresponding

specificity profiles designed to address particular questions

about protein structure, function and evolution.

Here, we present a further study designed to address how

PDZ domains and peptide ligands co-evolve. We used

high-throughput phage display methods to analyze numerous

domains and peptides in a rapid manner, and in addition, we

adapted deep sequencing methods to exhaustively explore the

peptide ligand sequence space. First, we assembled a set of

15 peptides representing optimal ligands for members of our

original synthetic PDZ domain family and selected for

additional binding domains from our phage-displayed

Erbin-PDZ library. Subsequently, we purified a panel of these

newly selected synthetic domains and determined their

specificity profiles using peptide-phage libraries. By exploring

the evolution of both sides of the PDZ domain–ligand

interface in a controlled, large-scale manner, we provide important

insights into the process of domain–ligand co-evolution.

Results

Evolution of peptide-binding synthetic PDZ domains

Our panel of 61 previously characterized synthetic PDZ

domains constitutes a family of ‘‘unevolved’’ reference domains,

because they were not subjected to any selective pressure for

function.18 Nonetheless, each family member is capable of

specific recognition of defined peptide sequences. Since this

family was generated by sampling only a few hundred of the

B109 Erbin-PDZ library members, these results raise an

interesting question: what kinds of domains would evolve if

the entire library was subjected to selective pressure for

binding to optimal ligands for the reference domains? Based

on an inspection of the specificity profiles for the unevolved

synthetic PDZ domain family, we designed a set of 15 peptides

that included an optimal ligand for wild type Erbin-PDZ

(P-WT) and 14 ligands for 12 synthetic PDZ domains

(Fig. 1A). These peptides were chosen to represent a diverse

sequence space so as to explore different specificities at the last

four ligand positions.

We verified that each peptide bound to the PDZ domain for

which it was designed (the reference PDZ domain), and thus

confirmed that our Erbin-PDZ library contained at least one

binding domain for each peptide (data not shown). Next, we

cycled the Erbin-PDZ library (Fig. 1B) through rounds of

independent binding selections against each of the 15 peptides.

All of the selections were successful and sequencing of

approximately 700 binding clones revealed 162 unique

PDZ domains evolved for binding to the various peptide

ligands. Peptides P-37a and P-26 yielded only two or one

unique binding domains, respectively, but all other peptides

yielded at least six unique binding domains (ESIw, Fig. S1).
A comparison of domains selected for binding to different

peptides showed that most domains were unique, but 17 domains

were selected for binding to two or more peptides. These multi-

specific domains likely arose due to cross-contamination
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between selection pools for different peptides, but nonetheless,

each domain was verified for binding to each peptide.

We compared the sequence identity between each reference

domain and the evolved domains selected for binding to its

optimal peptide ligand (ESIw, Fig. S2). At the ten binding site

positions that were varied in the library, the mean identity

between the reference and evolved domains is only 29%.

Furthermore, a comparison between domains evolved for

binding to the same peptide reveals only a slightly greater

mean identity of 41%. Notably, a comparison amongst

domains evolved for binding to different peptides reveals a

mean identity of 35%, which is only slightly lower than the

identity amongst domains evolved for binding to the same

peptide. Thus, there is a remarkable lack of sequence

conservation within the binding sites of domains selected for

identical binding function, and even lower conservation when

comparing evolved domains to their reference domains. Taken

together, these results show that the Erbin-PDZ library

contains multiple members that are capable of recognizing

each peptide ligand by using binding sites that differ greatly

from each other.

Specificity profiling of evolved synthetic PDZ domains by deep

sequencing

Although the evolved PDZ domains bind to the peptide

ligands they were selected against, it is not clear whether these

peptides are optimal ligands for the domains. To address this

question, we purified 22 PDZ domains that were evolved for

binding to nine different peptides. Each of these domains was

used as the target for binding selections with a phage-

displayed library of random heptapeptides with free C termini.

To obtain high resolution mapping of each specificity profile,

we used deep sequencing methods and obtained a total of

44 097 sequence reads representing 26 566 unique peptides,

which constitutes an order of magnitude more data than the

largest previous phage display analyses.16,18,20 We aligned the

unique binding peptides for each domain using a new compu-

tational algorithm that is capable of detecting pairwise

cooperativity amongst ligand positions (see Experimental).21

This analysis revealed that most of the domains exhibit two or

more specificity profiles, indicating that the binding sites are

capable of accommodating several distinct types of peptides

(Fig. 2).

We next compared the specificity of the evolved synthetic

PDZ domains to those of the unevolved synthetic domains18

and the natural domains16 in our previous data sets, using the

specificity potential (SP) metric, which is based on the position

weight matrix (PWM), calculated from the entire set of

binding peptides for each domain, and which varies from

one (most specific) to zero (least specific).16 As described

previously,18 the SP values of the unevolved synthetic domains

are comparable to those of the natural domains across the last

seven ligand positions, indicating that the unevolved synthetic

domains are as specific as the natural domains. In contrast, the

evolved synthetic domains exhibit comparable SP values for

the last two ligand positions but are much less specific than the

natural and unevolved synthetic domains for ligand positions

further upstream (Fig. 3A). Consequently, the total specificity

potential (the sum of SP values across all ligand positions) of

the evolved synthetic domains is much lower than that of the

unevolved synthetic domains and is comparable to that of the

least specific natural domains (Fig. 3B). Previously, we also

showed that the unevolved synthetic domains typically

recognize optimal ligands with lower affinities than the natural

PDZ domains.18 Affinity measurements for three evolved

synthetic PDZ domains show that they recognize their optimal

ligands with affinities that are much greater than those of the

unevolved synthetic domains and are comparable to those of

natural domains.

In sum, the evolved synthetic domains recognize peptides

with interactions that are of higher affinity but lower specificity

than those of the unevolved synthetic domains, and these traits

resemble those of the least specific natural domains.

Consequently, most of the specificity profiles of the evolved

synthetic domains appear to be less specific versions of the

specificity profiles of the corresponding reference domains

(Fig. 2). Thus, each evolved domain is able to bind to the

Fig. 1 The peptide ligands and the Erbin-PDZ library used for the

selection of synthetic PDZ domains. (A) Each peptide was designed as

an optimal ligand for a reference synthetic PDZ domain, based on

specificity profiles from a previous study.18 The numerical designation

for each peptide corresponds to the numerical designation of its

reference PDZ domain (e.g. peptide P-35 was designed to match the

specificity profile of domain E-35). (B) Design of the Erbin-PDZ

library.18 Erbin-PDZ (grey) is shown with a bound peptide ligand

(WETWVCOOH, green).
24 Binding site positions that were varied are

depicted as magenta spheres; the wt sequences and position numbers

are shown.
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Fig. 2 Specificity profiles for evolved synthetic domains selected for binding to peptide ligands. The aligned peptide ligand set for each domain

was used to create a PWM, and the specificity of each ligand position was visualized as a sequence logo. In step 1, the specificity profile of a

previously analyzed unevolved reference domain18 was used to design an optimal peptide ligand. The sequence logo for the specificity of each

reference domain is shown, and below is shown the sequence of the reference domain binding site at positions that were varied in the Erbin-PDZ

library. The name of each domain is shown to the left of the sequence logo. In step 2, each peptide was used to evolve binding domains from the

Erbin-PDZ library. The sequence of the binding site of each evolved domain is shown and residues that differ from the corresponding reference

domain are coloured red. The name of each evolved domain is shown to the left of the binding site sequence. In step 3, the evolved domains were

used as targets in binding selections with a random peptide-phage library to select binding peptides. DNA from the binding pools was subjected to

deep sequencing and the binding peptide sequences were analyzed to define specificity profiles. Owing to the extremely large number of unique

peptide sequences that were retrieved, multiple distinct specificities could be detected for many domains. The numbers of unique peptides used to

derive the sequence logos are shown to the right and the total numbers of sequence reads are shown in parentheses. The number above each

sequence logo is the percentage of unique peptides used to derive the logo.
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peptide ligand against which it was selected, but in comparison

with the reference domain, it does so by recognizing fewer

features of the ligand, and in extreme cases, many evolved

domains recognize only the last two residues of the ligand. It

appears that selection for binding to peptide ligands has led to

the evolution of PDZ domains that can achieve high affinity

through optimized recognition of only a few ligand side

chains. Thus, somewhat paradoxically, the selection pressure

has produced domains that are less specific than the unevolved

synthetic domains, because unlike the unevolved domains,

most of the evolved domains do not require interactions with

many ligand side chains to achieve productive binding.

Correlation analysis of PDZ domain–ligand interactions

Overall, our results show that many different PDZ domains

can recognize a given peptide, and binding sites that are

selected for the same peptide are only slightly more similar

to each other than they are to binding sites that are selected for

different peptides (ESIw, Fig. S2). Consequently, even though

we varied only ten positions in the PDZ domain, it is difficult

to discern whether common changes in the binding site are

responsible for improved recognition of particular peptides.

Nonetheless, we wondered whether it might be possible to

identify changes at specific PDZ domain positions that

are correlated with changes at specific ligand positions. In

particular, the 15 peptide ligands that were used in the

selection experiments were designed such that at least some

peptides contain positively-charged or negatively-charged side

chains at the �1, �2 or �3 positions. Consequently, we

analyzed our data set of evolved PDZ domains to identify

sequence features that may be correlated with these features of

the peptide ligands.

First, we aligned the sequences of the ten varied positions

for all 162 unique PDZ domains that were selected against any

of the 15 peptide ligands, and we represented this alignment as

Fig. 3 Specificity and affinity of synthetic and natural PDZ domain–ligand interactions. (A) The mean specificity potential (SP) value at each

ligand position is shown for 73 natural domains (white bars), 51 unevolved synthetic domains (grey bars), and 22 evolved synthetic domains

(black bars). (B) The plot shows the total specificity potential summed over all ligand positions (y axis) and the affinities for optimal ligands (x axis)

for 11 unevolved synthetic domains (diamonds), 15 natural domains (squares) and three evolved synthetic domains (circles). The filled symbols that

are coloured the same indicate pairs of unevolved and evolved domains that were assayed for binding to the same peptide, as follows: magenta

(peptide P-37, domains E-37 and E-37a), red (peptide P-12, domains E-12 and E-12a), blue (peptide P-19, domains E-19 and E-19j). Data for the

natural and unevolved synthetic domains were reported previously.18
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a PWM (Fig. 4A). Next, we generated PWMs for the subsets

of PDZ domains that were selected against peptide ligands

that contain an R�1 (P-19, P-37a and P-26), a D�1 (P-55 and

P-37), an R�2 (P-39, P-12 and P-26), a D�2 (P-14), an R/K�3

(P-35 and P-19a), or a D/E�3 (P-WT, P-39 and P-41). We then

compared the PWM for each subset to the PWM for the entire

set to identify differences that might represent sequence

changes in the PDZ domain that favour the ligand feature of

each subset.

We observed significant correlated changes at four positions

in the PDZ domain binding site (Fig. 4A and B), and overall,

the changes seem to alter the electrostatic potential of the PDZ

domain binding site in a manner that would favour inter-

actions with the different charged ligand features. In parti-

cular, there appears to be a depletion or enrichment of

positively-charged residues at position 26 in response to

positively-charged or negatively-charged residues, respectively,

at any of the three ligand positions. This observation is

consistent with general electrostatic effects whereby positive

charge at position 26 would be expected to repel or attract

positively-charged or negatively-charged ligands, respectively.

At position 51, negatively-charged residues are enriched in

response to ligands that contain an R�1. These results are

consistent with the structures of two natural PDZ domains, in

each of which, a negatively-charged side chain at the corres-

ponding position in the binding site makes favourable electro-

static interactions with an R�1 in a peptide ligand.22,23

Similarly, at position 49, enrichment for positive or negative

charge is correlated with ligands containing D�1 or R�3,

respectively. Position 49 is proximal to both the �1 and �3
positions of the ligand, and thus, these changes are consistent

with the introduction of favourable electrostatic interactions

between opposite charges in the PDZ domain and the ligand.

Finally, positively-charged K residues at position 83 are

enriched in response to ligands that contain D�2, and this

change is expected to establish favourable electrostatic inter-

actions, because the ligand side chain at the�2 position projects

towards the PDZ domain side chain at position 83.10,24

Discussion

Previously, we conducted a large-scale analysis of the natural

PDZ domain family,16 and subsequently, we developed a

high-throughput phage display methodology that enables the

specificity profiling of hundreds of domains in parallel.18 Now,

we have combined the high-throughput selection methodology

with deep sequencing techniques25 that enable exhaustive

sampling of selection pools, and the combined approach

enables the study of in vitro protein evolution with

unprecedented speed and precision. In the current work, we

have used this new approach to explore the coevolution of

PDZ domain–ligand interactions.

By selecting a phage-displayed PDZ domain library for

binding to a panel of 15 distinct peptide ligands, we evolved

a large panel of functional synthetic domains. Comparison of

domains raised against the same peptide revealed binding site

identities that are only slightly greater than those amongst

domains raised against different peptides. As observed

previously for natural domains,16 these results show that a

Fig. 4 Comparison of synthetic PDZ domain binding sites selected for

binding to different types of peptides. (A) The aligned sequences at binding

site positions that were varied in the Erbin-PDZ library were used to create

a PWM,which was visualized as a sequence logo. At the left is indicated the

nature of the peptides that were used to select the domains included in each

PWM. At the right is indicated the number of unique domains included in

each PWM. Asterisks (*) indicate binding site positions that differ in each

sequence logo compared to the logo for the domains selected against

all peptides. (B) Correlated positions in Erbin-PDZ and peptide ligands.

Erbin-PDZ (grey) is shown with a bound peptide ligand (green). Magenta

spheres represent Erbin-PDZ positions at which changes are correlated with

changes in particular peptide positions (shown in parenthesis).
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single peptide can be recognized by very different binding sites.

This property has likely aided the rapid evolution of functional

diversity in the PDZ domain family,18 but it complicates our

efforts to understand the molecular basis for PDZ domain

function and evolution. As expected, the evolved synthetic

domains recognize their cognate peptides with higher affinities

than reference domains that were not evolved for function, but

surprisingly, the evolved domains do so with lower specificities

than the unevolved synthetic domains and most natural

domains. This result likely originates from a key difference

between our in vitro evolution process and natural selection,

namely, the lack of competition for ligands. In our case, the

system was driven purely by affinity, and thus, we obtained

domains that bound to peptides with high affinity but often

did so by utilizing highly optimized contacts with only a few

ligand residues. In contrast, during natural selection inside the

cell, each domain is exposed to thousands of other proteins

and selection for biological function is driven not only by

affinity but also by specificity. Consequently, it appears that

natural domains recognize extended features of their cognate

ligands, because this mode of recognition provides not only

affinity but also specificity by enabling discrimination across

multiple ligand positions.

Despite the considerable differences amongst our panel of

evolved synthetic domains, correlation analysis did reveal

trends that suggest the evolution of charge complementarity

amongst binding sites and ligands. However, it is clear that

cooperative interactions between multiple mutations are

required for drastic changes in specificity, and the details of

these intramolecular relationships remain to be elucidated.

Importantly, our synthetic domain family is considerably

simpler than the natural PDZ domain family, as all members

contain a maximum of only ten residue differences, which

occur directly in the binding site. Furthermore, unlike the

natural family, our synthetic family is expandable and the

stage is now set for further large-scale in vitro evolution studies

that will enlarge the synthetic family to address additional

questions about the process of evolution. For example,

the selection process could be repeated in the presence of

competitor peptides to more closely mimic natural selection

and to observe differences amongst selected populations in the

presence or absence of competition. Also, the set of varied

positions in the binding site could be reduced to narrow the

degenerate sequence space, or alternatively, the set could be

expanded to investigate the influence of second sphere

residues. Finally, our methods are general and could be readily

applied to other protein families.

In closing, it is worth noting that there have been impressive

advances in computational methods that use statistical

coupling analysis of natural sequence families to identify

cooperative interactions amongst protein residues.26 In the

case of WW domains, these analyses have revealed the

minimum information necessary to encode structure, and they

have enabled the design of functional synthetic domains.27,28

Our empirical methods are complementary to these computa-

tional methods, because we can use in vitro evolution to

generate large yet defined datasets for computational analysis.

In future experiments, we envision close interplay between high-

throughput in vitro evolution and computational simulations in

large-scale experiments designed to elucidate the rules governing

protein structure and function.

Experimental

Selection and analysis of peptide-binding synthetic PDZ

domains

A previously described Erbin-PDZ library (library 1, Fig. 1B)

was used in the selection experiments.18 N-Terminally

biotinylated peptides (Fig. 1A) were immobilized on 96-well

Maxisorp Immunoplates (NUNC, Rochester, NY) coated

with neutravidin (Pierce, Rockford, IL) and phage from the

Erbin-PDZ library were cycled through five rounds of binding

selection, as described.18 After the fifth round, individual

phage clones were assayed for binding to the peptide by phage

ELISA,29 48 positive clones from each peptide selection were

subjected to DNA sequence analysis, and unique sequences

were aligned.

High-throughput expression and purification of synthetic PDZ

domains

Individual variants were expressed and purified as glutathione

S-transferase (GST) fusion proteins, as described.18 In brief,

individual variants from the binding selections were pooled

and used as the template for a PCR that amplified DNA

fragments encoding the PDZ domains. The DNA fragments

were ligated into an expression phagemid to produce an open

reading frame encoding a fusion protein consisting of a hexa-

histidine tag, followed by GST followed by an Erbin-PDZ

variant. Bacteria harbouring individual clones were grown

in a 96-well format in duplicate plates. In one plate, phage

production was induced by the addition of M13-KO7 helper

phage (New England Biolabs, Beverly MA) and the phage

particles were used as templates for a PCR that amplified a

DNA fragment that was subjected to DNA sequence analysis.

In the other plate, glycerol was added to a final concentration

of 10% (v/v) and the cultures were frozen and stored as stocks

for protein expression. Protein expression and purification was

also performed in a 96-well format. Bacteria were pelleted and

lysed, and the lysates were loaded onto Phynexus tips containing

Ni–NTA resin (PhyNexus, San Jose CA). After washing,

bound protein was eluted with elution buffer (50 mM NaPi,

pH 8.0, 300 mM NaCl and 250 mM imidazole). Protein

concentrations were measured using a Bradford Assay

(Biorad, Hercules, CA) and the yields of purified protein

ranged from 0.05–0.150 mg per 1.5 ml expression culture.

Selection of peptide ligands for PDZ domains

Peptide-phage selections were performed using a library of

random heptapeptides (1011 unique members) fused to the C

terminus of the gene-8 major coat protein of M13 phage, as

described.18 The binding selections were performed in a

96-well format with one well dedicated to each target protein

from the high-throughput purification. Phages from the

peptide-phage library were cycled through five rounds of

binding selection against each PDZ domain. After five rounds

of selection, specific binding of the selected phage pool to the

PDZ domain was verified by phage ELISA29 and the positive
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phage pools were subjected to DNA sequence analysis using

454 sequencing (454 Life Sciences, Branford, CT).

Deep sequence analysis by 454 sequencing

Each phage peptide pool was used as the template for a

PCR with an individual forward primer comprising the

454 compatible 50 end (50-GCCTCCCTCGCGCCATCAG),

8 base pair barcode sequence and an annealing site for

a constant region of the peptide-phage display vector

(GCGCCCCCGGTGGCGGA-3 0). For all phage peptide

pools, we used a generic reverse primer comprising a

454 compatible 30 end (50-GCCTTGCCAGCCCGCTCA)

and an annealing site for a constant region of the peptide-

phage display vector (GCACTGAGTTTCGTCACCA-3 0).

Successful amplification of the correct 320 base pair DNA

fragment from each phage pool was verified by agarose gel

electrophoresis. The amplified DNA fragments were pooled

and subjected to 454 DNA sequencing.25 Each sequencing

read was assigned to its correct pool on the basis of its unique

barcode sequence. The DNA sequences were translated to

decode the sequence of each selected peptide.

Specificity profiling

For each domain, the binding peptides were first aligned from

the C terminus. The multiple PWMs (displayed as multiple

logos in Fig. 2) were generated with a recent computational

method,21 based on the machine learning framework of

mixture models, which enables uncovering multiple specificity

in peptide profiles. This approach is particularly useful when

different ligand positions display cooperativity (i.e. residues

are not contributing independently to the binding). To

determine the optimal number of PWMs, we split the set of

peptides into clusters using standard hierarchical clustering

algorithm until ligand positions are no longer correlated

within each cluster. As a measure of correlation or coopera-

tivity, we used the Z-score of the Mutual Information and a

threshold linearly increasing from 3.5 to 10.5 was applied to

account for the variable size of different peptide sets.

The specificity potential (Fig. 3) measures how specific a

ligand position is. It is defined as 1 + S20
i=1pi log20(pi), where pi

is the frequency of the amino acid i at this position in the

phage profile of a given domain.

Affinity assays

The binding affinities of peptides for PDZ domains were

determined as IC50 values with a competition ELISA, as

described.30 For each domain, optimal peptide pairs were

synthesized with either a biotinylated or an acetylated N

terminus. GST-PDZ protein was immobilized on assay plates

coated with an anti-GST antibody (Sigma-Aldrich, St. Louis,MO).

A fixed concentration of biotinylated peptide (10 mM) in

PBS, 0.5% BSA, 0.1% Tween 20 (PBT buffer) was mixed

with serial dilutions of the acetylated peptide and the mixture

was transferred to the assay plates. After incubation for 1 h,

the plates were washed with PBS and 0.05% Tween 20,

incubated with horse radish peroxidase conjugated to

neutravidin (Pierce, Rockford, IL) (1 : 10 000 dilution in

PBT buffer), washed again, and detected with TMB

(3,30,5,50-tetramethylbenzidine) peroxide substrate (KPL,

Gaithersburg, MD). The IC50 was defined as the concentration

of acetylated peptide that blocked 50% of biotinylated peptide

binding to the immobilized GST-PDZ protein.
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