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Abstract 

Biological networks constructed from varied data can be used to map cellular function, but each 

data type has limitations. Network integration promises to address these limitations by combining 

and automatically weighting input information to obtain a more accurate and comprehensive 

representation of the underlying biology. I developed a deep learning-based network integration 

algorithm that incorporates a graph neural network (GNN) framework. My method, BIONIC 

(Biological Network Integration using Convolutions), learns features which contain substantially 

more functional information compared to existing approaches. BIONIC has unsupervised and 

semi-supervised learning modes, making use of available gene function annotations. BIONIC is 

scalable in both size and quantity of the input networks, making it feasible to integrate numerous 

networks on the scale of the human genome. To demonstrate the utility of BIONIC in identifying 

novel biology, I predicted essential gene chemical-genetic interactions from non-essential gene 

profiles in yeast, which were then experimentally validated by other members of the lab. 
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1. Introduction 

Systems biology aims to holistically study cellular systems which give rise to the emergent 

properties of cellular and organismal function (Breitling, 2010; Chuang et al., 2010). The cell 

contains many distinct but tightly integrated and hierarchically organized processes, such as DNA 

replication and repair, gene transcription, protein homeostasis, and metabolism, among many 

others. Genes form the fundamental units of information that collectively encode these processes, 

and individually encode proteins which form the physical machinery that carries them out. Genes 

and proteins do not function in isolation, rather they exist in a complex web of interrelationships 

that underpin biological processes, cellular and organism-level phenotypes, and disease. A core 

problem in systems biology is identifying and quantifying these functional relationships. By doing 

so, the nature of cellular function can be uncovered with far reaching implications, such as 

identifying new biological processes, characterizing genes with unknown function, discovering 

disease-associated genes and pathways, and informing the design of new, synthetic systems. 

Prodigious efforts in the development and application of genome sequencing technologies 

have led to the identification of many protein-coding genes across several organisms (Adams et 

al., 2000; C. elegans Sequencing Consortium, 1998; Chinwalla et al., 2002; Goffeau et al., 1996; 

Lander et al., 2001; Venter et al., 2001). While not fully complete, these gene lists provide a 

necessary starting point for the analysis of gene function. However, genes work together in 

complex arrangements of pathways and biological processes, and knowledge about the function 

of individual genes is generally insufficient for contextualizing their roles in the cell. Therefore, it 

is necessary to develop a wiring diagram of cellular function, where genes are linked based on 

their shared involvement in cellular processes (Costanzo et al., 2016). Identifying the full set of 

pairwise functional relationships between genes, however, involves comparing each gene with 

every other gene in the genome, which presents substantial experimental challenges. Nevertheless, 

various technologies have been developed (and continue to be developed) to measure a wide range 

of gene-gene and protein-protein relationship types at genome scale, for example, genetic 

interactions (Costanzo et al., 2010, 2016; Tong et al., 2001) and protein-protein interactions (Gavin 

et al., 2002, 2006; Ito et al., 2001; Krogan et al., 2006; Uetz et al., 2000).  

These functionally rich datasets constitute a particular data structure that naturally 

represents gene-gene and protein-protein functional relationships: the network (Fraser & Marcotte, 
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2004). Networks consist of two component types: nodes and edges. A pair of nodes can be linked 

by an edge, indicating a relationship of some type between the nodes. In the case of the biological 

networks considered for this work, the nodes represent either genes or proteins, and the edges 

represent a functional relationship defined by the experimental assay. In protein-protein interaction 

networks, for example, nodes represent proteins and edges represent physical binding events 

between them. Edges can be binary (as is often the case in physical interaction networks) indicating 

either the presence or absence of an interaction, or edges can be weighted (often in quantitative 

networks such as co-expression or genetic interaction networks) indicating the strength of the 

functional connection. Functional interaction networks across experimental types vary 

significantly in their overall topologies but commonly contain groups of related genes or proteins 

linked together in highly connected regions called functional modules (Merico et al., 2009). 

Functional modules reflect subsystems in the cell, where genes or proteins present in the module 

function together in the same process or pathway. For instance, protein-protein interaction 

networks generated using affinity purification followed by mass spectrometry (APMS, described 

in Section 1.1.3) often contain highly connected regions of proteins that correspond to protein 

complexes (Gavin et al., 2006; Krogan et al., 2006; Merico et al., 2009). 

Biological networks are produced by many orthogonal and complementary experimental 

sources, each constituting a particular view of gene function. Which view, then, is correct? Is it 

reasonable to assume that a single network, derived from a single experimental type, can 

characterize gene function accurately and completely? I argue this assumption is not correct. Due 

to experimental limitations, individual networks generally contain only a subset of genes or 

proteins present in the genome or proteome. Additionally, individual networks contain varying 

amounts of noise in the form of erroneous edges between genes or proteins (false positives) or true 

edges that were not captured (false negatives), which impacts the quality of the represented 

functional relationships. Therefore, effectively elucidating true gene and protein functional 

relationships in a robust and comprehensive manner requires careful consideration of information 

present across many networks. The question then is not which network best represents true 

biology, but how to extract and merge functional information across many networks to produce 

this representation. This outlines the problem of biological network integration. 
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An effective biological network integration algorithm must satisfy several core criteria. 

Biological networks continue to be generated at a rapid pace and for organisms with many genes, 

therefore it is necessary for a network integration algorithm to scale to many networks and 

networks with many nodes. Biological networks seldom overlap perfectly in the genes or proteins 

they contain, and so an integration algorithm must be able to handle situations where a gene or 

protein is present in some but not all input networks, and not fall back on integrating only those 

present in all networks. An effective algorithm must be general, and capable of integrating any 

networks of interest, rather than being ad hoc, that is, designed for a particular set of networks. 

This ensures the algorithm will be applicable to any new networks that come available. Only using 

known information about gene function, such as the Gene Ontology (Ashburner et al., 2000) or 

other functional annotation standards to integrate networks may lead to integration results that can 

only replicate existing knowledge, and may also incorporate the biases present in these standards. 

An effective integration approach must be able to take advantage of the information present in 

these standards while also not being reliant on them. Such an approach will instead rely on the 

intricacies of the input network structures to determine functional relationships, with the option to 

incorporate known annotations if they are available. Finally, and most fundamentally, this 

integration algorithm must produce an integrated output that captures more functional information 

than the individual input networks and readily identifies novel biology. Many network integration 

algorithms have been developed which address some, but not all of these criteria (Cho et al., 2016; 

Gligorijević et al., 2018; Malod-Dognin et al., 2019; Mostafavi et al., 2008; Wang et al., 2014; 

Wilson et al., 2020).  

The absence of a method which satisfies all these criteria motivated me to develop a deep 

learning-based network integration algorithm called Biological Network Integration using 

Convolutions (BIONIC). Computational and experimental validations of BIONIC were performed 

primarily in budding yeast, since it is a well characterized organism with many high-quality 

networks and comprehensive functional standards. In this thesis I will provide a detailed 

introduction to the major topics pertaining to biological networks, network integration, deep 

learning and the design of BIONIC. I will describe the BIONIC algorithm itself, demonstrate its 

superiority over individual networks and existing integration algorithms, and show its 

effectiveness for predicting novel biological phenomena in the form of chemical-genetic 

interactions. 
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1.1 High-throughput Functional Interaction Datasets 

Characterizing cellular function in a genome and proteome-wide manner has been made possible 

with the advent of high-throughput experimental assays. These assays generate a wide range of 

cellular datatypes at the gene, transcript, and protein level, among others (Heinemann & Sauer, 

2011). Notable among these datatypes are genetic interactions, gene co-expression relationships, 

and protein-protein interactions. Genetic interactions define unexpected cellular phenotypes under 

the simultaneous perturbation of multiple genes (Tong et al., 2001). Genetic interactions capture a 

wide range of functional relationships between genes, such as between and within pathway 

relationships, can be measured comprehensively, and identify functional relationships upstream of 

all other interaction types (Costanzo et al., 2016). Gene co-expression measures the similarity of 

gene expression profiles across many cellular conditions. Genes with similar expression profiles 

tend to be coregulated and are more likely to be involved in the same pathway or biological process 

(Eisen et al., 1998). Protein-protein interactions measure physical binding events between proteins. 

Highly connected regions in protein-protein interaction networks often represent stably binding 

protein complexes (Gavin et al., 2006; Krogan et al., 2006), while more transient binding events 

can also be measured (Ito et al., 2001; Uetz et al., 2000). Below I will describe these datatypes in 

more detail and provide an overview of the major high-throughput technologies that have been 

used to produce the datasets related to this work. 
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Figure 1: Three prominent high-throughput technologies. a) Synthetic 

genetic array. Haploids with single gene perturbations are crossed, producing a 

diploid strain. Diploids are sporulated and double mutant haploids are selected. 

Colony size is measured and compared to wild-type to generate a genetic 

interaction score. Adapted from Tong et al., 2001. b) Microarray gene expression 

profiling. mRNA transcripts are purified from experimental (treated) and control 

cell populations. mRNA is reverse transcribed into fluorescent cDNA which 

hybridizes with complementary oligonucleotides on the microarray. The 

microarray is imaged and fluorescence intensity is measured, which generates 

differential gene expression levels. Adapted from White & Salamonsen, 2005. c) 

Affinity-purification mass spectrometry (APMS). An affinity tag is fused to a bait 

protein of interest. A plasmid coding for this fusion is transfected and expressed in 

the cell. Interacting proteins (i.e. prey proteins) bind to the bait which is then 

purified via its affinity tag. The resulting pulled down proteins are digested and 

interactors are identified using mass spectrometry. 
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1.1.1 Genetic Interactions 

A genetic interaction is defined as a phenotypic outcome occurring in the presence of two gene 

perturbations which is unexpected when compared to the individual gene perturbations alone 

(Tong et al., 2001). Genetic interactions often occur between genes involved in the same biological 

process, pathway or functional module, or between genes in pathways sharing redundant functions 

(Costanzo et al., 2010, 2016; Tong et al., 2001; Tong et al., 2004). Because genetic interactions 

often connect functionally related genes and they can be measured comprehensively for almost all 

genes, they provide a powerful base from which to understand the genetic architecture of the cell. 

Synthetic genetic array (SGA) technology enables the systematic and scalable measurement of 

genetic interactions in the budding yeast Saccharomyces cerevisiae (Figure 1a, Tong et al., 2001). 

SGA works by crossing two haploid yeast strains, each with a single gene perturbation of interest. 

Perturbations commonly take the form of deletions for non-essential genes, and conditional 

temperature sensitive (TS) alleles for essential genes, such that the essential gene function can be 

partially impaired at semi-permissive temperatures and the mutant strain is still viable (Kofoed et 

al., 2015). The cross produces a diploid strain containing the two gene mutations, in addition to a 

set of selectable markers. The diploid cells are sporulated, resulting in a set of haploid spore 

progeny, some of which contain the two mutated alleles. Following a selection step for germination 

and growth of a single haploid mating type, the double mutants are then selected for. The growth 

rate of the double mutant colonies is a readout for genetic interaction strength. Colonies with small 

sizes relative to wild type indicate a synthetic sick or synthetic lethal (i.e. negative) genetic 

interaction between the perturbed genes. Somewhat less commonly, double mutant colonies may 

exhibit enhanced growth, indicating a positive genetic interaction. 

 SGA has been systematically applied to approximately 90% of yeast genes, resulting in the 

identification of close to one million genetic interactions, ~500,000 negative and ~300,000 positive 

genetic interactions (Costanzo et al., 2016). For negative genetic interactions in particular, the 

gene-gene connections were found to be most dense within biological processes. However, genetic 

interactions also spanned processes and cellular compartments, bridging related functions. Greater 

functional accuracy was attained by correlating all pairwise genetic interaction profiles to generate 

a correlation-based similarity network. Genes which shared similar genetic interaction profiles 

were often found to be functionally related. The similarity network revealed additional functional 

gene relationships, clusters of functionally related genes (i.e. functional modules) and produced a 
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rich, hierarchical view of gene function and organization. This network is a core component of any 

network integration effort in yeast since it acts as a scaffold on which functional modules can be 

further refined with the integration of additional networks. 

  

1.1.2 Transcriptomics 

Genetic information is expressed within a complex web of regulatory interactions. Genes which 

share similar expression patterns across many different cellular environments and conditions tend 

to be co-regulated and functionally related (Eisen et al., 1998). Gene expression profiles, and co-

expression and co-regulatory relationships have used to identify functional gene modules and 

characterize unannotated genes (Hughes et al., 2000; Huttenhower et al., 2007; Pavlidis et al., 

2002; Sopko et al., 2006; Stuart et al., 2003), create tissue-specific biological networks (Greene et 

al., 2015; Guan et al., 2012), and predict disease-gene associations (Greene et al., 2015; Paci et al., 

2021; van Dam et al., 2018). 

Genome-wide expression measurements can be made in a massively parallel manner with 

the use of RNA microarrays (Figure 1b, Schena et al., 1995), or more recently with RNA-seq 

technologies (Wang et al., 2009). Microarray experiments encompass several related approaches 

(Schulze & Downward, 2001) and are of particular relevance to the datasets used in this work. 

mRNA transcripts are purified from a cell population and are used to synthesize fluorescently 

labelled cDNA strands. These strands are then passed over glass slide containing complementary 

cDNA strands matching known transcripts anchored to and arrayed over the surface. Hybridization 

occurs and the array is then imaged. Because of the fluorescently tagged cDNA, gene transcript 

abundance can be measured by quantifying the signal intensities of the fluorescence. RNA-seq is 

a newer approach that takes advantage of recent advances in deep sequencing technologies to 

directly sequence and quantify the number of mRNA transcripts in a cell population (Wang et al., 

2009). mRNA molecules are first purified from a cell population and either fragmented or left 

whole before being used to synthesize corresponding cDNA molecules with adaptors attached to 

both ends. The cDNA is then sequenced using standard DNA sequencing technologies. Resulting 

sequence reads are aligned to a reference genome and gene expression levels are quantified. 

 Gene expression datasets are highly abundant and provide a wealth of potentially useful 

functional information. For instance, the Serial Pattern of Expression Levels Locator (SPELL) 
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database contains approximately 750 yeast microarray expression datasets (Skrzypek & 

Hirschman, 2011). Previously, gene expression datasets have been integrated using an ad hoc 

approach to generate high-quality functional predictions, indicating their utility in an integrative 

scenario (Huttenhower et al., 2006). Gene expression experiments can easily be transformed into 

networks of co-expressed genes by computing pairwise correlation of the gene expression profiles, 

where two genes share an edge if their expression profiles are sufficiently similar (van Dam et al., 

2018), and this ensures compatibility with network integration algorithms. 

 Another related dataset of interest is the gene regulatory (transcription factor-target) 

network. These networks link genes to one another via shared transcription factors that bind to 

their promoter regions (Hughes & de Boer, 2013). Similar to gene expression measurements, gene 

regulatory networks capture gene co-regulatory relationships but do so upstream of transcript 

measurements by instead directly measuring transcription factor-gene promoter binding events. 

This is typically accomplished through high-throughput technologies such as chromatin 

immunoprecipitation followed by sequencing (ChIP-Seq, Johnson et al., 2007), a process by which 

transcription factors are cross-linked to target DNA sequences, purified, and target DNA is 

sequenced. Additionally, the Yeast Search for Transcriptional Regulators And Consensus 

Tracking (YEASTRACT) database provides approximately 175,000 transcription factor-target 

relationships in yeast, curated from over 1500 studies (Teixeira et al., 2023). 

 

1.1.3 Protein-protein Interactions 

While genes encode the instructions to run cellular processes, proteins carry them out. Physical 

interactions between proteins (protein-protein interactions) mediate a wide range of cellular 

mechanisms, such as stably binding to form sophisticated macromolecular complexes, which form 

the core machinery of cellular processes, and enabling signal transduction, which allows the cell 

to respond to environmental stimuli. Several high-throughput technologies have been developed 

to measure protein-protein interactions in a proteome-wide manner. Two widely used technology 

categories are mass spectrometry (Figure 1c) and yeast two-hybrid-based approaches (Berggård 

et al., 2007; Brückner et al., 2009; Köcher & Superti-Furga, 2007).  

 Mass spectrometry approaches generally involve first adding an affinity tag to a set of 

preselected bait proteins. These proteins are expressed in the cell and purified from the cell lysate 
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using the affinity tag. Proteins that interact with the bait (known as prey proteins) are pulled down 

with the bait, and they can be identified subsequently through a protease digest followed by mass 

spectrometric analysis of the digested peptides. This procedure defines affinity purification mass 

spectrometry (AP-MS), an approach that has been used to generate many large scale protein-

protein interaction networks (Gavin et al., 2006; Huttlin et al., 2017; Krogan et al., 2006). AP-MS 

assays tend to capture stably interacting proteins, and so, are highly valuable for identifying protein 

complexes (Berggård et al., 2007). Proximity biotinylation is another approach that involves fusing 

a biotin ligase to a bait protein, which is then expressed in the cell. The ligase releases reactive 

biotinoyl-AMP into the cellular environment, allowing the covalent labeling of proteins near the 

bait. This approach allows for the identification of proteins which share similar locations in the 

cell, is performed endogenously ensuring identified interactions are biologically valid, and has 

been used to map the locations of over 4000 human proteins (Go et al., 2021).  

 Yeast two-hybrid (Y2H) approaches take advantage of the modular structure of many 

eukaryotic transcription factors, such as GAL4 in yeast, which have separate domains for DNA 

binding and transcriptional activation. To perform a Y2H experiment, bait and prey proteins are 

first fused to a transcription factor’s binding and activation domains respectively, resulting in two, 

separate fusion proteins. These fusion proteins are then simultaneously expressed in a cell. If the 

bait and prey proteins interact, they will reconstitute the transcription factor, leading to the 

expression of a reporter gene which is used to measure the presence or absence of the interaction 

(Berggård et al., 2007; Ma & Ptashne, 1988). Many protein-protein networks have previously been 

generated from large-scale Y2H experiments (Ito et al., 2001; Rolland et al., 2014; Uetz et al., 

2000; Yu et al., 2008). Relative to mass spectrometry approaches, Y2H assays are known to be 

particularly sensitive to capturing direct protein-protein interactions as well as transient protein-

protein interactions (Berggård et al., 2007). 

 

1.1.4 Chemical-genetic Interactions 

A chemical-genetic interaction is when a cell is sensitized to a small-molecule compound by a 

gene perturbation (Enserink, 2012; Parsons et al., 2006). Genes which share similar sensitivity 

profiles across many compounds tend to be functionally related since they are often involved in 

similar pathways and bioprocesses (Piotrowski et al., 2017; Simpkins et al., 2018). Experimental 
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techniques to measure chemical-genetic interactions vary substantially, but in general they involve 

exposing mutant cells carrying single gene mutations to a chemical environment and measuring 

the resulting growth inhibition relative to the same cells in a control environment. 

Experimental screens have enabled genome-wide identification of chemical-genetic 

interactions in yeast and human cells, leading to deeper insights into gene function and compound 

mode-of-action (Breinig et al., 2015; Lee et al., 2014; Parsons et al., 2006; Piotrowski et al., 2017). 

Chemical-genetic screening also has the potential to identify compounds which target biological 

pathways implicated in disease, and so, is an indispensable tool for drug discovery efforts (Cacace 

et al., 2017). 

 

1.2 Functional Standards 

Functional standards represent a ground truth of biological knowledge. They consolidate high-

quality, expert curated information from a wide range of diverse experiments and published 

studies. Functional standards generally map each gene or protein to a set of functional annotations 

– terms from a controlled vocabulary which define the gene or protein’s functional role in the cell. 

Any network integration method capable of capturing useful biological information should be able 

to replicate these annotations with a high degree of accuracy. In this way, network integration 

algorithms can be assessed based on their ability to reproduce known gene-gene and protein-

protein relationships. These known relationships are defined by gene or protein pairs sharing the 

same functional annotations. Alternatively, a network integration algorithm could be assessed by 

its ability to predict these gene and protein annotations directly. Additionally, a final map of 

cellular function produced using a network integration algorithm should also be able to take 

advantage of the high-quality information present in these standards by directly incorporating 

them.  

Saccharomyces cerevisiae is one of the most well studied model organisms (Dietrich et al., 

2014). As a result, many high-quality, comprehensive functional standards exist for yeast. These 

standards are expert-curated and consolidate core information from much of the yeast functional 

genomics and systems biology literature into easily accessible databases. Examples of these 

curated functional standards include the Gene Ontology (GO) (Ashburner et al., 2000), Kyoto 
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Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & Goto, 2000), and the IntAct protein 

complexes database (Orchard et al., 2014). 

 The Gene Ontology is a core component of functional genomics (Ashburner et al., 2000). 

It provides a hierarchy of functional annotations which are assigned to genes based on expert 

curation. For example, the budding-associated and actin-assembly yeast gene BNI1 is annotated to 

the GO term “actin nucleation” (GO:0045010), which itself is a child term of the broader “actin 

filament organization” (GO:0007015) term, and so on. GO maintains three separate ontologies: 

biological process, cellular component, and molecular function. The molecular function ontology 

defines the biochemical activity of a gene, rather than its contextual role in the cell, and so is not 

valuable for holistically defining a gene’s role in the cell. The biological process and cellular 

component ontologies, however, define the biological process a gene is involved in, and the 

cellular location of the gene product, respectively. These two ontologies provide valuable context 

from a functional perspective, and genes annotated to the same or similar terms can be considered 

functionally related. KEGG is organized into many databases containing information about gene 

sequences, cellular processes, enzymatic reactions, diseases and many more (Kanehisa et al., 2017; 

Kanehisa & Goto, 2000). Particularly useful to integrative systems biology, KEGG contains 

information on biological pathways (the PATHWAY database). Similar to the GO biological 

process ontology, this database provides detailed maps of biological pathways, indicating the 

genes involved, gene interrelationships, and how these pathways impinge on each other. The 

IntAct database contains a comprehensive collection of expert curated protein-protein interactions 

for many organisms (Orchard et al., 2014). IntAct also provides the Complex Portal resource, a 

manually curated collection of protein complexes. 

 Many additional functional standards exist, covering a wide range of gene and protein 

relationships. Examples include the comprehensive resource of mammalian protein complexes 

(CORUM) which manually curates experimentally verified protein complexes across various 

mammalian model organisms, such as human, mouse and rat (Giurgiu et al., 2019; Ruepp et al., 

2010), and Reactome, which provides a manually curated resource of human pathways in addition 

to various analysis tools for data exploration (Croft et al., 2014; Gillespie et al., 2022). Additional 

expert curated gene and protein information can be found in resources such as the Saccharomyces 

Genome Database (SGD), which contains a plethora of useful functional information including 
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high-quality textual descriptions of yeast genes and their functions (Skrzypek & Hirschman, 2011), 

as well as the UniProt database which hosts functional information, sequences and curated textual 

descriptions and annotations for proteins across thousands of organisms (UniProt Consortium, 

2021). 

 

1.3 Network Integration Approaches 

Various network integration approaches have been developed, covering a wide range of 

methodologies. These approaches are based on various techniques such as matrix factorization 

(iCell, Argelaguet et al., 2018; Malod-Dognin et al., 2019), deep learning-based multi-modal 

autoencoding (deepNF, Gligorijević et al., 2018), low-dimensional network diffusion state 

approximation (Mashup, Cho et al., 2016), a multi-network extension of the Skip-gram 

architecture commonly used in natural language processing (multi-node2vec, Grover & Leskovec, 

2016; Wilson et al., 2020), and regression-based network composition followed by label 

propagation (GeneMANIA, Mostafavi et al., 2008). These algorithms constitute a set of general 

network integration approaches that work with any given input networks. Additional, ad-hoc 

integration approaches have been developed but, due to the specificity of their use-cases, were not 

considered in this work. In my thesis work, I compared the BIONIC algorithm I developed to six 

different network integration approaches: iCell, deepNF, Mashup, multi-node2vec, GeneMANIA, 

and a naïve union of networks baseline (Union) which I describe in Section 2.8.4. I’ve provided a 

brief description of the other, published algorithms below. 

 Network integration approaches can generally be categorized as either unsupervised (iCell, 

deepNF, Mashup, multi-node2vec, Union) or supervised (GeneMANIA). The network integration 

algorithm I propose in this work (BIONIC) can be unsupervised or supervised depending on 

whether labelled data is provided (see Section 2.1). Unsupervised network integration constitutes 

a class of algorithms that can integrate networks using only the networks themselves, and do not 

require external functional labels linking genes or proteins to their known biological role. This is 

especially useful in de novo scenarios, such as unstudied or poorly studied organisms that have 

few functional annotations available. In this case, unsupervised algorithms can link genes and 

proteins based solely on network topologies and identify novel functional modules that could not 

otherwise be found by a supervised algorithm. Additionally, unsupervised integration approaches 
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do not risk incorporating curation biases present in functional standards. Conversely, supervised 

integration algorithms can take advantage of curated functional annotations (such as from the Gene 

Ontology) to improve integration results. In scenarios where sufficient, high-quality gene and 

protein labels exist, supervised network integration promises superior integration performance 

over unsupervised integration approaches by aligning the integration results to known biological 

information. Networks that do not adequately reflect the functional standards should be 

downweighted by a supervised algorithm (Mostafavi et al., 2008), whereas an unsupervised 

algorithm would generally treat these networks as equivalent to higher-quality networks.  
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Figure 2: Five diverse network integration approaches. a) iCell. Network 

adjacency matrices are decomposed into common (G) and unique factors (S). The 

common factors are used to generate a new integrated network. Adapted from 

Malod-Dognin et al., 2019. b) Deep network fusion (deepNF). A multi-modal 

autoencoder is used to encode and combine individual input networks into a 



15 

 

common feature space. DeepNF trains by reconstructing the original input 

networks from the integrated features and minimizing the reconstruction error. 

Adapted from Gligorijević et al., 2018. c) Mashup. A random walk with restart 

procedure is used to generate diffusion states for the input networks. These 

diffusion states are jointly approximated with shared feature vectors for each node. 

Adapted from Cho et al., 2016. d) Multi-node2vec. Neighborhoods are sampled 

across networks to generate a set of neighborhoods called a “bag of nodes”. Nodes 

are input into a Skip-Gram neural network which is used to predict each node’s 

neighborhood membership. Weights from the first layer of the model are extracted 

and used as node features. Adapted from Wilson et al., 2020. e) GeneMANIA. 

Ridge regression is performed to learn a weighted combination of input networks 

best matching a functional standard. A composite network is generated from the 

input networks using these weights. Label propagation is performed over the 

composite network to generate gene function predictions. 

 

1.3.1 iCell 

iCell is a multiple matrix factorization approach for network integration (Figure 2a, Malod-

Dognin et al., 2019). It works by decomposing the adjacency matrices of the input networks into 

a set of factors from which a new, integrated network can be generated. The authors used three 

human networks in their analyses: a protein-protein interaction network, a gene co-expression 

network, and a genetic interaction network derived from various databases (Chatr-Aryamontri et 

al., 2017; Kotlyar et al., 2016; Okamura et al., 2015). The nodes in these networks were subset to 

genes expressed in various tissues using tissue-specific gene expression data, and used to generate 

a set of integrated, tissue-specific networks for further analysis. The authors found that the 

integrated networks are more enriched for functional annotations across several functional 

standards than the individual networks alone. 

 

1.3.2 deepNF 

Deep network fusion (deepNF) is a deep learning-based network integration algorithm (Figure 

2b, Gligorijević et al., 2018). deepNF uses a multimodal autoencoder architecture to encode and 

combine input networks (Ngiam et al., 2011). First, networks are preprocessed by applying the 

random walk with restart algorithm (Tong et al., 2006) to each network to generate initial features 

for each node (gene/protein) in the networks. Next, each of these networks-specific node feature 
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sets are encoded through a separate neural network (described in Section 1.4) encoder which 

consists of several stacked, trainable, non-linear transformations. The encoded network-specific 

node features are then combined into a common feature space through concatenation of the 

corresponding node features followed by additional, non-linear neural network transformations 

which progressively reduce the number of feature dimensions. Through this process, a low-

dimensional feature vector is generated for each gene or protein which captures functional 

relationship information present across the inputs. These features can be used in downstream tasks 

of interest, such as an input to a classifier to predict gene function annotations. deepNF optimizes 

its internal parameters by first reconstructing the original input networks through the reverse of its 

encoder architecture and then minimizes the difference between the reconstructed networks and 

the input networks. 

 The authors use deepNF in separate experiments to integrate a set of yeast networks and a 

set of human networks from the STRING database (Franceschini et al., 2013). The authors trained 

a classifier on the resulting deepNF features to predict gene function annotations given by several 

functional standards, a previously established technique (Cho et al., 2016). In this way they 

compared the performance of the deepNF STRING network integrations to two existing network 

integration approaches, Mashup and GeneMANIA, which are both described in this section. They 

found deepNF generally outperforms the compared approaches, both in terms of a typical cross 

validation-based evaluation, as well as in a temporal hold out scenario, where old functional 

annotations are used for training and new annotations are used for evaluation. 

 

1.3.3 Mashup 

Mashup (Figure 2c) works by first performing a random walk with restart (RWR) procedure on 

each network (Cho et al., 2016; Tong et al., 2006). This produces a richer representation of node 

relationships within each network than the default adjacency matrix by connecting nodes which 

share similar neighborhoods. Convergence of the RWR procedure results in each node having a 

diffusion state, a vector which defines the probability of reaching other nodes in the network under 

the RWR procedure starting from the given node. The diffusion state captures the node’s 

topological location in the network and can be used to identify functional relationships between 

nodes. However, these diffusion states tend to be noisy and cannot easily be used for network 
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integration, so the authors propose a multinomial logistic regression model to learn low-

dimensional latent vectors that are shared across the input networks and which approximate the 

diffusion states. This procedure generates a functionally informative low-dimensional feature 

vector for each gene/protein across the input networks which can then be used in downstream 

functional inference tasks. 

The authors used Mashup to separately integrate human STRING networks (Franceschini 

et al., 2013) and yeast STRING networks, and evaluated the resulting integrated human features 

and integrated yeast features on a set of human and yeast functional standards respectively. They 

compared the Mashup results to integrated networks produced by the GeneMANIA method 

(described in Section 1.3.5), and Bayesian inference-based integration performed by the STRING 

database followed by application of the diffusion state distance algorithm (Cao et al., 2013). The 

authors found that Mashup outperforms the compared methods across the functional standards. 

They also found improvements to the original input network performance when these networks 

were encoded individually using Mashup. Additionally, the integration of all networks 

outperformed the individual networks. The authors performed an experiment where they used the 

integrated Mashup features to generate a data-driven ontology that could be compared to the Gene 

Ontology (Ashburner et al., 2000). They compared their data-driven ontology to two other 

ontologies produced by two competing ontology construction methods (Dutkowski et al., 2013; 

Kramer et al., 2014) and found the Mashup-derived ontology was best aligned with the Gene 

Ontology. Finally, the authors used Mashup to generate novel genetic interaction and drug efficacy 

predictions. 

 

1.3.4 multi-node2vec 

Multi-node2vec (Figure 2d) is a multi-network extension of the popular, single network encoding 

algorithm node2vec (Grover & Leskovec, 2016; Wilson et al., 2020). It works by first generating 

a large collection of neighborhoods (referred to as a “bag of nodes”) through a multi-network 

random walk procedure which identifies neighborhoods based on connectivity patterns across all 

input networks. This is analogous to the “bag of words” approach used in natural language 

processing to generate a representation of a document based on the words it contains (X. Zhang et 

al., 2016), but generalized to a network setting. This bag of nodes is then encoded using a particular 
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neural network architecture, referred to as a “Skip-gram” model. This encoding process results in 

the generation of a single feature vector for each node across the input networks. The model is 

optimized by using these features to predict the local neighborhood of each node (known as the 

node’s “context”) and updating the features based on their prediction performance. 

 To validate multi-node2vec, the authors first generated a set of networks linking human 

brain regions. Data from functional magnetic resonance imaging (fMRI) across 74 individuals was 

used to generate per-individual networks linking a set of 264 brain regions based on similar 

activation patterns through time (Biswal et al., 2010; Power et al., 2011). The authors then trained 

a classifier on the multi-node2vec integrated features to predict brain region node labels based on 

a ground-truth label set (Power et al., 2011). The performance of multi-node2vec was compared 

against several single network encoding approaches (Grover & Leskovec, 2016; Perozzi et al., 

2014; Tang et al., 2015). The authors found that multi-node2vec generally outperformed the 

compared approaches and performed robustly in a setting where noisy networks were additionally 

integrated. Given the impressive performance of node2vec on protein-protein interaction networks 

(Grover & Leskovec, 2016), a multi-network extension of node2vec motivates its inclusion as a 

potentially useful biological network integration algorithm. 

 

1.3.5 GeneMANIA 

GeneMANIA is a supervised network integration algorithm which uses preexisting gene and 

protein function annotations to combine multiple networks and generate function predictions for 

unannotated genes and proteins (Figure 2e, Mostafavi et al., 2008). GeneMANIA first performs 

linear regression to learn a weighted sum of input network adjacency matrices based on a 

functional standard of interest. A label propagation algorithm is then run on the resulting integrated 

network. Label propagation diffuses information about gene function across the integrated network 

by updating unlabeled nodes with the functional information of labeled nodes based on their 

proximity. 

 GeneMANIA was entered in the MouseFunc challenge, where the goal was to functionally 

annotate uncharacterized mouse genes (Peña-Castillo et al., 2008). GeneMANIA performed better 

than all eight competing methods at functional annotation prediction. Additionally, the authors 

compared GeneMANIA to two other function prediction algorithms (Myers et al., 2005; Tsuda et 
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al., 2005) on the task of predicting yeast functional annotations and found GeneMANIA yields 

superior performance. The authors demonstrated GeneMANIA’s scalability, and developed a 

webserver for fast gene and protein function inference (Warde-Farley et al., 2010). 

 

1.4 Deep Learning 

One of the fundamental applications of machine learning is to generate useful insights from data. 

With the development of high-throughput experimental technologies and the corresponding 

growth in large biological datasets, model design considerations must adjust so that machine 

learning algorithms scale appropriately while continuing to see improvements in predictive power. 

While traditional machine learning algorithms have been and continue to be indispensable tools 

for data analysis, they often lack the scale, power, and versatility to handle the large, data-driven 

biology problems of today. 

Deep learning, a subfield of machine learning, has gained significant popularity since, 

among various successes, a neural network (described below) algorithm dramatically 

outperformed competing approaches at the ImageNet competition in 2012 (Krizhevsky et al., 

2012). Core to the deep learning paradigm is the artificial neural network, which loosely models 

the information processing that occurs within biological neural systems. The individual 

computational units of the artificial neural network are the neurons, which share connections with 

other neurons. Each neuron computes its own activation, a scalar value that is dependent on the 

activations of the connected neurons, the weights of those connections, and an activation function 

which generally introduces non-linearity into the activation computation and allows the neural 

network to model complex data dependencies. Data is input into a neural network and sequentially 

transformed over multiple layers of neurons. In a supervised setting, these datapoints are labelled 

and the goal of the neural network is to successfully predict the correct label for each datapoint 

(training), and then generalize to datapoints without labels (inference). In unsupervised settings, 

the objective of the neural network is often to learn data representations that encode useful 

information for downstream analyses. These two training scenarios are explored in detail with 

respect to network integration in Data Chapter 3. The neural network has a loss function which 

calculates how well it performs on its objective. Over multiple training iterations where a neural 

network is shown many data points, it will update its weights to minimize the loss function through 
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a process called backpropagation (Rumelhart et al., 1986). Backpropagation, implemented through 

an optimization algorithm (such as stochastic gradient descent (Robbins & Monro, 1951) or Adam 

(Kingma & Ba, 2015)) computes the size and directionality of neural network weight updates that 

will minimize the loss function, starting from the output layer and progressing backwards to the 

input layer. When certain characteristics of a data type are known (for example, pixels close to 

each other in an image are more likely to represent the same element than pixels far apart), an 

appropriate choice of neural network architecture can be used which models these characteristics. 

This choice of architecture constitutes what is known as an inductive bias. Different neural 

architectures, such as convolutional neural networks (CNNs) or graph neural networks (GNNs, 

described in Section 1.4.1) modify the connectivity patterns of the neurons, which allows inductive 

biases relevant to the problem domain to be incorporated into the model. 

A major advantage of neural networks is their representation learning ability. In traditional 

machine learning approaches, input data features would have to be engineered by hand. 

Conversely, neural networks learn functions which map raw data to desired outputs by learning 

internal representations of the input data, thereby automating the feature engineering process. 

Theoretically, neural networks with non-linearities and few internal (i.e. hidden) layers of neurons 

are able to represent any mathematical function with any desirable level of accuracy given enough 

neurons (Hornik et al., 1989). This indicates neural networks are not inherently limited in their 

representational capacity and should be useful across problem domains. In practice, training 

arbitrarily large neural networks is not computationally feasible, however graphics processing unit 

(GPU) accelerated computing has improved computing speeds by orders of magnitude. Coupled 

with model and data parallelization techniques, and efficient and domain-tailored architectures, 

large and data-intensive models can be trained in reasonable time with sufficient hardware. 

Crucially, deep learning frameworks and tooling have revolutionized algorithm design. 

Traditionally, designing new machine learning algorithms was an ad hoc process with few 

standardized approaches to do so. Deep learning frameworks like TensorFlow (Abadi et al., 2016) 

and PyTorch (Paszke et al., 2019) have consolidated and professionally implemented the core 

neural network elements, such as layers and activations, optimizers, and data handlers, as well as 

providing native GPU acceleration. In doing so, these frameworks have standardized and 

simplified the process of designing complex neural network-based algorithms. 
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Deep learning approaches have been successful in several problem domains. Convolution-

based architectures have revolutionized computer vision, leading to large-scale and accurate image 

classification (He et al., 2014, 2015; Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; 

Szegedy et al., 2014), segmentation and object detection (He et al., 2015, 2018; Redmon et al., 

2016; Ronneberger et al., 2015), and generation (Arjovsky et al., 2017; Goodfellow et al., 2014; 

Karras et al., 2019). Recurrent and transformer architectures have realized considerable success in 

language modelling tasks (Dai & Le, 2015; Devlin et al., 2019; Liu et al., 2019; Raffel et al., 2020; 

Vaswani et al., 2017), translation (Bahdanau et al., 2016; Devlin et al., 2019; Liu et al., 2019; 

Raffel et al., 2020; Sutskever et al., 2014) and text generation (Brown et al., 2020; Lewis et al., 

2019; Raffel et al., 2020). Deep learning algorithms have been used in reinforcement learning 

frameworks to play games (Mnih et al., 2013; Silver et al., 2016; Vinyals et al., 2019) and act as 

effective agents in control systems (Lillicrap et al., 2019). Among countless biology applications, 

deep learning algorithms have been used to process millions of microscopy images (Mattiazzi Usaj 

et al., 2020; Usaj et al., 2019), predict the effects of genetic variants (Avsec et al., 2021; Zhou & 

Troyanskaya, 2015), integrate biological networks (Gligorijević et al., 2018), and have 

transformed the field of structural biology by generating protein structure predictions with 

unparalleled accuracy (Baek et al., 2021; Jumper et al., 2021). 

 

1.4.1 Graph Neural Networks 

A class of neural network architectures that has particular relevance to my work is the graph neural 

network (GNN, Figure 3). Graph neural network architectures are capable of representation 

learning over network (i.e. graph) structured data. The GNN takes in a network which defines 

relationships between nodes, and node features which contain information about each node 

individually. It works by first performing feature aggregation, where a node’s features are updated 

based on the features of nodes in its neighborhood, followed by a learned transformation. GNNs 

can be stacked to produce node features that reflect higher-order neighborhoods. 
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Figure 3: Graph neural network schematic. The GNN architecture functions 

by: Step 1. adding self-loops to each network node, Step 2. assigning a “one-hot” 

feature vector to each node in order for the GNN to uniquely identify the nodes and 

Step 3. propagating node features along edges followed by a low-dimensional, 

learned projection to obtain updated node features which encode the network 

topology. 

 

 GNNs architectures vary in their design considerations and problem domains, tending to 

differ most in the way they aggregate node features. Graph convolutional networks (GCNs) were 

among the first GNN architectures developed, and generalize the notion of a convolution from 

CNNs to work on network structured data (Defferrard et al., 2016; Henaff et al., 2015; Kipf & 

Welling, 2016a). In CNNs, a convolution is defined over a regular grid of pixels (nodes), where 

each pixel is connected to its neighbor and has feature values associated with it (red-green-blue 

color content, for example). This convolution was generalized to non-regular network structures 

where nodes do not have consistent connectivity patterns (as is the case in biological networks). 

GNN architectures have been developed for unsupervised representation learning (Kipf & 

Welling, 2016b), encoding networks with multiple edge and node types (such as knowledge 

graphs, Schlichtkrull et al., 2017), and have been scaled to large networks using network 

subsampling procedures (Hamilton et al., 2018). Of particular interest to my work is the graph 

attention network (GAT), which utilizes a trainable attention mechanism (Vaswani et al., 2017) to 

reweight network edges in the aggregation step, leading to substantial improvements across 
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reported benchmarks (Veličković et al., 2017). GNNs have been used to address a wide variety of 

problems, such as encoding molecular structures (Jiang et al., 2021), generating new protein 

structure designs (Strokach & Kim, 2022), accurately simulating physical systems (Kipf et al., 

2018; Sanchez-Gonzalez et al., 2020), discovering new antibiotics (Stokes et al., 2020), and traffic 

forecasting (Li et al., 2018). 

 Libraries such as PyTorch Geometric (Fey & Lenssen, 2019) and Deep Graph Library 

(Wang et al., 2020) provide implementations for most common GNN architectures and integrate 

seamlessly into existing deep learning frameworks. GNNs are a natural architecture choice when 

dealing with network-structured data motivating their inclusion in network integration algorithms. 

 

1.5 Summary 

Functional genomics and systems biology research relies on, among many things, high-throughput 

datasets to derive functional insights into cellular systems. A particular class of these datasets is 

the biological network, which links either genes or proteins with one another and explicitly defines 

gene and protein functional relationships. These networks are limited, however, in the space of 

genes or proteins they cover, the quality of the identified relationships, the absence of true 

relationships, and, due to the underlying experimental technology, systematic biases in the 

functional spectrum they can represent. Integrating these networks in a way that incorporates 

valuable functional information without including poor quality relationships, such that the 

resulting network covers more genes and proteins than the individual networks alone, is necessary 

to generate a high-quality, holistic model of cellular function. Many network integration 

algorithms have been developed but are all limited in several important ways, from poor scalability 

to suboptimal integration performance. This motivates the development of a new network 

integration algorithm which improves upon existing approaches. Incorporating technologies from 

the recent advancements in deep learning and graph neural networks would substantially benefit 

such a network integration algorithm. Towards this goal, I have developed a deep learning-based 

network integration algorithm called Biologicial Network Integration using Convolutions 

(BIONIC) which I describe in detail in the following sections.  
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2. Design and Validation of a New Network Integration Algorithm 

 

• Computer code implementing the BIONIC algorithm can be found at: 

https://github.com/bowang-lab/BIONIC 

 

• Computer code implementing the global co-annotation prediction, module detection, and 

gene function prediction evaluations can be found at: 

https://github.com/duncster94/BIONIC-evals 

 

• Computer code implementing the remaining main figure analyses published in Forster et 

al., 2022 can be found at: https://github.com/duncster94/BIONIC-analyses 

 

• Components of this data chapter were previously published in Nature Methods (Forster et 

al., 2022) and are reprinted here with permission from Springer Nature. Duncan T. 

Forster*, Sheena C. Li*, Yoko Yashiroda, Mami Yoshimura, Zhijian Li, Luis Alberto Vega 

Isuhuaylas, Kaori Itto-Nakama, Daisuke Yamanaka, Yoshikazu Ohya, Hiroyuki Osada, Bo 

Wang#, Gary D. Bader# and Charles Boone# (2022). BIONIC: biological network 

integration using convolutions. Nature Methods, 19(10), Article 10. 

https://doi.org/10.1038/s41592-022-01616-x 

* equal contribution # corresponding authors 

 

• All algorithm development and analysis work in this data chapter was performed by 

Duncan Forster. Duncan Forster, Bo Wang, Gary Bader and Charles Boone contributed to 

the writing of this chapter. 

  

https://github.com/bowang-lab/BIONIC
https://github.com/duncster94/BIONIC-evals
https://github.com/duncster94/BIONIC-analyses
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In this chapter I present a general, scalable deep learning framework for biological network 

integration called BIONIC (Biological Network Integration using Convolutions) which uses 

GNNs to learn a single, unified feature vector for each gene, given many different input networks. 

BIONIC addresses the limitations of existing integration methods and produces integration results 

which accurately reflect the underlying network topologies and capture functional information. 

 As discussed in Section 1.4, deep learning algorithms have demonstrated considerable 

improvements over classical machine learning approaches on a wide range of domains, including 

learning over networks (Section 1.4.1). Modern deep learning frameworks like PyTorch and 

Tensorflow have been developed by and are maintained by large development teams, ensuring 

high quality, scalable, extensible and well documented algorithm implementations. These libraries 

have unified and standardized algorithm development in both deep learning and machine learning 

as a whole, dramatically improving the ease of prototyping, developing and deploying highly 

performant models. They have enabled graphics processing unit (GPU) acceleration, yielding 

massive improvements in training and inference speed and scalability. Neural networks, the central 

algorithms in deep learning, are inherently modular, allowing for an arbitrary number of data 

inputs and outputs, and enabling targeted architecture modifications. For these reasons, I chose a 

deep learning approach when developing BIONIC. 

To demonstrate the utility of BIONIC, I integrate three diverse, high-quality gene and 

protein interaction networks, to obtain integrated gene features that I compare to a range of 

function prediction benchmarks. I analyze my findings in the context of those obtained from a 

wide range of integration methodologies (described in Section 1.3), and I show that BIONIC 

features perform well at both capturing functional information and scaling in terms of the number 

of networks and network size, while maintaining gene feature quality. 

 

2.1 BIONIC Architecture 

BIONIC uses the GNN neural network architecture to learn optimal gene (protein) interaction 

network features individually, and combines these features into a single, unified representation for 

each gene (Figure 4). First, the input data, if not already in a network format, are converted to 

networks (e.g. by gene expression profile correlation). Each input network is then run  
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Figure 4: BIONIC algorithm overview. BIONIC integrates networks as 

follows: Step 1. Gene interaction networks input into BIONIC are represented as 

adjacency matrices. Step 2. Each network is passed through a graph neural network 

(GNN) to produce network-specific gene features which are then combined into an 

integrated feature set which can be used for downstream tasks such as functional 

module detection. The GNNs can be stacked multiple times (denoted by N) to 

generate gene features encompassing larger neighborhoods. Step 3a. 

(Unsupervised) BIONIC attempts to reconstruct the input networks by decoding 

the integrated features through a dot product operation. Step 4a. (Unsupervised) 

BIONIC trains by updating its weights to reproduce the input networks as 

accurately as possible. Step 3b. (Semi-supervised) If labelled data is available, 

BIONIC predicts functional labels for each gene using the learned gene features. 

Step 4b. (Semi-supervised) BIONIC trains by updating its weights to predict the 

ground-truth labels and minimize classification error. 
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through a sequence of GNN layers (Figure 3) to produce network-specific gene features. The 

number of GNN layers used (three layers in my experiments - see Section 2.8, Forster et al., 2022 

Supplementary Data File 1) determines the size of the neighborhood (i.e. genes directly 

connected to a given gene) used to update the gene features (Kipf & Welling, 2016a), where one 

layer would use only the gene’s immediate neighbors, two layers would use the second order 

neighborhood, and so on. Residual connections are added from the output of each network-specific 

GNN layer in the sequence to the output of the final GNN in the sequence (Figure 5). This allows 

BIONIC to learn gene features based on multiple neighborhood sizes rather than just the final 

neighborhood, while additionally improving training by preventing vanishing gradients (He et al., 

2015). The network-specific features are then summed through a stochastic gene dropout 

procedure to produce unified gene features which can be used in downstream tasks, such as 

functional module detection or gene function prediction. To optimize the functional information 

encoded in its integrated features, BIONIC must have relevant training objectives that facilitate 

capturing salient features across multiple networks. Here, BIONIC uses an unsupervised training 

objective, and if some genes have functional labels (such as complex, pathway or bioprocess 

membership annotations), BIONIC can also use these labels to update its learned features though 

a semi-supervised objective.  

 

Figure 5: Detailed view of individual BIONIC network encoder. A more 

detailed view of an individual network encoder, including residual connections. A 

network specific graph neural network is used to encode the input network for 

increasing neighborhood sizes. The first GNN in the sequence learns features for a 

given node based on the node’s immediate neighborhood (1st order features). The 

next GNN learns features based on the node’s second order neighborhood (2nd 

order features), and so on. The node feature matrices learned by each GNN pass are 

summed together to create the final learned, network-specific features. Summing 

the outputs of the various GNNs in this way creates residual connections, allowing 

features from multiple neighborhood sizes to generate the final learned features, 
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rather than just the final neighborhood size. This figure shows three GNN layers, 

but BIONIC uses the same pattern of connections for any number of GNN layers. 

Note that the GNN layers for a given encoder share their weights, so in effect, there 

is a single GNN layer for each encoder. 

 

For the unsupervised objective, BIONIC uses an autoencoder design and reconstructs each 

input network by mapping the integrated gene features to a network representation (decoding) and 

minimizing the difference between this reconstruction and the original input networks. By 

optimizing the fidelity of the network reconstruction, BIONIC forces the learned gene features to 

encode as much salient topological information present in the input networks as possible, which 

reduces the amount of spurious information encoded. By reconstructing the input networks, 

BIONIC is also trained to model the latent factors from each network that will best reconstruct all 

input networks. 

For the semi-supervised objective, BIONIC predicts labels for each gene using the 

integrated gene features and then updates its weights by minimizing the difference between the 

predictions and a set of user-specified ground-truth functional labels. Here, BIONIC performs 

multi-label classification, where a given gene may be assigned more than one class label. BIONIC 

ignores the classification error for any genes lacking ground-truth labels, and so is able to 

incorporate as much (or as little) labelled information as is available. The semi-supervised 

classification objective is used in conjunction with the unsupervised network reconstruction 

objective when gene labels are available, and the unsupervised objective is used on its own when 

no gene labels are available. 

 

2.2 Network Integration Evaluation Criteria 

For the following analyses, I assessed the quality of the input networks and network integration 

method outputs using three evaluation criteria: (1) gene co-annotation prediction; (2) gene module 

detection; (3) supervised gene function prediction. First, I used an established precision-recall 

evaluation strategy (Costanzo et al., 2016; Myers et al., 2005) to determine how well gene-gene 

relationships produced by the given method overlapped with gene pairs co-annotated to the same 

term in a particular functional standard. Second, I evaluated the capacity of each method to produce 



29 

 

biological modules by comparing clusters computed from the output of each method to known 

modules such as protein complexes, pathways, and biological processes. These two evaluations 

measure the intrinsic quality of the outputs generated by the integration methods, i.e. without 

training any additional models on top of the outputs. Finally, the supervised gene function 

prediction evaluation determines how discriminative the method outputs are for predicting known 

gene functions. Here, a portion of the genes and corresponding labels (known functional classes 

such as protein complex membership) were held out and used to evaluate the accuracy of a support 

vector machine classifier (Cortes & Vapnik, 1995), which is trained on the remaining gene 

features, output from the given integration method, to predict the held-out labels (Cho et al., 2016). 

This constitutes an extrinsic evaluation, indicating how effectively the method outputs can be used 

in conjunction with an additional classification model. 

In the following experiments, to ensure a fair choice of hyperparameters across BIONIC 

and the integration methods I compared to, I performed a hyperparameter optimization step using 

an independent set of Schizosaccharomyces pombe networks as inputs (Martín et al., 2017; Ryan 

et al., 2012; Vo et al., 2016) and a set of Gene Ontology curated pombe protein complexes 

(Ashburner et al., 2000) for evaluation. The best performing hyperparameters for each approach 

were used (see Section 2.8). 

 

2.3 Evaluation of BIONIC Features and Input Networks 

I first used the unsupervised BIONIC to integrate three diverse yeast networks: a comprehensive 

network of correlated genetic interaction profiles (4,529 genes, 33,056 interactions, Costanzo et 

al., 2016), a co-expression network derived from transcript profiles of yeast strains carrying 

deletions of transcription factors (1,101 genes, 14,826 interactions, Hu et al., 2007), and a protein-

protein interaction network obtained from an affinity-purification mass-spectrometry assay (2,674 

genes, 7,075 interactions, Krogan et al., 2006), which combine for a total of 5,232 unique genes 

and 53,351 unique interactions (Figure 6, Forster et al., 2022 Supplementary Data File 2). 

Compared to the input networks, BIONIC integrated features have equivalent or superior 

performance on all evaluation criteria over three different functional benchmarks: IntAct protein 

complexes (Orchard et al., 2014), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 

(Kanehisa & Goto, 2000) and Gene Ontology biological processes (GO, Ashburner et al., 2000) 
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(Figure 6a, Forster et al., 2022 Supplementary Data File 3). As an additional test, BIONIC 

produces high-quality features that accurately predict a diverse set of yeast biological process 

annotations per gene (Costanzo et al., 2016) (Figure 6b). Some categories in this latter test do 

better than others. These performance patterns were mirrored in the individual input networks, 

indicating that this is the result of data quality, rather than method bias. 

I observed that features obtained through BIONIC network integration often outperformed 

the individual input networks at capturing functional modules (Figure 6a) and captured more 

modules (Figure 6c, Forster et al., 2022 Supplementary Data File 4), demonstrating the utility 

of the combined features over individual networks for downstream applications such as module 

detection. Here I treated the network adjacency profiles (rows in the adjacency matrix) as gene 

features. I then examined how effectively the input networks and integrated BIONIC features 

captured known protein complexes, by matching each individual known complex to its best 

matching predicted module and quantifying the overlap (Figure 6c). I then compared the overlap 

scores from each network to the BIONIC overlap scores to identify complexes where BIONIC 

performs either better or worse than the input networks. Of 344 protein complexes tested, BIONIC 

strictly improved 196, 309, 222 complex predictions and strictly worsened 82, 17, 98  
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Figure 6: Comparison of BIONIC integration to three input networks. 

a) Co-annotation prediction, module detection, and gene function prediction 

evaluations for three yeast networks, and unsupervised BIONIC features from the 

integration of these networks. The co-annotation and module detection standards 

contain between 1786 and 4170 genes overlapping the integration results. The 

module detection standards define between 107 and 1809 modules. The IntAct, 

KEGG and GO BP gene function prediction standards cover 567, 1770 and 1211 

genes overlapping the integration results, and 48, 53 and 63 functional classes, 

respectively (see Forster et al., 2022 Supplementary Data File 2). Data are 

presented as mean values. Error bars indicate the 95% confidence interval for n=10 

independent samples. Numbers above the module detection bars indicate the 

number of captured modules, as determined by a 0.5 overlap (Jaccard) score cutoff. 

b) Evaluation of networks and integrated features using high-level functional 

categories, split by category. Each category contains between 21 and 149 genes 

overlapping the integration results (denoted by counts above the heatmap columns, 

see Forster et al., 2022 Supplementary Data File 2) and the average performance 

of each method across categories is reported (scores to the right of each row). c) 

Top row: Comparison of overlap scores between known complexes and predicted 

modules, between BIONIC and the input networks. Each point is a protein complex. 

The x and y axes indicate the overlap (Jaccard) score, where a value of 0 indicates 

no members of the complex were captured, and 1 indicates the complex was 

captured perfectly. The diagonal indicates complexes where BIONIC and the given 

input network have the same score. Points above the diagonal are complexes where 

BIONIC outperforms the given network, and points below the diagonal are 

complexes where BIONIC underperforms the network. The arrows indicate the 

LSM2-7 complex, shown in d). A Venn diagram describes the overlap of captured 

complexes (defined as a complex with an overlap score of 0.5 or higher) between 

the input networks and BIONIC integration. Numbers in brackets denote the total 

number of captured complexes for the corresponding method. Bottom row: The 

distribution of overlap scores between predicted and known complexes for each 

network and BIONIC. The dashed line indicates the distribution mean. d) 

Functional relationships between predicted LSM2-7 complex members and genes 

in the local neighborhood, as given by the three input networks and corresponding 

BIONIC integration of these networks. The predicted cluster best matching the 

LSM2-7 complex in each network, based on the module detection analysis in a), is 

circled. The overlap score of the predicted module with the LSM2-7 complex is 

shown. Edges correspond to protein-protein interactions in PPI (Krogan et al., 

2006), Pearson correlation between gene profiles in Co-expression (Hu et al., 2007) 

and Genetic Interaction (Costanzo et al., 2016) networks, and cosine similarity 

between gene features in the BIONIC integration. The complete LSM2-7 complex 
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is depicted on the right. Edge weight corresponds to the strength of the functional 

relationship (correlation), where a heavier edge implies a stronger functional 

connection. PPI = Protein-protein interaction, COEX = Co-expression, GI = 

Genetic interaction, GO = Gene Ontology, BP = Biological process. 

 

complex predictions compared to the input protein-protein interaction, co-expression, and genetic 

interaction networks, respectively. The distributions of complex overlap scores for each dataset 

indicate that BIONIC predicts protein complexes more accurately than the input networks on 

average. Indeed, if I use an overlap score of 0.5 or greater to indicate a successfully captured 

complex, the integrated BIONIC features, containing information from three networks, capture 

121 complexes, compared to 88, 3 and 74 complexes for the individual protein-protein interaction, 

co-expression, and genetic interaction networks, respectively (Figure 6c). I also repeated this 

module analysis while optimizing the clustering parameters on a per-module basis, an approach 

that tests how well each network and BIONIC perform at capturing modules under optimal 

clustering conditions for each module. Here too, the integrated BIONIC features capture more 

modules and with a greater average overlap score than the individual input networks (Figures 9-

10, Forster et al., 2022 Supplementary Data File 5). 

Inputting the three  yeast networks (Costanzo et al., 2016; Hu et al., 2007; Krogan et al., 

2006) into BIONIC individually tends to produce features with higher performance on several 

benchmarks compared to the original network format (Figure 7). This is likely due to the tendency 

for BIONIC to progressively embed related genes closer together during the training process, while 

ensuring unrelated genes remain far apart (Figure 8). I also assessed the denoising capabilities of 

BIONIC (Appendix 1). Here I progressively added false positive edges to a yeast PPI network 

(Krogan et al., 2006) and determined how well these noisy networks can predict protein complex 

co-annotation relationships compared to the BIONIC features learned by encoding these same 

networks. I found that the low-dimensional feature learning approach is more robust to input 

network noise than the noisy networks themselves. 
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Figure 7: Comparison of individual network features produced by 

BIONIC. A comparison of individual networks (denoted “Net”), their 

corresponding features encoded using the unsupervised BIONIC (denoted 

“BIONIC”), as well as the BIONIC integration of these networks (denoted 

“GI+COEX+PPI BIONIC”). BP = Biological Processes, GI = Genetic Interaction, 

COEX = Co-expression, PPI = Protein-protein Interaction. Data are presented as 

mean values. Error bars indicate the 95% confidence interval for n=10 independent 

samples. 
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Figure 8: Dynamics of BIONIC feature space through training. 

Comparison of pairwise gene similarities (cosine similarity in the case of BIONIC, 

direct binary adjacency in the case of the network), as defined by IntAct Complexes 

for known co-complex relationships (positive pairs) and no co-complex 

relationships (negative pairs), between a yeast PPI network (Krogan et al., 2006) 

and the unsupervised BIONIC features produced from this network. The BIONIC 

similarities are shown throughout the training process (epochs), whereas the input 

network is constant so its pairwise similarities do not change. “Network” denotes 

the input PPI network, “BIONIC” denotes the features learned from this network 

using BIONIC. 

 

To better understand how BIONIC is able to improve functional gene module detection 

compared to the input networks, I examined the LSM2-7 complex, which was identified in the 

module detection evaluation (Figure 6a) as an example to show how BIONIC effectively 

combines gene-gene relationships across different networks and recapitulates known biology. The 

LSM2-7 complex localizes to the yeast nucleoli and is involved in the biogenesis or function of 

the small nucleolar RNA SNR531. LSM2-7 is made up of the protein products of six genes - 
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LSM2, LSM3, LSM4, LSM5, LSM6 and LSM7. I found that the cluster which best matched the 

LSM2-7 complex in each input network only captures a subset of the full complex (Forster et al., 

2022 Supplementary Data File 4). The BIONIC module, however, contains five out of six 

members of the LSM2-7 complex, along with two additional members: LSM1 and PAT1, which 

are functionally associated with the LSM2-7 complex (Chowdhury et al., 2007). The missing 

member, LSM5, is in the local neighborhood of the cluster in the BIONIC feature space. I 

examined the best-matching clusters and their local neighborhood, consisting of genes that show 

a direct interaction with predicted members of the LSM2-7 complex, in the input networks, and in 

a profile similarity network obtained from the integrated BIONIC features of these networks 

(Figure 6d). I found that both the  
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Figure 9: Coverage of BIONIC and input network captured modules. 

Coverage of functional gene modules by individual networks and the unsupervised 

BIONIC integration of these networks (denoted BIONIC), as determined by a 

parameter optimized module detection analysis where the clustering parameters 

were optimized for each module individually. The number of captured modules is 

reported for a range of overlap scores (Jaccard threshold). Higher threshold 

indicates greater correspondence between the clusters obtained from the dataset and 

their respective modules given by the standard. PPI = protein-protein interaction. 

These are the same networks and BIONIC features as Figure 6. 
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Figure 10: Captured modules comparison for BIONIC and input 

networks for optimal clustering parameters. Known protein complexes (as 

defined by the IntAct standard) captured by individual networks and the 

unsupervised BIONIC integration of these networks (denoted BIONIC). 

Hierarchical clustering was performed on the datasets and resulting clusters were 

compared to known IntAct complexes and scored for set overlap using the Jaccard 

score (ranging from 0 to 1). The clustering algorithm parameters were optimized 

for each module individually, unlike the analysis in Figure 6 where the clustering 

parameters were optimized for the standard as a whole. Each point is a protein 

complex, as in Figure 6c. The dashed line indicates instances where the given data 

sets achieve the same score for a given module. Histograms indicate the distribution 
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of overlap (Jaccard) scores for the given dataset, and the labelled dashed line 

indicates the mean of this distribution. The individual modules shown here as well 

as for the KEGG Pathways and IntAct Complexes module standards can be found 

in Forster et al., 2022 Supplementary Data File 4. The LSM2-7 complex is 

indicated by the arrows. PPI = protein-protein interaction. This analysis uses the 

same networks and BIONIC features as Figure 6. 

PPI and genetic interaction networks captured two members of the LSM2-7 complex, with two 

additional members in the local neighborhood. The co-expression network only identified one 

complex member, and the local neighborhood of the best matching module did not contain any 

additional known complex members. Finally, BIONIC utilized the interaction information across 

input networks to better identify the LSM2-7 module, with the addition of two functionally related 

proteins. This analysis demonstrates the utility of BIONIC for identifying meaningful biological 

modules by effectively combining information across input networks. Indeed, when I optimized 

the module detection procedure to specifically resolve the LSM2-7 complex, I found that BIONIC 

was able to capture the complex with a higher overlap score (0.83) than any of the input networks 

(0.33, 0.17 and 0.50 for the PPI, co-expression and genetic interactions networks, respectively) 

(Forster et al., 2022 Supplementary Data File 5). 

I also performed an analysis to examine how the BIONIC features encode information from 

the input networks. I hierarchically clustered the integrated features over the feature dimensions 

(rather than over genes, as in Figure 6) and extracted seven clusters of feature dimensions. I then 

evaluated how accurately these clusters predict edges (gene-gene relationships) in the three input 

networks (Figure 11). Since the number of feature dimensions correlates with performance, I also 

created a baseline for each cluster by randomly sampling the same number of feature dimensions 

from the full set of BIONIC features. I hypothesized that large differences in performance between 

the feature dimension clusters and the corresponding baselines implies BIONIC is using certain 

groups of feature dimensions to encode certain networks, rather than using all dimensions to 

encode all networks. In the case of the co-expression network, I saw that some clusters show 

different performance than the baselines, however, this effect is relatively small, and not present 

for the PPI or genetic interaction network. Additionally, the full set of BIONIC feature dimensions 

consistently outperforms the clustered feature dimensions on all networks, suggesting that all 

feature dimensions are used to encode the input network information (albeit at slightly different 

levels), rather than in a small set of dimensions exclusively. 
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Figure 11: Interpretability of BIONIC feature space. Co-annotation 

evaluations of the unsupervised BIONIC features subset to different clusters of 

feature dimensions (denoted “Cluster”). The number of feature dimensions for each 

cluster is given in parenthesis. The performance of the original BIONIC features 
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(denoted BIONIC (512)) is also displayed. Data are presented as mean values. Bars 

indicate 95% confidence interval for n=10 independent samples. 

 

2.4 Evaluation of BIONIC and Established Unsupervised Integration Methods 

I compared network integration results from the unsupervised BIONIC (Figure 6) to those derived 

from several different established integration approaches: a naive union of networks (Union), a 

non-negative matrix tri-factorization approach (iCell, Malod-Dognin et al., 2019), a deep learning 

multi-modal autoencoder (deepNF, Gligorijević et al., 2018), a low-dimensional diffusion state 

approximation approach (Mashup, Cho et al., 2016), and a multi-network extension of the 

node2vec (Grover & Leskovec, 2016) model (multi-node2vec, Wilson et al., 2020) (Figure 12). 

These unsupervised integration methods cover a wide range of methodologies and the major 

possible output types (networks for Union and iCell, features for deepNF, Mashup and multi-

node2vec). BIONIC performs as well as, or better than the tested integration methods across all 

evaluation types and benchmarks (Figure 12a). I also evaluated BIONIC and the other integration 

approaches on a per-biological process basis (Figure 12b). Here I found BIONIC generally 

outperforms the established integration approaches on each biological process, with the exception 

of several biological processes when compared to deepNF. Averaging over the performance for 

each biological process, I found BIONIC performs on par with deepNF (average precision of 0.53 

for BIONIC compared to 0.52 for deepNF). DeepNF performs competitively on the per-biological 

process evaluations (Figure 12b), but it underperforms on the global performance evaluations 

(Figure 12a). The per-biological process evaluations assess how well a method predicts large-

scale biological process co-annotation, whereas the global performance evaluations measure how 

well a method predicts smaller-scale functional modules (i.e. protein complexes). This discrepancy 

in performance indicates deepNF is able to capture broad-scale functional organization, but it fails 

to resolve smaller functional modules. BIONIC performs well on both of these evaluations, 

however, indicating it can learn gene features which resolve both broad and detailed functional 

organization. Finally, BIONIC outperforms the compared integration methods at capturing the 

LSM2-7 complex (overlap scores of 0.43, 0.22, 0.44, 0.60, 0.68 and 0.83 for the Union, iCell, 

deepNF, Mashup, multi-node2vec and BIONIC methods, respectively) (Forster et al., 2022 

Supplementary Data File 5). 
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To ensure the integration results are consistent under a different set of input networks, and 

the wealth of yeast-two-hybrid (Y2H) networks available for yeast proteins, I selected the five 

largest of these networks (Ito et al., 2001; Uetz et al., 2000; Y. Wang et al., 2012; Yu et al., 2008; 

Zhong et al., 2016) to integrate, and then compared the resulting performance of  

 

Figure 12: Comparison of BIONIC to existing integration approaches. 

a) Co-annotation prediction, module detection, and gene function prediction 
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evaluations for three yeast networks integrated by the tested unsupervised network 

integration methods. The input networks and evaluation standards are the same as 

in Figure 6. Data are presented as mean values. Error bars indicate the 95% 

confidence interval for n=10 independent samples. Numbers above the module 

detection bars indicate the number of captured modules, as determined by a 0.5 

overlap (Jaccard) score cutoff. b) Evaluation of integrated features using high-level 

functional categories, split by category. Each category contains between 21 and 149 

genes overlapping the integration results (denoted by counts above the heatmap 

columns, see Forster et al., 2022 Supplementary Data File 2) and the average 

performance of each method across categories is reported (scores to the right of 

each row). PPI = Protein-protein interaction, GO = Gene Ontology, BP = Biological 

process. 

 

 

Figure 13: Integration method performance for yeast-two-hybrid 

network inputs. Performance comparison of 5 yeast-two-hybrid network 

integrations across functional standards, evaluation types and unsupervised 

integration methods. Data are presented as mean values. Bars indicate 95% 

confidence interval for n=10 independent samples. BP = Biological Process, multi-

n2v = multi-node2vec 

 

the integration approaches (Figure 13). These networks consisted of 453, 1248, 707, 927, and 776 

proteins and 3258, 1778, 940, 866, and 784 interactions, respectively. I found that BIONIC 

substantially outperforms the established integration methods across functional standards and 

evaluation types. 
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2.5 Evaluation of BIONIC in a Semi-supervised Setting 

I also tested how BIONIC performs in a semi-supervised setting (Figure 14). Here, I compared 

BIONIC trained with no labelled data (unsupervised), BIONIC trained with a held-out set of 

functional labels given by IntAct, KEGG, and GO (semi-supervised), and a supervised integration 

algorithm using the same labels (GeneMANIA, Mostafavi et al., 2008). For each of these methods, 

I integrated the yeast protein-protein interaction, co-expression, and genetic interaction networks  

 

Figure 14: Supervised performance of BIONIC compared with an 

existing supervised integration approach. Performance comparison between 

a supervised network integration algorithm trained with labelled data 

(GeneMANIA), BIONIC trained without any labelled data (Unsupervised), and 

BIONIC trained with labelled data (Semi-supervised). Bars indicate the average 

performance over 10 trials of random train-test splits for the given benchmark (see 

Section 2.8). Data are presented as mean values. Error bars indicate the 95% 

confidence interval. n=10 independent samples for the co-annotation prediction and 

gene function prediction evaluations, and n=100 for the module detection 

evaluation. GO = Gene Ontology, BP = Biological process 

 

from the Figure 6 analysis. 20% of genes in each benchmark (IntAct, KEGG, GO) were randomly 

held out and used as a test set, while the remaining 80% of genes were used for training. The 

unsupervised BIONIC did not use any gene label information for training, but it was evaluated 

using the same test set as the supervised methods to ensure a consistent performance comparison. 

To control for variability in the train-test set partitioning, this procedure was repeated 10 times and 
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the average performance across test sets was reported (see Section 2.8). I found that adding 

labelled data can significantly improve the features BIONIC learns and these features also 

outperform the integration results produced by the supervised GeneMANIA method. I also found 

that even without labelled data, BIONIC performs as well as, or exceeds GeneMANIA 

performance. Notably, the performance of the unsupervised and semi-supervised BIONIC is 

similar for gene function prediction. This indicates unsupervised BIONIC features are already 

sufficiently discriminative for classifiers to perform well. Thus, BIONIC can be used effectively  
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Figure 15: Effects of label poisoning on BIONIC semi-supervised and 

unsupervised performance. Semi-supervised BIONIC comparisons. a) A label 
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poisoning experiment, where progressively more permutation noise is added to the 

label sets the semi-supervised BIONIC is trained on. “Noise” indicates the 

proportion of permutation noise applied (multiply by 100 for percentages). Data are 

presented as mean values. Bars indicate 95% confidence interval for n=10 

independent samples. b) UMAP (McInnes et al., 2020) plots comparing the 

embedding space of the TFIID complex and the 100 nearest neighbors of this 

complex for unsupervised and semi-supervised BIONIC over a range of label noise 

values. SS = average silhouette score of TFIID members 

 

in both an unsupervised and semi-supervised setting, which demonstrates its versatility as a 

biological network integration algorithm. 

I analyzed the utility of labelled data in a scenario where the labels are subjected to random 

permutation noise (Figure 15a). This was done to determine how robust the semi-supervised 

approach is to noise, compared to the unsupervised approach which uses no labels. I found that, 

with respect to co-annotation prediction and module detection, the semi-supervised BIONIC 

outperforms the unsupervised BIONIC for low to moderate amounts of label noise. Interestingly, 

on the gene function prediction evaluation I found that the unsupervised BIONIC outperforms the 

semi-supervised BIONIC even for low label noise, despite training on the same set of permuted 

labels. This is likely because the unsupervised approach does not incorporate incorrect label 

information into the learned features unlike the semi-supervised approach, so information 

reflecting true biology is captured more accurately in the unsupervised features leading to better 

label predictions. I also examined an instance of label noise resulting in the dissolution of a protein 

complex under the semi-supervised training scenario (Figure 15b). Here, the general transcription 

factor complex (TFIID) is captured more effectively in the semi-supervised case when label noise 

is low, but it loses members as the label noise increases. For high label noise scenarios, the 

unsupervised BIONIC is able to more effectively capture the TFIID complex. 

 

2.6 Scalability of BIONIC and Established Integration Approaches 

An effective integration algorithm should be able to scale to many network inputs, and networks 

with many nodes. To test network input scalability, I randomly sampled progressively larger sets  
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Figure 16: Network quantity and network size performance comparison 

across integration methods. a) Performance comparison of unsupervised 

integration methods across different numbers of randomly sampled yeast co-

expression input networks on KEGG Pathways gene co-annotations. b) 

Performance comparison of unsupervised integration methods across four human 

protein-protein interaction networks for a range of sub-sampled nodes (genes) on 

CORUM Complexes protein co-annotations. In these experiments the Mashup 

method failed to scale to a) 7 or more networks and b) 4000 or more nodes, as 

indicated by the absence of bars in those cases (see Section 2.8). Data are presented 

as mean values. Error bars indicate the 95% confidence interval for n=10 

independent samples. multi-n2v = multi-node2vec 

 



49 

 

of yeast gene co-expression networks (Figure 16a, Forster et al., 2022 Supplementary Data File 

2) and assessed the performance of the resulting integrations of these sets. I similarly tested node 

scalability by randomly subsampling progressively larger gene sets of four human protein-protein 

interaction networks (Hein et al., 2015; Huttlin et al., 2015, 2017; Rolland et al., 2014) (Figure 

16b, Forster et al., 2022 Supplementary Data File  2). BIONIC can integrate numerous networks 

(Figure 16a), and networks with many nodes (Figure 16b), outperforming all other methods 

assessed for progressively more and larger networks. To achieve this scalability, BIONIC takes 

advantage of the versatile nature of deep learning technology by learning features for small batches 

of genes and networks at a time, reducing the computational resources required for any specific 

training step. To learn gene features over large networks, BIONIC learns features for random 

subsets of genes at each training step, and randomly subsamples the local neighborhoods of these 

genes to perform the graph convolution (see Section 2.8), maintaining a small overall 

computational footprint. This subsampling allows BIONIC to integrate networks with many genes, 

whereas methods like Mashup can only do so with an approximate algorithm which reduces 

integration performance (Appendix 2). To integrate many networks, BIONIC uses a network-wise 

sampling approach, where a random subset of networks is integrated at a time during each training 

step. This reduces the number of parameter updates required at once, since only GNNs 

corresponding to the subsampled networks are updated in a given training step.  

I tested the extent of BIONIC scalability in terms of graphics processing unit (GPU) 

memory usage and training epoch time (Figure 17). This analysis was done with respect to 

network quantity and network size jointly to determine the relationship between these factors as it 

pertains to scalability. Here, random networks were generated with varying numbers of nodes such 

that the average node degree was 30. These were integrated using BIONIC and memory 

consumption and runtime were recorded. I found that for networks with 8000 nodes or fewer, 

BIONIC can scale to at least 90 of these networks without exhausting memory or dramatically 

increasing runtime. For human sized networks (in the worst case consisting of 20,000 nodes) 

BIONIC can scale to 5-10 networks without considerably increasing runtime, and 20 networks 

with longer runtimes. Sparser networks than those tested here may lead to further increases in 

scalability. 
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2.7 Summary 

In this section I introduced a new deep learning biological network integration algorithm called 

Biological Network Integration using Convolutions (BIONIC). BIONIC using a graph neural 

network architecture to independently encode input networks before fusing them in a common 

feature space. BIONIC trains in an unsupervised manner, by reconstructing the original input 

networks from the integrated features, and can optionally train to predict known gene and protein 

functional annotations. BIONIC can integrate a diverse set of input networks, and the resulting 

integrated features contain more functional information than these individual networks alone. 

BIONIC captures biological modules (such as protein complexes) with greater accuracy and 

coverage than the input networks. By incorporating gene and protein functional annotations in a 

semi-supervised manner, BIONIC can yield further performance improvements. When compared 

to competing network integration approaches, BIONIC is more performant across all functional 

evaluations. BIONIC is scalable, both in terms of the number of input networks, and the size of 

Figure 17: Computational scalability of BIONIC. Graphics processing unit 

(GPU) memory usage in gigabytes (left) and average wall clock epoch time in 

minutes (right) for a range of network sizes and number of networks. GB = 

gigabyte, min = minutes. Gray squares indicate a scenario where BIONIC exceeded 

the maximum memory of the GPU and failed to complete. The experiments were 

run on a Titan Xp GPU with a 2.4 GHz Intel Xeon CPU and 32 GB of system 

memory. 



51 

 

these networks. These results indicate BIONIC is a powerful new network integration algorithm 

that improves on the existing approaches and potentially could be used to predict novel biological 

phenomena. I will discuss this last point in detail in Chapter 3. 

 

2.8 Methods 

2.8.1 BIONIC Method Overview 

An undirected input network can be represented by its adjacency matrix 𝐴 where 𝐴𝑖𝑗 = 𝐴𝑗𝑖 > 0 if 

node 𝑖 and node 𝑗 share an edge and 𝐴𝑖𝑗 = 𝐴𝑗𝑖 = 0 otherwise. BIONIC first preprocesses each 

input network to contain the union of nodes across all input networks and ensures the 

corresponding row and column orderings are the same. In instances where networks are extended 

to include additional nodes not originally present in them (so all input networks share the same 

union set of nodes), the rows and columns corresponding to these nodes are set to 0. 

 BIONIC encodes each input network using instances of a GNN variant known as the Graph 

Attention Network (GAT, Veličković et al., 2017). I selected this architecture because of its 

considerable performance improvements over existing architectures on a range of node 

classification tasks (Veličković et al., 2017). The GAT has the ability to learn alternative network 

edge weights, allowing it to downweight or upweight edges based on their importance for the 

network reconstruction task. In the original formulation, the GAT assumes binary network inputs. 

I modify the GAT to consider a priori network edge weights. The GAT formulation is then given 

by: 

 

GAT(𝐴, 𝐻) = σ(α𝐻𝑊⊺)  (1) 

where 

  

αij  =  
Aij ⋅exp(σ(𝑎⊺[𝑊ℎ𝑖||𝑊ℎ𝑗]))

∑ Aikk=1 ⋅exp(σ(𝑎⊺[𝑊ℎ𝑖||𝑊ℎ𝑘]))
 (2) 

Here, 𝑊 is a trainable weight matrix which projects aggregated node features into another feature 

space, a is a vector of trainable attention coefficients which determine the resulting edge weighting, 

ℎ𝑖 is the feature vector for node 𝑖 (that is, the 𝑖th row of feature matrix 𝐻), || denotes the 

concatenation operation and 𝜎 corresponds to a nonlinear function (in this work a leaky rectified 

linear unit (LeakyReLU)) which produces more sophisticated features than linear maps. (1) 
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corresponds to a node neighborhood aggregation and projection step which incorporates an edge 

weighting scheme (2). In practice, several edge weighting schemes (known as attention heads) are 

learned and combined simultaneously, resulting in: 

  

GAT(A, H) = ||k=1
K σ(α(k)HW(k)⊺) (3) 

where 𝐾 is the number of attention heads. This is done to stabilize the attention learning process, 

as per the author’s original results (Veličković et al., 2017). In my experiments I use 10 attention 

heads per GAT encoder, each with a hidden dimension of 68, as per the hyperparameter 

optimization results (see Section 2.8.4, Forster et al., 2022 Supplementary Data File 1). 

Initial node features 𝐻𝑖𝑛𝑖𝑡 are one-hot encoded so that each node is uniquely identified (i.e. 

𝐻𝑖𝑛𝑖𝑡 = 𝐼 where 𝐼 is the identity matrix). These features are first mapped to a lower dimensional 

space through a learned linear transformation to reduce memory footprint and improve training 

time. BIONIC encodes each network by passing it through several sequential GAT layers to learn 

node features based on higher-order neighborhoods. Outputs from each GAT pass are then 

summed to produce the final network-specific features (Figure 5). Based on the hyperparameter 

optimization results, I used three GAT layers in my experiments. I found BIONIC to be robust to 

the number of layers (Appendix 3). After all networks are separately encoded, the network-

specific node features are combined through a weighted, stochastically masked summation given 

by: 

  

𝐻𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = ∑ 𝑠𝑗
𝑁
𝑗=1 𝑚(𝑗)⊙𝐻(𝑗)  (4) 

Here, 𝑁 is the number of input networks, 𝑠𝑗 is the learned scaling coefficient for feature 

representations of network 𝑗, ⊙ is the element-wise product, 𝐻(𝑗) is the matrix of learned feature 

vectors for nodes in network 𝑗, and 𝑚(𝑗) is the node-wise stochastic mask for network 𝑗, calculated 

as: 

𝑚𝑖
(𝑗)
=

{
 

 1,   if node 𝑖 is unique to network 𝑗 or 𝑚𝑖
(𝑘≠𝑗)

= 0

0,   if node 𝑖 is not in unextended network 𝑗
𝑥

∑ 𝑚𝑖
(𝑘)𝑁

𝑘=1

, 𝑥~Bernoulli(0.5),   otherwise

 (5) 
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The mask 𝑚 is designed to randomly drop node feature vectors produced from networks with the 

constraint that a node cannot be masked from every network, and node features from nodes not 

present in the original, unextended networks are dropped. This masking procedure forces the 

network encoders to compensate for missing node features in other networks, ensuring the 

encoders learn cross-network dependencies and map their respective node features to the same 

feature space. The network scaling vector 𝑠 in (4) enables BIONIC to scale features in a network-

wise fashion, affording more flexibility in learning the optimal network-specific node features for 

the combination step. 𝑠 is learned with the constraint that its elements are positive and sum to 1, 

ensuring BIONIC does not over- or negatively-scale the features. I found that learning the 

integrated features in this joint manner (learning and combining network specific features end-to-

end) performs better than simply concatenating the network specific features (i.e. late fusion), 

indicating that BIONIC is able to learn complementary information across input networks 

(Appendix 4). 

To obtain the final, integrated node features 𝐹, BIONIC maps 𝐻𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 to a low 

dimensional space through a learned linear transformation. In 𝐹, each column corresponds to a 

specific learned feature and each row corresponds to a node. I found the quality of the integrated 

features was generally robust to the number of feature dimensions, with performance saturating at 

512 features (Appendix 5).  

To obtain a high quality 𝐹, BIONIC uses an unsupervised training objective. When gene 

labels are provided, an additional semi-supervised training objective is also used. For the 

unsupervised training objective, BIONIC decodes 𝐹 into reconstructions of the original input 

networks and minimizes the discrepancy between the reconstructions and the inputs. The decoded 

network reconstruction is given by: 

  

�̂� = 𝐹 ⋅ 𝐹⊺ (6) 

The unsupervised loss is then given by: 

  

𝐿𝑢𝑛𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 =
1

𝑛2
∑ ||𝑏(𝑗)𝑁
𝑗=1 ⊙(�̂� − 𝐴(𝑗)) ⊙ 𝑏(𝑗)⊺||𝐹

2  (7) 

where 𝑛 is the total number of nodes present in the union of networks, 𝑏(𝑗) is a binary mask vector 

for network 𝑗 indicating which nodes are present (value of 1) or extended (value of 0) in the 
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network, 𝐴(𝑗) is the adjacency matrix for network 𝑗 and || ⋅ ||𝐹 is the Frobenius norm. This loss 

represents computing the mean squared error between the reconstructed network �̂� and input 𝐴(𝑗) 

while the mask vectors remove the penalty for reconstructing nodes that are not in the original 

network 𝑗 (i.e. extended), then summing the error for all networks.  

For the semi-supervised training objective, BIONIC first predicts gene labels by mapping 

𝐹 to a matrix of class predictions as follows: 

  

�̂� = 𝑆(𝐹𝑊𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟) (8) 

where 𝑆 is the sigmoid function and 𝑊𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 is a trainable weight matrix. The resulting class 

prediction matrix �̂� has genes as rows and class labels as columns. The ground-truth label matrix 

𝑌 indicates the correct labels for a set of genes in the input networks. 𝑌 is extended to include zero 

vectors for any genes present in the input networks but not present in the labels, ensuring it has the 

same shape as �̂�. The semi-supervised loss is then given by: 

  

𝐿𝑠𝑒𝑚𝑖𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 =
1

𝑛𝐶
∑ ∑ 𝑏𝑙𝑎𝑏𝑒𝑙𝑠𝑖

𝐶
𝑗=1

𝑛
𝑖=1 ⊙−(𝑌𝑖𝑗log(�̂�𝑖𝑗) + (1 − 𝑌𝑖𝑗)log(1 − �̂�𝑖𝑗)) (9) 

where 𝑛 is the total number of nodes present in the union of networks, 𝐶 is the number of classes, 

𝑏𝑙𝑎𝑏𝑒𝑙𝑠𝑖 is a binary mask indicating whether node 𝑖 was present in the original label set (value of 

1) or was extended (value of 0). 𝑙𝑜𝑔 indicates the natural logarithm. This loss represents the 

masked binary cross entropy between the predicted labels �̂� and the true labels 𝑌 ignoring the loss 

of any nodes not originally present in 𝑌. 

 The final loss BIONIC trains to minimize is a weighted sum of the unsupervised and semi-

supervised losses: 

  

𝐿 = λ𝐿𝑢𝑛𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 + (1 − λ)𝐿𝑠𝑒𝑚𝑖𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 (10) 

where 𝜆 is a value in the range [0, 1] indicating the relative weights of the two losses. When no 

labelled data is available, 𝜆 is set to 1. 
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2.8.2 Implementation Details 

BIONIC was implemented using PyTorch (Paszke et al., 2019), a popular Python-based deep 

learning framework, and relies on functions and classes from the PyTorch Geometric library (Fey 

& Lenssen, 2019). It uses the Adam (Kingma & Ba, 2015) optimizer to train and update its weights. 

To be scalable in the number of networks, BIONIC utilizes an optional network batching approach 

where subsets of networks are sampled and integrated at each training step. The sampling 

procedure is designed so that each network is integrated exactly once per training step. Network 

batching yields a constant memory footprint at the expense of increased runtime with no empirical 

degradation of feature quality. Additionally, BIONIC is scalable in the number of network nodes. 

It uses a node sampling approach (equivalent to mini-batch training, where nodes are samples) to 

learn features for subsets of nodes in a network, and a neighborhood sampling procedure to 

subsample node neighborhoods. Node sampling ensures only part of a network needs to be retained 

in memory at a time while neighborhood sampling reduces the effective higher order neighborhood 

size in sequential GAT passes, again reducing the number of nodes required to be retained in 

memory at any given time - further reducing BIONIC’s memory footprint.  

For very large networks where the initial node feature matrix (i.e. the identity matrix) 

cannot fit into memory due to limitations with PyTorch matrix operations, BIONIC incorporates 

a singular value decomposition (SVD) based approximation. First, the union of networks is 

computed by creating a network that contains the nodes and edges of all input networks. If an edge 

occurs in multiple networks, the maximum weight is used. A low-dimensional SVD approximation 

of the normalized Laplacian matrix of the union network is computed and used as the initial node 

features for each network. Finally, BIONIC uses sparse representations of network adjacency 

matrices (except for the input node feature matrix, see above), further reducing memory footprint. 

All BIONIC integration experiments in this paper were run on an NVIDIA Titan Xp GPU with 

12GB of VRAM, no more than 16GB of system RAM and a single 2.4 GHz Intel Xeon CPU. 

 

2.8.3 Network Preprocessing 

The yeast protein-protein interaction network (Krogan et al., 2006) and human protein-protein 

interaction networks (Hein et al., 2015; Huttlin et al., 2015, 2017; Rolland et al., 2014) were 

obtained from BioGRID (Chatr-Aryamontri et al., 2017), genetic interaction profiles (Costanzo et 

al., 2016) were obtained directly from the published supplementary data of Costanzo et al. 2016, 
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and gene expression profiles (Hu et al., 2007) were obtained from the SPELL database (Hibbs et 

al., 2007). These networks were chosen since they had the most functional information compared 

to other networks in their class (i.e. protein-protein interaction networks, co-expression networks, 

and genetic interaction networks). To create a network from the genetic interaction profiles, genes 

with multiple alleles were collapsed into a single profile by taking the maximum profile values 

across allele profiles. Pairwise Pearson correlation between the profiles was then calculated, and 

gene pairs with a correlation magnitude greater than or equal to 0.2 were retained as edges, as 

established (Costanzo et al., 2016). For the gene expression profiles, networks were constructed 

by retaining gene pairs with a profile Pearson correlation magnitude in the 99.5th percentile. Co-

expression and genetic interaction networks had their edge weights normalized to the range [0, 1]. 

 

2.8.4 Obtaining Integrated Results 

The naive union of networks benchmark was created by taking the union of node sets and edge 

sets across input networks. For edges common to more than one network, the maximum weight 

was used. For all other methods, automated hyperparameter optimization was performed to ensure 

hyperparameters were chosen consistently and fairly. Here, a Schizosaccharomyces pombe genetic 

interaction network (Ryan et al., 2012), co-expression network (Martín et al., 2017), and protein-

protein interaction network (Vo et al., 2016) were used as inputs to the integration methods. To 

perform one iteration of the hyperparameter optimization, a random combination of 

hyperparameters was uniformly sampled over a range of reasonable values for each method and 

used to integrate the three pombe networks. The integration results were then evaluated using a 

pombe protein complex standard (obtained from 

https://www.pombase.org/data/annotations/Gene_ontology/GO_complexes/Complex_annotation

.tsv). The evaluations consisted of a co-annotation prediction, module detection, and gene function 

prediction assessment (see Section 2.8.6). This procedure was repeated for 50 combinations of 

hyperparameters, for each method. For methods that produced features (deepNF, Mashup, multi-

node2vec and BIONIC), a feature dimension of 512 was used to ensure results were comparable 

across methods. For methods which required a batch size parameter (deepNF and BIONIC), the 

batch size was set to 2048 to ensure reasonable computation times. Hyperparameter combinations 

were then ranked for each method across the three evaluation types and the hyperparameter 

combination corresponding to the highest average rank across evaluation types was chosen. The 

https://www.pombase.org/data/annotations/Gene_ontology/GO_complexes/Complex_annotation.tsv
https://www.pombase.org/data/annotations/Gene_ontology/GO_complexes/Complex_annotation.tsv
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hyperparameter optimization results are found in Forster et al., 2022 Supplementary Data File 

1. Note that the Union method was not included in the hyperparameter optimization because it has 

no hyperparameters. Additionally, the Mashup method used 44 hyperparameter combinations 

rather than 50, since 6 hyperparameter combinations exhausted the available memory resources 

and did not complete. 

All integration results reported were obtained by integrating networks using the set of 

hyperparameters identified in the hyperparameter optimization procedure. BIONIC features used 

in the Figure 6 analyses are found in Forster et al., 2022 Supplementary Data File 8. Co-

annotation prediction, module detection, and gene function prediction standards used in Figure 6 

are found in Forster et al., 2022 Supplementary Data File  9. 

 

2.8.5 Benchmark Construction 

Functional benchmarks were derived from GO Biological Process ontology annotations, KEGG 

pathways and IntAct complexes for yeast, and CORUM complexes for human (Forster et al., 

2022 Supplementary Data File 3). Analyses were performed using positive and negative gene 

pairs, clusters or functional labels obtained from the standards as follows: the GO Biological 

Process benchmark was produced by filtering IEA annotations, as they are known to be lower 

quality, removing genes with dubious open reading frames, and filtering terms with more than 30 

annotations (to prevent large terms, such as those related to ribosome biogenesis, from dominating 

the analysis (Myers et al., 2006)). I found the performance evaluations to be robust to this threshold 

(Appendix 6). For the co-annotation benchmark, all gene pairs sharing at least one annotation 

were retained as positive pairs, while all gene pairs not sharing an annotation were considered to 

be negative pairs. KEGG, IntAct and CORUM benchmarks were produced analogously, without 

size filtering.  

For the module detection benchmark, clusters were defined as the set of genes annotated 

to a particular term, for each standard. Modules of size 1 (singletons) were removed from the 

resulting module sets as they are uninformative. For the per-module analyses in Figure 6c, 9, 10 

and Forster et al., 2022 Supplementary Data Files 4-5. I also removed any modules of size 2 

since these modules had highly variable Jaccard scores. 
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The supervised standards were obtained by treating each gene annotation as a class label, 

leading to genes with multiple functional classes (i.e. a multilabel classification problem). The 

standards were filtered to only include classes with 20 or more members for GO Biological Process 

and KEGG, or 10 members for IntAct. This was done to remove classes with very few data points, 

ensuring more robust evaluations. 

The granular function standard in Figure 6 was obtained from the Costanzo et al. 2016 

supplementary materials. Any functional category with fewer than 20 gene members was removed 

from the analysis to ensure only categories with robust evaluations were reported. 

 

2.8.6 Evaluation Methods 

I used a precision-recall (PR) based co-annotation framework to evaluate individual networks and 

integrated results. I used PR instead of receiving operator curve (ROC) because of the substantial 

imbalance of positives and negatives in the pairwise benchmarks for which ROC would 

overestimate performance. Here, I computed the pairwise cosine similarities between gene profiles 

in each network or integration result. Due to the high-dimensionality of the datasets, cosine 

similarity is a more appropriate measure than Euclidean distance since the contrast between data 

points is reduced in high-dimensional spaces under Euclidean distance (Aggarwal et al., 2001). PR 

operator points were computed by varying a similarity threshold, above which gene or protein 

pairs are considered positives and below which pairs are considered negative. Each set of positive 

and negative pairs was compared to the given benchmark to compute precision and recall values. 

To summarize the PR curve into a single metric, I computed average precision (AP) given by: 

  

𝐴𝑃 = ∑ (𝑅𝑖 − 𝑅𝑖−1)𝑃𝑖
𝑛
𝑖=1  (11) 

where 𝑛 is the number of operator points (i.e. similarity thresholds) and 𝑃𝑖 and 𝑅𝑖 are the precision 

and recall values at operator point 𝑖 respectively. This gives the average of precision values 

weighted by their corresponding improvements in recall. I chose this measure over the closely 

related area under the PR curve (AUPRC) measure since AUPRC interpolates between operator 

points and tends to overestimate actual performance (Davis & Goadrich, 2006). 

The module detection evaluation was performed by clustering the integrated results from 

each method and comparing the coherency of resulting clusters with the module-based 
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benchmarks. Since the benchmarks contain overlapping modules (i.e. one gene can be present in 

more than one module) which prevents the use of many common clustering evaluation metrics 

(since these metrics assume unique assignment of gene to cluster), the module sets are subsampled 

during the evaluation to ensure there are no overlapping modules (the original module sets are 

used as-is for the per-module-optimized experiments in Figure 10, Forster et al., 2022 

Supplementary Data File 5). Next, the integrated results are hierarchically clustered with a range 

of distance metrics (Euclidean and cosine), linkage methods (single, average and complete) and 

thresholds to optimize benchmark comparisons over these clustering parameters (this is done for 

all methods that are compared). The resulting benchmark-optimized cluster sets are compared to 

the benchmark module sets by computing adjusted mutual information (AMI) - an information 

theoretic comparison measure which is adjusted to normalize against the expected score from 

random clustering. The highest AMI score for each integration approach is reported - ensuring the 

optimal cluster set for each dataset across clustering parameters is used for the comparison and 

that the results are not dependent on clustering parameters. Finally, this procedure is repeated ten 

times to control for differences in scores due to the cluster sampling procedure. The sets of 

clustering parameter-optimized BIONIC clusters obtained from the Figure 6 integration for each 

standard are in Forster et al., 2022 Supplementary Data File  4. 

To perform the supervised gene function prediction evaluation, ten trials of five-fold cross 

validation were performed using support vector machine (SVM) classifiers each using a radial 

basis function kernel (Cortes & Vapnik, 1995). The classifiers were trained on a set of gene 

features obtained from the given integration method with corresponding labels given by the IntAct, 

KEGG and GO Biological Process supervised benchmarks in a one-versus-all fashion (since each 

individual gene has multiple labels). Each classifier’s regularization and gamma parameters were 

tuned in the validation step. For each trial, the classifier results were evaluated on a randomized 

held out set consisting of 10% of the gene features not seen during training or validation and the 

resulting classification accuracy was reported. I repeated this entire procedure for a random forest 

(Breiman, 2001) and a gradient boosted trees (Friedman, 2001) classifier and found BIONIC also 

outperforms the compared integration methods, indicating the SVM classifier is not biased towards 

improving BIONIC performance (Appendix 7). 

The granular functional evaluations in Figure 6b were generated by computing the average 

precision (as mentioned in the precision-recall evaluation framework description) for the gene 



60 

 

subsets annotated to the given functional categories. To perform the module comparison analysis 

in Figure 6c, I additionally applied the module detection analysis performed in Figure 6a to the 

input networks. Here, the interaction profiles of the networks were treated as gene features and the 

clustering parameters were optimized to best match the IntAct complexes standard. I compared 

the resulting module sets from the input networks and BIONIC features to known protein 

complexes given by the IntAct standard. For each complex in the standard, I reported the best 

matching predicted module in each dataset as determined by the overlap (Jaccard) score between 

the module and the known complex (Forster et al., 2022 Supplementary Data File 4). To 

generate the Venn diagram, I defined a complex to have been captured in the dataset if it had an 

overlap score of 0.5 or greater with a predicted module. 

To perform the LSM2-7 module analysis in Figure 6d, I analyzed the predicted module in 

each dataset that had the highest overlap score with the LSM2-7 complex. I created a network from 

the BIONIC features by computing the cosine similarity between all pairs of genes and setting all 

similarities below 0.5 to zero. The resulting non-zero values were then treated as weighted edges 

to form a network. I extracted a subnetwork from each of the protein-protein interaction, co-

expression, genetic interaction, and newly created BIONIC networks, consisting of the best scoring 

predicted module and the genes showing direct interactions with those in the predicted module. I 

laid out these networks using the spring-embedded layout algorithm in Cytoscape (Shannon et al., 

2003). The edges in the protein-protein interaction network correspond to direct, physical 

interactions, and the edges in the co-expression and genetic interaction networks correspond to the 

pairwise Pearson correlation of the gene profiles, as described above. 

To perform the semi-supervised network integration experiment in Figure 14, I first 

generated randomized train and test sets. Here, 20% of genes were randomly held out in each gene 

function benchmark (IntAct, KEGG, and GO Biological Process) separately, and retained for 

downstream evaluations. These benchmarks consist of functional labels for a set of yeast genes 

(protein complex membership in IntAct, pathway membership in KEGG, and biological process 

annotation in GO Biological Process), and are the same benchmarks used in the gene function 

prediction evaluation (Figure 6a). The remaining 80% of genes were used for training 

GeneMANIA and BIONIC. To generate test sets for the co-annotation prediction benchmarks, I 

removed any co-annotations where both genes were present in the training set. To generate test 

sets for the module detection benchmarks, I removed any modules consisting entirely of genes in 



61 

 

the training set. I then integrated the three yeast networks from the Figure 6 analysis (a protein-

protein interaction (Krogan et al., 2006), gene co-expression (Hu et al., 2007), and genetic 

interaction network (Costanzo et al., 2016)) using the supervised GeneMANIA, BIONIC without 

using any labelled data (unsupervised), and a semi-supervised mode of BIONIC which uses the 

labelled data (semi-supervised). Each integration result was then evaluated using the held-out test 

data. For the co-annotation prediction and module detection evaluations, the integrated features 

from BIONIC (both unsupervised and semi-supervised), and the integrated network from 

GeneMANIA were evaluated. Both GeneMANIA and the semi-supervised BIONIC generate gene 

label predictions directly, without the need for an additional classifier like in the Figure 6a gene 

function prediction evaluation. However, the unsupervised BIONIC does not generate gene label 

predictions (since it is given no labelled information to begin with). To ensure a consistent 

comparison with GeneMANIA and the semi-supervised BIONIC, I trained a classification head 

on top of the unsupervised BIONIC. The classification head architecture is identical to the semi-

supervised BIONIC classification head, however, in the unsupervised case I only allow gradients 

from the classification loss objective to backpropagate to the classification head, not the rest of the 

model. This ensures a comparable classification model can be trained on top of the unsupervised 

BIONIC model, without the labelled data affecting the model weights like in the semi-supervised 

case. GeneMANIA does not generate multi-label predictions, and so I used GeneMANIA to 

generate label predictions for each class individually and then performed Platt scaling to convert 

these binary class predictions to multi-label predictions (Platt, 1999). The gene function prediction 

evaluations were then performed by comparing the gene label predictions from the integration 

methods, to the held-out test labels. This entire procedure, starting with the train-test set 

partitioning, to the final evaluations, was repeated a total of 10 times to control for performance 

variability due to the partitioning procedure. 

 

2.8.7 Network Scaling Experiment 

To perform the network scaling experiment, I uniformly sampled subsets of the yeast co-

expression networks (Forster et al., 2022 Supplementary Data File 2). I performed 10 

integration trials for each network quantity, and these trials were paired (i.e. each method 

integrated the same randomly sampled sets of networks). The average precision scores of the 
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resulting integrations with respect to the KEGG pathways co-annotation standard (Forster et al., 

2022 Supplementary Data File 3) were then reported. The Mashup method did not scale to the 7 

network input size or beyond on a machine with 64GB of RAM. 

 

2.8.8 Node Scaling Experiment 

The node scaling experiment was performed by uniformly subsampling the nodes of four large 

human protein-protein interaction networks (Hein et al., 2015; Huttlin et al., 2015, 2017; Rolland 

et al., 2014, Forster et al., 2022 Supplementary Data File 2) for a range of node quantities and 

integrating these subsampled networks. Ten trials of subsampling were performed for each number 

of nodes (paired, as above) and the average precision scores with respect to the CORUM 

complexes co-annotation standard (Forster et al., 2022 Supplementary Data File  3) were 

reported. The Mashup method did not scale to 4000 nodes or beyond on a machine with 64GB of 

RAM. 
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3. Computational Prediction of Chemical-Genetic Interactions 

 

• Computer code implementing the BIONIC algorithm can be found at: 

https://github.com/bowang-lab/BIONIC 

 

• Computer code implementing the Figure 18 analysis can be found at: 

https://github.com/duncster94/BIONIC-analyses 

 

• Components of this data chapter were previously published in Nature Methods (Forster et 

al., 2022) and are reprinted here with permission from Springer Nature. Duncan T. 

Forster*, Sheena C. Li*, Yoko Yashiroda, Mami Yoshimura, Zhijian Li, Luis Alberto Vega 

Isuhuaylas, Kaori Itto-Nakama, Daisuke Yamanaka, Yoshikazu Ohya, Hiroyuki Osada, Bo 

Wang#, Gary D. Bader# and Charles Boone# (2022). BIONIC: biological network 

integration using convolutions. Nature Methods, 19(10), Article 10. 

https://doi.org/10.1038/s41592-022-01616-x 

* equal contribution # corresponding authors 

 

• Computational prediction of chemical-genetic interactions and resulting analysis was 

performed by Duncan Forster. Chemical-genetic screens were performed by Sheena Li and 

Mami Yoshimura. Zhijian Li provided resources for the TS mutant collection. Luis 

Isuhuaylas preprocessed and provided the chemical-genetic data. Hiroyuki Osada provided 

the chemical matter and information about the screened compounds. Sheena Li and Zhijian 

Li constructed the drug-hypersensitive TS mutant collection. Kaori Itto-Nakama, Daisuke 

Yamanaka and Yoshikazu Ohya performed the jervine biochemical validation. Duncan 

Forster, Sheena Li, Yoko Yashiroda, Yoshikazu Ohya, Bo Wang, Gary Bader and Charles 

Boone contributed to the writing of this chapter. 

 

 

 

 

 

 

 

 

 

 

https://github.com/bowang-lab/BIONIC
https://github.com/duncster94/BIONIC-analyses
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Assessing BIONIC’s ability to generate predictions that match existing functional annotations is a 

standard and effective performance evaluation approach. However, the real advantage of a network 

integration algorithm is in its ability to generate new, experimentally testable hypotheses. An 

algorithm that is able to accurately predict de novo biological phenomena has substantial utility in 

informing experimental efforts. In this section I describe how my collaborators and I used BIONIC 

to predict novel chemical-genetic interactions which were then experimentally verified. 

 

3.1 BIONIC Accurately Predicts Chemical-Genetic Interactions 

Along with collaborators, I asked if BIONIC can generate new, testable biological hypotheses. 

Chemical genetic approaches analyze the effects of mutations on cell growth in response to 

compound treatment, and can be used to systematically predict the molecular targets of 

uncharacterized compounds (Roemer & Boone, 2013). For example, if a conditional temperature 

sensitive mutant carries a mutation that compromises the activity of a compound’s target gene, it 

is often specifically hypersensitive to the compound (Ayscough et al., 1997; Persaud et al., 2021). 

Previously, my collaborators generated a data set of chemical-genetic screens, consisting 

of a pool of deletion mutants of 289 nonessential genes (diagnostic pool) and 1522 compounds 

(Piotrowski et al., 2017). Using this data, I used BIONIC to predict chemical sensitivities for a 

wider set of 873 essential genes across a subset of 50 compounds. For the compound selection 

procedure, I used the unsupervised BIONIC integrated protein-protein interaction network, co-

expression network, and genetic interaction network features from the Figure 6 analysis (PEG 

features). I selected compounds to study by identifying those that BIONIC predicts well within the 

diagnostic pool data. I did this by partitioning sensitive genes from each compound into train and 

test sets, and I used the BIONIC features to predict the test set genes using the training genes as 

input (see Section 3.3). The top 50 compounds, for which sensitive genes were most successfully 

predicted, were selected for further analysis. Sensitive essential gene predictions for each of the 

50 chosen compounds were generated in a similar way to the compound selection procedure, with 

predictions being made on yeast essential genes rather than the diagnostic pool genes (see Section 

3.3). 

The BIONIC essential gene sensitivity predictions were experimentally validated by my 

collaborators using profiles for the compound set from a chemical-genetic screen using a collection 
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of temperature sensitive (TS) yeast mutants (Forster et al., 2022 Supplementary Data File 6). A 

DNA bar-coded collection of 1181 mutants containing TS alleles spanning 873 genes was 

constructed in a yeast genetic background that conferred drug hypersensitivity 

(pdr1Δpdr3Δsnq2Δ). The TS mutant collection was pooled and screened against the compound 

set. Mutant-specific barcodes were amplified from each compound-treated pool, and Illumina 

sequencing was used to quantify the relative abundance of TS mutant strains in the presence of 

each compound. Sequencing data was processed using BEAN-counter software to quantify 

chemical-genetic interactions and eliminate non-specific technical effects (Simpkins et al., 2019). 

Further statistical analysis was conducted to identify chemical-genetic interactions that satisfied a 

“far outlier” cut-off (see Section 3.3), which were then compared to the sensitive genes predicted 

by BIONIC. 

Out of 156 essential genes experimentally identified as sensitive to the set of 50 screened 

compounds, BIONIC successfully predicted 35. BIONIC significantly predicts sensitive genes for 

13 out of 50 compounds under an ordered Fisher’s exact test. I also assessed more broadly whether 

BIONIC can correctly predict the biological process a given compound’s sensitive genes  
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Figure 18: BIONIC essential gene chemical-genetic interaction 

predictions. a) From left to right: the number of correct unsupervised BIONIC 

sensitive essential gene predictions across the 50 screened compounds, the number 

of compounds BIONIC significantly predicted sensitive essential genes for 

(ordered Fisher’s exact test), and the number of correctly predicted sensitive 

essential gene annotated bioprocesses, based on the bioprocess enrichment of 

BIONIC predictions for each compound. b) A comparison of correctly predicted 

sensitive genes (left) and correctly predicted biological process annotations (right) 

between BIONIC predictions (dashed line) and n=1000 random permutations of 

BIONIC features gene labels (histogram). Correct prediction ratio is the number of 

correct predictions divided by the number of total sensitive essential genes (left) or 

annotated biological processes (right) across the 50 screened compounds. c) Rank 

of BIONIC sensitive essential gene predictions for the 13 significantly predicted 

compounds. The number of correctly predicted genes out of total sensitive genes 

are shown in parentheses beside each compound name. The statistical significance 

of the BIONIC predictions for each compound is displayed in the bar plot on the 

right. d) Hierarchical organization of essential genes in the glycosylation, protein 

folding/targeting, cell wall biosynthesis bioprocess based on integrated BIONIC 

features. Smallest circles correspond to genes, larger circles indicate clusters of 

genes. 6 genes sensitive to the NP329 compound are indicated with orange borders, 

and corresponding BIONIC predictions lying in the bioprocess are indicated as 

purple circles. Captured protein complexes in the bioprocess are annotated and the 

corresponding overlap score (Jaccard) with the true complex is given in 

parentheses. 

 

are annotated to. BIONIC sensitive gene predictions were statistically enriched (Fisher’s exact 

test) for 27 out of 62 annotated biological processes across compounds (Figure 18a). I compared 

the quality of BIONIC’s predictions to a random baseline (Figure 18b). Here, I generated 1000 

random permutations of the BIONIC PEG feature gene labels and computed sensitive essential 

gene predictions for the 50 screened compounds, as described previously. I found BIONIC 

sensitive gene and bioprocess predictions were substantially more accurate than the random 

permutations, indicating the BIONIC PEG features encode relevant information for the prediction 

of chemical-genetic interactions. I looked at the 13 significantly predicted compounds in more 

detail to see which sensitive gene predictions BIONIC correctly predicted and the corresponding 

ranks of those genes in the prediction list (Figure 18c). I observed that for 8 out of 13 compounds, 

the correct BIONIC predictions rank in the top 10 most sensitive interactions. BIONIC predictions 
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and experimental results for the 50 selected compounds can be found in Forster et al., 2022 

Supplementary Data File  7. 

I examined the best predicted compound, NP329, in more detail. NP329 is a pseudojervine 

from the RIKEN Natural Product Depository (Kato et al., 2012), and among its top 10 most 

sensitive interactions with the diagnostic pool mutants were the FLC2, DFG5, GAS1 and HOC1 

(Piotrowski et al., 2017) genes. The FCL2 product is a putative calcium channel involved in cell 

wall maintenance (Protchenko et al., 2006), DFG5 encodes a glycosylphosphatidylinositol (GPI)-

anchored membrane protein required for cell wall biogenesis in bud formation (Kitagaki et al., 

2002), GAS1 encodes a β-1,3-glucanosyltransferase required for cell wall assembly (Ragni et al., 

2007; Ram et al., 1998; Tomishige et al., 2003), and HOC1 codes for an alpha-1,6-

mannosyltransferase involved in cell wall mannan biosynthesis (Neiman et al., 1997). By 

comparing NP329’s diagnostic pool gene sensitivity profiles with the compendium of genetic 

interactions mapped in yeast and analyzing the data using the CG-TARGET software for chemical-

genetic profile interpretation (Piotrowski et al., 2017; Simpkins et al., 2018), the top three high-

confidence GO bioprocesses predicted to be perturbed by NP329 were “cell wall biogenesis” 

(GO:0042546), “cell wall organization or biogenesis” (GO:0071554), and “fungal-type cell wall 

organization or biogenesis” (GO:0071852). This strongly implicates the pseudojervine NP329 as 

a disrupter of proper cell wall biogenesis in yeast.  

To further study this compound-process interaction, I hierarchically clustered the BIONIC 

PEG features, and I focused on the essential genes present in the Figure 6b “glycosylation, protein 

folding/targeting, cell wall biosynthesis” bioprocess (Figure 18d). I observed that 6 out of 16 

NP329 sensitive essential genes lie in the bioprocess, as do 18 out of 20 BIONIC predicted 

sensitive essential genes. Within this bioprocess, BIONIC successfully predicts 4 (BIG1, KRE5, 

KRE9, ROT1) out of the 6 NP329 sensitive essential genes. These results indicate that BIONIC is 

able to both predict a relevant biological process targeted by the compound, and the specific 

sensitive genes. Moreover, the four sensitive genes successfully predicted by BIONIC were all 

closely clustered together based on the integrated BIONIC features (Figure 18d). ROT1 encodes 

an essential chaperone required for N- and O-glycosylation in yeast (Pasikowska et al., 2012), and 

is required for normal levels of β-1,6-glucan (Machi et al., 2004). Both KRE5 and BIG1 are also 

required for proper β-1,6 glucan synthesis (Azuma et al., 2002; Levinson et al., 2002). These 
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interactions further indicate NP329 can interfere in the proper synthesis of β-1,6-glucan, an 

essential cell wall component. Since the chemical structure of NP329 is extremely similar to the 

steroidal alkaloid jervine, my collaborators tested the effect of jervine on the production of β-1,6-

glucan. KRE6 is a nonessential gene that, like its paralog SKN1, encodes a glucosyl hydrolase 

required for β-1,6-glucan biosynthesis (Roemer et al., 1993). They found that treatment of cells 

with 5 ug/mL of jervine reduced β-1,6-glucan levels to the same extent as a kre6 deletion mutant, 

likely by inhibiting KRE6 and its paralog SKN1 (Figure 19). In a more detailed analysis, my 

collaborators found that point mutations in KRE6 or SKN1 can lead to jervine resistance, which 

further suggests that jerveratrum-type steroidal alkaloids target Kre6 and Skn1 (Kubo et al., 2022). 

These results show that BIONIC can predict relevant chemical-genetic interactions and has the 

potential to link compounds to their cellular targets. 

 

 

Figure 19: β-1,6-glucan levels in yeast strains. The amount of glucan per cell 

was calculated using pustulan as a standard. Data are presented as mean values. 

Error bars indicate standard deviation for n=3 biologically independent samples. 

kre6Δ compared to wild type p-value = 0.01473, Jervine compares to wild type p-

value = 0.01520. * Significant difference (p-value < 0.05 after Bonferroni 

correction, Welch’s one-sided t-test). 
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3.2 Summary 

In this section I demonstrated BIONIC’s ability to generate accurate de novo chemical-genetic 

interaction predictions which my collaborators then experimentally validated. Out of 50 selected 

compounds, BIONIC predicted chemical-genetic interactions significantly for 13, and 27 of 62 

sensitive biological processes annotated to these compounds. I examined the BIONIC chemical-

genetic interaction predictions for a particular compound, NP329, in more detail, and found 

BIONIC made biologically plausible predictions with respect to genes, protein complexes, and the 

biological processes sensitive to the compound. The BIONIC predictions indicate NP329 disrupts 

proper cell wall generation. My collaborators experimentally verified that jervine, a closely related 

compound to NP329, is a disrupter of cell wall biogenesis, demonstrating BIONIC’s utility for 

hypothesis generation. 

 

3.3 Methods 

3.3.1 Gene-Chemical Sensitivity Predictions 

Chemical-genetic profiles against a diagnostic set of 310 non-essential yeast gene deletion mutants 

were obtained from a previous study (Piotrowski et al., 2017). The genes were chosen using the 

COMPRESS-GI algorithm, which selected a set of 157 genes capturing a majority of the functional 

information within genome-wide genetic interaction data (Deshpande et al., 2017), along with 153 

genes that were manually selected to complement the set. Haploid deletion mutants for the gene 

set were constructed in a genetic background that conferred drug hypersensitivity 

(pdr1Δpdr3Δsnq2Δ) using synthetic genetic analysis (SGA) technology, and each mutant strain 

was barcoded with a unique 20 bp DNA identifier adjacent to a common priming site. The mutant 

collection was grown and stored as a pooled library in YPD-glycerol (15% v/v). A set of 

approximately 10,000 compounds from the RIKEN Natural Product Depository (NPDepo) were 

interrogated. Screens were done in 96-well format, where a single well contained the entire pool 

of 310 mutants at a density of 4.65x105 cells/mL and 196 uL of YPGal media (1% yeast extract, 

2% peptone, 2% galactose). Each well was treated with 2 uL of compound (1 mg/mL stock 

dissolved in DMSO). After 48 hours of growth in 30 C, genomic DNA was extracted from each 

compound-treated pool with an automated high-throughput nucleic acid purification robot 

(QIAcube HT, Qiagen). Mutant-specific barcodes and well-specific index tags were PCR-
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amplified using multiplex primers and a communal U2 primer. PCR products were pooled in 768-

plex and gel-purified from 2% agarose gels using a Geneclean III kit. Amplicons were quantified 

using a Kapa qPCR kit, and were sequenced with an Illumina Hiseq 2500 machine at the RIKEN 

Center for Life Science Technologies. Sequencing data was processed using the BEAN-counter 

software (Simpkins et al., 2019), which generated chemical-genetic interaction z-scores 

normalized against DMSO-only (1% DMSO) treated samples. False discovery rates (FDR) were 

estimated for biological process (Costanzo et al., 2016) predictions, for each compound, and those 

compounds with an FDR < 25% were retained, resulting in a set of 1522 compounds and 289 genes 

(high confidence set, Piotrowski et al., 2017). Next, interquartile range (IQR) scores were 

calculated from the chemical-genetic scores as follows: 

 𝐼𝑄𝑅𝑠𝑐𝑜𝑟𝑒𝑖 =
𝐶𝐺𝑠𝑖−𝐶𝐺𝑠̅̅ ̅̅ ̅

𝑄3𝐶𝐺𝑠−𝑄1𝐶𝐺𝑠
 (12) 

Here, 𝐶𝐺𝑠𝑖 is the chemical-genetic score for the ith replicate, 𝐶𝐺𝑠̅̅ ̅̅ ̅ is the median of all chemical-

genetic scores, 𝑄3𝐶𝐺𝑠 is the 75th percentile of chemical-genetic scores, and 𝑄1𝐶𝐺𝑠 is the 25th 

percentile of chemical-genetic scores. Tukey’s test (Beyer, 1981) was used to determine outliers 

based on the interquartile range of the distribution of IQR scores in the screen. Genes with at least 

one replicate that had a negative (sensitive) chemical-genetic score more than three times the 

interquartile range of the compound profile (i.e. “outlier” genes) were retained. 

To predict chemical-genetic interactions using BIONIC, I first selected a set of 50 

compounds to generate predictions on and for my collaborators to experimentally validate. For 

each diagnostic pool compound, I filtered out any genes not present in the integrated BIONIC 

features (the same features used for the Figure 6 analyses, referred to as PEG features). Any 

compounds with fewer than 2 outlier sensitive genes were then removed. For each of the remaining 

compounds, I randomly split the sensitive genes into train and test sets. Next, for a given 

compound, I computed BIONIC predictions for the test set genes. I did this by averaging the 

corresponding BIONIC PEG features for each gene in the training set under a cosine distance 

metric to get a representative feature vector in gene feature space for the given compound. The 

BIONIC predictions for the compound were then obtained by identifying the top 20 nearest genes 

to this feature vector (excluding genes in the training set). 
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To obtain a score for the BIONIC predictions, an ordered Fisher’s exact test was performed 

between the test set genes and the BIONIC predictions as follows: 

 

𝑝 = min({𝑓(𝑛, 𝑘): 𝑛, 𝑘 = (1, 𝑘1), … , (20, 𝑘20)})  (13) 

 

where 

     

𝑓(𝑛, 𝑘) =
(𝐾𝑘)(

𝑁−𝐾
𝑛−𝑘)

(𝑁𝑛)
 (14) 

p corresponds to the minimum p-value obtained for progressively larger subsets of BIONIC’s 20 

predictions, starting from the top prediction to the full set of 20 predictions. n is the number of 

total predictions made by BIONIC, and k is the number of those predictions that are correct. 𝑘𝑖 

corresponds to the number of correct predictions for the first i genes in the BIONIC predictions. f 

is the probability mass function of the hypergeometric distribution. Here, K corresponds to the 

number of genes found to be sensitive to the given compound. N is the total number of yeast 

essential genes in the analysis, specifically, essential genes for which TS mutants could be made 

and are also present in the BIONIC features (847 total genes). I chose the ordered Fisher’s exact 

test over the commonly used unordered version because BIONIC produces a ranked list of 

predictions. Considering the ordering of BIONIC predictions is a fairer assessment, since, for 

example, a compound may only have a small number of sensitive genes (fewer than 20). In this 

case, BIONIC’s top predictions may include these essential genes, however an unordered Fisher’s 

exact test would not consider this ranking and treat the full set of 20 predictions as equivalent, 

whereas the ordered test would consider the ranking. 

The above process was repeated 5 times for new randomly sampled train and test gene 

splits, or up to the maximum number of train-test splits possible for compounds with fewer than 5 

sensitive genes. Final p-values were obtained for each compound by averaging over the p-values 

from each trial. Compounds were ranked by most significant p-values and the top 50 compounds 

were selected for further screening. Sensitive essential gene predictions for a given compound 

were then generated by using the full set of sensitive diagnostic pool genes as the training set, 
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computing a representative compound feature vector by averaging the training set BIONIC gene 

features, and identifying the top 20 nearest essential genes to this compound feature vector. 

The BIONIC gene-chemical sensitivity predictions were benchmarked against 

experimental data obtained from chemical-genetic screens using a collection of temperature 

sensitive mutants for essential genes. My collaborators previously constructed a drug-

hypersensitive, barcoded set of temperature sensitive (TS) mutants for 1181 TS alleles spanning 

837 essential genes (Piotrowski et al., 2017). Similar to the diagnostic set of non-essential genes, 

this collection also contained the pdr1Δpdr3Δsnq2Δ triple deletion, and a 20 bp barcode was 

inserted next to a common priming site upstream of a natMX cassette integrated at the pdr3Δ locus. 

My collaborators conducted chemical-genetic screens against the 50 compounds initially selected 

for BIONIC analysis using the same method that was used to generate the diagnostic set profiles, 

except that the temperature sensitive mutant pools were incubated at 25 C instead of 30 C for 48 

hours. My collaborators calculated chemical-genetic interaction Z-scores (CG scores) and 

removed non-specific technical effects using BEAN-counter software (Simpkins et al., 2019). IQR 

scores were calculated as described above. Negative (sensitive) interactions that were more than 

four times the interquartile range (classified as “far outliers”) were used to validate the gene-

chemical sensitivities predicted by BIONIC. The significance of BIONIC sensitive essential gene 

predictions for each compound was determined by using an ordered Fisher’s exact test, as detailed 

above. The Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995) was applied to the 

resulting p-values at a false discovery rate of 5%. 

To generate biological process (Costanzo et al., 2016) predictions as reported in Figure 

18a, b, a Fisher’s exact test was performed between the full set of 20 BIONIC gene predictions 

and biological process gene annotations. I used the same annotations as in Figure 6b (Costanzo et 

al., 2016). If the BIONIC sensitive gene predictions were enriched for one or more bioprocesses, 

and these bioprocesses overlapped with the annotated bioprocess of the true sensitive genes, I 

considered this a correct bioprocess prediction. To generate the random benchmark in Figure 18b, 

the gene labels of the BIONIC integrated features were randomly permuted and new essential 

sensitive gene predictions for the 50 selected compounds were generated in the same manner as 

the original BIONIC predictions (detailed above). This process was repeated for 1000 random 

gene label permutations to generate the benchmark distributions. The circle plot in Figure 18d 

was produced by first hierarchically clustering the integrated BIONIC gene features, subsetted to 
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essential genes annotated to the glycosylation, protein folding/targeting, cell wall biosynthesis 

bioprocess. Two clustering thresholds were chosen to generate clusters - broadly indicating the 

hierarchical organization of the BIONIC gene features. The first, most granular clustering 

threshold was adaptively chosen to generate clusters best matching known protein complexes, as 

defined by the IntAct Complexes standard (Orchard et al., 2014). For each protein complex in the 

standard, the clustering threshold was optimized to produce the cluster best matching this protein 

complex. For clusters not matching known complexes, the largest complex optimized threshold 

was used. The second, higher clustering threshold was set to a cophenetic distance of 0.9. The 

BIONIC essential gene sensitivity predictions can be found in Forster et al., 2022 Supplementary 

Data File 7. 

 

3.3.2 Quantification of β-1,6-glucan Levels 

My collaborators quantified β-1,6-glucan levels in yeast. Wild-type (his3∆ in the BY4741 

background) and the kre6∆ strain (YOC5627) of S. cerevisiae were grown in YPD at 25°C with 

shaking at 200 rpm to 1 × 107 cells/mL. Wild-type cells were treated with 5 µg/mL jervine (J0009; 

Tokyo Chemical Industry, Tokyo, Japan) for 4 hrs. My collaborators used jervine since it is 

chemically similar to NP329 and is more commercially available. than NP329 The samples were 

centrifuged at 15,000 × g for 3 minutes, and the supernatant was discarded. The pellet was washed 

and suspended in PBS, adjusted to 1 × 106 cells/mL, and autoclaved for 20 min. After 

centrifugation at 15,000 × g for 1 minute, the supernatant was stored on ice (Sample A) and the 

pellet was further extracted. The β-1,6-glucan was extracted from the pellet using a slightly 

modified version of the protocol of Kitamura et al., 2009. First, 500 mL of 10% TCA was added 

to the culture, which was incubated on ice for 10 minutes. After centrifugation at 15,000 × g for 3 

minutes, the samples were washed twice with DW. The pellet was suspended in 500 μL of 1 N 

NaOH and incubated at 75°C for 1 hour. The solution was mixed with 500 μL of 1 M HCl and 

Tris buffer (10 mM Tris-HCl, pH 7). After centrifugation at 15,000 × g for 1 minute, the 

supernatant was stored on ice (Sample B). The total amounts of β-1,6-glucan in Samples A and B 

were measured according to the method of Yamanaka et al., 2020. 
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4. Conclusion 

Biological network integration is crucial for unifying the hundreds of disparate biological networks 

that have been, and will be, generated. Network integration promises a more complete, precise, 

and holistic view of gene and protein function than individual networks alone, and allows for 

deeper insights into the functional organization and architecture of cellular processes. In this thesis 

I have outlined the problem of biological network integration and its necessity for future progress 

in functional genomics and systems biology. I described existing network integration approaches 

and the corresponding limitations of these approaches. I presented a new algorithm I developed 

called Biological Network Integration using Convolutions (BIONIC), which yields state-of-the-

art integration performance across networks and benchmarks, scales to many genome-size 

networks, and can be used for successful de novo chemical-genetic interaction prediction. In this 

section I will outline several limitations of the current BIONIC model and suggest potential 

solutions. I will propose and discuss several promising applications of BIONIC. Finally, I will 

discuss the problem of unifying biological datasets more broadly, expanding the scope of future 

work beyond networks to the vast collection of non-network datasets which contain valuable gene 

and protein function information, and I will propose ways BIONIC can be extended to incorporate 

this information. 

 

4.1 BIONIC Limitations 

BIONIC has two main drawbacks which should be addressed in future improvements to the 

algorithm: BIONIC is unable to explicitly downweight poor quality networks or network 

structures, and BIONIC is unable to incorporate biological datasets that do not have a network data 

structure. I discuss these points in detail in the following sections. 

 

4.1.1 BIONIC Network Weighting 

Biological networks vary substantially in the quality of the functional information they contain, 

both as a whole, and for certain regions of the functional spectrum (Figure 6ab, Huang et al., 

2018). Currently, BIONIC has no explicit mechanism for learning weights for the input networks, 

or individual genes or proteins within the input networks. Indeed, while BIONIC performs well 
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generally, some functional modules present in the original input networks are obscured through 

integration (Figure 6c, 10). One weighting mechanism approach is for the model to learn a single 

weight for each input network respectively. While this approach is simple, it lacks the flexibility 

of a more fine-grained weighting mechanism that learns weights for individual genes and proteins 

in each input network. In this case, the weighting mechanism would learn to weight nodes in each 

input network based on the quality of the node’s connections, allowing for a more sophisticated 

weighting scheme at the expense of a more complicated design. Regardless of which approach is 

chosen, an effective weighting mechanism would allow BIONIC to minimize the negative impact 

of poor-quality networks or network regions while still retaining high quality functional 

information, leading to superior integration performance. 

Performing network weighting in an unsupervised manner would require BIONIC to retain 

clearly defined network structures (such as cliques) in individual networks which would be 

unlikely to arise by chance (strong signals), and genes or proteins that have similar topologies 

across input networks (repeated evidence). However, a purely unsupervised network weighting 

approach would likely be sensitive to systematic biases present in the input networks. For example, 

imagine the extreme case of integrating a network with a node label permuted version of the same 

network. Here the networks have identical topologies but the permuted network has completely 

randomized functional relationships between nodes. Without gene or protein labels indicating 

which functional classes each node belongs to, the unsupervised weighting mechanism would be 

unable to determine which network is correct and which is permuted. While such a clearly 

adversarial case is unlikely to occur with real biological networks, this example illustrates the 

potential for an unsupervised weighting approach to learn an incorrect weighting scheme without 

careful consideration of the topologies of the networks being integrated and the design of the 

weighting mechanism. 

Supervised or semi-supervised network weighting allows the use of gene and protein 

function labels to inform network or node weights. In this scenario, a network weighting 

mechanism would be able to identify networks and network regions that fail to closely link genes 

and proteins with the same functional labels and downweight these networks and regions 

accordingly. In the network permutation problem described in the previous paragraph, BIONIC 

would be able to successfully downweight the permuted network since this network does not map 
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same labelled genes or proteins close together. However, the resulting weights of a supervised or 

semi-supervised weighting mechanism would be dependent on the label set chosen. Ensuring a 

comprehensive and high-quality label set is used is crucial to ensuring the resulting weights are 

robust and relevant. 

A potential mechanism to incorporate network weighting is the attention architecture 

(Bahdanau et al., 2016; Vaswani et al., 2017). Attention is a natural mathematical representation 

of importance and allows a model to learn feature representations based on the combination of 

other features with a variable weighting. With respect to a node-level weighting approach in 

BIONIC, attention would allow a node’s integrated feature representation to be updated as a 

learned, weighted sum of network-specific node features, rather than the current BIONIC 

implementation which computes integrated node features as the average of network-specific 

features (equal weighting). Understanding performance differences of such an attention module 

under an unsupervised versus a semi-supervised training scenario necessitates further analysis.  

 

4.1.2 Non-network Dataset Inclusion 

While biological networks are numerous and functionally rich, they only constitute a part of all 

available functional datasets. These non-network datasets consist of image, sequence and tabular 

modalities, and are discussed in more detail in Section 4.3. BIONIC is currently unable to 

incorporate datasets which are not in a network format. While many non-network datasets can be 

converted to networks through pairwise profile correlation (or some other similarity measure), 

constructing networks in this way often results in information loss at the level of the original 

modality raw data. For example, while representing an image modality as a network of related 

images explicitly encodes relational information, it comes at the cost of losing potentially 

important semantic features in the original images that may have important correlations with other 

BIONIC data inputs. Therefore, it is necessary to extend the BIONIC architecture to incorporate 

alternative data types. 

 At its core, BIONIC is a multi-modal autoencoder (Ngiam et al., 2011), where nodes in 

input networks are transformed by the respective network encoders (graph attention networks) into 

a common geometric feature space. Nodes close together in the feature space (under some 

similarity metric, such as cosine similarity) are more closely related to nodes far apart. This feature 
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space is fundamentally agnostic to the form of the original data. So long as an appropriate encoder 

is used to map a dataset of a particular type (networks, images, etc.) to the feature space, these 

datatypes can be integrated through some simple consolidation of the modality-specific feature 

vectors of the datapoints (such as averaging, in the case of BIONIC). Additionally, non-network 

dataset features could be incorporated directly into the structure of input networks. BIONIC uses 

default initial node features in its encoders, specifically a “one-hot” encoding where a node’s initial 

feature vector is a vector of zeros with a one in a position that uniquely identifies that node relative 

to other nodes. These initial features are not functionally informative and as a result, the integrated 

gene and protein features BIONIC learns are based entirely on the input network topologies. Non-

network dataset features could be used as initial node features instead, allowing diverse functional 

information to be included in the network encoding process. 

Examples of suitable encoders are convolutional neural networks for images (Krizhevsky 

et al., 2012), transformers for sequence or text data (Vaswani et al., 2017), and multilayer 

perceptrons for tabular datasets. To train, BIONIC attempts to reconstruct the original networks 

from the integrated features. This constitutes the decoding process. Similar to selecting an 

appropriate encoder for the datatype of interest, an appropriate datatype-specific decoder must be 

designed so that a reconstruction loss can be specified and the model can train. 

 Encoders make up the vast majority of trainable parameters in BIONIC. Therefore, a model 

relying on multiple large encoders (especially transformers) would require substantial compute 

resources and time to train effectively. Compute time can be offset by the graphics processing unit 

parallelization built in to BIONIC, but it still comes at the expense of increased hardware 

requirements. Rather than training all data modality encoders at once in an end-to-end fashion, one 

approach is to generate features for each modality separately before integrating these features using 

BIONIC. For example, a convolutional neural network encoder could be used to generate static 

image features which could then be incorporated into BIONIC through a simple, lightweight 

multilayer perceptron encoder. While this approach lacks the flexibility and power of an end-to-

end approach, it may ultimately prove more effective due to the considerable reduction in compute 

time and resources, and the improved ease of prototyping as a result.  
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4.2 BIONIC Application Areas 

In the following section I will outline potential applications of BIONIC to patient network 

integration, disease gene classification and high-throughput experimental search space 

optimization. 

 

4.2.1 Patient Network Integration 

A potential application of BIONIC is patient network integration, where nodes of input networks 

represent patients and edges connect patients, weighted by the similarity of their profiles. These 

networks are often multi-modal, linking patients based on (for example) clinical, genomic or 

metabolomic information, thereby producing multiple, distinct networks (Pai et al., 2019; Pai & 

Bader, 2018). BIONIC features representing the integration of these networks could, for instance, 

be clustered to identify groups of related patients that may have a particular disease subtype. Such 

subtypes may reflect distinct dysregulated cellular programs, potentially informing precision 

medicine treatments. 

 

4.2.2 Disease Gene Prediction 

Biological networks underpin mechanisms of disease. Effects from perturbations in individual 

genes expand outwards to other genes and proteins by modulating the activity of protein 

complexes, pathways, and broad biological processes. Integrative network analysis is a potentially 

powerful tool for identifying genes implicated in complex, highly polygenic disorders (Carter et 

al., 2013; Huang et al., 2018) which could then be examined in therapeutic contexts. BIONIC 

could be used to predict disease-gene associations in a semi-supervised manner by first training on 

known disease-gene associations and then inferring new ones, leveraging the input networks to do 

so. 

 

4.2.3 Experimental Search Space Optimization 

The chemical-genetic analyses (Figure 18) demonstrate the potential of BIONIC to provide target 

predictions from limited experimental data. BIONIC chemical-genetic interaction predictions 

could be used to instead generate a set of putative non-sensitive genes for a given compound, 
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indicating bioprocesses where the compound is not active. This would reduce the size of the 

experimental space when screening, resulting in more rapid and less expensive data generation. 

Additionally, strong BIONIC chemical-genetic interaction predictions that are not reflected in the 

experimental data could indicate experimental false negatives that require additional investigation. 

 

4.3 Integration Beyond Networks 

As mentioned in Section 4.1.2, many functionally rich datasets exist outside the set of biological 

networks. These datasets constitute a wide range of data types and experimental assays, for 

example: high-throughput microscopy images, literature curated gene and protein textual 

descriptions, and gene and protein sequences. In this section I will discuss these datasets in more 

detail, the type of functional information they contain, and justify their inclusion in future 

biological data integration efforts. 

 

4.3.1 High Content Imaging 

Common high content imaging approaches involve adding fluorescent tags to proteins or cellular 

compartments of interest, followed by microscopic imaging of the resulting cell population. In 

yeast, for example, various colors of fluorescent proteins (usually green fluorescent protein) can 

be fused to another protein of interest through SGA (Section 1.1.1, Figure 1). These fluorescent-

tagged fusion proteins are then expressed in a cell strain containing fluorescently tagged cellular 

compartments, so the localization patterns of the fusion protein can easily be observed (Koh et al., 

2015; Kraus et al., 2017). Additionally, morphological dynamics of cellular compartments and 

defects due to gene mutations can also be observed in this way (Usaj et al., 2019; Usaj et al., 2020). 

High content imaging provides information about protein localization patterns and dynamics 

which provides an additional dimension to the functional spectrum. While datasets such as protein-

protein interaction networks contain high-quality information about local protein relationships 

such as complexes, due to limitations in the experimental procedure (such as requiring proteins to 

be extracted from a lysate), many physical interactions are reported between proteins that localize 

to different cellular compartments. Thus, adding high-quality localization information given by 

high content imaging may help correct for these implausible interactions. Additionally, 
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incorporating information about morphological defects may help capture functional dependencies 

that are not reflected in the cell fitness readouts of genetic interaction data. 

 

4.3.2 Literature Curated Textual Descriptions 

Gene and protein function data is not limited to high-throughput studies. There are thousands of 

high-quality, low-throughput studies exploring the functional connections of individual or small 

sets of genes and proteins, describing their mechanisms, and identifying the pathways and 

biological processes in which they function (Chatr-Aryamontri et al., 2017). Databases such as 

BioGRID (Chatr-Aryamontri et al., 2017) curate many low-throughput gene and protein 

interactions which could be incorporated into BIONIC as a composite low-throughput network, 

while resources such as the Gene Ontology (Ashburner et al., 2000), Uniprot (UniProt Consortium, 

2021), and the Saccharomyces Genome Database (Skrzypek & Hirschman, 2011) provide expert 

literature curated textual descriptions of gene and protein function. These textual descriptions 

could be encoded through a language model algorithm, such as Deep Contrastive Learning for 

Unsupervised Textual Representations (DeCLUTR) which has been trained to generate 

semantically meaningful feature vectors from text spans in an unsupervised manner (Giorgi et al., 

2021). Gene and protein textual encodings could then directly be incorporated into BIONIC 

through a simple multilayer perceptron encoder (see Section 4.1.2). While expert curated textual 

descriptions are of high-quality, human curators are unable to keep up with the substantial rate of 

biomedical articles being published each year (Valenzuela-Escárcega et al., 2018). An automated 

text mining and encoding pipeline would allow for rapid and scalable cataloging of gene and 

protein functional information across millions of articles, providing a more comprehensive view 

of cellular function than currently available. 

 

4.3.3 Gene and Protein Sequences 

Gene and protein sequences encode protein structural conformation, gene regulatory networks, 

and protein enzymatic information, protein localization signals, and underpin the members and 

dynamics of all cellular mechanisms. Recently, a large transformer-based language model was 

used to encode millions of protein sequences (Elnaggar et al., 2021). These protein sequence 
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encodings enabled accurate prediction of protein localization and secondary structure. The 

AlphaFold algorithm has enabled highly accurate prediction of protein structure from multiple 

sequence alignment data (Jumper et al., 2021). DNA sequence encoding has allowed for non-

coding variant effect prediction and gene expression prediction (Avsec et al., 2021; Zhou & 

Troyanskaya, 2015). Being able to encode gene and protein sequences, integrate them with other 

biological datasets, and model the resulting dependencies between modalities promises more 

accurate integrated features than previously possible. 

 

4.4 Perspectives 

The cell is a complex system exhibiting emergent properties – function and organization that 

cannot be explained by the sum of its parts (such as genes, transcripts, and proteins). Sophisticated 

patterns of interactions occur among these parts as well as with the cellular environment, giving 

rise to complex behaviors like cell growth, homeostasis, division, fate determination and 

adaptation. Modelling these interactions is necessary to understand the organizing principles of 

biological modules, from small-scale pathways to broad biological processes. Network integration 

approaches in their current form aim to quantify the presence and strength of functional linkages 

between all pairs of genes and proteins in the cell. The integrated maps produced by these methods 

are generally static and lack any environmental or cell state context. Accurately modelling the 

systems of the cell will further require integrating time or cell-phase resolved interaction networks 

as they come available so as to generate dynamic functional linkages. Integration methods must 

also be able to condition their results on cell type (for multicellular organisms with a wide range 

of tissues), and on environmental context (such as chemical exposure) more broadly. 

 For networks derived from profile correlations (such as gene co-expression and genetic 

interaction profile networks), there is often no strong notion of divisibility between the 

experiments that make up these profiles. In gene co-expression networks, for instance, many 

diverse gene expression measurements can be combined to create a single large expression profile 

per gene. Correlating these consolidated profiles across genes yields a single gene co-expression 

network. Similarly, the yeast genetic interaction network considered in this work results from the 

combination and correlation of essential gene by essential gene (ExE), essential gene by non-

essential gene (ExN) and non-essential by non-essential gene (NxN) genetic interaction profiles 
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(Costanzo et al., 2016). Currently, it is not clear which approach is more appropriate: constructing 

a single network from the full set of experimental measurements, or segmenting these 

measurements to create many networks which can then be integrated. Identifying natural division 

points in experimental data from which multiple networks can be generated may yield integrated 

gene and protein representations which better characterize gene function than single networks 

constructed from consolidated experimental profiles. 

Network integration purely at the cellular level may not be sufficient for understanding 

disease etiology. Genome-wide association studies (GWAS) typically identify single-nucleotide 

variants (SNVs) in non-coding regions, which often lack clear functional interpretations (Zhang & 

Lupski, 2015). The extent to which disease-associated variants are visible as cellular phenotypes 

is not clear (Jagadeesh et al., 2022), suggesting large-scale single-cell measurements are necessary 

to observe the phenotypic effects of these variants. Indeed, disease phenotypes may manifest at 

even higher levels, such as at the organ level (Ingber, 2022). Network and biological data 

integration algorithms must eventually incorporate these layers of cellular and organismal 

function, from relationships at the molecular level, such as between genes, transcripts and proteins, 

to single cell interactions, interplay between tissues and organ systems, and eventually the 

organism as a whole. 
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Appendices 

 

 

Appendix 1: BIONIC denoising capabilities. Comparison of co-annotation 

performance (IntAct Complexes) between noisy versions of a yeast PPI network 

and the unsupervised BIONIC features learned using these networks individually. 

The top plot shows absolute co-annotation performance and the bottom plot shows 

the performance relative to a no added noise scenario (i.e. 0% noise). Percentages 

indicate the amount of added random edges relative to the number of edges in the 

original PPI network. Here 0% indicates no added random edges, 50% indicates a 

random edge was added for every two true edges in the original PPI network, and 

100% indicates a random edge was added for each true edge. 
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Appendix 2: Comparison of Mashup and Mashup singular value 

decomposition approximation. Comparison of Mashup with the author 

provided singular value decomposition approximation of Mashup (denoted Mashup 

SVD). This evaluation was performed on the 2000 node scenario from Figure 16b. 

Data are presented as mean values. Error bars indicate the 95% confidence interval 

for n=10 independent samples. 
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Appendix 3: BIONIC performance as a function of encoder layers. A co-

annotation performance comparison of the unsupervised BIONIC with multiple 

choices of GNN layers. The number of layers corresponds to the effective 

neighborhood size (in hops) that is aggregated to update a given node. 
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Appendix 4: BIONIC performance comparison with a late fusion 

approach. Evaluation of the three yeast network (PPI, COEX, GI) unsupervised 

BIONIC integration (referred to here as “BIONIC”), and an unsupervised late 

fusion approach, in which integrated network features are not learned jointly. Data 

are presented as mean values. Error bars indicate the 95% confidence interval for 

n=5 independent samples. 
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Appendix 5: BIONIC performance as a function of feature space 

dimension. Co-annotation prediction performance comparison of different 

unsupervised BIONIC feature space dimensions. 512 dimensions were used in this 

work. 
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Appendix 6: GO term size filtering effect on integration method 

performance. Comparison of unsupervised integration method performance for 

various GO Biological Process (BP) term filtering approaches (where numbers in 

parentheses denote the maximum GO term size). A filtering threshold of 30 was 

used in this work. Data are presented as mean values. Error bars indicate the 95% 

confidence interval for n=2 independent samples. 
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Appendix 7: Classifier type effect on integration method gene function 

prediction performance. Comparison of support vector machine, random forest 

and gradient boosted trees classifiers for unsupervised integration methods and 

functional standards. Data are presented as mean values. Error bars indicate the 

95% confidence interval for n=10 independent samples for the support vector 

machine and random forest classifiers, and n=5 independent samples for the 

gradient boosted trees classifier. 


