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Abstract 
Medulloblastoma (MB) is a cancer of the cerebellum and the most common childhood brain 

malignancy. For children with high-risk MB, mortality is nearly always the result of the primary 

tumour having metastasized to the leptomeninges. This is due to the fact that current therapy for 

metastatic MB is less effective than that for primary disease. This is a product of the fact that 

most MB research has focused on primary tumours rather than metastases, due to the low 

availability of metastatic MB tissues for research, and, until recently, the absence of mouse 

models of metastatic MB. With greater understanding of primary MB has come a more rounded 

foundation upon which to build a better therapy. Thus, it is exciting to note that mouse models of 

MB dissemination now exist, and with these models has come first glimpses of mechanisms that 

may be driving MB metastasis. In an effort to build upon this new body of knowledge our lab 

engaged in a process of repeated selection for increased metastasis propensity among spine 

metastases from mouse patient-derived xenograft (PDX) models of human Group 3 and Group 4 

MB. By phenotypically selecting for increased metastasis propensity, we would necessarily also 

select for increased activity of the genes and pathways necessary and sufficient for increased 

metastasis propensity, some of which might represent valuable new therapeutic targets. In this 

manner, we have identified several long non-coding RNAs (lncRNAs) and Cancer Testis 
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Antigen (CTA) genes increasingly transcribed in correlation with metastasis. Further, we have 

found that their increased transcription is followed closely by the activation of several well-

known metastasis pathways. So lncRNAs and CTA genes may represent novel new components 

of the complex systems regulating MB metastasis.  
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Chapter 1: Introduction 

1.1 Medulloblastoma (MB): A cerebellar cancer of childhood that 
affects patients world-wide 

Medulloblastoma (MB), a cancer of the cerebellum, is the most common childhood brain 

malignancy. Globally, MB accounts for 20 – 25% of all paediatric brain tumours in high-income 

countries [1, 2], and 6 – 49% of all diagnosed brain tumours in low and middle-income countries 

[2]. Furthermore, 5-year survival rates have increased, due to improved treatment methods, now 

ranging from 70%-85% in high-income countries [1]. In contrast, survival is more variable in 

low and middle-income countries with rates ranging from as low as 33% to as high as 73% [1]. 

So, MB is a world-wide disease worthy of world-wide attention.  

1.2 Characteristics of MB subgroups and subtypes 
MB does not present as a single disease; rather, MB is a paediatric cancer with several 

subgroups. Consolidating the work of several research teams over many years, a consensus was 

first reached in 2012, that 4 subgroups of MB exist, given the names WNT, SHH, Group 3, and 

Group 4 [3]. Subgroups were defined transcriptionally, through the clustering of MB expression 

data. Subgroups were named based on the signaling networks most frequently disrupted if 

known. Building upon this foundation, by including both transcription and epigenetic 

(methylation) data in clustering, Cavalli and colleagues demonstrated that the MB subgroups 

could be further divided into subtypes [4] (Figure 1a). In particular, the percent of patients with 

metastatic MB at the time of clinical presentation (% Metastatic) (Figure 1b), the percent of 

patients, who survive for at least 5 additional years after clinical presentation (% Survival) 

(Figure 1c), and the specific genes mutated or misexpressed (Figure 1d) vary between subgroups 

and subtypes. Early clues as to the mechanisms driving MB metastasis further suggest that 

within each subgroup, the genes and pathways driving metastatic dissemination frequently differ 

from those driving primary tumour growth and development [5]. Due to a limited availability of 

MB metastatic tissues and a low number of pre-clinical animal models of MB metastasis, 

research into mechanisms of MB metastasis has been similarly limited [5]. Thus, in-depth 

investigation of these mechanisms, using readily available tools, is needed to deepen our 

understanding of the subgroup-specific mechanisms driving metastasis, in order to support the 
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development of subgroup-specific therapeutics that, in their specificity, hold promise to be more 

effective and safer than current therapeutic approaches 
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b)       c) 

 

d)  
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Figure 1. Medulloblastoma: One family of cancers with 12 
distinct subtypes. a) Graphical depiction of the 4 MB 
subgroups and 12 subgroup-specific subtypes b) % 
metastatic – % of MB patients who present with metastatic 
disease c) % survival – % of patients who survive for at least 
5 years post-presentation d) Genomics and transcriptomics 
– Genes mutated or misexpressed within each subgroup 
and subtype. + = Amplification; - = Deletion; Dup = 
Duplication; Mono = Monosomy; i = isochromosome. 
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1.2.1 Characteristics of MB Subgroups and Subtypes: % Survival is 
Correlated with Age of Onset and % Metastatic 

Across MB subgroups and subtypes, the age of onset of MB symptoms is correlated with the 

percent of patients that survive at least 5 years after clinical presentation (% Survival) [4] (Figure 

1c). MB symptoms first appear in WNT patients between the ages of 3 and 17 years for WNT-

alpha, and from 10 years to adulthood for WNT-beta. Comparatively, no Group 4 MB patients 

ever reach adulthood without symptoms, usually first presenting between 3 and 17 years. 

Significantly greater heterogeneity exists between SHH subtypes, with symptoms first appearing 

in infancy (beta, gamma), adolescence (alpha), or adulthood (delta). Group 3 subtypes exhibit 

similar heterogeneity with alpha and gamma patients exhibiting symptoms as early as infancy 

and up to the age of 10 years, and symptoms first appearing in beta patients during adolescence.  

The percent of MB patients with metastatic MB at clinical presentation (% Metastatic) also 

varies across subgroups and subtypes [4]. Metastatic MB is most commonly observed in Group 3 

and Group 4 patients at presentation, followed by SHH, and specifically WNT-beta (Figure 1b).  

Generally, % Survival is positively correlated with age of onset and negatively correlated with % 

Metastatic [4]. Demonstrating this in practice, among the highest-risk MB patients, mortality is 

nearly always attributable to the primary tumour having metastasized from its site of origin in the 

posterior fossa to the leptomeninges [5]. Indeed, across SHH subtypes increasing % Survival is 

correlated with decreasing % Metastatic [4] (Figure 1a). However, across Group 3 subtypes, % 

Survival correlates with slightly increasing % Metastatic. Similarly, in SHH-beta and SHH-

gamma subtypes, MB appears in infancy yet % Survival is high (Figure 1a). So, this suggests 

that, while % Metastatic does correlate with % Survival, additional factors also influence % 

Survival.  

1.2.2 Characteristics of MB Subgroups and Subtypes: Symptoms 

Patient symptoms at presentation also vary by subgroup [6]. These include headache, vomiting, 

ataxia, motor challenges, gaze palsy, behavioral changes/irritability, extracranial pain, vertigo, 

hearing loss, lethargy, and acute intracranial pressure elevation. Symptoms are observed 

preferentially in association with specific subgroups. For example, headaches are reported more 

often by WNT and Group 4 patients than SHH or Group 3 patients, while vomiting is more 

frequently characteristic of Group 3 and Group 4 patients [6]. Furthermore, the pre-diagnostic 
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interval, namely the time between symptom appearance and disease diagnosis, is subgroup-

specific; WNT and Group 4 patients have a much longer pre-diagnostic interval than patients 

with SHH or Group 3 MB tumours [6].  

1.2.3 Characteristics of MB Subgroups and Subtypes : Location & 
Histology 

The subgroup specificity observed among patients is similarly present at the cellular level, 

considering tumour location, histology, and frequency of metastasis [4]. WNT, Group 3, and 

Group 4 tumours form along the midline while SHH tumours form peripherally. This difference 

between SHH and other subgroups is also evident with respect to histology; WNT, Group 3, and 

Group 4 tumours exhibit classic histology while SHH tumours tend to be desmoplastic. Further 

variation in histology is also observed within the SHH subgroup, with some subtype alpha 

tumours exhibiting large cell anaplastic (LCA) histology, and MB extensive nodularity (MBEN) 

observed for some subtype gamma tumours.  

1.2.4 Characteristics of MB Subgroups and Subtypes: Genomics & 
Transcriptomics 

Although rare, certain genomic and transcriptomic changes recur in specific MB subtypes [4] 

(Figure 1a,d). Copy number gains or losses, affecting single genes or large chromosome regions, 

are observed only in tumours from a specific subgroup or subtype. Similarly, mutations or 

changes in the expression of single genes, and by extension, changes in the activity of specific 

pathways occur in a subgroup and subtype-specific fashion.  

Within the WNT subgroup, WNT-alpha tumours have only a single copy of chromosome 6, 

while WNT-beta tumours are frequently diploid for chromosome 6 [4]. Prior to the definition of 

MB subtypes, it was thought that monosomy 6 was a characteristic of all WNT tumours. So, the 

knowledge of MB subtypes will prevent WNT-beta patients from being misdiagnosed. 

Considering pathway activation, only the WNT signaling pathway is overrepresented in WNT 

tumours [3]. However, it is not yet known whether that is subtype-specific or in all WNT 

tumours.  

Significant genomic variation is also observed across the subtypes of the SHH subgroup. Local 

amplification of MYCN, GLI2, and YAP1, mutation of TP53, and loss of 9q, 10q, and 17p are 
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commonly observed in SHH-alpha tumours. Comparatively, SHH-beta tumours harbor PTEN 

deletions, and a variety of other focal amplifications, the largest being on 2p and 2q. In contrast 

to the first two subtypes, chromosome gains or losses for SHH-gamma are limited to focal 

deletions on 9q and 10q. Again, different from the three previous subtypes, the most frequently 

recurrent events for SHH-delta tumours are mutations within the TERT promoter. At the pathway 

level, DNA repair and cell cycle related pathways are enriched in SHH-alpha tumours. 

Furthermore, developmental pathways are enriched in both SHH-beta and SHH-gamma tumours, 

with the magnitude of enrichment being greater in SHH-gamma than in SHH-beta. Of even 

greater interest are enriched pathways that are actionable, including sumoylation and DNA repair 

pathways in SHH-alpha, receptor tyrosine kinase signaling and ion channels in SHH-beta and 

SHH-gamma, and telomere maintenance in SHH-alpha and SHH-delta tumours.  

For Group 3 tumours, the MYC locus on the long arm of chromosome 8 (8q24) is subject to 

change in both Group 3-alpha and Group 3-gamma but in Group 3-alpha it is deleted, while in 

Group 3-gamma it is amplified [4]. In contrast, activation of GFI1 and GFI1B, and inactivation 

of DDX3I, all likely through enhancer hijacking, are observed for Group 3-beta tumours, as well 

as amplification of the OTX2 locus. In terms of pathway enrichment, Group 3-alpha exhibit 

enrichment of photoreceptor pathways, mechanisms of muscle contraction, and pathways related 

to the primary cilium. Furthermore, the actionable pathways of protein translation are enriched in 

Group 3-beta and Group 3-gamma, and the similarly actionable pathway of telomere 

maintenance is enriched in Group 3-gamma [4].  

Finally, Group 4 tumours show similar diversity. MYCN amplification is observed in only Group 

4-alpha tumours. In addition, both 8p loss and 7q gain are specific to both Group 4-alpha and 

Group 4-gamma, as is focal amplification of CDK6. Furthermore, it is interesting to note that 

SNCAIP duplication, and isochromosome 17q, originally identified across Group 4 tumours 

without definitions of subtype [7] , are actually specific to only Group 4-beta. With respect to 

pathways, cell migration is enriched in Group 4-alpha, not unexpected given its frequency of 

metastasis of 40%. The actionable MAPK and FGFR1 pathways are enriched in Group 4-beta 

tumours, and the equally actionable PI3K-AKT and ERBB4-mediated nuclear signaling 

pathways are enriched in Group 4-gamma tumours.  
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Taken together, the significant diversity in genomic changes and pathway enrichment that exists 

across the subtypes of any of the 4 MB subgroups reinforces how imperative it will be to 

consider both subgroup and subtype affiliation rather than subgroup alone when designing new 

therapeutic approaches. Only by considering both subgroup and subtype will it be possible to 

maximize the frequency of treatments being both effective and safe.  

1.2.5 Characteristics of MB Subgroups and subtypes : Sex-Bias 

Males are at higher risk of having MB than females, but only in specific subgroups [8]. For the 

WNT and SHH subgroups, no difference in risk exists between males and females. In contrast, 

males are at 2-fold greater risk for Group 3 MB, and 3-fold greater risk than females for Group 4 

MB [8]. Survival among MB patients similarly is worse for males than females. It has not yet 

been definitively determined whether the effect of sex bias on survival varies across subtypes 

[9]. Furthermore, the underlying mechanism conferring sex-specific risk for MB is still not 

understood. However, recent work has suggested that IL6-STAT3 signaling may, in part, account 

for the worse survival that has been observed for male MB patients relative to females in 

multiple MB subgroups [10, 11]. Biallelic deletion of STAT3 in the granule cell precursors of 

SHH PtchlacZ/+ model mouse embryos prevented SHH tumour formation and increased survival 

in males but had no effect on either tumour formation or survival in females [10]. Furthermore, 

biallelic inactivation of STAT3 led to activated SHH signaling in females and suppressed SHH 

signaling in males. This suggested that STAT3p might have been serving opposite roles in male 

and female mice, namely as an activator of SHH signaling in males and as an inhibitor of SHH 

signalling in females. Even more interesting, in human MB patients increased STAT3 

transcription was associated with decreased survival in males and increased survival in females. 

Building upon these findings, expression of cytokine Interleukin 6 (IL6), normally expressed in 

only male mice and MB patients, promoted SHH signaling in cultured mouse embryonic 

fibroblasts. With respect to Group 3 MB, intact IL6-STAT3 signaling was necessary and 

sufficient for cultured Met8A cells (Group 3 MB) to become resistant to chemotherapeutic 

agents vincristine, cisplatin, mitoxantrone, and idarubicin used alone through repeated training 

using increasing vincristine concentrations [11]. However, the cell line remained chemosensitive 

to vincristine used in combination with cisplatin or STAT3 inhibitor niclosamide. STAT3 

transcription was also shown to vary across the subtypes of Group 3 MB with Group 3-beta and 

Group 3-gamma subtypes exhibiting increased STAT3 relative to Group 3-alpha. This is 
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especially interesting since Group 3-gamma patients have % survival lower than would be 

expected based on their % Metastatic alone. So could higher STAT3 expression in Group 3-

gamma MB patients be an additional factor bringing about the lower than expected rate of 

survival observed? Taking one step further, among SHH, Group 3, and Group 4 MB, STAT3 

transcription was lowest in SHH, higher in Group 3, and highest in Group 4. This is in direct 

alignment with the magnitudes of sexual dimorphism that are observed across these subgroups 

[8]. Thus, this association serves as a clue that dysregulation of STAT3 may be, at least in part, 

responsible for the increased risk and decreased survival that is observed for male MB patients 

relative to females.   

1.2.6 Subgroup/Subtype Specificity: A Product of Differences in Cellular 
Ancestry? 

For a long time the origins of the transcriptional and epigenetic differences distinguishing MB 

subgroups and subtypes remained unknown. However, transcriptional programs in MB tumours 

from different subgroups are now known to closely resemble conserved transcriptional programs 

characteristic of specific neural cell progenitors, each active during specific stages of brain 

development [12]. WNT tumours most closely resemble mossy fiber precursor cells from the 

lower rhombic lip [13]. In contrast, SHH tumours are most similar to granule cell precursors, 

Group 3 to Nestin+ stem cells, and Group 4 tumours to unipolar brush cell progenitors. all three 

from the upper rhombic lip [12]. Knowledge of the developmental programs associated with 

these specific cell lineages could yield insights into the developmental points of origin for each 

of the MB tumour types. This could serve as a foundation for the development of new 

therapeutic options taking this into consideration.      

1.3 The Mutational Spectrum of MB  

1.3.1 Sequence Changes 

Changes in the transcription of specific genes mediate MB tumourigenesis. This misexpression 

can be brought about through the mutation of the genomic sequence. This can take the form of 

single-nucleotide variations (SNVs), somatic copy number aberrations (SCNAs), larger-scale 

insertions and deletions of large chromosome regions, or complete loss of chromosomes. In all of 

these cases what results is a significant change in the expression of a gene or genes, leading to 

tumourigenesis, and tumour progression.   
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1.3.2 Changes in the Regulation of Gene Expression 

Alternatively, the aberrant changes in transcription which drive tumour progression, can arise 

through aberrant changes to epigenetic mechanisms, which normally serve to strictly regulate the 

transcription of the genes in question. . Enhancer hijacking is an example of one such 

mechanism. Through a chromosome rearrangement, an enhancer cis-regulatory element or 

region is placed upstream of a gene with which it is not usually associated; as a result, the 

transcription of that gene is increased several-fold leading to tumourigenesis [14]. There is no 

change to the wild-type sequence of the gene; only the regulatory mechanisms controlling 

expression are subject to mutation. In the context of Medulloblastoma, aberrant transcription is 

also achieved through the aberrant activity of other epigenetic mechanisms, including but not 

limited to the aberrant methylation of lysine residues within histones [15], the upregulation of 

chromatin remodeling proteins [16], and aberrant CpG island methylation [17]. So, taken 

together, transcriptional changes, which drive MB tumour progression, are achieved both 

through mutation of gene sequences, and aberrant regulation of transcription.  

1.4 MB Treatment 

1.4.1 Current MB Treatment Regimen 

Currently, MB patients are treated with surgery, cerebrospinal irradiation, or chemotherapy 

either alone or in combination depending on the age of the patient [18] (Personal communication 

with Dr. V. Ramaswamy). Specifically, MB patients 5 years of age or older undergo surgery, 

followed by cerebrospinal radiation (23.4 gray (gy) for standard-risk patients, or 36-39 gy for 

high-risk patients), and subsequently are administered 4-9 rounds of chemotherapy consisting of 

cisplatin (cumulative dose of at least 300 mg/m2), an alkylating agent (cyclophosphamide or 1-

(2-Chloroethyl)-3-Cyclohexyl-1-Nitrosourea (CCNU)), and vincristine. Patients younger than 5 

years of age are not given radiation. Instead, they undergo surgery followed by chemotherapy 

consisting of 3 rounds of cisplatin, cyclophosphamide, etoposide, vincristine and methotrexate, 

with a total cisplatin dosage of 300 mg/m2 (for infants) followed by three rounds of high-dose 

carboplatin and thiotepa.  

These intense therapeutic approaches are effective at treating tumours for a subset of MB 

patients. However, for patients with recurrent MB, these treatments frequently prove to be 
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ineffective at treating the tumour. To make matters worse, these treatments often leave patients 

with severe, debilitating side effects, and a deteriorating quality of life that persists through the 

rest of their lives [18]. It is thought that this low efficacy and these side effects may be the result 

of heterogeneity among standard risk and high-risk patients not being considered in the design of 

therapy. What better motivation could there be to seek a better understanding of the mechanisms 

of MB metastasis, to develop new patient-centred therapies rather than a one-size-fits-all 

approach.  

1.4.2 Next-Generation MB Therapy  

1.4.2.1 Overview 

In order for new approaches to MB therapy to be both safer and no less effective than current 

approaches, therapeutics have tended to arise within discrete categories, namely patient-specific 

tailoring of existing therapies, subgroup-specific therapies, immunotherapy, the development of 

new vehicles for drug delivery across the blood-brain barrier, and targeting of MB stem cells.  

1.4.2.2 Patient-specific Tailoring of Existing Therapies 

It has been observed that the statically-defined therapeutic regimens described above are 

associated with heterogeneous outcomes among MB patients [18]. Trials have been run to see if 

patient-specific modifications to therapy might offer better outcomes relative to existing 

regimens. In the phase III Children’s Oncology group trial (ACNS0331), a 5.4 Gy reduction in 

cerebrospinal irradiation (CSI) was attempted for patients 3-7 years of age, to see if this would 

be associated with similar treatment efficacy and fewer side effects [19]. Unfortunately, reduced 

CSI led to worse overall survival (OS) relative to patients given standard therapy. In contrast, in 

the HIT’2000 trial, strengthened chemotherapy combined with hyperfractionated CSI (increased 

number of CSI treatments but each at a lower dose) led to OS of 74% specifically for M2/3 MB 

patients with dissemination to the leptomeninges, significantly improved from a preceding trial, 

HIT’91. The reason for the improved outcomes in the HIT’2000 is thought to have been, in part, 

due to the hyperfractionated CSI protocol, but also significantly due to advances in imaging, 

surgical practice, and supportive care since HIT’91 was completed [20]. So, tailoring of existing 

therapies to best suit specific groups of patients can yield outcomes better than what is possible 

with one-size-fits-all therapy, but not always.  
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1.4.2.3 Subgroup-Specific Therapy 

With the knowledge that MB subgroups and subtypes differ significantly, one new therapeutic 

approach has been to create therapies that are subgroup or subtype-specific [18]. In practice, this 

means the targeting of subgroup-specific molecules or adapting of therapies to be as safe and 

effective as possible for a specific subgroup.  

WNT tumours have a leaky BBB rendering tumours inherently chemosensitive, which is in part 

why WNT tumors have such positive outcomes using existing therapies [21]. In addition, WNT-

specific pathways are critical for bone regeneration and tissue formation in non-cancerous tissues 

[22]. So rather than risk harmful side effects, no WNT pathway-specific therapies are being 

developed. Instead, ongoing clinical trials are exploring whether current therapies can be de-

escalated for low-risk WNT patients without sacrificing efficacy. If this is possible, this would 

also mean less severe side-effects.  

Inhibitors of SHH-specific protein smoothened (SMO) are the class of molecules most frequently 

tested as a potential SHH-specific therapy [18, 23]. Inhibition of SMO using small molecules 

such as vismodegib (GDC-0449) [24, 25], blocks signaling downstream of SMO, translocation 

of Gli, and ultimately the activation of Hedgehog target genes [18, 23]. Of SHH-MB patients, 

80% carry mutations in the Patched PTCH1 or SMO genes [18]. Thus, it is not surprising that 

Vismodegib is an effective treatment for recurrent SHH MB. However, SMO inhibition also 

interrupts the development of normal bones and teeth. So, also being considered are 

bromodomain inhibitors, inhibitors of G2/M proteins AURK and PLK, and inhibitors of cMET 

[26]. 

For Group 3 and Group 4 knowledge of the biology of Group 3 and Group 4 is still limited so 

subgroup-specific primary therapies do not yet exist, and current approaches involve the testing 

of new forms of nonspecific chemotherapy [18]. However, for recurrent Group 3 MB, inhibitors 

of Pi3K and mTOR signaling are being tested [27]. 

Taken together, treating MB patients with inhibitors to proteins or pathways specific to their 

subgroup, relative to the use of more generic inhibitors, by its specificity the likelihood that the 

therapeutic agent will effectively inhibit tumour growth will be greater, and the likelihood that 

the therapeutic agent will affect proteins and pathways other than those intended will be less. So, 
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subgroup and subtype-specific therapies do hold the promise of greater efficacy and safety as a 

product of their specificity to the subgroup being treated.  

1.4.2.4 Immunotherapy 

A wide variety of forms of immunotherapy are also being considered as alternative approaches, 

separate from targeted therapies, to the treatment of MB, especially at advanced stages.  

CAR T-based immunotherapy is an innovative approach in which T- cells are engineered ex-

vivo to express chimeric T-cell receptors, which recognize tumour-specific antigens, and are able 

to bind T-cells [28]. Upon being reintroduced into mouse models or human tumours, these 

engineered cells render the tumours visible to the resident immune system, enabling the tumour 

to be eliminated like any other foreign invader. In practice, Car-T cells engineered to recognize 

Her2 were able to clear out Her2-expressing tumour cells implanted into the posterior fossa of 

preclinical mouse models of human MB [29]. Also, in the BrainChild-01 clinical trial 

(NCT03500991) CD4+ and CD8+ cells transduced with lentivirus expressing chimeric Her2 

receptor and a truncated Epidermal Growth Factor Receptor (EGFR), and are being introduced 

into the tumour resection cavity of the ventricular system of MB patients with Her-2 expressing 

recurrent tumours. 

A second form of immunotherapy being used to treat MB tumours is the use of immune 

checkpoint inhibitors [18]. Cancer cells overexpress immune checkpoint proteins, to eliminate T-

cell responses, which might otherwise lead to their detection and removal. Thus, through the use 

of inhibitors to immune checkpoint proteins, the immune response can once again be activated in 

response to the presence of tumours. Checkpoint proteins currently being targeted for inhibition 

include CTLA4, PD-1, and PD-L1. 

A third therapeutic approach, which functions independently, and in conjunction with the 

immune system, is the use of oncolytic viruses (OVs) [18]. OVs are made such that they 

replicate only in cancer cells. As a result, neighboring normal cells are unaffected by the 

presence of OVs, and once OVs infect a small number of tumour cells, they rapidly spread 

throughout the tumour cell population. Of even greater benefit, lysis of tumour cells by OVs 

leads to the release of neoantigens that can then be recognized by the immune system, which can 
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further act to remove any tumour cells that remain. Several different viruses are being used in 

clinical trials as potential treatments for recurrent MB.  

Lastly, trials are investigating whether Natural Killer (NK) cells represent another viable tool for 

immunotherapy. NK cells participate in the endogenous response of the immune system to the 

presence of malignant tumours by recognizing tumours in an antigen-independent fashion [30]. 

NK cells are controlled by stimulatory and inhibitory receptors; so several trails have involved 

the creation and testing of modified NK cells expressing receptors such as dominant-negative 

TGF-beta II (DNRII) [31],  

1.4.2.5 Conjugates to Facilitate Delivery of Therapeutics Across the Blood 
Brain Barrier (BBB) 

One of the greatest challenges associated with current approaches to MB therapy has been the 

extent to which therapeutics are able to cross the Blood Brain Barrier (BBB) [32]. Several new 

delivery approaches have been developed and have been tested to see if they increase the 

effectiveness of drug treatment. Angiopeps, peptides based on the sequence of peptide aprotinin, 

have been designed and used for drug delivery given their demonstrated ability to bind to low-

density lipoprotein receptor-related protein (LRP), and mediate transport across the BBB. 

Chemotherapeutic agents etoposide and doxorubicin, conjugated to Angiopep-2, a 19-aa 

Angiopep [33], via glutaric acid and succinic acid linkers, respectively, were less toxic, and 

better distributed in the brains of mouse models than the chemotherapeutics not conjugated to 

Angiopep-2 [32]. Also, Bovine Serum Albumin (BSA) nanoparticles containing cisplatin (CPT), 

capable of glutathione-sensitive CPT release, are readily taken up into MB cells in culture 

(Daoy), and are cytotoxic [34].  

Taken together, targeted therapy, immunotherapy, and new methods of drug delivery are all 

being investigated as potential alternative approaches to therapy for MB, either independently or 

in conjunction with existing therapies. The major advantage that these approaches offer in 

contrast to existing therapies is specificity, which can enable therapeutic approaches to be both 

safer and more effective.  
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1.5 The Biology of Metastasis 
Tumourigenesis first takes place in the cerebellum, and through rapid cell division tumour cells 

become a genetically heterogeneous malignant tumour. Additional sequence changes then occur 

in specific cells of the primary tumour; these changes confer upon those cells the ability to 

detach and migrate away from the primary tumour, and enter circulation, specifically either the 

cerebrospinal fluid (CSF) or the blood. These environments serve as means for cells to migrate 

locally to the leptomeningeal space (SHH), or distally to the spinal cord, lymph nodes, liver, or 

spleen (Group3 , Group 4) [35]. Arriving at the secondary site, cells invade and divide to form 

micro metastases; with additional genomic changes, micro metastases further develop to form 

macro metastases. The molecular biology of tumour detachment, migration, invasion, growth 

and transition from micro to macro metastases are still unclear. However, these are all active 

areas of research.   

1.6 Subtype-specific Genomics/Transcriptomics Define Subtype-
specific Mechanisms of Metastasis 

Increases in the activity of specific genes, and pathways, and the existence of specific 

chromosomal rearrangements are correlated with tumour progression and metastasis of MB 

tumours from all subgroups and subtypes (Figure 2a); however the understanding of how these 

and other genomic changes mediate the metastasis of tumours from each subtype is still 

rudimentary, lagging significantly behind our comprehensive understanding of the mechanisms 

of tumourigenesis. As a result, significant scientific attention is being paid to the biology of MB 

metastasis. This has begun to yield first glimpses of what may be taking place. Notch1 has been 

linked to the initiation of metastasis for Group 3 MB tumours (Figure 2b); Notch1 increases the 

transcription of known premetastatic transcription factor TWIST1, which then activates Bmi1, 

which initiates metastasis either alone or as a subunit of the Polycomb Repressive Complex 1 

(PRC1) of which it is known to be a component [36, 37]. Comparatively, increased MYC 

transcription in response to Thrombospondin-1 (TSP1) inactivation is sufficient to promote cell 

migration, and invasion [38]. From a different perspective, epigenetic mechanisms have recently 

been implicated in the driving of MB metastasis; long non-coding RNA (lncRNA) LOXL1-AS1 

promotes MB tumour progression and metastasis by activating the PI3 Kinase (PI3K)/AKT 

pathway by promoting the phosphorylation of PI3K, and AKT (Figure 2c). Knockdown of 
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LOXL1-A1 leads to decreased levels of phosphorylated PI3K and AKT, while the level of non-

phosphorylated protein remains the same [39]. Similarly, lncRNA CCAT1 promotes MB 

metastasis through the activation of the MAPK pathway [39]. Taken together, the first clues of 

mechanisms mediating MB metastasis are coming to light, and this will facilitate the in-depth 

characterization of the mechanisms driving metastasis in each of the subgroup-specific subtypes 

of MB.  
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a)  

b)      c) 

      

Figure 2. Mechanisms of MB metastasis: First clues. a) Subtype-specific genomics and transcriptomics of MB to date 
with links to metastasis noted. Underline = Literature links to metastasis; + = Amplification; - = Deletion; Dup = 
Duplication; Mono = Monosomy; i = isochromosome b) Notch1-mediated initiation of Group 3 MB Metastasis c) LncRNA 
LOXL1-AS1 promotes PI3K phosphorylation leading to AKT phosphorylation, increased cell proliferation, and increased 
cell migration. 
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1.7 Using Bioinformatics to Identify from Within Bulk RNA 
Sequencing (RNA-Seq) Data Prometastatic Genes Activated 
in the Spine Metastases of Mouse Patient-Derived Xenograft 
(PDX) Models of Human MB Subject to Iterative Selection 
for Metastasis Propensity 

1.7.1 Overview 

Throughout my doctoral studies, four powerful technologies, namely Patient-derived Xenograft 

Modeling of human MB tumours, In vivo Iterative Selection, Bulk Paired-end RNA-Seq, and 

Bioinformatics analysis, have been used by bench-based collaborators and myself in order to 

identify genes and pathways, which are activated in metastases to the spine relative to primary 

tumours. These novel correlates of metastasis could represent new insights to further our 

understanding of MB metastasis, and new options to consider in the development of next-

generation MB therapeutics.  

1.7.2 Model Human MB Without the Limitations of Tissue Availability Using 
Patient-derived Xenograft (PDX) Mice 

The amount of metastatic MB tumour tissue available for research purposes is very small [5]. 

This is largely due to the fact that the accepted treatment regimen for metastatic MB is radiation 

and chemotherapy, and not surgery. With the use of this treatment regimen metastases are rarely 

removed. An effective alternative has become patient-derived xenograft (PDX) mouse models 

[40]. Human tumour cells are introduced into a mouse, usually through injection, tumor cells 

engraft among existing tissues, undergo rapid cell division, and develop into a primary tumour. 

In some cases, genomic changes, genetic or epigenetic, occur in cells of the primary tumour, 

which confer upon those cells the ability to separate from the primary tumour, migrate away 

from the site of tumor formation to local or distal secondary sites within the body, where they 

establish new tumors known as metastases. Multiple mice are injected in this manner to produce 

sufficient tumour material, both primary and metastatic, for study. This approach thus represents 

a way in which to study human tumour biology in vivo without the limits associated with the use 

of patient tissues.  

Modeling of human MB tumours using mouse PDX models does however have limitations. Most 

importantly, the microenvironment of the surrogate mouse must be significantly modified to 
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permit the growth of human tumours. Specifically, for human MB to grow inside a mouse the 

mouse must be deficient in both innate and acquired immunity, lacking B cells, T cells, and 

Natural Killer cells [40]. The NSG mouse, produced by The Jackson Laboratory, is one such 

mouse strain frequently used for this purpose [41]. This better recapitulates the human 

microenvironment but is still in a mouse. Overall, even with their limitations, PDX models are  

powerful tools to rapidly and cost-effectively identify and characterize new models of human 

tumours that can then be validated and elucidated by other means. 

1.7.3 Iteratively Select for Characteristics of Interest and their Underlying 
Genomics and Transcriptomics in Mouse PDX Models of Human 
Disease  

In vivo iterative selection is an effective method to select for the presence of specific 

characteristics and/or behavior in cells. In vivo iterative selection was first designed and used by 

Fidler and colleagues in 1973, to select for characteristics of melanoma cells grown 

subcutaneously in C57B1/6J mice, which metastasized to the lungs after intravenous injection 

into C57B1/6J mice [42]. Fidler and colleagues removed metastatic nodules from the lungs of 

injected mice, grew the cells in culture, and upon reaching confluence intravenously injected the 

cells into a new mouse. This process was repeated five times to optimally select for cells with the 

greatest propensity for metastasis, namely increased ability to survive, and form secondary 

tumours. This work proved that in vivo iterative selection could be used to identify specific 

characteristics of tumour cells correlated with an increasing propensity for metastasis. Using this 

approach in combination with differential expression analysis, Clark and colleagues were able to 

show that increased transcription of RhoC, a small GTPase, in melanoma metastases to the lungs 

relative to cells in the primary tumour bed, enhanced metastasis, specifically the invasion of 

tumour cells into the lung [43]. Most recently, using in vivo iterative selection combined with 

differential expression analysis, Dr. Adrienne Boire identified the gene for Complement C3 as 

being a gene for which transcriptional activation was necessary and sufficient for the metastasis 

of breast and lung carcinoma cells from the CSF to the leptomeningeal space [44]. To select for 

cells that could survive the harsh conditions of the cerebrospinal fluid (CSF), Dr. Boire directly 

inoculated the CSF through the Cisterna Magna then collected cells that survived and 

metastasized to the leptomeninges. Boire cultured these cells, and then used them to re-inoculate 

a second mouse in an identical fashion. After 3 rounds of selection in this manner, Boire cultured 
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the cells from the leptomeninges, considering them now to be “Intermediate” cells (INT), now 

comprising cells with propensity for growth in the CSF. Boire then introduced INT cells into the 

arterial circulation of new mice. Cells that metastasized from the blood to the leptomeninges 

were isolated, and analyzed using RNA-Seq. It was in these cells that C3 transcription was 

significantly increased. Boire then went even further to demonstrate that C3 from the tumour 

cells was released and interacted with C3 receptors embedded in the surface of blood vessels. 

This served to make the blood-brain barrier permeable, facilitating both the release of 

compounds into the CSF, rendering it capable of supporting tumour cell growth, and the 

migration of tumour cells across the blood-brain barrier into the CSF. Lastly, to strengthen the 

link between C3 and leptomeningeal metastasis, Dr. Boire demonstrated that interference in C3 

signaling led to inhibition of metastasis. So, Dr. Boire’s thorough characterization of C3 

signaling in the context of metastasis beautifully demonstrates how powerful iterative selection 

and transcriptional profiling can be to identify and characterize novel mechanisms of metastasis.   

1.7.4 Use Bulk RNA Sequencing (RNA-Seq) to Accurately Quantify 
Transcription Across the Genome  

The development of next generation sequencing (NGS), first named Massively Parallel Signature 

Sequencing (MPSS), by Dr. Sydney Brenner and colleagues in 2000 [45], came the ability to 

sequence at rates never before possible. Applying NGS to transcriptomics, Bainbridge and 

colleagues created RNA Sequencing (RNA-Seq), and used it to sequence the complete 

transcriptome of the prostate cancer cell line LNCaP [46]. From this point forward, RNA-Seq 

became, and continues to be the preferred method for large-scale expression analysis. Relative to 

microarray-based approaches variation between replicates was significantly less, and expression 

of all transcripts could be measured not just those specifically included on a microarray. So, 

RNA-Seq is a powerful way to quickly and comprehensively profile genome-wide transcription. 

However, to assess changes in transcription between datasets requires the tools of bioinformatics.  

1.7.5 Conduct Differential Expression Analyses and Pathway Analyses In 
silico to Identify Genes and Pathways Significantly Activated in 
Tissues of Interest  

Bioinformatic identification of genes and pathways that are activated in a specific cellular or 

developmental context is an especially powerful way in which to rapidly identify genes that 

might be worthy of further study to determine what role their activation plays in establishing the 
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context in which they have been found to be activated. Differential expression analysis of RNA-

Seq data is in extensive use within the scientific community to identify genes that are 

transcriptionally activated in a specific cellular context relative to a second context [47]. Several 

bioinformatics tools for differential expression analysis now exist, but the shared purpose is to 

distinguish those genes that are differentially expressed from those that are not.  

Similarly, several approaches to pathway analysis have been developed; however, all types fall 

into one of three categories namely enrichment analyses, functional class scoring, or assessment 

of pathway topology [48]. Enrichment analyses assess which pathways are overrepresented 

within lists of differentially expressed genes ranked by a defined characteristic. One example, 

that I used extensively throughout my studies, is Gene Set Enrichment Analysis (GSEA) [49]. In 

a version of this method known as GSEA prerankd, defined sets of genes, formed based upon 

knowledge that all genes belong to a shared pathway, gene family, or other attribute, are 

compared to lists of differentially expressed genes sorted by decreasing probability of activation. 

GSEA will identify those gene sets that are enriched among genes specifically at the top or 

bottom of the list to an extent that is significantly higher than would be expected by random 

chance. Those are the gene sets that are ultimately identified as being enriched within the 

expression datasets subject to analysis.  

In contrast, functional class sorting examines, across lists of differentially expressed genes, the 

overall average magnitude of differential expression across all genes in the pathway. GSEA is 

also capable of running this type of an analysis. Finally, some approaches assess pathway 

topology and significance based upon integrated sets of data from several pathway databases. 

One example of this method implemented is Signaling Pathway Impact Analysis (SPIA) [50].  

Taken together, differential expression analysis and pathway analysis offer a rapid means to 

discover previously unidentified associations between specific genes and pathways, and 

phenotypes of interest, that through further investigation, can potentially serve as valuable 

insights towards the better understanding of biological systems, and ultimately the development 

of therapies to use when those systems fail.   
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1.8 Rationale: A Deeper Understanding of MB Metastasis is 
Needed 

MB tumourigenesis is much better understood than MB metastasis [5]. This deeper 

understanding has informed therapeutic development and thus has led to the current state in 

which therapies for primary tumors are more effective than those for metastases. To develop 

therapies for metastatic MB that are safer and more effective than those that exist will require a 

deeper understanding of the mechanisms that drive metastasis within each MB subgroup and 

subtype.  

In the context of Medulloblastoma, the mechanisms of MB primary tumour initiation and 

progression have been studied extensively; the resulting insights into the biology of MB 

tumourigenesis have served as a strong foundation for the improvement of current therapies for 

primary MB and the development of new approaches that are both safer and more effective than 

anything that had previously existed. In contrast to our deep knowledge of the biology of MB 

primary tumours, our understanding of MB metastasis remains rudimentary. 

The progress in the understanding of MB primary tumour biology has led to the current reality in 

which only a small proportion of patients die due to the action of the primary tumour and the 

majority of MB patient deaths are attributable to the primary tumour having metastasized from  

the leptomeninges. 

1.9 Hypothesis 
Specific coding and non-coding RNA transcripts are transcriptionally activated, and specific 

pathways are activated in MB metastases to the spine relative to primary tumours, and for a 

subset of those activated transcripts and pathways the increased activity is correlated with 

metastasis.  
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Chapter 2: Materials & Methods Culture 

  

2.1 Cell Culture    
GFP-tagged D425 cells, originally from a 5-year old male with Group 3 MB harboring a c-Myc 

amplification, and a 10q deletion [46,XY,i(17q),del(10)(q222), +DMs] [51], were obtained from 

Dr. Yoon-Jae Cho’s lab at Stanford, and grown in 10% FBS in Iscove’s Modified Eagle Medium 

(IMEM) + 5g NaBi , and 1x HEPES. MB411FH cells were obtained from Dr. Jim Olson’s lab at 

the Fred Hutchinson Cancer Research Center. These cells could not be grown in vitro so frozen 

stocks were thawed and used directly for intracranial injections. Rcmb06 cells (Group 4 MB), 

characterized by a duplication of the SNCAIP gene, were obtained from Dr. Weschler-Reya’s lab 

at the Sanford Burnham Prebys Medical Discovery Institute) and grown in 10% FBS in Iscove’s 

Modified Eagle Medium (IMEM) + 5g NaBi , and 1x HEPES.  

2.2 Mouse PDX Models of Human Group 3 and Group 4 MB 
To create mouse PDX models of human metastatic MB, MB cells grown in culture (or in the 

case of MB411FH taken directly from frozen stocks since MB411FH cells could not be 

successfully cultured in vitro) were intracranially injected into NSG mice. In mice in which 

primary tumours formed, and migrated to the spine to form distal metastases, cells were 

extracted and used for either transcriptome analyses by bulk RNA-Seq or injection into 

additional mice as a part of in vivo iterative selection (Figure 3).  
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2.3 In vivo Iterative Selection  
The in vivo iterative selection and RNA-Seq analysis described here was performed by my wet 

bench collaborator, Dr. Noriyuki Kijima, in the Taylor lab, the data from which I then used for 

my doctoral work in bioinformatics. PDX mice in which MB primary tumours and spine 

metastases formed were sacrificed and tumour tissues were dissected. From those tissues cells 

were isolated by FACS sorting based on GFP expression. Purified cells allocated for in vivo 

iterative selection were then injected intracranially into additional NSG mice to complete the 

first round of iterative selection. This process was then repeated four additional times to further 

select for metastasis propensity among spine metastases (Figure 3). Numbers of cells injected 

varied based upon the number of cells that could be harvested in each round (Table 1a). 

Similarly, the total number of mice injected varied between rounds of selection and the numbers 

of metastases that formed per mouse oscillated across rounds of selection  (Table 1b). However, 

all mice intracranially injected with Group 3 MB cells (either D425 or MB411FH) formed spinal 

metastases (Figure 1b).   
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a)  

 
  

b)  

 
 

Table 1. Numbers of cells intracranially injected into xenograft mice, and the frequencies of metastasis in xenograft 
mice across rounds of in-vivo iterative selection. a) Numbers of cells intracranially injected at each round of selection 
b) Numbers of injected mice that formed spine metastases, and frequency of metastases across rounds of selection.  

  

MB Subgroup:
MB Cell Line: 

Tissue: pri spi pri spi pri spi
Round of Selection: 1 1000 8250 4000 4000 10000 10000

2 100 100 100 100
3 100 100
4 100 100
5 100 100

Group 3
D425 MB411FH Rcmb06

Group 4

Cell Line Round of 
Selection 

Total Number of 
Mice Injected 

Number of Injected 
Mice That Formed 
Spine Metastases

Number of Injected Mice 
that Formed Extraneural 

Metastases

Average Number of Spine 
Metastases Per Mouse (of those 
that Formed Spine Metastases)

Average Percentage of 
Spine Cells that were 

Metastases
D425 1 6 6 0/2 278 0.002893%

2 2 2 0/2 401.5 0.017088%
3 2 2 N/A 371 0.002014%
4 3 3 N/A 254.5 0.002231%
5 3 3 N/A 100 0.001019%

MB411FH 1 5 5 1/5 21 0.001556%
2 2 2 1/2 1285.5 0.050719%

Rcmb06 1 3 2 N/A 53 0.000186%
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2.4 Paired-end Bulk RNA-Seq 
In this work, bulk RNA-Seq was used to profile transcriptome-wide expression across samples of 

primary tumours and spine metastases from PDX mice. Primary tumours and spine metastases 

were dissected from PDX mice, and tumour cells were isolated by sorting based on tumour cell 

specific GFP expression. Cells were then lysed, total RNA was extracted, RNA Integrity Number 

(RIN) values, indicative of the quality of the RNA samples, were calculated, and with RIN 

values judged to be reasonable, 10 ng of RNA from each sample was then used as input for RT-

PCR to generate cDNA libraries. These libraries were then used to conduct paired-end bulk 

RNA-Seq.  

2.5 Bioinformatic Identification of Genes and Pathways Activated 
in Mouse PDX and Human Spine Metastases Relative to 
Primary Tumours 

2.5.1 Bioinformatics Analysis Overview 

I used a multi-step bioinformatics pipeline to identify genes and pathways that were most 

significantly activated in metastases to the spine relative to primary tumours (Figure 4, Table 2).  

Pairs of read files from paired-end bulk RNA-Seq analysis were first subject to FastQC quality 

control analysis, to verify that all read files were of sufficiently high quality to be included in 

further analyses. Paired read files were then aligned to the human genome using the RNA-Seq 

aligner Spliced Transcript Aligned to Reference (STAR). RSEM-Calculate-Expression, a 

component of the RNA-Seq by Expectation Maximization (RSEM) bioinformatics suite for gene 

expression quantification and differential expression analysis, was first used to quantify gene 

expression across the genome using RSEM-Calculate Gene Expression. Output data for all 

RNA-Seq datasets, measured in Fragments Per Kilobase of transcript sequenced per Million 

reads (FPKM), was then consolidated into a single file, which was used as input for calculations 

of pairwise Pearson correlation coefficients for all datasets, and a Principal Component Analyses 

(PCA).  
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Separate expression data files were also used as input for RSEM-Generate-Data-Matrix, which 

incorporated specific expression data into consolidated matrices for differential expression 

analysis with replicates in adjacent columns. These data matrices, one for each differential 

expression analysis, were passed to RSEM-Run-EBSeq, the R script, which served as a 

streamlined, user-friendly interface for Empirical Bayes Seq (EBSeq) [52], a powerful yet 

complicated tool for differential expression analysis, which would have been significantly more 

challenging to work with directly. Lists of differentially expressed genes and associated statistics 

were then consolidated into summary tables, and further annotation was automatically 

downloaded and added to the tables using proprietary BASH and R scripts that I wrote. 

Microarray expression data from human Group 3 MB primary tumours and spine metastases 

from the Medulloblastoma Advanced Genomics International Consortium (MAGIC) were then 

subject to quality control analysis using the R package arrayQualityMetrics, and Limma 

differential expression analysis. Lists of differentially expressed genes were then compared with 

those from xenografts.  

Lists of activated genes from xenograft and human samples, sorted by decreasing probability of 

differential expression, were used as input for Gene Set Enrichment Analysis (GSEA). Lists of 

enriched pathways and associated statistics were then consolidated into summary tables, and 

pathway-specific genes were added for significantly enriched pathways, using proprietary BASH 

and R scripts that I wrote.  

Other proprietary scripts that I wrote were a variety of BASH and R scripts to generate subset 

tables from the original summary tables, and scripts to all analyses described here in high-

throughput.  

2.5.2 Quality Control Analysis Using FastQC  

To assess the quality of the expression data obtained from paired-end bulk RNA-Seq, all datasets 

were analyzed using FastQC [53] (Table 2). Characteristics assessed were overall, per-sequence, 

and per-base sequence quality, per-base sequence content and N content, per-sequence GC 

content, the sequence length distribution, the levels of duplication per sequence, overrepresented 

sequences, and adapter content.  
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2.5.3 STAR Alignment of RNA-Seq Reads to the Genome 

Paired-end reads from bulk RNA-Seq analyses in FASTQ-formatted data files were mapped to 

specific loci within the human genome (Ensembl GRCh37 [54] ) using Spliced Transcript 

Aligned to Reference (STAR) [55] (Table 2). Proprietary scripts were written in BASH and R to 

automate alignments.  

2.5.4 Measurement of Genome-wide Transcription 

Once mapped to specific loci, RNA-Seq by Expectation Maximization (RSEM) was used to 

quantify gene expression [56] (Table 2). Specifically, the RSEM-Calculate-Expression function 

measured the transcription of all sequences included in the RNA-Seq data in the unit FPKM, 

fragments per Kb sequenced per million reads. This specific unit was used in order to avoid 

underreporting of expression levels, and to account for differences in gene length. With 

expression levels calculated, the RSEM-Generate-Data-Matrix function was used to construct the 

data matrix used by RSEM for differential expression analysis. 

2.5.5 Pearson Correlation Between RNA-Seq Datasets 

To verify that datasets being grouped as biological replicates exhibited significant similarity, and 

datasets from different tissues exhibited significant difference, Pearson correlation coefficients 

were calculated for pairwise comparisons between all RNA-Seq datasets being considered. 

Percent correlation coefficients were grouped into categories: 0-0.50, 0.50-0.75, 0.75-0.85, 0.85-

0.99, and 1.00. 

2.5.6 Principal Component Analysis (PCA)  

A principal component analysis was performed to examine the clustering of expression data 

before performing differential expression analyses. Coordinates along the primary axis of 

variation (X-axis) were combined with the complete set of values from each expression dataset 

for specific scale variables connected to specific steps in the preparation of RNA samples for 

RNA-Seq analysis. Pairwise Pearson correlation assays were then performed between the X-axis 

coordinates and the complete set of values for each of the scale variables to determine whether 

the variation associated with any of these scale variables corresponded to any part of the 

variation represented by the principal component of variation. Scale variables included in this 

analysis were i) Number of Sorted Cells, ii) Sorted Cell RNA Concentration (ng/ul), iii) RNA 
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Integrity Number (RIN), iv) RNA Input for Amplification (ng), v) Post-PCR cDNA 

Concentration (ng/ul), and vi) Final Library Concentration (ng/ul).  

2.5.7 Differential Expression Analysis Between Xenograft Spine 
Metastases and Primary Tumours  

The RSEM-Run-EBSeq function was used to conduct an Empirical Bayes Seq (EBSeq) 

differential expression analysis of genome-wide transcription in Group 3 and Group 4 MB spine 

metastases relative to primary tumours. EBSeq is a tool for differential expression analysis, 

which, built upon a foundation of Empirical Bayes (EB) methodologies, generates posterior 

probabilities for every gene reflecting the likelihood that a gene is differentially expressed [52]. 

In addition to detecting differentially expressed genes, EBSeq is also capable of conducting 

differential expression of isoforms for a single gene. This extensive functionality makes working 

with EBSeq directly quite challenging. To provide a more user-friendly interface for EBSeq, 

RSEM-Run-EBSeq was created. So, I used this script rather than EBSeq directly to conduct my 

differential expression analyses. Comparisons were made between primary tumours from each 

round of selection, and between primary tumours and spine metastases from each round of 

selection, to serve as controls to identify changes in transcription that were a product of the 

process of in-vivo iterative selection itself rather than increased propensity for metastasis. In 

contrast, comparisons were also made between spine metastases from each round of selection, 

and primary tumours from the first round of selection to identify genes that were becoming 

activated specifically in correlation with increasing metastasis (Table 3). Included with EBSeq 

results were posterior probabilities to aid in the assessment of the confidence with which to 

consider genes identified as being differentially expressed. Specifically, statistics comprised the 

posterior probability of differential expression (PPDE) and the posterior probability of equal 

expression (PPEE), as well as a posterior fold-change in transcription (PostFC), and a 

normalized fold change in transcription (RealFC). From this point forward, P will be used to 

represent PPEE, and FC to represent RealFC.  
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2.5.8 Generation of Summary Tables of Genes Transcriptionally Activated 
in Spine Metastases Relative to Primary Tumours with Genes Sorted 
by Significance of Activation 

I generated summary tables of differentially expressed genes using proprietary scripts that I 

wrote in BASH, and R (v.3.1.1). Genes were ordered by score (-log10[P] x sign of log2[FC]). 

Top gene candidates had P=0, which made it not possible to calculate a value for -log10[P] 

(infinite solution). To overcome this, for all genes with P=0, I made their score equivalent to the 

value of the top score across the rest of the dataset plus 1. 

2.6 Differential Expression and Pathway Analysis of Microarray 
Data from Human Group 3 MB patients and Comparisons 
with Genes and Pathways Activated in Mouse PDX Models 

2.6.1  Bioinformatics Analysis Overview 

I used a multi-step bioinformatics pipeline to identify genes and pathways that were most 

significantly activated in metastases to the spine relative to primary tumours (Figure 5, Table 2). 

2.6.2 Source of Human MB Expression Data: The MAGIC tumour bank 

The microarray expression data used for differential expression analyses was derived from MB 

primary tumor and spine metastasis tissues managed by the Medulloblastoma Advanced 

Genomics International Consortium (MAGIC) tumor bank, which contains more than 2000 

frozen MB tumors from 90 neuro-oncology institutions around the world [1]. Microarray 

expression analysis had previously been performed for a subset of MAGIC primary tumours and 

spine metastases. So, I selected 4 Group 3 primary tumors and 4 spine metastases with available 

microarray expression data to use in differential expression analyses.  

2.6.3 Quality Control Analysis Using ArrayQualityMetrics  

Microarray expression data from the 4 primary tumour samples and 4 spine metastasis samples 

selected were subjected to quality control analyses using the R Package ArrayQualityMetrics 

(Table 2) [57].  
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2.6.4 Comparison of Genome-wide Transcription Between Primary 
Tumours and Spine Metastases from Human Group 3 MB Patients 

Microarray expression data from human Group 3 spine metastases and primary tumours were 

compared by differential expression analysis using Limma run within R (v3.3.2) (Table 2) [58]. 

Differentially expressed transcripts were ranked by -log10[P] X the sign of log2[FC], with P 

representing the probability of equal expression, and FC being the fold change in transcription. 

Comparisons between lists of genes transcriptionally activated in spine metastases from mouse 

xenograft models and lists of genes transcriptionally activated in spine metastases from human 

Group 3 MB patients were carried out using custom BASH scripts.  

2.7 Gene Set Enrichment Analysis (GSEA) of Ranked Lists of 
Genes Transcriptionally Activated in Spine Metastases from 
PDX Mice, and Human Group 3 MB Patients Relative to 
Primary Tumours  

I used lists of differentially expressed genes, ordered by -log10[P] X the sign of log2[FC], as 

input for GSEA Preranked. I considered gene sets to be significantly enriched if the False 

Discovery Rate (FDR) was 0.15 or less. I then wrote proprietary scripts in BASH and R 

(v.3.1.1/v.3.3.2) to generate summary tables of enriched pathways sorted by increasing FDR 

(decreasing significance). I then extracted lists of pathway-specific genes from GSEA output 

files and wrote additional scripts in BASH and R to add these lists to existing summary tables.  

2.8 Bench-based Validation of Genes Transcriptionally Activated 
in Mouse PDX Spine Metastases Relative to Primary 
Tumours  

2.8.1 Immunohistochemical Staining to Determine Whether Protein 
Expression in Mouse PDX Spine Metastases is Reflective of the 
Activation Observed at the Transcript Level  

For four of the most significantly transcriptionally activated genes, Immunohistochemistry was 

used to determine whether protein levels were increased in a manner reflective of the increased 

transcription that was observed in spine metastases relative to primary tumours. Brain and spinal 

cord tissue sections from intracranially-injected PDX mice were stained with Hematoxylin and 

Eosin (H & E staining) to emphasize the location of tumour cells within the brain and spinal cord 
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(Figure 6a). Adjacent sections were then stained with polyclonal antibodies against PAGE1 

(Atlas Antibodies - HPA003473), MAGEC2 (Atlas Antibodies - HPA062230), MAGEA10 

(Merck - SAB1300318), and CT45A1 (Atlas Antibodies - HPA046987) (Figure 6b). As a 

positive control, all of these antibodies were used to stain testis tissues.   

  



39 

 
39 

 
 

Br
ai

n

H
 &

 E
 S

ta
in

in
g 

of
 

Se
ct

io
ns

 A
dj

ac
en

t t
o 

Se
ct

io
ns

 fo
r I

H
C

a)
b)

Im
m

un
oh

ist
oc

he
m

ist
ry

Ca
nd

id
at

e-
Sp

ec
ifi

c
Ab

Sp
in

al
 C

or
d

Br
ai

n
Sp

in
al

 C
or

d

Fi
gu

re
 6

. I
m

m
un

oh
is

to
ch

em
ic

al
 (I

H
C

) s
ta

in
in

g 
of

 ti
ss

ue
 s

ec
tio

ns
 o

f P
D

X 
m

ou
se

 p
rim

ar
y 

tu
m

ou
rs

 a
nd

 s
pi

ne
 m

et
as

ta
se

s 
to

 d
et

er
m

in
e 

if 
pr

ot
ei

n 
ex

pr
es

si
on

 in
 s

pi
ne

 m
et

as
ta

se
s 

re
se

m
bl

es
 tr

an
sc

rip
tio

n.
 a

) T
is

su
e 

se
ct

io
ns

 a
dj

ac
en

t t
o 

th
os

e 
to

 
be

 u
se

d 
in

 IH
C

 a
re

 H
 &

 E
 s

ta
in

ed
, t

o 
de

fin
e 

tu
m

o u
r l

oc
at

io
n 

b)
 P

rim
ar

y 
tu

m
ou

r a
nd

 s
pi

ne
 m

et
as

ta
si

s 
tis

su
e 

se
ct

io
ns

 a
re

 
st

ai
ne

d 
w

ith
 a

nt
ib

od
ie

s.
 In

cr
ea

se
d 

pr
ot

ei
n 

le
ve

ls
 in

 s
pi

ne
 m

et
as

ta
se

s  
w

ou
ld

 v
al

id
at

e 
th

e 
di

ffe
re

nc
es

 o
bs

er
ve

d 
at

 th
e 

tra
ns

cr
ip

t l
ev

el
.  

  



40 

 
40 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 3: Results  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



41 

 
41 

Chapter 3: Results 

  

3.1 Overview 
For my doctoral studies, I sought to draw upon the significant biological resources available at 

the Hospital for Sick Children, and the power of bioinformatics analysis to deepen the 

understanding of the specific molecular mechanisms, which drive the metastasis of 

Medulloblastoma (MB) from the primary tumour bed to the spine. Working in collaboration with 

wet bench researchers, I made use of differential expression analyses and pathway analyses to 

identify and characterize genes and pathways that had become more active in metastases to the 

spine relative to primary tumours. Such genes and pathways, activated in correlation with the 

activation of metastases, would represent potential new leads in the ongoing effort to map the 

molecular means by which MB tumours gain the ability to separate from the primary tumour, 

leave the primary tumour bed, and migrate, via the cerebrospinal fluid (CSF) or the bloodstream, 

to target sites throughout the body. This is valuable because metastatic MB is strongly correlated 

with poor outcomes among MB patients and genes and pathways activated in correlation with 

metastasis could represent new therapeutic targets that if studied further, could serve as origins 

of new patient-tailored therapies that could be both safer and more effective than what currently 

exists. It is exciting to report that this work implicated both Cancer Testis Antigen (CTA) genes, 

and long non-coding RNAs (lncRNAs) as being RNAs for which increased transcription is 

correlated with metastasis, or possibly even RNAs that play a role in mediating MB metastasis. 

Only through further research will it become possible to elucidate the specific roles played by 

these RNAs in the metastasis of Group 3 MB tumours from the cerebellum to the spine.  

3.2 Differential Expression Analysis of RNA-Seq Data from 
Patient-Derived Xenograft (PDX) Models of Human Group 3 
and Group 4 MB Tumours  

3.2.1 Introduction  

To identify novel genes and pathways activated in correlation with MB metastasis to the spine, 

bioinformatics approaches were used to explore RNA-Seq data from the spine metastases and 



42 

 
42 

primary tumours of mouse PDX models of human MB that had been subjected to iterative 

selection for an increased propensity for metastasis to the spine.    

3.3 Exploratory Analysis of Xenograft-derived RNA-Seq Data 

3.3.1 Quality Control (QC) Analyses Confirm that All RNA-Seq Data is of 
Sufficient Quality to be Included in Differential Expression Analyses  

Prior to conducting differential expression analyses, it was necessary to verify that all RNA-Seq 

data did not show signs of bias, contamination, or inaccuracy, factors that would each lead to 

error in RNA-Seq analyses. I used FastQC [53] (Table 2), an established tool for the assessment 

of RNA-Seq data quality, for this purpose.  

FastQC used a specific set of metrics to assess overall dataset quality, namely sequence quality 

(per base, per sequence, per complete file), and sequence content (%GC, frequency/length of 

duplications, presence of adaptor sequences) (Appendix QC). Across all datasets, sequence 

quality at all resolutions was very high, with no sequences needing removal due to poor quality. 

In addition, GC content and sequence length across all sequences followed a normal distribution, 

duplications were very rare, and when they would occur, would be only 1 or 2 bases in length.  

Also, adapter sequences were completely absent. So overall, sequences were of very high quality 

and thus could all be included in subsequent analyses.  

3.3.2 Pairwise Pearson Correlation Analyses Confirm Transcriptional 
Similarity Correlates with Tissue Similarity Among RNA-Seq Datasets   

With data quality confirmed, I evaluated whether the expression data derived from biological 

replicates of primary tumours were more strongly correlated with one another or with the 

expression data derived from biological replicates of spine metastases. Pearson correlation 

coefficients (PCCs) were calculated for all possible pairwise comparisons between RNA-Seq 

data from the primary tumours and spine metastases of PDX mice derived from D425, 

MB411FH, and Rcmb06 cell lines. PCCs only are included in the main text while detailed 

results, including both PCCs and corresponding P-values, are included in Appendix 1. The P-

values, indicative of the significance of the PCCs calculated, were 0.00 for all comparisons. This 

indicated that all PCCs were statistically significant, a finding that is not surprising given the fact 

that expression of 57391 transcripts was available for comparison between datasets. These 
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claims, that the 0.00 P-values were indicative of significance, and were so low, at least in part, 

due to the large sizes of the datasets, are supported by the fact that PCCs calculated for a 

subsampling of datasets were associated with significant non-zero P-values. A good example of 

this is the P-value that was reached for a comparison of the expression of the first 900 transcripts, 

ordered by increasing EnsemblID, from the D425pri1 and D425spi1 datasets (pri=primary 

tumour; spi=spine metastasis; pri/spi1= first round of selection) (PCC = 0.89; P = 3.47x10-302, 

data not shown). For control comparisons between identical datasets, in which PCCs were, by 

necessity, 1.00, P-values could not be calculated.  

Comparing all of the RNA-Seq datasets, several observations could be drawn (Appendix 1a). 

Across data from different cell lines, Group 3 MB cell lines D425 and MB411FH were 

transcriptionally more similar to one another than to the Group 4 cell line Rcmb06. However, 

correlation between tissue-specific replicates within cell lines was stronger than correlation 

between replicates of the same tissues from different cell lines, even if both lines were models of 

the same MB subgroup. So, taken together, this data demonstrated that although the Group 3 cell 

lines are more similar to one another than to Group 4, they are still sufficiently different to merit 

separation by cell line for all further analyses rather than combining into a single expression set 

divided only by tissue and round of selection.  

Building upon these findings further Pearson correlation analyses were then performed 

separately for the datasets from each cell line. In D425 RNA-Seq data strong correlation was 

observed between biological replicates from corresponding rounds of selection for both primary 

tumours and spine metastases (Table 4). The only exception to this was the fourth primary 

tumour replicate, for which expression was only weakly correlated with that of the other primary 

tumour datasets, and those from spine metastases. This primary tumour dataset was, as a result, 

omitted from future analyses. In addition, in the first round, the difference in the magnitude of 

expression between primary tumours and spine metastases was small; however, this difference 

grew with increasing rounds of selection. 

Correlation between expression datasets from corresponding tissues, whether primary tumour or 

spine metastasis, was much more variable in MB411FH-derived xenograft mice relative to those 

derived from D425 (Table 5). In the majority of cases, correlation between same tissues was 

greater than correlation between primary tumour and spine datasets. However, there were also 
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several occasions in which correlation was strongest between a primary tumour dataset, and a 

spine metastasis dataset rather than other primary tumours. This was observed both before 

selection, and across the rounds of selection. Taken together, correlation in expression between 

tissue-specific replicates was present in both D425 and MB411FH-derived xenograft models of 

human Group 3 MB but was stronger for D425 than for MB411FH.  

With respect to the expression datasets from primary tumours and spine metastases of the 

Rcmb06-derived xenograft mouse (Group 4 MB), tissue-specific biological replicates were 

strongly correlated with one another, as was observed for the D425 and MB411FH – derived 

xenograft models of Group 3 MB (Table 6). So, taken together, this data served to validate that 

the transcriptomes of spine metastases were significantly different, albeit to differing extents, 

from those of primary tumours in each of the MB models studied. 
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3.3.3 Principal Components of Variation are In Part Attributable to Variation 
in Scale Variables Associated with Specific Steps of Bulk RNA-Seq 
Protocol  

To qualitatively and quantitatively explore the variation present in the RNA-Seq data, I 

performed principal component analyses (PCA) for a combined dataset including RNA-Seq data 

from all datasets, and for subsets of data specifically from D425, MB411FH, and Rcmb06 

(referred to as VJDup on PCA plots). In the combined dataset, the top two components of 

variation (PC1 and PC2) accounted for 81% of the total variation within the dataset (Appendix 

2). Similarly, PC1 and PC2 together accounted for 79%, 91%, and 87% of the total variation in 

D425, MB411FH, and Rcmb06 datasets respectively (Appendix 2). We then sought to find 

specific characteristics of the expression datasets to which this variation could be attributed. 

Points on the PCA plot were assigned different colours to reflect different discrete possibilities 

for those characteristics of the datasets, predominantly linked to specific stages of the bulk RNA-

Seq procedure. Clustering of a single colour would indicate association of that characteristic with 

the variation within the RNA-Seq data. No clear clustering was observed qualitatively for any of 

the characteristics considered, including tissue (Appendix 2). To investigate quantitatively 

whether associations exist, Pearson correlation analysis was performed between the x 

coordinates for PC1 (pc1_x) from the PCA plots for D425, MB411FH, and Rcmb06, and the 

specific values for the 6 scale variables among those considered qualitatively in PCA plots. 

These were specifically 1) the number of cells obtained from xenograft tissues through sorting 

(Number_of_Sorted_Cells), 2) the concentration of RNA isolated from sorted cells 

(Sorted_Cell_RNA_Concentration_ngperul), 3) the RNA Integrity Number (RIN) 

(RNA_Integrity_Number_RIN; a measure of RNA quality), 4) the mass of RNA used as input 

for PCR amplification (RNA_Input_for_Amplification_ng), 5) the cDNA concentration after 

PCR amplification (Post_PCR_cDNA_Concentration_ngperul), and 6) the final cDNA library 

concentration (Final_Library_Concentration_ngperul). For D425 the principal component of 

variation represented by pc1_x was moderately correlated with the number of sorted cells 

(Correlation Coefficient (CC)=-0.57), and strongly correlated with the RNA input for 

amplification (CC=-0.75) (Table 7). Similarly, for Rcmb06 pc1_x was moderately corelated with 

the RIN (CC=-0.51), and the post-PCR cDNA concentration (CC=-0.62) (Table 8).  
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In contrast, pc1_x from MB411FH was not correlated with any of the scale variables considered 

(Table 9). Taken together, this indicated that transcriptional differences identified between 

primary tumours and spine metastases for D425 might be due to genuine differences but might 

also be attributable to other confounding factors. So, for any genes found to be transcriptionally 

activated, validation would be needed, to verify that transcriptional activation was in correlation 

with metastasis and not other variables such as the scale variables described here.  
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In summary, exploratory analysis of the expression datasets generated from bulk RNA-Seq 

confirmed that data was of high quality. Furthermore, replicates of expression data from primary 

tumours and spine metastases exhibited patterns of correlation specific to tissue type. However, 

PCA demonstrated that the principal component of variation for D425 was correlated with the 

quantities of cells and RNA used as input for bulk RNA-Seq, and the principal component of 

variation for Rcmb6 was correlated with the RIN. This reinforced the fact that bench-based 

validation would be needed for any observations made using bioinformatics.      

3.4 Differential Expression Analysis (DEA) Identifies Genes 
Transcriptionally Activated in Xenograft Spine Metastases 
Relative to Primary Tumours Prior to Selection    

 In mouse PDX models of human Group 3 and Group 4 MB, several genes were transcriptionally 

activated in spine metastases relative to primary tumours. In most cases activated genes were 

unique to either D425, MB411FH, or Rcmb06 mouse models (Appendix 3); however, a small 

number of activated genes were shared between datasets (Figure 7). Of greatest interest would be 

any transcriptionally activated genes shared between xenograft models. Two genes, specifically 

the PLP1 gene coding for proteolipid protein 1, and the RPL21P75 gene coding for a pseudogene 

of ribosomal protein 21, were activated in all three types of xenograft mouse models (Table 10). 

In addition, two activated RNA species, specifically the long non-coding RNA (lncRNA) RP11-

282O18.6, and the enolase pseudogene ENO1P1, were shared among the xenograft mouse models 

of specifically human Group 3 MB (Table 11). Although not statistically testable due to the low 

number of genes shared in this manner, qualitatively an apparent consistency in the magnitudes of 

P and FC was especially striking for RP11-282O18.6, RPL21P75, and ENO1P1 (Table 10, Table 

11). So, taken together some genes were found to be transcriptionally activated in a recurrent 

fashion, and further even, in the case of PLP1, in a non-subgroup-specific fashion. However, this 

overlap in transcriptionally activated genes between groups was very small, and might have been 

due purely to chance, resulting from variability introduced into the dataset by sources other than 

tissue differences. Further, while 2 activated pathways were shared between D425 and MB411FH 

in the first round of selection, the majority of activated pathways were unique to each cell line 

(Appendix 8). So further clarification will be needed to determine whether this finding is genuine 

or artifactual.  
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Shifting focus to genes activated in only one of the mouse models, 195 genes were transcriptionally 

activated (P<0.05) in D425 spine metastases relative to primary tumours (Appendix 3a). The five 

genes most significantly activated were the gene encoding the inhibitor of DNA-binding ID1, and 

the Nudix Hydrolase gene NUDT11, a specific variant of which is weakly associated with the 

appearance of tumour-like characteristics in prostate cancer cells [59, 60]. In addition, of particular 

relevance and interest to this study, the protein phosphatase PPP1CC was also transcriptionally 

activated. PPP1CC transcription has previously been shown to be reduced by more than half in 

response to the siRNA-mediated knockdown of LASP1, a mediator of MB metastatic 

dissemination [61] . Also, increased PPP1CC transcription has been observed in proliferating 

astrocytes and microglia following an induced traumatic spinal cord injury in rats [62]. 

Furthermore, also included was the gene SEPHS, which codes for selenophosphate synthetase 1. 

While SEPHS has not yet been directly linked to metastasis, SEPHS overexpression further 

enhances the increased radiosensitivity that is associated with increased levels of p53 [63]. In 

addition, transcriptional activation of the gene coding for signal transduction protein STAT3 was 

observed. Increased STAT3 transcription in MB stem cells (MBSCs) drives tumorigenesis via the 

regulation of c-Myc [64]. Furthermore, as previously discussed STAT3 expression is necessary and 

sufficient to render Group 3 MB cell line Med8A resistant to multiple chemotherapeutic agents 

used alone. However, the cell line remains sensitive to vincristine used in combination with 

cisplatin or STAT3 inhibitor niclosamide. Furthermore, the chemoresistance might be sexually 

dimorphic, since the chemoresistance is dependent on the co-expression of male-specific signaling 

factor IL6 [11]. In addition, the gene encoding complement 3 (C3), previously linked to metastasis 

by Boire and colleagues [65], was transcriptionally activated. As well, PRSS54, a serine protease 

and member of the Cancer Testis Antigen (CTA) gene family, exhibited more than 16X increased 

transcription (log2FC=4.52) in spine metastases; CTA genes are frequently associated with 

metastatic cancer upon mutation or overexpression, most frequently as biomarkers. However, 

increased transcription of PRSS54 has been shown to not be necessary for male fertility in mice so 

might similarly have a lesser role to play in mediating metastasis [66].  

Comparatively, only 58 genes were transcriptionally activated in spine metastases from 

MB411FH xenografts (Appendix 3b). The 5 most significantly activated genes were DNAJC19, 

a mitochondrial translocator correlated with cerebellar atrophy in the context of paediatric 
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cardiomyopathy [67, 68], an X-linked gene, BEX2, which interestingly has been shown to 

promote the metastasis of colorectal cancer through aberrant Hedgehog signaling when silenced 

[69], ACYP2, a muscle and biomarker associated with hearing loss in pediatric cancer patients 

treated with Cisplatin, an uncharacterized noncoding RNA RP11-82L2.1, and the protein-coding 

RNA CMC1. It is also worth noting that SSX2, a CTA gene and known regulator of focal 

adhesion [70], was also transcriptionally activated in the MB411FH spine metastases, although 

again less significantly than the top 5 genes. In contrast, for Rcmb06 (Group 4 MB), 915 genes 

were transcriptionally activated in spine metastases relative to primary tumours with the 5 most 

significantly activated genes being the cannabinoid receptor interacting protein 1 gene CNRIP1, 

the peripheral clock protein gene NCKAP5, an uncharacterized non-coding RNA RP1-228P16.1, 

deubiquitinating enzyme with Josephin domain JOSD1, and a regulator of G-protein signaling 

RGS17 (Appendix 3c).  

Taken together, genes transcriptionally activated in the spine metastases from all xenograft 

models relative to primary tumours, largely did not show strong connections to known 

mechanisms of metastasis, with a few exceptions. PPP1CC, for example, is a candidate that 

would be worth exploring further given its earlier identified link to MB metastatic dissemination. 

Comparatively, BEX2, while correlated with metastasis when silenced, would not be a target 

easily pursued; is more difficult to definitely show that the removal of a gene product drives 

tumorigenesis or metastasis relative to the introduction of increased levels of a gene product. 

Furthermore, in practice, there are many fewer confounding variables associated with linking 

gene activation to metastasis than gene silencing. In addition, ACYP2 could represent a valuable 

new biomarker of risk for side-effects associated with Cisplatin chemotherapy for paediatric MB 

patients. The identification of these genes does serve as proof that in some cases increased 

expression of metastasis-associated genes is being selected for. However, at this point it is the 

exception not the rule. Rather it appears that other influences are more generally driving 

increases in gene expression.  

3.5 Iteratively Selecting for Increased Metastasis, Genes Exhibit 
Several Patterns of Increased Transcription in Spine 
Metastases Relative to Primary Tumours  

 To enrich for genes with transcription increasing in correlation with metastasis, spine metastases 

were isolated from xenograft mice, and intracranially injected into the cerebella of new mice, 
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serving as the seeds for a next generation of xenograft models. Five rounds of in vivo iterative 

selection of this sort were performed, in order to produce spine metastases with increased 

propensity for metastasis; at the genetic level these super-metastases would also, by necessity, 

exhibit increased transcription of genes necessary and/or sufficient for metastasis, and unchanged 

or decreased expression of genes irrelevant to metastasis relative to the primary tumour.  

3.5.1 Genes Exhibit a Wide Range of Modes of Increased Transcription 
Across 5 Rounds of Selection  

Across the 5 rounds of selection carried out for the D425 PDX mouse model, multiple patterns of 

change in transcription were observed (Appendix 4). Some genes exhibited increased transcription 

in single rounds of selection, but ultimately did not remain activated once all rounds of selection 

were complete (Appendix 4). These genes were likely among those for which their increased 

transcription was irrelevant to metastasis or genes for which promotion of metastasis was less than 

that of other genes and thus rendered irrelevant. In contrast, of significant interest were 39 genes 

transcriptionally activated in spine metastases in both the first and fifth rounds of selection (Figure 

8). Included among these genes were both PLP1, earlier found to be shared among all three PDX 

models of human MB, and PPP1CC, previously linked to MB metastasis. The latter especially 

served as valuable evidence that iterative selection was selecting for the increased transcription of 

a gene linked to metastasis. Other genes were transcriptionally activated in the first round of 

selection and were then maintained at the same level across the remaining rounds of selection. 

(Appendix 4). It can be hypothesized that these genes may have actively promoted metastasis in 

the first round of selection but then became neither beneficial nor detrimental to metastasis through 

the remaining rounds of selection. As well, other genes were transcriptionally activated in only the 

fifth and final round of selection. This pattern would suggest that other changes in previous rounds 

set the stage for these genes to become active correlates of metastasis in round 5 (Appendix 4). 

This pattern was observed for a large proportion of the genes of the Cancer Testis Antigen (CTA) 

gene family. Taken together, iterative selection for increased metastasis propensity in spine 

metastases affected transcription of genes in several ways, suggesting that their connections to 

metastasis may be just as heterogeneous.  
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Figure 8. Transcriptionally activated genes shared between rounds 1 and 5 of selection. a) Among the genes 
transcriptionally activated in round 1 of selection, 39 are also transcriptionally activated in round 5 of selection b) 
Names of the 39 transcriptionally activated genes shared between rounds 1 and 5 of selection. Underlined genes are 
of particular interest due to shared identification as a candidate in the first round of selection (PLP1), or previous links 
to MB metastasis (PPP1CC). 
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3.5.2 Transcription of a Subset of Genes Increases At an Increasing Rate 
Across All Rounds of Selection  

Of greatest interest were a subset of genes for which transcription increased at a rate, which 

progressively increased across all rounds of selection (Table 12, Appendix 5). Genes exhibiting 

this pattern of increasing transcription included genes with a wide range of functions; however, by 

far the gene with the greatest magnitude of increase in both P ad FC was XIST a long non-coding 

RNA (lncRNA) most frequently associated with X-chromosome inactivation [71] (Table 13).  
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3.5.3 CTA Genes Predominate Among Transcriptionally Activated Genes in 
General, and are Present Specifically Among Those Genes with 
Progressively Increasing Transcription Across Rounds of Selection  

Included among the 1966 genes with significant transcriptional activation in at least one round of 

selection (Appendix 4) were 46 CTA genes (Table 14), representing 5% of the total list of 1966 

genes. Furthermore, among these CTA genes were 11, which also exhibited progressively 

increasing transcription across rounds of selection (Table 15). Looking more closely at the 

transcriptionally activated CTA genes, many transitioned from not being activated in round 1 of 

selection to being significantly activated in round 5 of selection, evidenced by significant 

increases in both P and FC (Figure 9). So, CTA genes are predominant among transcriptionally 

activated genes, and are clearly present among genes exhibiting progressively increasing 

transcription across rounds of selection.  
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Thresholds
Cell Line
Statistic
Comparison pri1spi1 pri1spi2 pri1spi3 pri1spi5 pri1spi1 pri1spi2 pri1spi3 pri1spi5 pri1 spi1 spi2 spi3 `spi5
Candidate Gene
MAGEA10 0.03 0.04 12.23 16.95 1.54 1.29 2.86 2.36 342.21 993.10 969.56 2883.15 2016.80
MAGEC2 0.01 16.65 16.95 16.95 0.73 4.38 2.84 4.63 120.81 201.03 2955.00 1014.94 3440.64
CT45A3 0.01 0.00 15.95 16.95 0.94 1.01 4.79 9.42 2.17 4.18 5.13 70.74 1723.95
XAGE1D 0.00 3.51 0.88 16.95 0.23 0.97 0.76 1.34 1113.52 1304.18 2570.33 2214.22 3232.35
XAGE1B 0.00 1.30 1.79 16.95 0.11 0.73 0.79 1.25 4224.11 4562.24 8226.64 8598.31 11523.18
PAGE4 0.00 0.00 0.00 16.95 -0.50 1.12 0.18 7.94 1.56 1.10 4.03 2.09 446.86
IL13RA2 0.00 0.00 2.77 16.95 -3.49 1.09 2.45 5.37 12.49 1.10 31.21 80.32 596.60
CT45A1 0.00 0.00 0.00 16.95 1.10 3.07 4.24 8.30 0.94 2.04 9.41 21.11 343.92
HORMAD1 0.00 0.00 0.00 16.95 0.31 -0.35 -0.30 6.96 1.09 1.36 1.01 1.04 158.60
GAGE12I 0.01 15.35 5.47 16.95 -0.13 1.85 1.42 2.36 78.34 71.56 334.10 246.51 466.52
GAGE1 0.02 1.47 16.95 16.95 -0.28 2.17 3.86 3.24 23.58 19.47 122.99 396.05 256.00
CT45A4 0.00 0.00 0.00 13.82 0.02 3.00 3.64 8.52 1.09 1.10 10.36 16.06 466.07
XAGE2B 1.24 13.54 3.95 12.01 4.01 4.76 4.32 5.54 2.03 32.90 63.80 46.94 108.17
TEX15 0.03 0.53 0.11 12.28 -0.31 2.05 -2.21 5.47 8.40 6.76 40.27 2.09 428.93
HORMAD2 0.32 0.07 0.14 8.02 -2.86 0.84 1.26 2.14 8.05 1.10 17.12 22.95 40.76
TEX14 1.14 1.58 0.00 8.70 -2.51 2.52 1.67 4.05 10.67 1.87 71.48 39.64 203.04
PTPN20A 0.04 3.97 0.07 5.33 -1.15 3.05 1.29 5.68 4.43 1.99 42.05 12.39 259.41
CSAG2 0.02 0.04 0.02 5.14 0.40 -0.46 -0.40 0.80 131.60 173.74 112.61 117.47 263.28
ATAD2 0.00 0.01 0.02 5.14 0.23 0.41 -0.75 1.30 783.29 917.00 1221.26 544.50 2220.99
MAGEB1 0.04 0.19 0.04 4.46 0.93 1.31 0.14 2.05 9.54 18.18 28.19 12.52 45.75
CT45A5 0.00 0.00 0.00 4.43 0.87 0.73 1.46 6.70 1.16 2.12 2.25 3.72 139.32
GPAT2 0.00 0.01 0.00 4.39 0.69 4.55 3.97 6.57 1.15 1.86 31.74 21.13 126.41
NOL4 0.00 0.00 0.00 4.24 -1.28 1.79 -0.03 3.78 2.69 1.10 11.07 3.13 42.94
TMEFF2 0.55 0.00 0.03 3.44 2.80 2.94 0.37 4.18 4.86 33.85 43.29 7.30 100.92
XAGE5 0.02 0.08 0.14 3.87 -0.20 -1.44 1.78 2.29 11.89 10.35 5.03 46.94 66.46
TPTE 1.60 2.21 0.00 5.29 -0.82 -1.06 0.49 0.75 96.63 54.88 54.37 158.55 186.40
SSX2 0.00 16.65 16.95 3.64 0.35 9.37 6.86 6.22 0.86 1.10 675.68 118.40 74.48
XAGE1C 0.01 0.01 0.01 3.50 0.04 0.44 0.43 1.95 342.71 353.50 548.80 544.38 1522.72
CT45A2 0.00 0.00 0.00 3.21 -0.52 3.92 -0.81 5.40 1.59 1.10 27.95 1.04 77.13
CT45A6 0.00 0.00 0.00 3.12 0.15 0.61 3.07 5.58 1.26 1.40 2.27 12.50 69.73
TDRD1 0.00 0.00 0.00 3.04 0.00 0.00 0.00 5.68 0.00 0.00 0.00 0.00 51.22
DPPA2 0.00 0.00 0.00 2.59 -0.43 2.53 -0.73 4.94 1.49 1.10 10.07 1.04 52.33
TAF7L 0.03 0.07 0.00 2.35 0.40 -1.36 2.38 4.51 2.19 2.89 1.01 13.56 57.34
MAGEA1 0.01 0.05 0.01 2.31 -0.15 0.88 0.53 1.41 433.34 390.57 945.40 741.65 1333.19
NXF2B 0.16 0.16 0.14 1.97 1.87 -3.11 -3.06 4.11 7.69 28.16 1.01 1.04 151.43
DCAF12 0.01 0.01 0.01 1.78 0.48 -0.18 0.07 1.04 723.69 1007.20 752.09 896.03 1715.00
SPAG17 0.03 0.01 0.01 1.74 1.33 0.30 -0.19 1.25 87.52 219.38 126.86 89.71 240.43
RBM46 0.00 0.00 0.00 1.72 0.00 0.00 0.00 4.37 0.00 0.00 1.01 0.00 20.60
NXF2 0.16 0.15 0.06 1.43 1.88 -2.97 -0.61 3.53 6.95 25.54 1.01 5.22 91.49
PRSS54 1.34 0.00 0.00 0.00 4.52 0.00 0.05 0.18 0.86 19.96 1.01 1.04 1.12
CTAG1B 0.04 0.00 16.95 0.00 1.08 1.07 4.61 -0.97 8.93 18.84 22.12 255.97 5.25
CTAG2 0.02 0.29 1.58 0.05 0.84 0.69 0.91 -0.23 172.95 308.97 329.26 382.41 170.69
SPAG4 0.83 0.08 16.95 2.26 -2.64 0.83 3.16 -3.74 13.15 2.10 27.18 136.65 1.12

D425 (Group 3)
-log10[P] log2[FC] Mean Transcription (FPKM)

-log10[P] > 1.30103 log2[FC] > 1 FPKM > 5

Table 14: Summary table of Cancer Testis Antigen (CTA) genes transcriptionally activated in D425 spine 
metastases relative to primary tumours in at least one round of selection. pri = primary tumour; spi = spine 
metastasis; pri1/spi1 = first round of selection; spi2 = second round of selection; spi3 = third round of selection; 
spi5 = fifth round of selection; red shading = -log10[P] > 1.30103 (P < 0.05); blue shading = log2[FC] > 1 (FC > 
2); black shading = Transcription > 5 FPKM.  
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Figure 9. Scatter plot of –log10[P] as a function of log2[FC] in rounds 1 and 5 of selection. It is striking the magnitude 
of increase in both –log10[P] and log2[FC] that occurs between rounds 1 and 5 of selection for CTA genes.  
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Looking more closely at the 46 transcriptionally activated CTA genes (Table 14) , the CTA 
genes exhibiting this pattern were mainly from three specific CTA gene subfamilies namely the 
MAGE, XAGE, and CT45 gene families (Tables 16-18). This progressive increase in 
transcription with every round of selection suggested that the increasing transcription of these 
genes favored metastasis of these cells across rounds of selection.  
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Thresholds
Cell Line
Statistic
Comparison pri1spi1 pri1spi2 pri1spi3 pri1spi5 pri1spi1 pri1spi2 pri1spi3 pri1spi5 pri1 spi1 spi2 spi3 spi5
Candidate Gene
MAGEF1 0.11 0.23 5.53 16.95 0.89 0.59 1.10 1.46 180.60 334.23 321.17 453.75 573.28
MAGEA10 0.03 0.04 12.23 16.95 1.54 1.29 2.86 2.36 342.21 993.10 969.56 2883.15 2016.80
MAGEC2 0.01 16.65 16.95 16.95 0.73 4.38 2.84 4.63 120.81 201.03 2955.00 1014.94 3440.64
NDN 1.70 7.78 3.06 4.88 0.79 1.69 1.36 1.26 116.53 201.61 445.01 352.57 322.53
MAGEB1 0.04 0.19 0.04 4.46 0.93 1.31 0.14 2.05 9.54 18.18 28.19 12.52 45.75
MAGEA1 0.01 0.05 0.01 2.31 -0.15 0.88 0.53 1.41 433.34 390.57 945.40 741.65 1333.19
MAGEE2 1.56 0.00 0.00 0.00 3.98 0.00 0.05 0.18 0.86 13.71 1.01 1.04 1.12
MAGEC3 0.00 0.00 0.00 1.28 0.00 0.00 0.00 3.86 0.00 0.00 0.00 0.00 14.48
MAGEH1 0.04 3.96 16.95 1.18 0.93 -3.83 2.48 2.11 24.37 46.34 2.01 160.64 121.27
MAGEA4 0.00 0.00 0.00 0.00 -0.07 -0.41 -0.36 4.03 1.15 1.10 1.01 1.04 21.78
MAGEB17 0.00 0.00 0.00 0.00 0.01 -0.35 -0.30 -0.18 1.09 1.10 1.01 1.04 1.12
MAGEA13P 0.00 0.00 0.00 0.00 0.35 0.00 0.05 0.18 0.86 1.10 1.01 1.04 1.12
MAGEB16 0.00 0.00 0.00 0.00 0.35 0.00 0.00 0.00 0.86 1.10 0.00 0.00 0.00
MAGEA8-AS1 0.00 0.00 0.00 0.00 0.35 0.00 0.05 0.18 0.86 1.10 1.01 1.04 1.12
MAGEB6P1 0.00 0.00 0.00 0.00 0.35 0.00 0.05 0.18 0.86 1.10 1.01 1.04 1.12
MAGEB18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAGEA5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAGEB3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAGEB4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAGEB5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAGEA2 0.03 0.00 0.00 0.04 0.54 -0.09 0.08 -0.31 1568.67 2276.33 1743.34 1952.23 1462.07
MAGEA3 0.00 0.00 0.00 0.02 0.81 -0.10 0.11 -0.31 1557.37 2725.24 1716.74 1972.72 1457.10
MAGEA9B 0.00 0.00 0.00 0.02 -0.35 0.06 0.29 -0.48 2049.41 1607.07 2528.49 2963.20 1710.94
MAGED1 0.01 0.01 0.01 0.03 0.29 0.54 0.37 -0.21 427.59 521.01 736.99 650.90 427.84
MAGEA8 0.00 0.00 0.00 0.05 -2.31 -2.68 1.17 -0.34 5.50 1.10 1.01 14.60 5.03
MAGED2 0.01 0.03 0.00 0.05 -0.18 -0.55 -0.18 -0.59 3854.01 3405.44 3105.01 4002.41 2944.97
MAGEB2 0.01 0.02 0.17 0.07 -0.50 -0.78 -3.00 -0.74 168.88 119.47 116.79 25.03 116.63
MAGED4B 0.02 0.02 0.01 0.09 -0.69 -0.20 0.15 -0.55 38.49 23.90 39.27 49.82 30.27
MAGEA9 0.03 0.03 0.03 0.21 -0.58 0.31 -0.21 -0.79 25.79 17.26 37.88 26.35 17.29
MAGEC1 0.03 0.03 0.02 0.24 -0.77 -0.06 0.25 -1.16 49.61 29.09 55.37 68.85 25.66
MAGEA6 0.02 0.03 0.03 0.32 0.25 0.13 0.38 -1.23 24.17 28.67 31.07 36.76 11.99
MAGED4 0.04 0.06 0.07 0.32 -0.80 -0.49 1.09 -1.56 8.43 4.84 7.05 21.11 3.31
MAGEA12 0.01 0.09 0.01 0.75 0.19 -0.52 -0.16 -0.60 1262.62 1438.05 1039.03 1330.44 959.79
MAGEA2B 0.03 0.02 0.02 1.13 0.58 0.03 -0.18 -1.06 49.94 74.60 59.89 51.70 27.61
MAGEA11 0.02 0.03 0.03 1.78 -0.33 0.33 -0.28 -2.08 47.14 37.57 70.48 45.90 12.84
MAGEE1 0.02 0.88 0.22 2.97 -0.19 -4.24 -2.19 -4.06 16.42 14.35 1.01 4.17 1.12

-log10[P] > 1.30103 log2[FC] > 1 FPKM > 5
D425 (Group 3)

-log10[P] log2[FC] Mean Transcription (FPKM)

Table 16: Summary table of MAGE Cancer Testis Antigen (CTA) genes. pri = primary tumour; spi = spine 
metastasis; pri1/spi1 = first round of selection; spi2 = second round of selection; spi3 = third round of selection; 
spi5 = fifth round of selection; red shading = -log10[P] > 1.30103 (P < 0.05); blue shading = log2[FC] > 1 (FC > 2); 
black shading = Transcription > 5 FPKM.  
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In summary, iterative selection for a propensity for metastasis in the spine metastases of mouse 

xenograft models of human MB led to the identification of a variety of genes exhibiting a variety 

of patterns of changing transcription across the rounds of selection. While transcription of some 

genes was clearly selected against, a large subset exhibited patterns of progressively increasing 

selection across rounds of selection, suggestive of an ongoing association with metastasis, and 

making them significant genes of interest.  

3.5.4 Long non-coding RNAs Exhibit Progressively Increasing Transcription 
Resembling that of CTA Genes 

Among the genes exhibiting progressively increasing transcription across rounds of selection, the 

most significant was XIST, a long non-coding RNA (lncRNA). Given this finding, the P and FC 

of all lncRNAs were examined. Interestingly, a subset of lncRNAs exhibited increasing 

transcription with increasing magnitude of change similar to that of CTA genes (Table 19). Other 

lncRNAs also exhibited some of the other alternative patterns of changes in expression across 

rounds of selection that had been exhibited by CTA genes (Appendix 6). So, it can be 

hypothesized that lncRNAs are in a regulatory network that is shared with CTA genes, either 

upstream or downstream, ultimately promoting metastasis. 
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Thresholds
Cell Line
Statistic
Comparison pri1spi1 pri1spi2 pri1spi3 pri1spi5 pri1spi1 pri1spi2 pri1spi3 pri1spi5 pri1 spi1 spi2 spi3 spi5
Candidate Gene
XIST 2.14 16.65 16.95 16.95 -4.22 4.97 5.70 8.58 26.05 1.39 975.60 1615.78 11652.14
LINC01139 0.00 0.00 9.02 15.65 0.35 0.00 5.62 5.64 0.86 1.10 1.01 50.07 49.68
LINC00657 0.00 0.01 0.13 11.38 -0.29 0.42 0.69 0.99 2445.63 1996.32 3848.04 4616.80 5591.29
LINC00958 0.01 0.53 3.17 4.82 0.42 0.82 1.16 1.10 475.34 635.91 982.65 1242.34 1169.05
LINC00960 0.00 0.00 0.00 3.22 -2.28 1.03 1.63 3.00 5.40 1.10 13.09 19.82 50.23
LINC01106 0.00 0.00 0.00 3.19 -0.07 -0.41 3.95 4.97 1.15 1.10 1.01 20.86 41.79
LINC01152 0.00 0.00 0.00 2.44 0.89 0.00 2.36 4.75 0.86 1.60 1.01 5.22 26.74
LINC00355 0.00 0.00 0.00 1.28 0.65 1.57 2.04 3.69 0.86 1.35 3.02 4.17 12.82
LINC01123 0.00 0.00 0.00 0.89 0.35 2.31 3.50 3.33 0.86 1.10 5.03 11.47 10.02
LINC00683 0.00 0.00 0.00 0.84 0.35 1.57 2.36 3.26 0.86 1.10 3.02 5.22 9.51
SNHG7 0.01 0.07 0.08 0.81 0.12 0.86 0.94 1.09 58.05 63.26 125.11 131.43 143.26
TCF7L1-IT1 0.00 0.00 0.00 0.79 -1.25 0.76 -2.50 2.70 5.05 2.12 10.07 1.04 37.86
LINC00941 0.02 0.05 0.07 0.44 -1.32 0.62 -1.64 1.96 2.76 1.10 5.03 1.04 12.31
TRIM36-IT1 0.03 0.07 0.14 0.22 -0.34 -0.92 -3.18 1.80 8.25 6.50 5.03 1.04 32.86
FAM155A-IT1 0.04 0.05 0.09 0.12 0.69 0.38 -1.65 0.58 11.37 18.31 17.12 4.17 19.51
LINC00339 0.01 0.02 0.06 0.06 0.06 -0.21 0.42 0.44 111.21 115.86 112.76 174.20 173.24
SNHG15 0.00 0.00 0.01 0.01 0.05 -0.10 0.32 0.13 2364.42 2452.74 2587.51 3454.78 2969.31
LINC00665 0.00 0.01 0.01 0.03 0.17 0.11 0.59 -0.35 771.43 870.65 982.65 1367.81 700.99
JPX 0.01 0.01 0.01 0.05 0.52 -0.29 -0.52 -0.38 340.63 490.10 330.23 280.60 300.84
MIR181A1HG 0.01 0.01 0.02 0.05 -0.34 -0.19 -1.22 -0.61 548.94 432.68 559.79 274.34 413.73
SOS1-IT1 0.03 0.03 0.06 0.12 0.45 0.39 -1.00 -0.52 12.56 17.14 19.13 7.30 10.07
MAGI1-IT1 0.06 0.08 0.09 0.25 1.04 -1.36 -2.31 -2.19 4.49 9.27 2.01 1.04 1.12
SNHG3 0.00 0.03 0.06 0.26 0.10 -0.68 -0.84 -0.63 1038.19 1112.01 760.24 682.09 769.63
LINC00115 0.02 0.04 0.15 0.33 0.52 0.56 1.21 -1.35 25.57 36.57 44.29 69.02 11.58
LINC00221 0.01 0.02 0.02 0.63 -0.05 -0.01 0.37 -0.87 81.13 78.20 95.65 124.13 51.38
PTCSC3 0.08 0.11 0.18 0.67 -1.74 -1.98 -3.50 -3.40 10.40 3.10 3.02 1.04 1.12
DLEU1 0.00 0.01 0.03 1.13 -0.21 -0.39 -0.62 -0.78 863.65 748.13 770.21 658.20 578.89
LINC00910 0.01 0.02 0.07 1.37 -0.36 -0.20 -0.92 -1.44 128.30 99.79 130.89 79.28 54.22
LINC00839 0.01 0.02 0.11 1.46 -0.24 0.40 -1.29 -1.74 67.54 57.17 104.71 32.34 23.42
SNHG8 0.01 0.01 0.12 4.29 0.35 -0.14 0.69 -1.30 975.49 1242.26 1044.07 1841.09 456.46
LINC00951 0.02 0.05 0.41 4.37 -0.51 -0.62 -1.52 -2.41 43.68 30.58 33.22 17.73 9.48
LINC00882 0.02 0.58 4.33 5.09 -0.47 -1.05 -2.35 -2.22 49.81 36.06 28.19 11.47 12.31
LINC01024 0.02 0.04 1.50 5.11 -0.03 -0.68 1.34 -4.08 16.43 16.13 12.08 49.03 1.12
LINC00312 0.04 0.11 0.16 6.06 1.23 0.58 0.63 -4.50 44.16 103.96 77.52 80.32 2.24
LINC00883 0.01 0.15 2.45 9.02 -0.24 -0.47 -0.97 -1.12 265.87 225.61 225.53 159.60 140.66

D425 (Group 3)
-log10[P] log2[FC] Mean Transcription (FPKM)

-log10[P] > 1.30103 log2[FC] > 1 FPKM > 5

Table 19: Summary table of lncRNAs with progressively increasing transcription in D425 PDX models. pri = primary 
tumour; spi = spine metastasis; pri1/spi1 = first round of selection; spi2 = second round of selection; spi3 = third 
round of selection; spi5 = fifth round of selection; red shading = -log10[P] > 1.30103 (P < 0.05); blue shading = 
log2[FC] > 1 (FC > 2); black shading = Transcription > 5 FPKM.  
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3.6 Transcription of CREB Pathway Components, Known 
Downstream Effectors of CTA Gene CT45A1, are Unaffected 
by Iterative Selection  

The mechanism by which CTA gene CT45A1 regulates metastasis has been characterized in 

detail and is thus a great model to use for how other CTA genes at the same locus, or other CTA 

genes in general, might regulate metastasis. Specifically, CT45A1 activates ERK/CREB in order 

to drive metastatic dissemination, evidenced by the fact that siRNA-mediated silencing of 

CT45A1 inhibits metastasis and at the molecular level leads to significantly reduced CT45A1 

translation, significantly lower levels of proteins BCL2, BIRC5 (survivin), and MMP9, 

moderately lower levels of MMP2, and increased levels of BAX [72]. By extension, it is possible 

that increased CT45A1 transcription would similarly lead to corresponding changes in the 

transcription of CREB pathway components. In reality, changes in the expression of all CREB 

genes was negligible across all rounds of selection (Table 20). So, while the CREB pathway is a 

downstream effector of CT45A1, it does not appear to be the case here. It is very likely that that 

activation of CREB signaling is context-specific, and so a lack of activation in this context does 

not necessarily negate the hypothesis that CREB signaling might act downstream of CTA genes 

other than CT45A1, just under different conditions. An effective way to validate that the CREB 

pathway is not activated as a result of CTA activation would be to perform another GSEA with 

just the genes of the CREB pathway used as the sole gene set.  

With transcriptional activation now identified, it was necessary to examine what were the effects 

of selection at the level of pathways. 
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3.7 Vimentin (VIM), a Metastasis Regulator Known to Function 
Downstream of CTA Genes, is Activated in Spine Metastases 
Relative to Primary Tumours 

CTA genes have been found to regulate metastasis indirectly, modulating the activity of 

downstream effector genes and proteins that promote or impede metastasis pathways [72]. To 

investigate whether intermediate effectors were similarly involved in this study, the transcription 

of four known CTA downstream effector genes TWIST1 (Twist1), VIM (Vimentin), CDH1 (E-

Cadherin), and CDH2 (N-Cadherin) was examined across rounds of selection (Table 21). 

Transcription of VIM was 430.05 and 439.98 in spine metastases from rounds 1 and 2, respectively, 

in both cases more than 2X higher than the level of VIM expression observed in primary tumours 

from round 1, specifically 176.95. The difference reached statistical significance in round 5 (-

log10[P]=16.95). In contrast, while TWIST1 transcription was 19.13 and 6.14 in rounds 2 and 5, 

respectively, greater than the 0.86 observed in primary tumors, the difference was never 

statistically significant. Furthermore, TWIST1 expression was always very low in both primary 

and spine tissues, increasing the chance that the difference in transcription was artifactual. Finally, 

cadherin genes E-Cadherin (CDH1) and N-Cadherin (CDH2) exhibited contrasting changes in 

transcription across rounds of selection; CDH1 transcript was nearly undetectable across all rounds 

of selection; in contrast, CDH2 transcription increased from 7.52 in primary tumours to 137.46 in 

spine metastases in the first round of selection, a difference that was statistically significant (-

log10P=2.19). CDH2 transcription decreased significantly in subsequent rounds, to 20.14, 2.09, 

and 21.26 in rounds 2, 3, and 5, respectively. But even with these decreases in transcription, in 

rounds 2 and 5, levels of CDH2 still remained higher in spine metastases than in primary tumours 

although not to an extent that was statistically significant. Taken together, changes in VIM 

transcription across rounds of selection resembled the progressive transcriptional increases 

observed for CTA genes; thus, this led us to hypothesize that VIM might be a part of a regulatory 

pathway, shared with CTA genes, which serves to regulate Group 3 MB metastasis.  
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3.8 CTA Genes with Increased Transcription in Spine 
Metastases Localize in Clusters on the X Chromosome 

Two subfamilies of CTA genes exist, which differ with respect to where they are localized in the 

human genome. The CT-X subfamily of CTA genes are clustered within regions of the X-

chromosome, specifically Xp11, and Xq26-28 [73, 74]. All other CTA genes are spread across 

the autosomes. The most relevant difference between these groups is that increased transcription 

of CT-X genes is associated with poor prognosis for a variety of cancer types including but not 

limited to breast cancer [75], multiple myeloma [76], and non-small-cell lung cancer [77]. In my 

studies, CTA genes with increased transcription in MB spine metastases relative to primary 

tumours clustered in specific regions of X (Table 22). Specifically, the CT45A gene cluster, 

MAGEC2, and several MAGEA genes cluster within the terminal 23 Mb of the X chromosome 

[78]. It is interesting to note that a majority of the genes most significantly activated mapped to 

the negative strand. This is made especially interesting given that XIST also maps to the negative 

strand, albeit more than 68 Mb (68,217,543 bp) upstream of these gene clusters. However, the 

XIST locus is only 21 Mb (21,299848 bp) downstream of significantly activated members of both 

the XAGE and GAGE CTA gene families, and MAGE gene MAGEB1. Taken together, activated 

CTA genes clustered on the X-chromosome, the most significant of which were on the negative 

strand, in relatively close proximity to XIST. 
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3.9 Five CTA Genes Were Selected For Further Study  
Based on the findings up to this point, CTA genes, specifically PAGE1, MAGEA10, MAGEC2, 

CT45A3, and CT45A1 were selected for further study based on their significant transcriptional 

activation across rounds of selection, with FC also becoming progressively larger, and previous 

links to metastasis existing in the literature (Table 23, Figure 10). The protein products of these 

genes were subject to validation by Immunohistochemistry, to determine whether the 

transcriptional changes observed were leading to changes at the protein level.    
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3.10 Enrichment of CTA Gene Family Precedes Enrichment of 
Metastasis Pathways  

Gene Set Enrichment Analysis (GSEA) was performed using lists of the most significantly 

activated genes to determine whether specific pathways of metastasis were represented by those 

most activated genes. For this investigation the CTA gene family was treated as a gene set. After 

one round of selection, the CTA gene family was not significantly enriched in spine metastases 

from any of the PDX mice (Appendix 8). However, two pathways, specifically nonsense-

mediated decay and eukaryotic translation termination, were enriched in both D425 and 

MB411FH. But these pathways were not known to be associated with metastasis. More 

generally, pathways significantly enriched in the first round of selection did not include any 

commonly associated with metastasis. After the second round of selection however, for D425 

CTA genes did become enriched (FDR=0.06) (Appendix 8a). Interestingly, for MB411FH FDR 

values corresponding to the CTA gene family decreased significantly from round 1 to round 2, 

although not reaching significance in either case (0.42 in round 1, 0.19 in round 2). This 

suggested that with additional replicates or rounds of selection CTA genes might have also 

reached significance in MB411FH (Appendix 8b). In subsequent rounds of selection several well 

established pathways of metastasis also reached significance, especially in round 5 (Figure 11, 

Appendix 8a). So, this suggested that transcriptional activation of CTA genes might have been a 

necessary predecessor to the activation of metastasis pathways. 
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3.11 Metastatic Pathways Activated in Correlation with CTA 
Genes Model Pathways Activated in Human Group 3 MB 
Metastases  

Now that the genes transcriptionally activated in MB spine metastases, and pathways represented 

by those genes had been identified, the degree to which these were reflective of actual MB in 

human patients was assessed. I conducted a differential expression analysis of 4 spine metastases 

relative to 4 primary tumours from human Group 3 MB patients. The list of genes significantly 

activated in spine metastases relative to primary tumours I compared to a corresponding list of 

genes from D425 PDX mice significantly activated in at least one round of selection. I also 

performed GSEA using a ranked list of the genes significantly activated in human spine metastases, 

and compared the list of activated pathways (FDR < 0.15) and pathway-specific genes with those 

from the D425 PDX mice in the fifth round of selection.  

Out of 1966 genes significantly activated (-log10[P] X sign of log2[FC]  > 1.30103) in D425 

PDX mouse spine metastases in at least one round of selection, 3 genes, specifically ROBO2, 

NMNAT3, and SV2A, were shared with human MB patients (Table 24). Interestingly, ROBO2 is a 

tumor suppressor gene, linked to luteolysis in the ovary [79], which has also been implicated in 

the metastasis of breast cancer [80]; ROBO2 would normally suppress tumour development by 

inactivating β-catenin/LEF/TCF and PI3K/Akt signaling so upon deletion, ROBO2-mediated 

inhibition of signaling would be relieved leading to tumourigenesis. In addition, ROBO2 is 

deleted in more than half of 19 patients with metastatic colorectal cancer [81]. However, in 

contrast to these cases metastasis was associated with ROBO2 activation. So, mechanisms, 

including ROBO2 but different than those described in previous studies may be at work. 

Alternatively, the transcriptional activation of ROBO2 observed might have been in correlation 

with something other than metastasis. In support of this argument, while ROBO2 became 

significantly activated in the third round of selection, the activation was no longer significant in 

round 5. 
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In contrast to ROBO2, no links to metastasis have been made for NMNAT3. Instead, it is a gene, 

which encodes an enzyme, which catalyzes an important step in the production of NAD from 

ATP [82]. Overexpression has further been shown to lessen age-related insulin resistance [83]. 

However, it is interesting to note that NMNAT3 was significantly activated by round 5. An 

identical pattern was also observed for SV2A, a gene encoding a synaptic vesicle glycoprotein 

which plays an important role in the regulation of neurotransmitter release and has anti-epileptic 

properties. SV2A has not yet been linked to cancer or metastasis. However, in this study -

log10[P] for SV2A increased across rounds of selection, reaching maximum possible significance 

in round 5. So taken together, while there is overlap in the genes that are transcriptionally 

activated in the spine metastases of mouse PDX models of human Group 3 MB, and those of 

human Group 3 MB patients, the overlap is small, and those that do overlap, and are significantly 

activated in round 5 of selection do not show clear associations with metastasis.   

Interestingly, much more overlap existed between mouse PDX models and human patients at the 

level of pathways (Table 25). Extracellular matrix organization, and pathways regulating cell 

migration (regulation of chemotaxis, positive regulation of leukocyte migration) were enriched in 

both PDX models and human patients. In addition, the epithelial – mesenchymal transition was 

enriched in both PDX mice, and humans. Finally, specific signaling pathways were jointly 

enriched (Interferon- ɣ Signaling, G-proteins coupled to cyclic nucleotide second messengers, 

and tumor necrosis factor alpha (TNF-α) signaling via Nuclear Factor Kappa-light-chain-

enhancer of B-cells (NF𝜅B).  
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Thresholds

Comparison
Category Feature -log10[FDR] Core Genes -log10[FDR] Core Genes

ECM EXTRACELLULAR_MATRIX_ORGA

NIZATION--REACTOME

0.04 FN1,KDR,ADAMTS3,CAPN2,LAMA1,BM
P7,SDC1,FBLN5,MMP16,ITGA2B,MMP1
,ITGB1,FBN2,SDC3,SPOCK3,COL4A6,CO
L2A1,ITGA2,COL11A1,EFEMP1,FMOD,C
OL4A1,SPARC,ITGA3,NID1,ITGB5,ADA
MTS18,COL5A2,COL3A1,COL7A1,ITGAE,
TLL2,DCN,COL24A1,CAPN3,LAMA4,ADA
MTS4

0.10 ACOT7,PCYOX1L,OGN,CHAC1,C
HAC2,OMD,FMOD,NCAN,HEXB
,AGXT,GLB1,CTH

CELL MIGRATION REGULATION_OF_CHEMOTAXIS--

GOBP

0.04 CD74,PDGFRB,KDR,FGFR1,CXCL11,VE
GFC,SCG2,SEMA4D,NTRK3,SEMA6A,SE
MA3E,SEMA5B,SEMA4C,BST1,F3,DAPK
2,C1QBP,SLIT2,FIGF

0.11 MFI2,RHBDD1,F12,CCBE1,MYH
9,HPN,C19orf80,GSN,NKD2

CELL MIGRATION POSITIVE_REGULATION_OF_LEU

KOCYTE_MIGRATION--GOBP

0.14 CD74,CXCL11,VEGFC,DAPK2,C1QBP,FIG
F,AIF1,WNT5A

0.06 PDE2A,GUCY1B3,PDE3A,ITPR1,
GUCY1A2,PDE10A,GUCY1A3,N
OS3,PDE11A,NOS1,PDE1A

METASTASIS HALLMARK_EPITHELIAL_MESENC

HYMAL_TRANSITION--

MSIGDB_C2

0.01 VIM,DPYSL3,PDGFRB,FN1,RHOB,GEM,
TPM2,LAMA1,SGCB,SDC1,VEGFC,FBLN
5,SCG2,SERPINE2,PFN2,MMP1,ITGB1,F
BN2,MYLK,FSTL1,ACTA2,EDIL3,ITGA2,T
GM2,COL11A1,FMOD,COL4A1,SPARC,S
NTB1,WIPF1,ITGB5,COL5A2,COL3A1,CO
L7A1,LRRC15,DCN,MYL9

0.00 MSX1,PDLIM4,COL11A1,GPX7,I
GFBP2,SDC4,THY1,ID2,LOXL1,T
PM2,CD59,TNFRSF12A,PMP22,
LAMA3,TIMP3,SLIT3,LAMA1,NT
5E,CXCL12,GADD45B,FBLN5,LO
X,RHOB,COLGALT1,MAGEE1,IT
GA2,BDNF,ELN,CRLF1,ITGAV,T
NFAIP3,SFRP1,CAP2,GLIPR1,LA
MC2,TIMP1,FMOD,RGS4,PDGF
RB,FERMT2,ITGA5,AREG,PVR,S
ERPINH1,SERPINE1,MFAP5,CAL
U,GREM1,COL12A1,IL32,NTM,F
BN2,PRRX1,COL8A2,NNMT,PC
OLCE,MEST,MYLK,TGM2,GADD
45A,TGFB1,LGALS1,IL6,TAGLN,
PLAUR,VIM,FBN1,CDH11,LRRC
15,SNAI2,CXCL6,VCAM1,IL15,C
OL16A1,FOXC2,ADAM12,NOTC
H2,EMP3,FSTL1,GAS1,MMP2,F
ZD8,FSTL3,COL4A2,CXCL1,FN1

SIGNALING INTERFERON_GAMMA_SIGNALI

NG--REACTOME

0.05 JAK1,B2M,TRIM45,TRIM26,TRIM21,TRI
M34,HLA-DPA1,MID1,MT2A,GBP1,HLA-
DRB5,TRIM29,HLA-C,HLA-DPB1

0.13 FGFR3,INPPL1,MEF2C

SIGNALING G-

PROTEIN_COUPLED_RECEPTOR_S

IGNALING_PATHWAY,_COUPLED

_TO_CYCLIC_NUCLEOTIDE_SECO

ND_MESSENGER--GOBP

0.08 GNAQ,MC4R,ADCY6,AGT,PDE4D,ADCY
3,CACNA1D,GNAS,GRM4,CNR1,GRM3

0.12 SIGMAR1,PNPT1,MGST1,MLKL

SIGNALING HALLMARK_TNFA_SIGNALING_VI

A_NFKB--MSIGDB_C2

0.10 RHOB,GEM,NFIL3,TLR2,CXCL11,PLK2,IR
S2,IFIH1,NFKBIA,KLF6,GCH1

0.02 LIF,B4GALT5,SLC2A6,PER1,F2R
L1,PPAP2B,CD83,CXCL2,SOCS3,
SDC4,GPR183,ID2,KLF9,DUSP2,
ICAM1,SPSB1,MAFF,GADD45B,
G0S2,RHOB,MAP2K3,ZC3H12A,
ZFP36,PTGS2,BHLHE40,FOSL1,
F3,SLC2A3,NFKB2,MSC,SPHK1,
DRAM1,TNFAIP3,KLF10,SMAD
3,CEBPB,CSF1,AREG,KLF2,GCH
1,SERPINE1,HES1,PHLDA2,CD8
0,TLR2,SERPINB8,CXCL3,KLF4,P
TPRE,MYC,KYNU,BMP2,GADD4
5A,IL6,PLAUR,DUSP1,NINJ1,TRI
B1,IRS2,PPP1R15A,PTGER4,NF
KBIA,TNFAIP2,ETS2,TNIP2,FOS,
LITAF,IL15RA,CXCL6,CDKN1A,A
TF3,HBEGF,TNF,JUNB,FOSL2,J
AG1,SLC16A6,EFNA1,KLF6,CXC
L1,IL18,IFIT2,BCL2A1,LDLR,OLR
1,SOD2,DUSP4

Mouse PDX Models pri-1 vs. spi-5 Human Patients pri vs. spi 
FDR < 0.05 Note: Pathway specific genes are given for all pathways with FDR < 0.15

Table 25. Summary table of pathways identified by GSEA as being enriched that are 
shared between D425 PDX mice and human patients. For both the mouse and human 
data, FDR < 0.15 was used as the criterion for inclusion in the summary table, and for 
displaying pathway-specific genes. 
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Many of these shared pathways and mechanisms have been shown to play essential roles in the 

transition of tumours from being localized to being metastatic. With respect to signaling, it is 

interesting that Interferon-ɣ signaling is enriched, since in the context of cancer development and 

metastasis Interferon-ɣ is most often observed to be expressed in Natural Killer cells, and 

actually inhibits tumour growth and metastasis by several means, including but not limited to 

modifying the tumour architecture to be less conducive to metastasis [84]. It is possible that the 

Interferon-ɣ signaling activity that was detected in samples from human patients could have 

come from Natural Killer cells that had infiltrated the tumour rather than tumour cells. But this 

could not have also been applied to the samples from xenografts, since the mice were NSG, and 

thus, by necessity, lacked a functional immune system. However, in a separate study 

overexpression of Interferon-ɣ did promote increased metastasis [85]. It is proposed that the 

increased Interferon-ɣ expression might have conferred upon those cells resistance to Natural 

Killer cells, thereby rendering them able to evade immune detection and elimination.  

 With respect to the signaling axis including TNF-α and NF𝜅B, this axis serves to promote 

cancer cell survival, and metastasis via downstream signaling activated by the activity of these 

pathways. Increased TNF-α signaling activates NF𝜅B signaling [86]. This, in turn, increases 

production of CXCL1/2. This signal then serves to recruit myeloid cells to the tumour, via 

interactions of CXCL1/2 in the tumour cells with CXCR2 receptor on the surface of myeloid 

cells . Once interspersed with the tumour, myeloid cells express S100A8/9, which promotes 

tumour cell survival and metastasis. TNF-α can bring about morphological changes associated 

with the epithelial-mesenchymal transition [87]. This is a mechanism in which cells undergo 

major morphological changes, and make significant changes to their microenvironment in order 

to transition to a state, similar to mesenchymal cells, in which they can migrate away from the 

primary tumour bed [88]. Along this line, the shared pathways associated with cell migration also 

have established links to metastasis. It has now been established that metastatic tumors migrate 

by chemotaxis, migrating towards chemical cues, which in the case of migrating tumour cells, 

are secreted exosome-like extracellular vesicles [89]. Secreted vesicles form a gradient from 

their point of secretion, and so cancer cells regulate their movement based upon their position in 

the gradient. It is also known that white blood cells or leukocytes of the immune system such as 

neutrophils also migrate using similar mechanisms [89] and play critical roles in mediating 

metastasis [90]. 
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Examining the pathway-specific genes for which activation led to the pathway being identified 

as being enriched, what became apparent was that, while pathways were shared, only 3 genes 

were shared. This suggested that metastasis was being driven in both cases by the malfunctioning 

of common pathways, but activation of different genes from the same pathways were responsible 

for the pathway malfunction in PDX models and human patients. No matter where the mutation 

happened the effect on the pathway would be the same. So, this could represent an opportunity to 

identify previously uncharacterized gene candidates for further study based on their implication 

in pathways already linked to human MB. 

The limited number of transcriptionally activated genes shared between human MB patients and 

PDX models might have been, in part, due to the current low availability of human metastatic 

tissues for research. With greater numbers of samples will come greater power to define profiles 

of MB metastasis. 

3.12  Validation by IHC: PAGE1 Protein is Expressed in Both the 
Primary Tumour and Spine Metastases but a Difference in 
Protein Levels Could Not be Detected 

To validate whether the increased transcription observed for the top 5 gene candidates led to 

increased protein levels, immunohistochemistry was performed using frozen sections of primary 

tumours and spine metastases from mice subject to in vivo iterative selection. Staining of testis 

tissue with antibodies against each of the protein targets being studied served as positive controls 

to verify that the IHC procedure and reagents would be able to detect PAGE1, MAGEA10, 

MAGEC2, and CT45 proteins (Figure 12). Using this validated approach PAGE1 protein was 

then shown to be clearly present in both primary tumours and spine metastases from the first 

round evidenced by the aligning of PAGE1 IHC (Figure 13c,d) with H & E staining (Figure 

13a,b). The same was not true, however, for MAGEA10 (Figure 14), MAGEC2 (Figure 15), or 

CT45A1 (Figure 16), for which negligible expression was observed in either primary tumours or 

spine metastases from each of the rounds of selection. Also, it was not possible to get separate 

antibodies for CT45A1 and CT45A3 so one staining was done for CT45 proteins that could have 

been either CT45A1 or CT45A3. So, taken together this has shown that PAGE1 is expressed in 

both MB primary tumours and spine metastases, but not whether protein levels are as different as 

the levels of PAGE1 transcript that were observed. 
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Brain Spinal Cord

IHC

H & E

Testis

+C

PAGE1

+C+C c) b)a)

e)d)

Figure 12. Validation of PAGE1 expression in xenograft primary tumour and spine 
metastases by immunohistochemical (IHC) detection of PAGE1 protein. a), b) Negative 
control (-C) H & E staining of brain and spinal cord sections adjacent to the sections to be 
used for IHC to identify the location of tumours prior to IHC c) Positive control (+C) staining of 
testis tissues to validate that PAGE1  antibody can be used successfully d), e) IHC for 
PAGE1 in sections of brain (d)) and spinal cord (e)). Staining is evident in both tissues, but 
the number of stained cells was insufficient to identify differential expression of PAGE1 
protein. 
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Brain
Spinal 
Cord Testes

IHC

pri1spi1

pri1spi2
pri1spi3

pri1spi5

Brain 
Spinal 
Cord Testis

MAGEA10

pri1spi1 

pri1spi2 

pri1spi3 

pri1spi5 

+C

Figure 13. Immunohistochemical validation of MAGEA10 expression in xenograft 
primary tumours from round 1 of selection and spine metastases from rounds 1, 2, 
3, and 5 of selection. Inset in the top left corner of every IHC panel: H & E staining 
of a section adjacent to the section that was used for IHC. Top rightmost panel: 
Positive control – Staining of testis with anti-MAGEA10.  
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Brain
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pri1spi5

Brain 
Spinal 
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MAGEC2

pri1spi1 

pri1spi2 

pri1spi3 

pri1spi5 

+C

Figure 14. Immunohistochemical validation of MAGEC2 expression in 
xenograft primary tumours from round 1 of selection and spine metastases 
from rounds 1, 2, 3, and 5 of selection. Inset in the top left corner of every 
IHC panel: H & E staining of a section adjacent to the section that was used 
for IHC. Top rightmost panel: Positive control – Staining of testis with anti-
MAGEC2.  
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Brain
Spinal 
Cord Testes

IHC

pri1spi1

pri1spi2
pri1spi3

pri1spi5

Brain 
Spinal 
Cord Testis

CT45

pri1spi1 

pri1spi2 

pri1spi3 

pri1spi5 

+C

NA

Figure 15. Immunohistochemical validation of CT45 expression in 
xenograft primary tumours from round 1 of selection and spine 
metastases from rounds 1, 2, 3, and 5 of selection. Inset in the top left 
corner of every IHC panel: H & E staining of a section adjacent to the 
section that was used for IHC. Top rightmost panel: Positive control – 
Staining of testis with anti-CT45. The tissue section from the spine for 
pri1spi5 was lost during processing.    
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Taken together, while PAGE1 protein expression was identified in both primary tumours and 

spine metastases it was still unclear whether CTA protein expression was increased in correlation 

with what was observed at the transcript level.  

 In summary, iteratively selecting for increased metastasis propensity among the spine 

metastases of mouse PDX models of human MB led to the increased transcription of a wide 

range of genes, some of which exhibited progressively increasing transcription with every round 

of selection, including CTA genes and lncRNAs. These transcriptional changes were also 

accompanied by increased activity of metastasis pathways, many also activated in the context of 

human MB, observed once the CTA gene family, treated as a pathway, had become activated. So 

iterative selection has identified specific subfamilies of CTA genes, namely MAGE, XAGE, and 

CT45 gene families, as well as lncRNAs, as being potential new correlates of human Group 3 

MB metastasis. With this new association, these genes are potential new targets for anti-cancer 

therapy.  
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Chapter 4: Discussion 

  

4.1 In vivo Iterative Selection: A Powerful Approach to 
Define the Transcriptomics of MB Metastasis  

In this work, in vivo iterative selection was used to identify genes and pathways activated in 

metastases to the spine borne by mouse xenograft models of human MB. As successfully applied 

by several other groups, repeatedly selecting for increased propensity for metastasis among spine 

metastases by repeated use of spine metastases as seeds for successive xenograft mice, the 

proportion of genes transcriptionally activated specifically in correlation with metastasis would 

grow with every round of selection. This was what was observed, with increasing presence of 

metastasis-related genes among those transcriptionally activated with every round of selection, 

ultimately culminating in the appearance of metastasis pathways by the fifth round of selection.  

But is this approach involving repeated tumourigenesis and metastasis a model that is 

representative of endogenous tumourigenesis and metastasis? Indeed, tumourigenesis and 

metastasis are processes of ongoing clonal evolution [91, 92]. New mutations occur in cells of a 

tumour, and each cell is then either selected for or against depending on whether the mutation 

has increased or decreased its fitness within the population of cells that are making up the 

tumour. Similarly, if selection pressure within a tumour becomes high, mutations, which enable 

tumour cells to migrate away from this restrictive environment to a permissive environment (i.e. 

undergo metastasis), will, in that moment, become highly selectively favourable. Thus, cells with 

the mutation will migrate away from the primary tumour bed and form metastases. This model 

was first proposed in 1976 by Dr. Peter Nowell [91], then expanded upon by Dr. Isaiah Fidler in 

1978 to include more details regarding evolution as it applies to metastasis [92]. From that point 

forward, the model has been shown to be an apt description of tumourigenesis and metastasis for 

a wide range of cancer types, including but not limited to colorectal cancer [93], breast cancer 

[94], and medulloblastoma [95]. In groundbreaking work by Dr. Sorana Morrissy in 2016, 

tumour evolution leading to clonal divergence has even been shown to extend to MB recurrence 

[96].  
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So, the repeated rounds of selection characteristic of in vivo iterative selection do represent a 

useful model for the endogenous mechanisms of mutation and selection that drive endogenous 

tumourigenesis and metastasis. In vivo iterative selection just makes the process of generating 

highly metastatic cells faster and more efficient than in endogenous tumour development [97] by 

conducting a form of artificial selection, explicitly selecting metastatic cells for continued 

selection, rather than natural selection, in which selection is dependent only on fitness.  

4.2 Genes are Transcriptionally Activated in PDX Spine 
Metastases Relative to Primary Tumours in the First 
Round of Selection  

Before beginning to select for increased metastasis propensity in the spine metastases of 

xenograft mice, an initial xenograft mouse was created by intracranially injecting cultured D425 

cells that had not yet undergone metastasis. In a subset of the successfully created xenograft 

mice, in which injected D425 cells engrafted within the cerebellum and formed a MB primary 

tumour, cells migrated to the spine and formed metastases. In these cells that disseminated three 

transcriptionally activated genes, BEX2, PPP1CC, and NUDT11, had previously been linked to 

cancer, metastasis, or in the case of PPP1CC, Medulloblastoma metastasis [61]. However, these 

genes were in the minority, with 204 additional genes that were transcriptionally activated genes 

yet had no previous link to metastasis. So, it appears that transcriptional activation of some genes 

was in correlation with metastasis while for other genes was in correlation with a characteristic 

of the cells other than their propensity for metastasis.  

4.3 Selecting for Increased Metastasis Increasingly Selected for 
Cancer Testis Antigen (CTA) Genes 

Iterative selection of spine metastases from mouse PDX models of human Group 3 MB to favor 

those with increased propensity for metastasis led to progressively increasing transcription of 

cancer testis antigen (CTA) genes (predominantly from the X chromosome) and long non-coding 

RNAs (lncRNAs).  

CTA genes vary significantly with respect to their structure, regulation, and function [98]; 

however, the characteristics shared by all CTA genes are transcription that is confined, both 

spatially and temporally, to germ tissues during periods of rapid cell division, and, although 
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having different functions, the ultimate shared function of promoting a stem-like state in the cells 

in which they are expressed.  

Progressively increasing transcription across rounds of selection was observed for MAGE, 

XAGE, and CT45 subfamilies of CTA genes more than any others. MAGE and CT45 genes in 

combination with other CTA genes have been found to promote epithelial-mesenchymal 

transition, and the production of tumour cells with stem-like properties [99]. MAGEA genes 

function as modulators of ubiquitin ligases. MAGE proteins complex with E3 RING ubiquitin 

ligases such as MDM2 to form MAGE-RING ubiquitin ligases; in the complexes MAGE 

proteins then regulate ligase activity, target specificity, and location in the cell. In the context of 

MB, expression of MAGE proteins inhibits chemosensitivity [100]. In contrast, overexpression 

of miR34a increases MB chemosensitivity by inhibiting the transcription of MAGEA genes, 

which leads to increased levels of P53, and its transcriptional targets [101]. This suggests that 

MAGEA genes regulate P53. It has been established that P53 loss in tumour cells leads to 

reduced cell senescence, reduced apoptosis, and malfunctioning cell checkpoints [102]. 

Specifically, MB germline and somatic mutations in P53 are characteristic of SHH subgroup MB 

and patients with P53 mutations are at very high risk (% Survival to 5y post-presentation = 50-

75%) [103]. It can be further hypothesized that the functional changes associated with reduced 

P53 expression would support metastasis in any subgroup.  

In comparison, the function of members of the CT45 CTA subfamily is poorly understood. 

siRNA-mediated inhibition of CT45A1 transcription correlates with decreased cell migration, 

invasion, and cell viability of lung cancer cells, possibly through reduced ERK/CREB signaling, 

which was also downregulated as a result of the siRNA treatment. So, it appears that the 

regulation of metastasis by CTA genes, observed in much greater detail for other cancers than for 

MB, may truly also be taking place in the context of MB.  

XAGE-1b and XAGE-1d, two of the four transcripts produced from the XAGE-1 gene, exhibited 

progressively increasing transcription across selection. Increased expression of XAGE-1b has 

been shown to either correlate with metastasis in the context of melanoma [104], or promote 

metastasis in the context of adenoid cystic carcinoma [105]. In contrast, XAGE-1d has yet to be 

linked to metastasis but has been identified as a biomarker of squamous cell carcinoma [106].  
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4.4 Vimentin: Is it Acting to Support Metastasis in Association 
with CTA Genes? 

CTA genes regulate metastases indirectly, through intermediate effectors or in association with 

other molecules such as the CREB pathway for CT45A1 [72]. In this study, the CREB pathway 

components were not transcriptionally activated, nor were effectors TWIST1, E-Cadherin 

(CDH1), or N-Cadherin (CDH2). Significantly increased transcription was observed, however 

for effector Vimentin (VIM), one of 71 protein components that make up filaments, that support 

the migration of mesenchymal cells [107], and the metastasis of cancer cells [108]. Specifically, 

that support comes in multiple forms. Networks of Vimentin fibres associate with networks of 

microtubules and given the greater stability of Vimentin fibres relative to microtubules, guide the 

building of microtubules from exposed “plus” ends in order to maintain polarity within the cell, 

which is required for cell migration. In addition, Vimentin fibres interact with actin fibres 

directly via the Vimentin tail domain, and indirectly via a linker protein, plectin, and a regulatory 

protein CAMIl2, to support the formation of lamellipodia, cellular protrusions, which serve as 

the leading edge as cells migrate along a surface. Furthermore, Vimentin supports changes in cell 

shape, reductions in cell-cell contacts and focal adhesions, and supports cell elasticity, something 

that is especially important given the biophysical stress that is associated with the processes of 

migration and invasion. So, Vimentin is a critical component of the molecular machinery, which 

mediates cell migration in the contexts of both health and disease. Thus, its transcriptional 

activation in the spine metastases of PDX mice relative to primary tumours suggests that it may 

be participating in the process of MB tumour dissemination. It is interesting to note that in 

pathway analyses, VIM was the top gene contributing to the enrichment of the Epithelial-

Mesenchymal Transition pathway. So, this further supports the hypothesis that activated VIM is 

promoting metastasis. However, the question still remains whether VIM might be acting 

upstream or downstream of CTA genes.  

4.5 Enrichment of CTA Genes Comes Before Metastasis 
Pathways: Correlative or Causative?  

To assess whether the observed changes in transcription were leading to changes in pathway 

activity, Gene Set Enrichment Analysis was performed. The CTA gene family, treated as a 

pathway, became enriched after the second round of selection (Figure 11). Subsequent to this, in 
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the 5th round of selection metastasis pathways also became enriched. So, this suggested that 

activation of the CTA gene family might have been sufficient for metastasis.  

That being said, it is interesting to note that no CTA genes were included in the gene sets 

representing metastasis pathways. As a result, based on the data in hand the relationship between 

CTA gene activation and metastasis must be judged as one that is correlative.  

This is supported by the existing model in which CTA genes indirectly regulate metastasis 

pathways rather than be a part of the pathways themselves, as is observed for CT45A1, which 

promotes metastasis via aberrant CREB signaling [72]. Also, pathways activated in human MB 

patients were shared with the xenograft models, yet the genes differed. Thus, an assessment of 

the pathways affected by mutation provided a valuable view complementing the assessment of 

genes. Taken together, it appears that activated CTA transcription may be sufficient for the 

activation of metastasis pathways in human Group 3 MB tumours.  

4.6 CTA Genes Are Identified as Biomarkers not Drivers in 
Cancer: Evidence of Absence or Absence of Evidence?  

Mutations in CTA genes have been identified as biomarkers predictive of worse prognosis in a 

wide range of cancer types [109]; however, CTA genes have not yet been identified as drivers, 

for which mutation is necessary and sufficient for tumourigenesis or metastasis. So, in what ways 

might CTA genes play roles in promoting metastasis? 

CTA genes participate in the process of metastasis; inhibition of CT45A1 transcription leads to 

decreased invasion, migration, and cell viability [72]. Rather than drive metastasis directly CTA 

genes might play important roles in making intracellular or extracellular conditions permissive to 

tumour formation, growth, or spread. For example, MAGEA genes regulate TP53; by reducing 

TP53 levels and inhibiting apoptosis. Under these conditions, in the presence of other driver 

mutations tumours would be more easily able to survive, grow, and spread.  

It is also possible that CTA genes might not be metastasis driver genes, but instead effectors of 

metastasis upstream or downstream of the genes driving metastasis. In such an instance, 

increased transcription of CTA genes would correlate with metastasis but mutations would only 

ever be identified in the driver genes themselves.   
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It is also possible that driver mutations in CTA genes have not yet been identified because they 

occur after cells have spread and are thus only found in metastases in patients. For MB, little 

metastatic tumour tissue is available for research purposes; this is due to the fact that the 

treatment regimen for patients with metastatic MB is chemotherapy and radiation, and so 

metastatic tumours are only rarely ever resected. Further, until recently, the genomes of 

metastases were assumed to be identical to that of the primary tumour, and so, it was believed 

that there would be no need to also sequence metastases. So, it is possible that CTA mutations 

mediating metastasis are have evaded detection by remaining confined to just metastases. 

Long non-coding RNAs (lncRNAs) could be regulators of CTA genes. The gene most 

significantly activated across rounds of selection was XIST, a lncRNA. Furthermore, other 

lncRNAs exhibited increasing transcription similar to that of XIST and CTA genes. So, this leads 

to a model in which lncRNAs might serve as regulatory RNAs promoting metastasis through 

downstream effectors including CTA genes.  

4.7 Model: lncRNAs Bind and Sequester miRNAs Away From 
Targets, Including CTA Genes, Leading to Target 
Derepression and Increased Metastasis 

Among several functional modes, lncRNAs have been shown to serve as endogenous micro-

RNA inhibitors (Figure 16) [110]. LncRNAs bind to inhibitory micro-RNAs (miRNAs), 

sequestering the miRNAs away from their targets. As a result, target expression is no longer 

inhibited, and thus increases significantly leading to disease. 
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Figure 16. LncRNAs function as endogenous miRNA inhibitors in a variety of disease 
contexts. LncRNAs bind to specific miRNAs, and sequester them away from their intended 
targets, leading to target overexpression.  
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Since being first hypothesized and subsequently identified in 2011 [110], this mode of function 

for lncRNAs as miRNA sponges has been studied in depth [111]. This has led to this mode being 

identified for a wide range of lncRNAs, across a wide range of cancer contexts including most 

recently glioblastoma [112], hepatocellular carcinoma [113], thyroid cancer [114], metastatic 

lung cancer produced through aberrant TGF-beta signaling [115], and a variety of hematological 

cancers [116]. This regulatory mode has also been implicated in healthy mammalian brain 

development [117].  

Furthermore, there is a precedent for a lncRNA serving as a miRNA sponge in the context of 

MB. Linc-NeD125 binds to miRNAs miR-19a-3p, miR-19b-3p, and miR-106a-5p, which leads 

to the de-repression of their targets, the mRNAs encoding well-established drivers of Group 4 

MB tumourigenesis CDK6, MYCN, Rcmb05, and KDM6A [118]. With their inhibitory miRNAs 

bound by Linc-NeD125, these proteins can be translated at high levels.  

Of similar relevance to this study, XIST, the lncRNA which exhibited the greatest increase in 

transcription across rounds of selection, has been found to serve as a miRNA sponge in a wide 

variety of cancer contexts. In colorectal cancer XIST regulates metastasis by serving as a miRNA 

sponge specifically for target ZEB1 [119]. Increased XIST transcription correlated with worse 

prognosis, and XIST knockdown reduced cell proliferation, invasion, and epithelial-mesenchymal 

transition in vitro, and reduced tumour growth and metastasis in vivo. Expression of ZEB1 did 

not increase in correlation with increases in XIST in the current study, but that does not eliminate 

the possibility that XIST might have been regulating other transcription factors in the context of 

MB. One such transcription factor could be ZEB family member ZEB2, which was significantly 

activated in round 5 of selection. Furthermore, published evidence demonstrates that, in the 

context of non-small-cell lung cancer, XIST regulates epithelial-mesenchymal transition 

mediated by TGF-beta signaling, itself known to be upregulated in Group 3 MB [120], through a 

complex regulatory network including ZEB2 and miRNAs miR-367 and miR-141 [121]. 

Complementing these findings and making them especially relevant to the current study, 

overexpression of miR-367 in MB cell lines grown in culture promotes cell proliferation and 

stem-like properties [122]. Also, resembling the downstream portion of this mechanism, 

published evidence demonstrates that miR-34a inhibits translation from MAGEA mRNAs in MB 

cells, and increased miR-34a expression leads to decreased MAGEA protein levels, increased 

P53 protein levels, and increased chemosensitivity [101].  
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 XIST has also been shown to function as an endogenous miRNA inhibitor in a variety of other 

cancers, including lung adenocarcinoma [123], laryngeal squamous cell carcinoma [124], and 

nasopharyngeal carcinoma [125].  

So, in the context of this study and the model proposed, aberrantly increased transcription of 

lncRNAs could lead to aberrantly increased sequestering of inhibitory miRNAs, leading to the 

aberrantly increased transcription of their targets, such as CTA genes ultimately leading to 

disease (Figure 17).  
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Figure 17. Graphical description of lncRNA-mediated dysregulation of 
transcription through the competitive inhibition of miRNAs. Presented 
here is a systems description of the proposed model including multiple 
lncRNAs, miRNAs, miRNA targets, and downstream effectors. 
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Taken together lncRNAs and CTA mRNAs have been identified that, at minimum, exhibit 

increased transcription in correlation with metastasis but may, in fact, be regulating metastasis. 

Increased lncRNA transcription could lead to excessive sequestering of inhibitory miRNAs away 

from their regular targets. This ultimately would lead to those targets, such as CTA genes, being 

also transcribed in excess. This further transcriptional activation could then be passed on further 

to downstream effector genes, like VIM, that ultimately drive metastasis.  

It will now be necessary to test whether the preliminary patterns in this study do represent 

genuine regulatory relationships between lncRNAs, miRNAs, and mRNAs including all those 

for CTA genes. This will need to be evaluated in multiple cellular contexts namely in cerebellar 

precursor cells during development, in mature healthy cerebellum, in Medulloblastoma primary 

tumours, and in Medulloblastoma metastases. This would require the profiling of transcription 

for each of these categories. Clustering and differential expression analyses could then be used to 

specifically identify all lncRNAs and mRNAs that exhibit similar patterns of expression across 

categories, which would be suggestive of those genes being in a regulatory relationship. An ideal 

first model system to study would be the regulatory axis including miR-34a, MAGEA mRNA, 

and P53 [101]. In this system, no lncRNA regulating miR-34a has yet been identified. But the 

authors did report the existence of cell lines with distinctly low miR-34a transcription suggesting 

that some form of upstream inhibition was taking place.   

With respect to the goal of this study to discover new, more effective, and safer ways to treat 

metastatic medulloblastoma, the results reported are especially valuable because CTA genes 

represent unusually suitable candidate targets for immunotherapy given their highly restricted 

pattern of endogenous expression. So, with a better understanding of complex regulatory 

networks, which may be defining when, where, and to what extent CTA genes are transcribed, it 

may offer access to a wide range of new, and highly immunogenic targets for study as potential 

new treatments for metastatic Group 3 MB. 

In summary, selection for metastases to the spine in mouse PDX models of human Group 3 MB 

led to progressive increases in the transcription of lncRNAs and CTA genes. This ultimately 

resulted in the increased activity of several fundamental metastasis pathways. So, a regulatory 

network of lncRNAs may play an important role in mediating Group 3 MB metastasis to the 

spine.  
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Chapter 5: Conclusions 

  

5.1 Summary 
Through my years of doctoral study, I drew on the power of bioinformatics approaches to profile 

the transcriptomes of primary MB tumours, and MB metastases to the spine from mouse PDX 

models of human MB iteratively selected to favor increased metastasis to the spine. The ultimate 

goal of the work was both to deepen the understanding within the scientific community of the 

mechanisms driving metastasis to the spine, and to identify new possible therapeutic targets for 

the safe and effective treatment of metastatic MB. Through my work, for the first time ever to 

this level, I demonstrated that transcription of many members of the Cancer Testis Antigen Gene 

family are correlated with metastasis. Furthermore, I identified several long non-coding RNAs, 

most significantly XIST, for which their levels of transcription are also correlated with 

metastasis, in a manner very similar to that observed for the CTA genes.  

This has led me to ask an interesting scientific question; could these and other regulatory RNAs 

be regulating the transcription of a network of genes that, when functioning properly, delicately 

guide the development of complex multicellular organisms, but when dysregulated drive 

tumourigenesis and metastasis? My data seems to suggest that this might be the case since a 

subset of lncRNAs and CTA genes are transcriptionally activated at discrete stages in the process 

of in vivo iterative selection, while others exhibit progressively increasing transcription spanning 

all of the rounds of selection. Furthermore, extensive evidence has been, and continues to be 

published, describing lncRNAs, which are serving as endogenous miRNA inhibitors, 

sequestering inhibitory miRNAs away from their targets and thereby causing cancer and disease. 

So, networks of RNAs may be playing an important part in regulating the metastasis of MB in a 

subgroup-specific fashion. If this is the case, it will be essential for networks such as these to be 

characterized in detail, in order to gain a comprehensive understanding of how metastasis occurs, 

and by extension how metastatic disease could be most effectively treated, within each MB 

subgroup and subtype.  



110 

 
110 

5.2 Future Directions 
A powerful first step towards characterizing networks of RNAs would be to cluster all mRNA, 

miRNA, and lncRNA based upon their levels of transcription in MB cells of origin, primary 

tumours, and metastases. Complex regulatory networks linking lncRNAs, miRNAs, and mRNAs 

could be delineated on a systemic level, rather than on a gene by gene basis.  

It would be of equal importance, beyond transcriptional profiling, to validate that transcriptional 

activation of specific genes is occurring specifically in correlation with metastasis. This would 

require the inhibition and forced overexpression of target genes to demonstrate that expression of 

that gene was both necessary and sufficient for metastasis to occur.   

Both overexpression and inhibition could be achieved using CRISPR, a technology for the 

sequence-specific editing of DNA. In traditional CRISPR-Cas9, Cas9, a sequence-specific 

endonuclease, binds to synthesized guide RNAs, with sequence complementary to the site where 

DNA is to be edited. Cas9 then migrates to the site of interest using the guide RNA and cuts at 

the sequence specified enabling the insertion of new DNA, or repair by the cell machinery. 

Traditional CRISPR-Cas9 could be used for inhibition. However, forced expression would 

require the use of a modified version of CRIPSR known as CRISPR-dCas9-VPR. In this form, a 

dCas9-VPR is used, in which the Cas9 endonuclease function is inactivated, and fused to the 

active domains of three other transcriptional activators, Vp64, p65, and Rta. This modified 

dCas9-VPR can then be recruited to a gene of interest based on the guide RNA, and bring about 

its overexpression.  

In our approach, cultured tumour cells would be infected with lentivirus carrying the coding 

sequence for dCas9-VPR and lentivirus carrying the coding sequence for either Blue Fluorescent 

Protein labeled case guide RNAs or Red mCherry-labeled scrambled guide RNAs (Figure 18). 

Lentiviral cargo would be incorporated into the genome of the cultured cells, and transcribed 

leading to the forced overexpression of the gene of interest by dCas9-VPR in cells with the case 

guide RNA. Both populations of cells (now Blue and Red) would be mixed and intracranially 

injected into mice. Spine metastases significantly more blue than red would indicate that forced 

overexpression was sufficient to promote metastasis. Conversely, metastases with equal parts 

blue and red would indicate that forced overexpression was not sufficient to promote metastasis. 

Finally, metastases significantly more red than blue, or entirely red would indicate that forced 
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overexpression was not only insufficient but actually detrimental to metastasis. It should be 

noted that this experiment is actually in progress, being carried out by Taylor lab collaborators 

Sachin Kumar, Paquito de Antonellis, Kyle Juraschka, and Olga Sirbu, with results imminent.  
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Figure 18. CRISPR-dCas9-VPR-mediated overexpression of 
genes of interest in D425 Group 3 MB cells to validate whether 
overexpression of a gene of interest confers an increased 
propensity for metastasis upon the D425 cells in which the gene 
is being overexpressed. a) Introduction of Cas9-VPR into GFP-
labeled D425 cells through lentiviral infection b) Introduction of 
BFP-labeled gene-specific guide RNAs or mCherry-labeled 
scrambled guide RNAs into two populations of modified D425 
cells through lentiviral infection followed by intracranial injection 
of mixed cells into NSG mice c) Blue metastases would indicate 
gene overexpression promotes metastasis. Metastases of 
mixed colour would indicate that gene overexpression promotes 
metastasis only weakly or not at all. Red metastases would 
indicate that gene overexpression inhibits metastasis (not 
shown).  
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There are also other mysteries begging further investigation. CTA genes have been readily 

identified as cancer biomarkers and even effective drug targets for immunotherapy but have yet 

to ever be implicated as drivers, necessary for tumourigenesis or metastasis. They have 

frequently been shown to promote increased rates of metastasis when overexpressed but have yet 

to be identified as a causative driver. A deeper understanding of the exact roles that are being 

played by CTA genes in metastasis would serve as the best means to identify CTA genes that 

would be most useful as therapeutic targets.  

So, what appears to be the case, as seems to be the case so often within the scientific community, 

is that as much as we do now know and understand about MB tumourigenesis and metastasis, we 

have only scratched the surface and still have much to learn.  
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