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Abstract 

Background Glioblastoma (GBM) is an aggressive brain tumor that exhibits resistance to current treatment, making 
the identification of novel therapeutic targets essential. In this context, cellular prion protein  (PrPC) stands out as a 
potential candidate for new therapies. Encoded by the PRNP gene,  PrPC can present increased expression levels 
in GBM, impacting cell proliferation, growth, migration, invasion and stemness. Nevertheless, the exact molecular 
mechanisms through which PRNP/PrPC modulates key aspects of GBM biology remain elusive.

Methods To elucidate the implications of PRNP/PrPC in the biology of this cancer, we analyzed publicly available 
RNA sequencing (RNA‑seq) data of patient‑derived GBMs from four independent studies. First, we ranked samples 
profiled by bulk RNA‑seq as PRNPhigh and PRNPlow and compared their transcriptomic landscape. Then, we analyzed 
PRNP+ and PRNP‑ GBM cells profiled by single‑cell RNA‑seq to further understand the molecular context within which 
PRNP/PrPC might function in this tumor. We explored an additional proteomics dataset, applying similar comparative 
approaches, to corroborate our findings.

Results Functional profiling revealed that vesicular dynamics signatures are strongly correlated with PRNP/PrPC levels 
in GBM. We found a panel of 73 genes, enriched in vesicle‑related pathways, whose expression levels are increased 
in PRNPhigh/PRNP+ cells across all RNA‑seq datasets. Vesicle‑associated genes, ANXA1, RAB31, DSTN and SYPL1, were 
found to be upregulated in vitro in an in‑house collection of patient‑derived GBM. Moreover, proteome analy‑
sis of patient‑derived samples reinforces the findings of enhanced vesicle biogenesis, processing and trafficking 
in PRNPhigh/PRNP+ GBM cells.
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Conclusions Together, our findings shed light on a novel role for  PrPC as a potential modulator of vesicle biology 
in GBM, which is pivotal for intercellular communication and cancer maintenance. We also introduce GBMdiscovery, 
a novel user‑friendly tool that allows the investigation of specific genes in GBM biology.

Keywords Glioblastoma, Transcriptomics, Prion protein, Intracellular trafficking, Vesicle dynamics

Introduction
Glioblastoma (GBM) is an aggressive central nervous sys-
tem tumor classified as a grade IV glioma by the World 
Health Organization (WHO) [1]. At the molecular level, 
the mutation status of isocitrate dehydrogenase (IDH) 
is an important diagnostic and prognostic biomarker. 
Survival expectancy for patients bearing IDH wild-type 
(IDHwt) GBM is dismal, and this type of cancer is more 
aggressive than the IDH-mutant counterpart. Given the 
differences between IDHwt and IDH-mutant tumors, a 
new classification defining GBM exclusively as IDHwt 
cancer has been proposed [2]. Transcriptionally, GBM 
is stratified into three molecular subtypes: proneural, 
classical, and mesenchymal [3]. Recently, cells resem-
bling different molecular subtypes and spanning distinct 
genetic programs were shown to exist within a single 
tumor, highlighting the heterogeneous nature of this can-
cer [4]. In this context, GBM bears a subpopulation of 
glioma stem-like cells (GSCs) associated with its hetero-
geneity, aggressiveness, and therapy resistance [5].

In the past 20 years, standard treatment delivered to 
individuals with GBM has been surgical resection fol-
lowed by radiotherapy and chemotherapy with temozolo-
mide, providing patients with a median overall survival of 
14-20 months [6–8]. Several aspects are proposed to be 
associated with GBM malignancy. Low therapy effective-
ness is partially explained by resistance mechanisms to 
both radio and chemotherapy [9], and surgical resection 
is hindered by the invasive nature of GBM [7]. GSCs may 
play a role in therapy resistance by releasing extracellu-
lar vesicles (EVs), which carry bioactive molecules (pro-
tein, RNA, DNA, sugar, and lipids) able to manipulate the 
tumor microenvironment to support tumor growth and 
progression [10, 11].

Research efforts have focused on identifying novel 
potential molecular targets to be exploited in GBM ther-
apeutics and to give patients better life expectancy and 
quality. Increasing evidence has demonstrated that the 
cellular prion protein  (PrPC) plays a key role in GBM 
biology.  PrPC is a glycosylphosphatidylinositol-anchored 
cell surface glycoprotein that faces the extracellular space 
and is encoded by the PRNP gene, mediating essential 
processes in mammalian nervous system [12–14]. This 
protein is a scaffolding molecule and orchestrates sign-
aling complexes on the plasma membrane, interacting 
with a plethora of ligands [15]. Beyond its important 

physiological functions [16–18],  PrPC is also crucial in 
different cancer types [19, 20], including brain tumors. 
 PrPC is often found upregulated in GBM patient samples, 
and its silencing leads to diminished tumor growth and 
better survival expectancy in mice [21]. Moreover,  PrPC 
modulates the expression of stemness and differentiation 
markers in GSCs, as well as cellular migration, prolifera-
tion, self-renewal, and tumorigenicity [22, 23]. Despite 
these recent advances, a deeper comprehension of the 
molecules and signaling pathways modulated by  PrPC in 
GBM biology is still lacking and might elucidate novel 
therapeutic approaches against this glioma.

Herein, we analyzed four publicly available RNA 
sequencing (RNA-seq) datasets generated from patient-
derived GBM at both bulk and single-cell (scRNA-seq) 
levels to unravel  PrPC functions in the biology of this 
tumor. A fifth public dataset consisting of proteom-
ics data also from patient-derived GBM confirmed and 
strengthened our findings at the protein level. We also 
developed GBMdiscovery, an R-based user-friendly soft-
ware application that will help researchers understand 
the impact of their genes of interest in GBM biology 
through the analysis of all RNA-seq datasets investigated 
in this work.

Results
Pathways associated with membrane‑enclosed organelles 
and secretion are enriched in GBM cells with high PRNP 
expression
To elucidate the repertoire of biological phenom-
ena that might be modulated by PRNP/PrPC in GBM, 
we analyzed bulk RNA sequencing (RNA-seq) data of 
patient-derived primary GBM samples (n=157) from 
The Cancer Genome Atlas (TCGA) database (Fig. 1A). 
We initially verified that PRNP expression levels were 
increased in IDHwt GBM relative to IDH-mutant 
(Fig.  1B, left). Regarding molecular subtypes, PRNP 
presented similar expression levels between classical 
and mesenchymal GBM, and lower expression in the 
proneural subtype (Fig.  1B, right). In accordance with 
recent GBM classification guidelines, IDH-mutant 
(n=11) and samples of unknown subtype (n=22) or 
IDH status (n=4)  were excluded  prior to running any 
downstream analyses. Some unclassified samples 
in GBM subtype overlapped with unclassified IDH 
statuses, leading to 124 samples after filtering. We 
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then normalized the count data of the remaining pri-
mary tumor samples according to log10(CPM+1) and 
ranked them by PRNP expression. Selecting GBM 
samples below the lower quartile to be the PRNPlow 
group (n=31), while samples above the upper quartile 
composed the PRNPhigh group (n=31) (Fig.  1C). Next, 
we assessed the composition of each group regarding 
GBM molecular subtypes (Fig. 1D). We found that both 
groups presented a similar composition of classical 

samples, while PRNPhigh consisted mainly of the mes-
enchymal subtype, with a decreased proportion of 
proneural samples relative to PRNPlow (Fig. 1D).

We used raw counts as input in DESeq2 [24] to identify 
differentially expressed transcripts (DETs) between the 
groups, using PRNPlow as control. In total, 2634 signifi-
cant DETs were identified, of which 1749 were upregu-
lated and 885 downregulated (Fig.  1E, Table S1). We 
subjected DETs to gene set enrichment analysis (GSEA) 

Fig. 1 Impact of PRNP expression at bulk resolution in GBM samples from TCGA. A Schematic workflow of bulk RNA‑seq data analyses 
of patient‑derived primary GBM samples from TCGA (n=157). B Violin plots of PRNP normalized expression, according to log10 (counts per million 
[CPM]+1), in samples classified as IDH‑mutant (n=11), IDHwt (n=142), or unclassified (n=4) (left, p=0.00016); and samples classified as classical 
(n=50), mesenchymal (n=67), proneural (n=18), or unclassified (n=22) (right, p=0.01). Kruskal‑Wallis test. C GBM samples (n=124, after filtering) 
were ranked according to quartiles of PRNP expression. Those below the lower (PRNPlow, n=31) and above the upper quartile (PRNPhigh, n=31) were 
selected, as shown in the density plot of PRNP expression. D GBM molecular subtype composition of the PRNPlow and PRNPhigh groups. E Volcano 
plot of upregulated (red) and downregulated (blue) transcripts in PRNPhigh relative to PRNPlow. (The PRNP was removed from the plot). F Gene set 
enrichment analysis (GSEA) show enriched terms (Gene Ontology, GO) in the upregulated and downregulated transcripts of PRNPhigh GBM, sorted 
by normalized enrichment score (NES) and colored by adjusted p‑value
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and observed that several terms (Gene Ontology, GO) 
associated with cell cycle and DNA damage response 
(including negative regulation of cell cycle process, cell 
cycle checkpoint signaling, cell division, double-strand 
break repair, and DNA repair) were downregulated in 
PRNPhigh (Fig.  1F, Table S2). On the other hand, terms 
related to different aspects of membrane-enclosed orga-
nelles (including inner dynein arm assembly, microtube 
bundle formation, external encapsulating structure), 
plasma membrane events (cell projection, cell periph-
ery, cell projection assembly, plasma membrane-bound 
cell projection assembly, plasma membrane) and secre-
tion (extracellular region, extracellular matrix, collagen-
containing extracellular matrix, extracellular space, 
extracellular matrix structural constituent) were upregu-
lated in PRNPhigh (Fig.  1F, Table S2). Additionally, over-
representation analysis (ORA) of upregulated transcripts 
showed enrichment for extracellular transport and the 
trans-Golgi network (Table S3). This caught our attention 
because, in addition to being a critical scaffolding protein 
on the plasma membrane [25],  PrPC has been shown to be 
involved in intracellular trafficking and exosome biogen-
esis [26]. Moreover, many processes associated with the 
immune response (immunoglobulin complex, immune 
response, antigen receptor-mediated signaling pathway, 
among other terms) were substantially enriched in the 
PRNPhigh group, in line with results that show an increase 
in the mesenchymal molecular subtype in these samples 
[27]. Overall, the initial bulk RNA-seq data assessment 
suggests that high PRNP expression might be associated 
with intra- and extracellular transport pathways.

PRNP‑positive cells are associated with vesicle dynamics 
in patient‑derived GBM at single‑cell level
While bulk RNA-seq can provide remarkable insights to 
biological questions, it has the limitation that informa-
tion on individual cells is lost, and only the average tran-
scriptional profile of the whole sample is obtained [28]. 
Our observations from bulk transcriptomics prompted 
us to ascertain the extent of our findings at the single-
cell level, exploring three publicly available patient-
derived GBM single-cell RNA-seq (scRNA-seq) datasets 
from independent studies [4, 29, 30] (Fig. 2A). For each 
dataset, we first isolated the malignant from the non-
neoplastic cells based on each study’s metadata, filtering 
out IDH-mutant, recurrent, pediatric, and unclassified 
samples. Then, we visualized how PRNP expression was 
distributed across the tumors (Figs. 2B and S1A and B), 
finding that PRNP is widely expressed in cancer cells, and 
its levels are heterogeneous among different samples.

Using a similar approach as in our bulk RNA-seq analy-
sis, we classified the single-cells as PRNP=0 (PRNP-) or 
PRNP>0 (PRNP+). Marker genes of  PRNP+ cells were 

identified and subjected to ORA for each dataset, result-
ing in several over-represented vesicle-related terms (Fig. 
S2). Next, we compared common PRNP+ marker genes 
among the studies. Our results show that 840 genes lay 
at the intersection of the three datasets (Fig.  2C, Table 
S4), and, once again, numerous vesicle-associated terms 
were enhanced among the intersecting genes (Fig.  2D, 
Table S5). In addition, endoplasmic reticulum (ER)- and 
Golgi-associated terms, structures intrinsically involved 
in intracellular traffic, were also enriched (Fig. 2D, Table 
S5). Altogether, our findings from single-cell transcrip-
tomics provide an in-depth insight into the association of 
PRNP and vesicle biology in GBM.

PRNP positively correlates with vesicle‑associated genes 
in GBM
Subsequently, we aimed to understand how PRNP expres-
sion correlates with the levels of other genes expressed 
by cancer cells (Fig.  3A). We calculated Pearson corre-
lation between PRNP, and all the genes identified in the 
sequencing of each study (Fig.  3B), and compared the 
positively correlated genes between the datasets, finding 
2541 common genes (Fig. 3C, Table S6). Besides vesicle 
biogenesis, processing, intra- and intercellular traffick-
ing, secretion, budding, fission and fusion, a plethora of 
components of the endocytic pathway are also enriched 
among the common positively correlated genes (Fig. 3D, 
Table S7). These data reinforce the putative function of 
PRNP/PrPC in the interplay between membrane-bound 
compartments and cellular trafficking.

To strengthen our conclusions, we combined the find-
ings from the analyzed bulk- and single-cell transcrip-
tome data. We identified which genes were markers of 
PRNP+ GBM cells at the intersection among all scRNA-
seq datasets and were also upregulated in the PRNPhigh 
samples from TCGA bulk RNA-seq data. Our approach 
yielded a panel of 73 genes, one of which was PRNP 
(Fig. 4A, Table S8). In general, the genes from our panel 
displayed a higher expression in tumor samples (primary 
and recurrent) compared to non-neoplastic tissues (Fig. 
S3), and increased levels in IDHwt GBM compared to 
IDH-mutant (Figure S4). Among molecular subtypes, the 
genes from our 73-gene panel had a more heterogeneous 
expression level but presented a prominent enhancement 
in the mesenchymal subtype (Figure S5). Confirm-
ing the observations from previous analyses, functional 
profiling of this gene panel demonstrated that vesicle 
biology terms (vesicle, extracellular vesicle, extracellu-
lar exosomes, intracellular vesicle, among others), were 
enriched (Fig. 4B, Table S9). These findings further cor-
roborate the association between PRNP expression and 
vesicle dynamics in GBM biology, highlighting a set of 
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genes whose expression could be affected by PRNP levels 
in the tumor.

As a proof-of-concept, we used an in-house collec-
tion of patient-derived GBM samples to validate the 
expression levels of a set of genes from our 73-gene 
panel. For this selection, we searched the literature 
for previous experimental evidence indicating that 
the genes from our panel were related to intracellular 
traffic, endocytic or exocytic vesicles, and cytoskel-
eton maintenance, which is also relevant for organelle 
transport. Besides PRNP, we selected synaptophysin 
Like 1 (SYPL1) [31] and destrin (DSTN) [32] for gene 

expression quantification. Additionally, we also selected 
annexin A1 (ANXA1) [33] and Ras-related protein Rab-
31 (RAB31), genes that are not shown in our panel but 
are noteworthy vesicle components and regulators of 
transport vesicles, including in GBM [34, 35]. We per-
formed RT-qPCR on 104 patient-derived GBM, dividing 
them according to their PRNP expression. Briefly, we 
used the Δ-Cq values for normalized PRNP expression 
and stratified the samples into quartiles according to 
these values, using the samples above the upper quar-
tile and below the lower quartile to define, respectively, 
high (n=26) and low (n=26) PRNP levels (Fig.  4C). 

Fig. 2 Integrated analysis of single‑cell GBM datasets shows the impact of PRNP expression. A Schematic workflow of single‑cell RNA‑seq 
(scRNA‑seq) data analyses carried out on three independent and publicly available datasets. B UMAP representation of PRNP expression in GBM 
cells from Darmanis et al., Neftel et al., and Richards et al. (C) Venn diagram of common marker genes of PRNP+ cells in all scRNA‑seq datasets. D 
Functional profiling (ORA, GO) of the 840 common genes found in (C), ranked by ‑log10 (Adjusted p‑value)



Page 6 of 17Boccacino et al. BMC Cancer          (2024) 24:199 

Expression of SYPL1, DSTN, ANXA1 and RAB31 was 
increased in samples with high PRNP expression com-
pared to samples with low PRNP expression (Fig. 4D). 
Therefore, our experimental results using an additional 
cohort of patient-derived samples corroborate our find-
ings from RNA-seq analyses.

Patient‑derived whole‑proteome analysis shows that  PrPC 
expression is associated with vesicle dynamics
To investigate whether our results would be corrobo-
rated beyond the transcriptional level, we analyzed a 
publicly available patient-derived GBM proteomics 
dataset [36]. We divided tumor samples into groups 

Fig. 3 PRNP positively correlates with vesicle‑associated genes at single‑cell resolution. A Schematic workflow of the correlation analysis 
between PRNP expression and all genes identified in the scRNA‑seq of the three independent patient‑derived GBM datasets. B Pearson correlation 
shows significant positively (red) and negatively (blue) correlated genes with PRNP for the three scRNA‑seq datasets. C Venn diagram of common 
positively correlated genes identified in (B). D ORA analysis (gProfiler2 and GO) of genes positively correlated with PRNP 
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with either high  (PrPC-high; n=13) or low  PrPC 
 (PrPC-low; n=13) levels (Figure S6A) and identified 
differentially expressed proteins (DEPs) between these 
conditions, using  PrPC-low as control (Figure S6B, 
Table S10). Protein classification shows membrane 
traffic proteins and cytoskeleton proteins among the 
upregulated DEPs (Figure S6C). Functional profiling 
revealed that several vesicle dynamics and traffic terms 
were enriched in the upregulated proteins in  PrPC-high 
tumors (Figure S6D), which was in accordance with our 
previous transcriptomics data. Together, our findings 

advocate for an association of  PrPC with vesicle phe-
nomena not only at transcriptional but also at protein 
levels.

Vesicle dynamics signatures are positively correlated 
with PRNP expression in other patient‑derived solid tumors
To evaluate if our findings extended to other cancers, we 
analyzed the impact of PRNP expression in other tumor 
types. We calculated the correlation between PRNP 
expression levels and vesicle dynamics signatures in dif-
ferent stages of patient-derived solid tumors from TCGA 

Fig. 4 Identification of a 73‑gene panel enriched in traffic‑related structures and vesicle dynamics in PRNPhigh samples and PRNP+ GBM cells. A 
Venn diagram of the 73 common genes with increased expression levels in PRNPhigh GBM cells (TCGA bulk RNA‑seq) and upregulated in PRNP+ 
cells (Darmanis et al., Neftel et al. and Richards et al.). B Over‑representation analysis (gProfiler2 ‑ GO, KEGG, Reactome, and WikiPathways) 
of common genes found in (A). C Schematic workflow of the analysis of an in‑house cohort of GBM patient‑derived samples. D Relative expression 
of PRNP, SYPL1, DSTN, ANXA1 and RAB31 in patient‑derived GBM samples expressing Low (n=26) or High (n=26) PRNP levels by RT‑qPCR and  2‑ΔΔCt, 
normalized by HPRT, GUSB and TBP. Student t‑test, ****p<0.0001



Page 8 of 17Boccacino et al. BMC Cancer          (2024) 24:199 

from: adrenal gland, bladder, breast, gallbladder, colon, 
head and neck, kidney, lung, ovary, pancreas, prostate, 
rectum, skin, stomach, esophagus, thyroid,  and uterus 
(Figure S7, Table S11).

Our results showed that, for most cancer types, PRNP 
displayed significantly positive correlations with several 
vesicle dynamics signatures in at least one tumor stage. 
In particular, bladder, head and neck, kidney, and lung 
tumors were the cancer types with the highest number 
of positive correlations between PRNP expression and 
vesicle dynamics signatures among distinct tumor stages. 
These findings demonstrate, therefore, that PRNP expres-
sion is correlated with vesicle-related events in solid 
tumors from different sites, suggesting a conserved role 
of PRNP modulating these processes in cancer.

Increased vesicle dynamics signatures associated 
with shortened overall survival of glioblastoma patients
To understand the clinical relevance of our findings, our 
next step was to explore the association between PRNP 
expression and vesicle dynamics processes on patients’ 
overall survival, using TCGA-GBM survival data. We 
observed that a high PRNP expression is associated with 
a worse prognosis of GBM patients (Fig.  5A). Further-
more, we selected representative trafficking and vesi-
cle dynamics gene sets from GO, based on our previous 
results. Subsequentially, we calculated gene signatures 
in IDHwt primary GBMs from TCGA, determining the 
optimal cutoff to separate samples with either low or high 
signatures, and performing Kaplan-Meier survival esti-
mates (Fig. 5B).

The results demonstrate that enrichment for transport 
vesicle, exocytosis, exocytic process, vesicle docking, 
intercellular transport, vesicle lumen, membrane invagi-
nation, regulation of vesicle fusion and secretion is linked 
to shorter patients’ overall survival (Fig.  5B). Concomi-
tantly with the survival curves, PRNP expression was 
evaluated in samples above and below cutoff for each sig-
nature and was significantly increased in exocytic process 
(Fig. 5B, inserts).

These results highlight the importance of our findings 
since  PrPC mRNA and protein levels are associated with 
biological phenomena that are likely to be responsible for 
poor survival expectancy for patients with GBM.

GBMdiscovery as a novel platform to unravel the impact 
of specific genes in glioblastoma biology
We found a potential implication of  PrPC in GBM biol-
ogy, demonstrating that its mRNA and protein levels 
are associated with intracellular traffic and, more spe-
cifically, vesicle dynamics in this tumor. Since transcrip-
tomics provided such interesting biological insights, we 

developed GBMdiscovery, an R-based shiny app that 
allows users to discover the implications of their own 
genes of interest in GBM biology (Fig.  6). The app is 
user-friendly, allowing researchers from any area with no 
bioinformatics background to use it, and it can be down-
loaded from https:// github. com/ maril eneho hmuth/ Gliob 
lasto maDis covery.

GBMdiscovery analyzes all publicly available RNA-
seq datasets presented in this study to find which genes 
and biological phenomena might be differentially regu-
lated upon distinct levels of a specific gene. First, the 
app analyzes each dataset individually, displaying both 
genes and processes that are altered in each study, based 
on differential levels of the gene-of-interest of the user. 
GBMdiscovery then compares the results of all datasets 
to provide a list that contains the genes that are com-
monly down or upregulated upon distinct levels of the 
gene-of-interest in a ubiquitous manner across the four 
RNA-seq datasets. In addition, our app also calculates 
the correlation between this gene and all genes expressed 
by malignant cells identified in the studies. Therefore, 
GBMdiscovery aims to facilitate uncovering potentially 
interesting genes that may contribute to GBM biology, 
ultimately leading to the discovery of novel therapeutic 
targets against the tumor.

Discussion
Intra- and intercellular trafficking are broad terms com-
prising diverse biological phenomena such as endocy-
tosis, protein sorting, vesicle transport, and secretion, 
which play a crucial role in cell signaling and commu-
nication. While critical for physiological functions and 
development [37], these mechanisms are hijacked by 
neoplastic cells to promote tumor survival, progression, 
and spreading [38, 39]. These processes are known to 
contribute to GBM, the most aggressive form of brain 
tumor [40, 41]. Therefore, identification of molecules that 
orchestrate such pathways is imperative for developing 
new treatment strategies against this glioma. Herein, we 
described for the first time that intracellular traffic pro-
cesses, particularly vesicle dynamics, are upregulated in 
GBM patient-derived samples/cells with high PRNP/PrPC 
expression  (Fig.  7). Moreover, we described a positive 
correlation between PRNP expression and the expression 
of genes associated with cellular trafficking and vesicle-
related processes, proposing a putative role for this mole-
cule in the control of GBM vesicle biogenesis, processing, 
and intra/inter-cellular transport.

Growing evidence has demonstrated that intracel-
lular transport is essential for cancer metabolic repro-
gramming, modulating the energetic balance of cancer 
cells and their proliferative and invasive behaviors [39]. 

https://github.com/marilenehohmuth/GlioblastomaDiscovery
https://github.com/marilenehohmuth/GlioblastomaDiscovery
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Regarding cell-cell interactions, exosomes have been 
implicated in exchanging a range of different car-
goes between cancer cells and neoplastic and stromal 
cells [42]. The signal molecules carried from one cell 

to another ultimately lead to the regulation of pivotal 
mechanisms for tumor maintenance [38]. Exosomes have 
broad implications for cancer progression, as they con-
tribute to forming pre-metastatic and metastatic niches 

Fig. 5 Impact of PRNP and vesicle dynamics signatures on patients’ overall survival. A Kaplan‑Meier curves demonstrate the overall survival of GBM 
patients either below or above the optimal cutoff, calculated for PRNP expression levels. A risk table is shown at the left. Statistical significance 
was assessed using a log‑rank test, and p‑value is stated in the graph. B Kaplan‑Meier curves demonstrate the overall survival of GBM patients 
either below or above the optimal cutoff, calculated for gene signatures of traffic‑ or vesicle‑related processes (GO). Statistical significance 
was assessed using log‑rank tests, and p‑values are stated in the graphs. Inserts show PRNP normalized expression in samples above and under 
the cutoff of each gene signature
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[38, 42]. In GBM, EVs secreted by the tumor are enriched 
in pro-angiogenic factors. EVs derived from hypoxic 
GBM cells can promote tumor growth, vascularization, 
and proliferation, in addition to acidifying the tumor 

microenvironment, which leads to augmented EV traf-
ficking both inwards and outwards the cells [43]. Small 
EVs released by GBM cells may be used for cancer sub-
typing since their cargo reflects the tumor phenotype 

Fig. 6 Leading page and example analysis of GBMdiscovery. GBMdiscovery is an R‑based shiny app that allows users to discover the implications 
of their genes of interest in GBM biology, combining the four publicly available patient‑derived bulk‑ and scRNA‑seq datasets analyzed 
in the present study

Fig. 7 Schematic diagram of the mechanisms involved in extra‑ and intracellular trafficking by which  PrPC may affect GBM biology.  PrPC 
is transiently found in the ER and Golgi during its biogenesis and is internalized by a vesicle‑mediated process to be recycled or degraded. Vesicular 
biogenesis, endocytic path and exocytosis are processes enriched in GBM cells with high PRNP expression
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and has been associated with enhanced glioma growth, 
proliferation, survival, migration, invasion, metabolic 
reprogramming, drug resistance, angiogenesis, and 
immunomodulation of the microenvironment [44]. In 
gliomas, microvesicles cargo can enhance tumor growth 
[45] transport molecules that modify gene expression 
in recipient cells [46], and trigger the proliferation of 
endothelial cells [47]. In the current study, we propose 
 PrPC, a protein that regulates tumorigenesis and tumor 
growth [15, 21, 23], as an orchestrator of vesicle-related 
pathways in GBM.

In physiological conditions, previous studies have 
demonstrated that  PrPC regulates exosome secretion in 
astrocytes and fibroblasts [26] and participates in syn-
aptic vesicle release [48].  PrPC was implicated in the 
secretion of soluble factors by astrocytes and in their 
communication with neurons and extracellular matrix 
organization [49]. Evidence suggests this glycoprotein is 
sorted into exosomes and enriched in EVs [50]. Moreo-
ver,  PrPC-expressing exosomes are tumorigenic and 
highly secreted by drug-resistant colorectal cancer cells 
upon hypoxic conditions in the tumor microenvironment 
[51]. The cellular location of  PrPC is dynamic. While it 
is mainly located on the cell surface,  PrPC is also found 
in other cellular compartments, such as ER and the 
Golgi apparatus, which are directly involved in intracel-
lular traffic pathways [52, 53]. Additionally, this protein 
is observed in intracellular vesicles in different stages 
of endocytosis after being internalized [52]. Therefore, 
throughout its dynamic trafficking within the cell and 
leveraging its scaffolding features,  PrPC may interact with 
orchestrators of intracellular traffic and modulate vesi-
cle dynamics mechanisms (Fig. 7). PRNP/PrPC may also 
affect the expression of downstream genes and proteins 
involved in intracellular traffic phenomena, ultimately 
regulating vesicle-related processes, but this remains to 
be further investigated in vitro.

In this context, our work identified several genes whose 
expression is positively correlated with PRNP in GBM. 
From our 73-gene panel (PRNP + 72 genes), we assessed 
the expression of PRNP, SYPL1 and DSTN, on a collec-
tion of patient-derived GBMs. SYPL1 encodes synap-
tophysin-like 1 (SYPL1), a protein that has emerged as 
a prognostic marker and potential target in pancreatic 
ductal adenocarcinoma [31], hepatocellular carcinoma 
[54], and colorectal cancer [55]. Additionally, SYPL1 
was described in the transport of vesicles [31]. DSTN, in 
turn, encodes destrin, a regulator of actin depolymeriza-
tion [32]. The function of destrin in actin cytoskeleton 
maintenance is relevant from the vesicular biology per-
spective since the cytoskeleton plays key roles in vesicle 
transport [56, 57]. We also assessed the expression of 

ANXA1 and RAB31, since these are relevant molecules 
already involved in vesicle phenomena in GBM. Specifi-
cally, ANXA1 encodes the membrane protein annexin 
A1 (ANXA1), which is involved in tethering and EV 
aggregation [33]. ANXA1 is a marker gene of mesenchy-
mal states in GBM [4], which is consistent with, as we 
showed, PRNPhigh/PRNP+ cells being mainly classified 
as mesenchymal. ANXA1 is overexpressed in high grade 
GBM samples and is a pivotal molecule to regulate GBM 
cell proliferation, migration, and invasion [34]. Moreo-
ver, increased expression level of ANXA1 in gliomas 
was associated with worse prognosis [58]. The protein 
encoded by RAB31 acts both as a driver of intraluminal 
vesicle formation and as a suppressor of multivesicu-
lar body degradation, ultimately regulating the exosome 
pathway independent of the endosomal sorting complex 
required for transport [59]. Interestingly, RAB31 knock-
down significantly affected the capacity of GBM cell line 
growth in animal models [60]. Furthermore, a recent 
study reports that RAB31 silencing attenuates glioma 
invasion, process mediated by EVs from glioma-derived 
endothelial cells [35].

Interestingly, we stablished that our findings present 
clinical relevance, since we showed worse prognosis in 
patient-derived samples with both enhanced vesicle biol-
ogy signatures and high PRNP/PrPC expression. Moreo-
ver, as reported here, the association between PRNP and 
vesicular dynamics has a potential impact in the biol-
ogy of several types of solid tumors, strengthening this 
pathway as putative novel target for cancer therapeutic 
strategies.

Altogether, our findings provide valuable resources to 
further clarify molecular mechanisms governed by  PrPC 
in tumor biology and open new paths for future GBM 
research. Of great interest, we make available a novel 
user-friendly tool that will expand our knowledge on this 
glioma, allowing users to evaluate the impact of their 
genes of interest in GBM biology in a robust manner 
across various RNA-seq datasets at both bulk and single-
cell resolutions.

Methods
Bulk RNA sequencing data analysis
Data retrieval
GBM bulk RNA-seq data and corresponding meta-
data were retrieved from TCGA through TCGAbiolinks 
(v2.30.0) in R (v4.3.2). We downloaded raw count data 
of 175 samples of the TCGA-GBM project, of which 157 
corresponded to primary tumor samples, 13 to recurrent 
samples, and 5 to solid normal tissue. To assess PRNP 
expression across different IDH statuses and transcrip-
tional subtypes, the raw counts of all primary tumors 
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were normalized according to counts per million (CPM) 
using edgeR (v3.42.4) [61]  and converted to the  log10 
(CPM+1) scale. After that, IDH-mutant samples, and 
samples whose IDH status or transcriptional subtype was 
unknown were removed from the cohort; 124 samples 
remained in the dataset.

Establishment of groups with distinct PRNP expression levels
Following the same procedure described above, we 
obtained  log10 (CPM+1)-normalized counts for all 124 
primary IDHwt GBMs. Thereafter, we found the quartiles 
of PRNP expression across the samples, classifying those 
below the lower quartile – which displayed decreased 
PRNP levels – as PRNPlow (n=31) and the ones above the 
upper quartile – with increased PRNP expression – as 
PRNPhigh (n=31).

Identification of differentially expressed transcripts 
between PRNPhigh and PRNPlow samples
After obtaining groups with different PRNP expression 
levels, we used the raw count data of the PRNPhigh and 
PRNPlow groups as input in DESeq2 (v1.40.2) [24] for dif-
ferential expression analysis. PRNPlow was used as the 
control group. Log fold change shrinkage was performed 
with the shrinkage estimators of a normal distribution. 
Differentially expressed transcripts (DETs) satisfying 
 padjusted<=0.05 were considered significant and selected 
for downstream analysis.

Functional profiling
We subjected the significant DETs to functional profil-
ing with clusterProfiler (v4.10.0). Gene set enrichment 
analysis (GSEA) was performed with clusterProfiler’s 
gseGO function using the Gene Ontology (GO) database. 
All GO’s categories ("BP”, biological processes; “CC”, cel-
lular components; and “MF”, molecular functions) were 
considered. The correction of p-values was done with the 
Benjamini-Hochberg (BH) method and GO terms whose 
 padjusted<=0.05 were considered significant. Over-repre-
sentation analysis (ORA) was carried out with cluster-
Profiler’s enrichGO function with the same settings and 
significance threshold specified for GSEA.

Single‑cell RNA sequencing data analysis
Data retrieval
GBM single-cell RNA-seq (scRNA-seq) data were 
retrieved from three distinct sources. First, we down-
loaded raw count data and corresponding metadata of 
3589 single cells from the work of Darmanis et al. (http:// 
gbmseq. org); second, log-transformed, transcripts per 
million (TPM)-normalized data and associated informa-
tion of 7930 single cells were obtained from the study 

of Neftel et  al. via the Broad Institute Single-Cell Data 
Portal (https:// singl ecell. broad insti tute. org/ single_ cell/ 
study/ SCP393/ single- cell- rna- seq- of- adult- and- pedia 
tric- gliob lasto ma); and third, raw count data and related 
metadata of 44712 single cells were downloaded from the 
work of Richards et  al. through Broad Institute’s Portal 
as well (https:// singl ecell. broad insti tute. org/ single_ cell/ 
study/ SCP503/ gradi ent- of- devel opmen tal- and- injury- 
repon se- trans cript ional- states- define- funct ional- vulne 
rabil ities- under pinni ng- gliob lasto ma- heter ogene ity).

Cell filtering
Cells from all three works had already been filtered by 
the authors of the respective studies regarding scRNA-
seq data quality control metrics. Cell type classification 
of each cell was provided by the authors in the studies’ 
associated metadata. Here, we filtered cells according to 
their cell type assignments. As we aimed to investigate 
PRNP expression implications only in neoplastic cells, 
we isolated those malignant cells in the three datasets, 
resulting in 1091 cells for Darmanis et  al. dataset; 6896 
cells for Neftel et al. dataset; and 14207 cells for Richards 
et al. dataset. Recurrent tumors were excluded from the 
datasets, as well as pediatric samples and IDH-mutant 
tumors.

Dimensionality reduction
We processed the data of malignant cells from each of 
the three datasets using FUSCA (v1.3.1) [62]. For the 
Darmanis et al. and Richards et al. datasets, we normal-
ized and scaled count data according to all genes, subse-
quently performing principal component analysis (PCA). 
In the case of the Neftel et al. dataset, as count data were 
already normalized, we skipped the normalization step 
and only scaled the data according to all genes, perform-
ing PCA afterwards. Uniform manifold approximation 
and projection (UMAP) was then employed for all three 
datasets, considering the 15 principal components with 
the highest standard deviations.

Correlation between PRNP and all genes expressed 
by glioblastoma cells
We calculated the Pearson correlation between PRNP 
expression and each gene’s expression levels for each 
dataset individually. Statistical significance was defined 
as p<=0.05. We compared the correlation results of each 
dataset and selected the genes that were positively cor-
related with PRNP in all three datasets (n=2541) for 
functional profiling. We performed ORA with cluster-
Profiler’s enrichGO. All GO’s categories were considered, 
and p-values were corrected with the BH method. Terms 
whose  padjusted<=0.05 were considered significant.

http://gbmseq.org
http://gbmseq.org
https://singlecell.broadinstitute.org/single_cell/study/SCP393/single-cell-rna-seq-of-adult-and-pediatric-glioblastoma
https://singlecell.broadinstitute.org/single_cell/study/SCP393/single-cell-rna-seq-of-adult-and-pediatric-glioblastoma
https://singlecell.broadinstitute.org/single_cell/study/SCP393/single-cell-rna-seq-of-adult-and-pediatric-glioblastoma
https://singlecell.broadinstitute.org/single_cell/study/SCP503/gradient-of-developmental-and-injury-reponse-transcriptional-states-define-functional-vulnerabilities-underpinning-glioblastoma-heterogeneity
https://singlecell.broadinstitute.org/single_cell/study/SCP503/gradient-of-developmental-and-injury-reponse-transcriptional-states-define-functional-vulnerabilities-underpinning-glioblastoma-heterogeneity
https://singlecell.broadinstitute.org/single_cell/study/SCP503/gradient-of-developmental-and-injury-reponse-transcriptional-states-define-functional-vulnerabilities-underpinning-glioblastoma-heterogeneity
https://singlecell.broadinstitute.org/single_cell/study/SCP503/gradient-of-developmental-and-injury-reponse-transcriptional-states-define-functional-vulnerabilities-underpinning-glioblastoma-heterogeneity
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Classification of glioblastoma cells according to PRNP 
expression
Using normalized count data, we classified the malignant 
cells of each dataset according to their PRNP levels: those 
which displayed expression of this gene were assigned as 
PRNP+, while the ones that did not express PRNP were 
considered PRNP-.

Identification of marker gene signatures in PRNP+ and PRNP‑ 
glioblastoma cells
Once we established groups of GBM cells either express-
ing PRNP or not in each dataset, we proceeded to the 
identification of marker gene signatures that charac-
terized PRNP+ and PRNP- cells. For each case, we uti-
lized FUSCA’s findSignatures function to find marker 
genes using Wilcox statistical tests applying a cut-off of 
p<=0.05. Marker genes of PRNP+ and PRNP- GBM cells 
of each dataset were subjected to GSEA and ORA with 
gseGO and enrichGO, respectively, using all categories 
of the GO database, with p-values being corrected with 
the BH method. Terms whose  padjusted<=0.05 were con-
sidered significant.

Comparison of the results from each RNA sequencing 
dataset (bulk and single‑cell)
We compared the upregulated transcripts in the PRN-
Phigh group from TCGA bulk RNA-seq analysis with 
marker gene signatures of PRNP+ GBM cells from each 
scRNA-seq dataset. We subjected the 73 (PRNP + 72) 
genes that had higher expression in PRNPhigh/PRNP+ in 
all RNA-seq datasets to ORA with enrichGO with the 
same settings specified above. Since there were only a few 
genes in the gene panel, we also used gProfiler2 (v0.2.2) 
to perform ORA including GO and other databases, such 
as KEGG, Reactome, and WikiPathways.

Survival analysis
Impact of PRNP expression on overall survival
We stratified the 124 primary IDHwt GBM samples into 
two groups based on PRNP expression levels using the 
optimal cut-off determined by maxstat.test (v0.7-25) in 
R. The optimal cut-off was calculated with log-rank sta-
tistics and the HL method for p-value approximation. 
Samples above the optimal cut-off were considered to 
have high levels of the gene of interest, whilst samples 
below that threshold were considered to have low levels. 
Finally, for Kaplan-Meier survival estimates, we used the 
survival (v3.5-7) and survminer (v0.4.9) packages.

Impact of gene set signatures on overall survival
We used  log10(CPM+1)-normalized counts of all 124 pri-
mary IDHwt GBM samples to calculate gene set signa-
ture scores with gene set variation analysis (GSVA) [63]. 

GO gene sets were obtained from the Molecular Signa-
tures Database (MSigDB) (v.7.5.1). We used the max-
stat.test (v0.7-25) to calculate the optimal cut-off based 
on log-rank statistics and the HL method for p-value 
approximation. Samples above the optimal cut-off were 
considered to have high levels of the gene set of interest, 
whilst samples below that threshold were considered to 
have low levels. Finally, for Kaplan-Meier survival esti-
mates, we used the survival (v3.5-7) and survminer pack-
ages (v0.4.9).

Proteome analysis
Data retrieval, processing, and establishment of groups 
with different  PrPC levels
GBM proteomics data were obtained from the Prot-
eomics Identifications Database (PRIDE). The selected 
dataset consisted of patient-derived GBMs (PRIDE Pro-
ject PXD015545) [36], containing 12 sets with 6 samples 
each, tagged with 6 different tandem mass tags (TMT). 
The GBM Global sets 1 to 6 and 7 to 12 were selected for 
further analysis. Samples were filtered for contaminants, 
for reverse database, and the ones only identified by site. 
Next, samples were normalized by dividing each sam-
ple from each set by the Global Internal Standard (GIS) 
of the respective set. Following this, each ratio obtained 
by the normalization was log-transformed  [log2(ratio)]. 
Then, the median of the samples was subtracted to cen-
tralize the normals in each sample, and with that, the 
groups of sets (1 to 6 and 7 to 12) were joined. Samples 
of normal tissue, which were 4, and the 12 GIS were 
removed, remaining 50 GBM samples (10 proneural, 10 
neural, 14 classical, and 16 mesenchymal). Following 
this, samples were filtered according to  PrPC  log2 (ratio) 
and separated into the  PrPC-High (n=13) and  PrPC-Low 
(n=13) expression groups, and subjected to differential 
expression analysis, using  PrPC-Low as controls.

Differential expression analysis, overrepresentation analysis, 
and enrichment map visualization
For the comparison between the  PrPC-High and 
 PrPC-Low groups, the Benjamini-Hochberg method 
was used to determine differentially expressed proteins 
(DEPs) using  PrPC-Low as control. In this analysis, we 
employed FDR≤0.05 and s0=0.1 as cut-offs. Upregulated 
DEPs in  PrPC-High samples were subjected to ORA in 
g:Profiler using the g:SCS test to determine statistical sig-
nificance and GO, Reactome, KEGG, and WikiPathways 
as gene set databases. A cut-off of p<0.05 was employed. 
ORA results were visualized through an enrichment map 
[64], which was built using the EnrichmentMap plugin in 
Cytoscape. Overrepresented terms were clustered with 
the AutoAnnotate plugin. Protein classes were analyzed 
using Panther database [65].
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Analysis of other solid tumors
Using TCGAbiolinks (v2.30.0), we retrieved the data 
of adrenocortical carcinoma (ACC), bladder urothelial 
carcinoma (BLCA), breast invasive carcinoma (BRCA), 
cervical squamous cell carcinoma and endocervical 
adenocarcinoma (CESC), cholangiocarcinoma (CHOL), 
colon adenocarcinoma (COAD), esophageal carci-
noma (ESCA), head and neck squamous cell carcinoma 
(HNSC), kidney renal clear cell carcinoma (KIRC), liver 
hepatocellular carcinoma (LIHC), lung adenocarcinoma 
(LUAD), ovarian serous cystadenocarcinoma (OV), pan-
creatic adenocarcinoma (PAAD), pheochromocytoma 
and paraganglioma (PCPG), prostate adenocarcinoma 
(PRAD), rectum adenocarcinoma (READ), skin cuta-
neous melanoma (SKCM), stomach adenocarcinoma 
(STAD), and uterine corpus endometrial carcinoma 
(UCEC) samples from TCGA. In total, we retrieved the 
data of 19 solid tumor types other than GBM, spanning 
different organs and distinct locations of the human body. 
For each cancer type, we subset only primary tumors and 
normalized raw count data according to  log10(CPM+1), 
calculating vesicle dynamics signature scores with GSVA 
based on selected GO gene sets from MSigDB (v7.5.1) 
afterwards. Then, for each tumor stage, we computed 
the Spearman correlation between PRNP expression and 
those vesicle dynamics signatures, considering p<=0.05 
statistically significant.

Experimental procedures
Samples
GBM samples were collected during the surgical pro-
cedure and immediately frozen in liquid nitrogen after 
resection by the group of Brain Tumors and Metastases 
of the Division of Neurosurgical Clinic of the Central 
Institute of the Department of Neurology of the Hospital 
das Clinicas of the School of Medicine of the University 
of Sao Paulo (HC-FMUSP). The casuistry of this project 
consisted of 103 GBMs confirmed by histopathological 
analysis of the HC-FMUSP Pathological Anatomy Divi-
sion and are part of the biorepository samples collected 
during the Clinical Genome Project, approved by the 
National Ethics Commission (CONEP) and the Ethics 
Committee for Analysis of Research Projects (CAPPesq) 
of HC-FMUSP, under protocol number 830/01. Post-
informed consents were obtained from all patients with 
tumor and epilepsy or from their legal guardians.

Total RNA extraction and cDNA synthesis
Frozen tumor samples were analyzed in 4μm cryo-
sections and stained with hematoxylin and eosin for 
quality verification. Total RNA from tumors were also 

extracted with RNeasy Mini Kit. The quality and con-
centration of RNA were determined by measuring the 
absorbance in NanoDrop Spectrophotometers (Thermo 
Fisher Scientific) at 260 and 280 nm, and A260/A280 
ratios greater than 1.8 were considered satisfactory for 
purity. cDNA synthesis was performed by reverse tran-
scription with SuperScript III reverse transcriptase, 
RNase inhibitor (RNaseOUT), random oligonucleo-
tides, and oligodT, according to the manufacturer’s rec-
ommendations (Thermo Fisher Scientific). cDNA was 
treated with 1U RNase H (Thermo Fisher Scientific) at 
37°C for 30 minutes and at 72°C for 10 minutes, diluted 
in Tris-EDTA buffer, and stored at -20°C for subse-
quent analysis of gene expression.

Quantitative real‑time PCR
Gene expression levels in tissue samples were analyzed 
by reverse transcription quantitative real-time PCR (RT-
qPCR). Reactions were performed by the incorpora-
tion method of SYBR Green on QuantStudio 3 (Thermo 
Fisher Scientific). The reactions were performed in dupli-
cates in a final reaction volume of 10 μl, containing 5 μl 
of Power SYBR Green PCR Master Mix (Thermo Fisher 
Scientific), 2.5 μl of cDNA, and 2.5 μl of primers in a 
pre-standardized concentration. The primers used for 
the qPCR reaction were the following: ANXA1 Forward: 
GCG GTG AGC CCC TAT CCT A; Reverse: TGA TGG TTG 
CTT CAT CCA CAC; RAB31 Forward: GGG GTT GGG 
AAA TCA AGC ATC; Reverse: GCC AAT GAA TGA AAC 
CGT TCCT; DSTN Forward: ATT TTG TGG GAA TGC 
TTC CTGA; Reverse: GCA TCC TTG GAG CTT GCA TAG; 
SYPL1 Forward: AAG ATT ACG TCC TCA TAG GCGA; 
Reverse: TCG TGT AGC CAA CAT AAA GCAG; PRNP 
Forward: AGT CAG TGG AAC AAG CCG AG; Reverse: 
CTG CCG AAA TGT ATG ATG GGC. Amplification condi-
tions were: initial incubation at 50°C for 5 minutes and 
at 95°C for 10 minutes, followed by 40 cycles of 95°C 
for 15 seconds and 60°C for 60 seconds. The expression 
value of the gene was normalized with reference genes 
as internal control: HPRT Forward: TGA GGA TTT GGA 
AAG GGTGT; Reverse: GAG CAC ACA GAG GGC TAC 
AA; GUSB Forward: GAA AAT ACG TGG TTG GAG AGC 
TCA TT; Reverse: CCG AGT GAA GAT CCC CTT TTTA; 
and TBP Forward: AGG ATA AGA GAG CCA CGA ACCA; 
Reverse: CTT GCT GCC AGT CTG GAC TGT. Single-
product amplification was confirmed by analyzing its dis-
sociation curve.

RT‑qPCR analysis
One hundred three GBM samples were separated from 
non-tumoral tissue and classified based on Δ-Cq values 
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for normalized PRNP expression, using the geometric 
mean of TBP, HPRT, and GUSB as endogenous con-
trols. Specifically, samples were stratified into quartiles 
according to the normalized values, and samples lying 
above the upper quartile and below the lower quartile, 
respectively, high (n=26) and low (n=26) PRNP levels, 
were used for relative gene expression analysis, with 
PRNP low as the control group. Relative gene expres-
sion was assessed by the  2-ΔΔCt method [66], followed 
by Student’s t-test to assess the significance of the 
results.
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