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In acute myeloid leukaemia, long-term survival is poor as most 
patients relapse despite achieving remission1. Historically, the 
failure of therapy has been thought to be due to mutations that 
produce drug resistance, possibly arising as a consequence of the 
mutagenic properties of chemotherapy drugs2. However, other lines 
of evidence have pointed to the pre-existence of drug-resistant cells3. 
For example, deep sequencing of paired diagnosis and relapse acute 
myeloid leukaemia samples has provided direct evidence that relapse 
in some cases is generated from minor genetic subclones present at 
diagnosis that survive chemotherapy3–5, suggesting that resistant 
cells are generated by evolutionary processes before treatment3 
and are selected by therapy6–8. Nevertheless, the mechanisms of 
therapy failure and capacity for leukaemic regeneration remain 
obscure, as sequence analysis alone does not provide insight into 
the cell types that are fated to drive relapse. Although leukaemia 
stem cells9,10 have been linked to relapse owing to their dormancy 
and self-renewal properties11–13, and leukaemia stem cell gene 
expression signatures are highly predictive of therapy failure14,15, 
experimental studies have been primarily correlative7 and a role 
for leukaemia stem cells in acute myeloid leukaemia relapse has 
not been directly proved. Here, through combined genetic and 
functional analysis of purified subpopulations and xenografts 
from paired diagnosis/relapse samples, we identify therapy-
resistant cells already present at diagnosis and two major patterns 
of relapse. In some cases, relapse originated from rare leukaemia 
stem cells with a haematopoietic stem/progenitor cell phenotype, 
while in other instances relapse developed from larger subclones of 
immunophenotypically committed leukaemia cells that retained 
strong stemness transcriptional signatures. The identification of 
distinct patterns of relapse should lead to improved methods for 
disease management and monitoring in acute myeloid leukaemia. 
Moreover, the shared functional and transcriptional stemness 
properties that underlie both cellular origins of relapse emphasize 
the importance of developing new therapeutic approaches that 
target stemness to prevent relapse.

To track clonal dynamics during leukaemia initiation and progres-
sion, we used a combined genetic and functional approach. Peripheral 
blood mononuclear cells collected from 11 patients with acute mye-
loid leukaemia (AML) at diagnosis and relapse were obtained from 
our biobank. Whole-genome sequencing (WGS) was performed  
(coverage ~ 50× ) on leukaemic blasts isolated from each sample (clinical  
and immunophenotypic data in Supplementary Tables 1 and 2, 
respectively). T cells purified from diagnosis samples were used as the 
germline reference and to identify ancestral pre-leukaemic mutations16. 

To evaluate the genetic diversity of leukaemia stem cells (LSCs), diag-
nosis and relapse samples were transplanted into NOD/SCID/IL-2Rgc-
null (NSG) or NSG-SGM3 (humanized cytokine) mice17. Human 
myeloid (CD45+CD33+) and B-cell (CD45+CD19+) populations were 
sorted from xenografts and genotyped by droplet digital PCR (ddPCR, 
sensitivity ~ 1 in 1,000) for a subset of the variants identified by WGS. 
Additionally, patient samples from diagnosis, relapse, and remission 
time points (where available) were sorted into four progenitor (CD33− 
haematopoietic stem cells/multipotent progenitors (HSCs/MPPs), 
multi-lymphoid progenitors (MLPs), common myeloid progenitors/
megakaryocyte erythroid progenitors (CMPs/MEPs), and granulocyte 
monocyte progenitors (GMPs)) and four mature (CD45dimCD33+ 
blasts, and T, B, and natural killer (NK) cells) populations using our 
established strategy16, and genotyped (5–20 variants per sample) by 
ddPCR (experimental design is outlined in Extended Data Fig. 1a).

To investigate both the early stages of leukaemic development and 
the role of pre-leukaemic haematopoietic stem or progenitor cells 
(preL-HSPC) as a potential source of relapse16,18, we identified somatic 
variants predicted to have a damaging effect on the encoded protein 
(protein-damaging variants, PDVs) (Supplementary Table 3). These 
were defined as pre-leukaemic (preL-PDV) if they were present in  
T cells sorted from patient samples, or in B cells sorted from xenografts, 
or leukaemic (L-PDV) if absent in these populations. Patients had an 
average of 22.3 ±  14.6 PDVs and, remarkably, 30–50% of these PDVs 
were pre-leukaemic (Fig. 1a). Cell populations carrying preL-PDVs 
but not L-PDVs were classified as pre-leukaemic, whereas those with 
both preL-PDVs and L-PDVs were considered leukaemic. We found  
evidence of a pre-leukaemic cell population in all patients except for 
number 9, who bore a KMT2A (also known as MLL) translocation; the 
lack of cells with pre-leukaemic mutations in this patient was consistent  
with previous reports of few cooperating mutations in MLL acute  
leukaemias19,20. Analysis of the occurrence and variant allele frequency 
(VAF) of PDVs enabled estimation of the order of acquisition of muta-
tions in each patient with AML (Fig. 1b and Extended Data Fig. 1b). 
However, because 97.5% of PDVs identified at diagnosis were also  
present at relapse, they were not useful for identifying the cellular origin 
of the relapse clone. Nevertheless, this analysis revealed considerable 
genetic evolution occurring during the pre-leukaemic phase.

To investigate clonal dynamics between diagnosis and relapse time 
points, we identified somatic variants with VAF > 20% in relapse blasts 
and < 5% in blasts at diagnosis (relapse variants) (Supplementary  
Table 4). Relapse variants were largely intronic or intergenic, and  
compared with somatic mutations from the diagnosis sample were 
enriched for transversions (Supplementary Tables 5 and 6), consistent 
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with previous reports3,5. To track the cellular origins of the relapse 
clone(s), we analysed the occurrence and VAF of relapse variants in 
primitive and mature cell populations sorted from the diagnostic sample  
as well as in xenografts generated from the diagnostic and relapse 
samples. Patients had an average of 169 ±  135 relapse variants,  
consistent with a clonal switch between diagnosis and relapse. However, 
in one patient (number 1) the existence of only a very small number 
of relapse variants indicated that the diagnosis and relapse blasts were 
highly related (Fig. 1c and Extended Data Fig. 2a). In this patient, all 
preL-PDVs and L-PDVs were present at high VAF in the blast-like 
myeloid population at remission. These data suggest that, despite the 
achievement of a clinical and morphological remission in this patient, 
LSCs from the dominant clone at diagnosis (as functionally defined by 
the xenograft assays) survived chemotherapy and regenerated the same 
clone upon relapse. Indeed, reconstruction of a phylogenetic lineage 
tree using VAFs of PDVs in sorted cell populations and xenografts from 
diagnosis and relapse demonstrated the presence of several genetically 
diverse LSC subclones at diagnosis that persisted in relapse, with the 
dominant diagnostic clone re-emerging as the dominant relapse clone 
(Extended Data Fig. 2a).

In three patients (numbers 3, 6, and 9), relapse variants could not 
be detected by ddPCR in diagnostic blasts. Xenografts generated from 
diagnostic samples contained L-PDVs and were thus leukaemic, and 
frequently carried one or more relapse variants (Fig. 2a and Extended 
Data Figs 2b and 3), establishing that LSCs bearing relapse variants 
were already present at diagnosis. In patient 3, all diagnostic xeno-
grafts bore relapse variants, suggesting that the LSCs responsible for 
generating the dominant clone in the patient at the time of diagnosis 
were consistently out-competed in mice by LSC subclones bearing 
relapse variants. Phylogenetic analysis based on xenografts demon-
strated genetic diversity in the LSC compartment at diagnosis, with 
at least four or five distinguishable subclones (Fig. 2b), most of which 
were also detected at relapse (Supplementary Table 8). These results 
contrast with those of a previous study that was not able to demon-
strate propagation of relapse-fated subclones in xenografts21, probably 
because of differences in xenograft methodology. The results of our 
functional studies formally establish that LSCs are genetically diverse 
both at diagnosis and relapse, indicating continued branching evolution 

after leukaemic transformation. Although T cells from both diagnosis 
and relapse contained preL-PDVs, the absence of detectable relapse 
variants in these T-cell populations suggests that relapse did not origi-
nate from preL-HSPCs, although we cannot exclude the possibility that 
relapse variants in T cells might be below our limit of detection and/or  
that some pre-leukaemic mutations might engender a lineage bias pre-
cluding differentiation into lymphoid cells. In this patient (number 3), 
phenotypic MLPs carried most of the tested relapse variants at low VAF 
(Fig. 2a), whereas phenotypic HSC/MPPs and granulocyte monocyte 
progenitors carried only one or two relapse variants. These progenitor 
populations all contained L-PDVs at high VAF, establishing that they 
are leukaemic (Supplementary Table 8). Thus, compared with other 
subpopulations, the MLP fraction exhibited the closest genetic rela-
tionship to all the evolving LSC subclones of the diagnosis sample,  
including the specific LSC subclone fated to drive the dominant 
relapsing clone. These findings are consistent with previous studies 
suggesting that LSCs can have an MLP phenotype22 and can drive AML 
intiation16. On the basis of the low frequency of MLPs in the peripheral 
blood sample (< 0.001% of total mononuclear cells) and low VAF of 
relapse variants in the MLP fraction (~ 0.1%), we estimated that the 
frequency of relapse variant-bearing MLPs was < 0.0002% of the total 
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Figure 1 | Mutational analysis reveals extensive pre-leukaemic genetic 
evolution and major clonal shifts at relapse. a, Number of pre-leukaemic 
and leukaemic PDVs identified in 11 patients. b, Estimated order of 
acquisition of pre-leukaemic (grey) and leukaemic (black) PDVs in three 
patients, based on phylogenetic analysis. FLT3-ITD, FLT3 with an internal 
tandem duplication; C12orf24 is also known as FAM216A. c, Number of 
intronic or intragenic (grey) and protein-damaging (black) relapse variants 
identified in each patient.
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Figure 2 | AML relapse can originate from rare cells with a primitive 
functional and cellular phenotype. a, VAFs of relapse variants as detected 
by ddPCR in various cell populations sorted directly from the diagnostic 
(Dx) or relapse (Rel) sample of patient 3, or in myeloid (CD33+) cells 
isolated from xenografts (DxM) generated by the diagnostic sample of 
the same patient. BC, B cell; CMP/MEP, common myeloid progenitor/
megakaryocyte erythroid progenitor; GMP, granulocyte monocyte 
progenitor; HSC/MPP, haematopoietic stem cell/multipotent progenitor; 
MLP, multi-lymphoid progenitor; SNV, single nucleotide variant;  
TC, T cell. White squares indicate populations without relapse variant 
detection; relapse variants were detected in populations with grey squares, 
with the dark grey bar indicating VAF. b, Phylogenetic tree showing 
clonal relationships for patient 3, based on analysis of VAFs of all relapse 
variants, and pre-leukaemic and leukaemic mutations. The genetic 
distance between any two respective symbols on the phylogenetic tree 
was estimated using a neighbour joining method based on the degree of 
genetic relatedness (Nei’s genetic distance). Each coloured box contains 
highly related cell populations and xenografts inferred to represent a clone 
(green, pre-leukaemic; blue, diagnostic; red, relapse).
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mononuclear population in this patient’s peripheral blood. A similar 
pattern of relapse variants was seen in patients 6 and 9 (Extended Data 
Figs 2b and 3). Overall, our findings provide functional and pheno-
typic evidence that, in some patients, the cellular origin of relapse 
is a rare population of cells with a primitive HSPC-like phenotype, 
which are already present at diagnosis before initiation of therapy; we  
term these cases as having a primitive relapse origin (relapse  
origin-primitive, ROP).

In four other patients (2, 8, 10, and 15), relapse variants were detecta-
ble at low VAF (0.2–12.5%) in the non-HSPC blast population, but not 
in any other sorted progenitor population from the diagnostic sample 
(detection limit ~ 0.1%) (Fig. 3a and Extended Data Figs 4–6). For these 
patients, a bone marrow sample from remission (after second consol-
idation) was available, in which L-PDVs were detected in CD33+ cells 
as well as in some progenitor populations (Fig. 3b and Extended Data  
Figs 4–6), indicating persistence of leukaemic cell populations. 
Interestingly, relapse variants were below the limit of detection in 
the remission sample. To determine the clonal makeup of the LSC  

compartment, we evaluated xenografts generated by the patients’ 
diagnostic samples. The sample from patient 10 generated leukaemic 
grafts in NSG mice. The sample from patient 2 generated only multi-
lineage grafts in both NSG and NSG-SGM3 mice. The samples from 
patients 8 and 15 did not generate any graft in NSG mice; however, cells 
from patient 8 generated a leukaemic graft and those from patient 15 
generated a multilineage graft in NSG-SGM3 mice (Supplementary 
Table 7). Among these diagnostic xenografts, relapse variants were 
detected only in NSG-SGM3 xenografts from patient 8. For patient 15,  
phylogenetic analysis including relapse xenografts demonstrated that 
relapse was oligoclonal, and that the cell fraction at diagnosis most 
genetically related to the major relapse clone was the CD33+ blast  
population (Fig. 3c). Together, these data suggest that, in this group of 
patients, relapse originated from cells with a more committed immu-
nophenotype (relapse origin-committed, ROC), and that LSCs bearing 
relapse variants in ROC cases might possess more stringent growth 
requirements in the xenograft model than those of ROP patients.

In the remaining three patients (4, 11, and 12) (Extended Data  
Figs 7a, b and 8), no relapse variants could be validated by ddPCR in any 
of the sorted cell populations or xenografts from the diagnostic sample, 
preventing conclusive analysis of relapse origins; deeper sequencing 
will be required to determine whether ultra-rare cell types responsible 
for relapse are present. Overall our data demonstrate that AML under-
goes complex clonal evolution within both the pre-leukaemic HSC and 
LSC compartments, and we identify at least two distinct patterns of 
relapse based on the cell types from which relapse can originate. The 
presence at diagnosis of LSCs bearing relapse variants strongly supports 
the concept that chemotherapy does not induce mutations leading to 
emergence of new clones, but rather selects for pre-existing subclones 
that are already therapy resistant, probably because of dormancy  
and/or epigenetic plasticity; these findings are consistent with studies of 
mouse models of AML23. Indeed, the existence of minor LSC subclones 
within the bulk leukaemic populations is suggestive of their dormancy. 
Nevertheless, relapse variants were enriched for transversions, as  
typically seen after mutagen exposure2; further investigation is needed 
to understand why this mutagenic signature is present in relapse- 
generating cells before therapy.

To investigate the molecular pathways underlying the different pat-
terns of relapse (ROC and ROP), we undertook transcriptional profiling 
of the bulk diagnosis and relapse samples (Supplementary Table 9). 
Unsupervised hierarchical clustering of the normalized read counts 
revealed two major clusters encompassing ROP (3, 6, and 9) and ROC 
(2, 8, 10, and 15) patients (Fig. 4a). Since our patient numbers were 
small, we applied the same unsupervised clustering to patients who 
relapsed in The Cancer Genome Atlas (TCGA) AML cohort (n =  84). 
Again, two distinct clusters were generated; gene set enrichment  
analysis24 revealed that the same gene expression programs were  
driving the distinct clusters in both datasets (Fig. 4a and Extended 
Data Fig. 9a). The TCGA ROC-like cluster (n =  58) was enriched for 
patients with more primitive AML subtypes (French–American–British 
(FAB) M0/1/2); in this group, there was a trend to a higher proportion 
of patients with complex karyotype (Extended Data Fig. 9b). Patients 
in the ROP-like TCGA cluster were older and had higher white blood-
cell counts at diagnosis; this group was enriched for patients with  
myelomonocytic subtypes (FAB M4/M5), intermediate risk cytogenet-
ics, NPM1c mutation, and chromosomal alteration inv(16) (Extended 
Data Fig. 9b). The primitive immunophenotype of the rare MLP-like 
cells that generate relapse in ROP patients was distinct from the gene 
expression profiles of the bulk population; bulk cells were more similar 
to those of mature monocytic/granulocytic lineage cells, in keeping 
with their more differentiated FAB subtypes (Fig. 4b). By contrast, 
the bulk gene expression profiles of ROC patients were most similar 
to those of normal HSCs and erythroid/megakaryocytic progenitors, 
consistent with their primitive FAB subtypes. Collectively, these data 
suggest that, despite their phenotypic and genetic dissimilarities, relapse 
in both patient groups is linked to stem cell properties, manifested 
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Figure 3 | AML relapse can originate from cells with a committed 
phenotype. a, VAFs of relapse variants as detected by ddPCR in various 
cell populations sorted directly from the diagnostic, remission (rem), 
or relapse samples of patient 15, or in CD19+ B or CD33+ myeloid cells 
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either as a primitive LSC population giving rise to relapse (ROP group), 
or as stemness transcriptional programs that are retained in the bulk 
leukaemia cell population (ROC group) (summarized in Supplementary 
Table 10).

To investigate whether the clonal switch from diagnosis to relapse 
was associated with gene expression changes, a perturbation model 
was used to examine the transcription profiles of our paired samples25. 
Patients in the ROP group exhibited an increase in the proportion 
of cells with HSC gene expression (Extended Data Fig. 10a) and a 
concomitant decrease in the proportion of cells with mature myeloid 
lineage programs between diagnosis and relapse time points (Extended 
Data Fig. 10b). Consistent with this observation, the LSC frequency 
increased in the relapse samples (Extended Data Fig. 10c). The ROC 
group exhibited more inter-sample variation; however, in general, 
the already high proportion of diagnosis cells expressing HSC pro-
grams in the absence of mature myeloid programs changed little at 
relapse (Extended Data Fig. 10a, b). Additionally, an LSC-based gene 
expression score that was highly predictive of response to standard 
AML induction therapy15 was also higher when measured at relapse 
compared with diagnosis (Extended Data Fig. 10d). Our overall inter-
pretation of these datasets is that the phenotypic and transcriptional 
properties reflective of monocytic lineage maturation seen in ROP 
cases is indicative of a deep developmental hierarchy wherein a small 
pool of LSC generate bulk blasts that exhibit extensive myeloid dif-
ferentiation; the seeds of relapse lie buried within these rare LSCs. At 
relapse, the higher LSC to blast ratio and the primitive blast pheno-
type with increased expression of stemness programs reflect a switch 
towards a more shallow developmental hierarchy upon leukaemic 

progression. By contrast, the more primitive blast phenotype in ROC 
cases denoted by strong expression of stemness transcriptional pro-
grams suggests that a shallow leukaemic hierarchy already exists at 
diagnosis in these cases, perhaps because of their poor-risk molecular 
properties that result in greater impairment of myeloid commitment 
programs.

Here, we have tracked the complex evolutionary history of AML 
within individual patients from the early stages of pre-leukaemic 
development to diagnosis and through progression to relapse. Our 
results have considerable implications for cancer biology in general 
as well as for how AML is monitored and treated. AML is the best 
example of a tumour that follows the cancer stem cell model. Our 
findings, together with recent evidence that stemness transcriptional 
signatures are highly predictive of therapy response14,15, provide strong 
evidence that cancer stem cells and stemness properties are clinically 
relevant in human AML, helping to resolve longstanding controver-
sies surrounding this model and the experimental methods required 
to investigate cancer stem cells26. Accordingly, therapeutic strategies 
must not only eradicate bulk tumour cells but also effectively target 
cancer stem cells. The presence of genetically diverse LSCs at diag-
nosis highlights a major limitation of therapies that target only the 
specific properties of the dominant clone. Our findings predict that 
ROP versus ROC cases will require different therapies given their dif-
ferent biology. The minor populations of dormant LSCs will need to 
be targeted in ROP cases, whereas relapse might be prevented in ROC 
cases by targeting the dominant blast population, for example with 
anti-CD33-drug toxin conjugates or other bi-specific antibodies. The 
ability of xenografts to capture even rare relapse-initiating LSCs offers 

Figure 4 | Distinct gene expression patterns are associated with relapse 
origin. a, Unsupervised hierarchical clustering of gene expression data 
from bulk diagnostic samples from the Princess Margaret Cancer Centre 
(PM) cohort (n =  11, left) or the TCGA relapsed AML cohort (n =  84, 
right). ROP-like and ROC-like clusters are indicated by boxes. Patients 
(P#) for whom the relapse origin was functionally established are shaded. 
Values above each edge represent approximately unbiased P values 
(percentage) calculated using pvclust. b, Differentially expressed genes 

between ROP-like and ROC-like clusters in the PM cohort (left) or the 
TCGA relapsed AML cohort (right) compared with Gene Expression 
Omnibus dataset GSE24759 (DMAP) populations. Numbers beside each 
bar indicate the percentage of time for which the observed value (set of  
up- or downregulated genes) was better represented in that population 
than random values (equal number of randomly selected genes based 
on 1,000 trials). CFU, colony-forming unit; DC, dendritic cell; NM, 
neutrophilic metamyelocyte.
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a new approach to characterize their therapy resistance and identify 
new therapeutic targets, a strategy that should be generalizable to other 
leukaemias and solid cancers. Finally, deployment of new methods of 
disease monitoring that combine genetic and cellular analysis could 
lead to improved clinical trials in which the drug response of geneti-
cally diverse LSC subclones is tracked.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethODS
No statistical methods were used to predetermine sample size. The experiments 
were not randomized. The investigators were not blinded to allocation during 
experiments and outcome assessment.
Patient samples. All biological samples were collected with informed consent 
according to procedures approved by the Research Ethics Board of the University 
Health Network (REB 01-0573-C) and viably frozen in the PM Leukaemia Bank. 
Inclusion criteria were AML samples for which viable frozen cells were available 
from both diagnosis and relapse. The original cohort included 15 patients. The 
following samples were excluded because of insufficient material needed for all 
of the experiments: patients 7, 13, and 14. Patient 5 was excluded as we originally 
thought the patient had paired samples from diagnosis and relapse; however, later 
it became clear that the diagnosis sample was actually a remission sample, and no 
diagnosis sample was available.
T-cell isolation and expansion from primary AML patient samples. CD3+ cells 
were isolated from peripheral blood mononuclear cells of AML patient samples 
using EasySep (Stem Cell Technologies) and re-suspended at a concentration of 
1 ×  107 cells per 2 ml in RPM1 +  10% FBS-HI +  rhIL-2 (250 IU ml−1, Proleukin, 
Chiron) +  anti-CD28 antibody (5 μ g ml−1, clone CD28.2, eBioscience). Cells were 
then added to one well of a 24-well plate that had been pre-coated for 2 h with 
anti-CD3 antibody (Clone OKT3, eBioscience) and cultured for 4 days at 37 °C 
with 5% CO2. Cells were harvested on day 4, re-suspended in fresh RPMI +  10% 
FBS-HI +  rhIL2 (250 IU ml−1), and re-plated into one well of a six-well plate. Cells 
were further cultured and expanded for 14–20 days, feeding with fresh full medium 
containing rhIL-2 (250 IU ml−1) every 3–4 days. After expansion, the purity of 
CD3+ T cells was checked by flow cytometry. DNA from the cultured T cells was 
extracted using the PureGene Cell kit (Qiagen) and used for WGS.
WGS. DNA was extracted from bulk peripheral blood mononuclear cells (after 
Ficoll separation) from both diagnosis and relapse AML patient samples and 
quantified using Qubit (Life Technologies, Carlsbad, California, USA, catalogue 
number Q32854). Fifty nanograms was used for library preparation using the 
Nextera DNA Sample Prep Kit (Illumina, San Diego, California, USA, catalogue 
numbers FC-121-1031 and FC-121-1011). Tagmentation of genomic DNA was 
performed following the manufacturer’s protocol. Tagmented DNA was puri-
fied using 1.8×  volume AMPure XP SPRI beads (Beckman Coulter Genomics, 
Danvers, Massachusetts, USA, catalogue number A63881) and then amplified 
using a limited-cycle PCR program according to the manufacturer’s protocol. 
Post-PCR enriched libraries were purified using a 0.6×  volume AMPure XP SPRI 
bead clean-up, followed by two washes with 80% EtOH. Libraries were eluted 
in 32.5 μ l suspension buffer provided in a Nextera DNA Sample Kit, validated 
using an Agilent Bioanalyzer High Sensitivity DNA Kit (Agilent Technologies, 
Santa Clara, California, USA, catalogue number 5067-4626), and quantified on an 
Illumina Eco Real-Time PCR Instrument (Illumina, San Diego, California, USA) 
using KAPA Illumina Library Quantification Kits (KAPA Biosciences, Woburn, 
Massachusetts, USA, catalogue number KK4835) according to the manufacturers’ 
protocols. Paired-end cluster generation (Illumina, San Diego, California, USA, 
catalogue number PE-401-3001) sequencing of 2 ×  101 cycles (Illumina, San Diego, 
California, USA, catalogue number FC-401-3001) was performed for all libraries 
on an Illumina HiSeq 2000/2500 platform (Illumina, San Diego, California, USA), 
and samples were sequenced with the number of lanes predicted to yield an uncol-
lapsed coverage of 50×  and 30×  for AML and T cells, respectively. Lane level reads 
were aligned to the reference human genome build hg19 using Novoalign (version 
2.07.14, Novocraft), then filtered to remove unaligned reads, secondary alignment, 
and alignments with a mapping quality less than 30 (samtools version 0.1.18). 
Aligned sequences for each sample were merged into a single file after marking 
and removal of duplicates (Picard version 1.72). Single nucleotide variants and 
indels were called using a genome analysis tool kit (GATK version 1.3.16 Unified 
Genotyper). Variants with low quality (genotype quality <  60) based on GATK 
output were filtered out.
Definitions of mutations in the PM AML cohort. Somatic mutations were 
defined as non-synonymous variants detected by WGS with a VAF of < 0.4 in  
T cells at diagnosis and > 0.2 difference in VAF between bulk leukaemia cells and 
T cells at diagnosis. To exclude germline variants, all single nucleotide variants and 
indels identified in T cells were searched in the University of California, Santa Cruz 
genome browser under the category ‘ALL SNP142’. Any variant previously identi-
fied in any population with a reference mean allele frequency > 0.01 was considered 
germline and was excluded. PDVs were defined as somatic variants (both single 
nucleotide variants and short indels) located in exons and predicted to be both 
damaging and deleterious to the protein by the PROVEAN algorithms. PDVs were 
defined as preL-PDV if they were present in T cells sorted from diagnosis, relapse, 
or remission patient samples, or in B cells sorted from xenografts, or L-PDV if 
absent in these populations. To estimate the false positive designation of germline 

variants as preL-PDVs, we assessed the VAF of several PDVs in all sorted popula-
tions (HSPCs and mature cells, human cells isolated from xenografts). Variants that 
were present in all isolated populations were considered germline and excluded. 
Across all samples in the cohort, 5% of preL-PDVs were excluded because of these 
criteria, suggesting that a possible false positive rate of 5% might occur owing to 
the lack of other germline control. Relapse variants were defined as somatic vari-
ants with VAF > 20% in the bulk blasts at relapse and < 5% in the diagnosis blasts.
Fluorescence-activated cell sorting of human stem/progenitor and mature cell 
populations. Mononuclear cells (1 ×  106 per 100 μ l) from peripheral blood or bone 
marrow of patients with AML were stained with the following antibodies (all from 
BD unless stated otherwise, catalogue number in parentheses): anti-CD45RA-
FITC (555488), anti-CD90-APC (561971), anti-CD135-Biotin (624008), anti-
CD38-PE-Cy7 (335790), anti-CD10-Alexa-700 (624040), anti-CD7-Pacific Blue 
(642916), anti-CD45-V500 (560777), anti-CD34-APC-Cy7 (custom made by BD, 
CD34 clone 581), anti-CD34-PerCP-Efluor 710 (eBioscience 46-0344-42), anti-
CD33-PC5 (Beckman Coulter PNIM2647U), anti-CD19-PE (349204), anti-CD3-
FITC (349201), anti-CD56-Alexafluor 647 (557711), and Streptavidin-QD605 
(Invitrogen Q10101MP). Remission samples from patients 1, 10, and 11 were 
enriched for CD34+ cells using a Miltenyi CD34 MicroBead kit according to the 
manufacturer’s protocol before antibody staining. For all samples, cells were sorted 
on a FACS AriaIII to a post-sort purity of > 95%: progenitor populations were all 
gated on CD45+CD33− and sorted into HSC/MPP (CD38−CD34+CD45RA−); 
MLP (CD38−CD34+CD45RA+); megakaryocyte erythroid progenitors/com-
mon myeloid progenitors (CD38+CD34+CD7−CD10−CD45RA−); and gran-
ulocyte monocyte progenitor (CD38+CD34+CD7−CD10−CD45RA+) subsets. 
Mature populations were sorted into leukaemia blasts (CD45dimCD33+), T cells 
(CD45highCD3+), B cells (CD45highCD19+), and NK cells (CD45highCD56+). For 
patients 3, 6, and 12, the following additional markers were required to purify 
mature populations (all from BD, catalogue number in parentheses): anti-CD8-
APC-H7 (560179) to sort T cells, anti-light-chain lambda-V450 (561379), and 
anti-light-chain kappa-V450 (561327) to sort B cells, and anti-CD57-APC (555518) 
to sort NK cells. DNA from all sorted populations other than leukaemic blasts was 
amplified by whole-genome amplification (REPLI-g Mini Kit for 16 h).
Xenotransplantation assays. Animal experiments were performed in accordance 
with institutional guidelines approved by the University Health Network Animal 
Care Committee. Eight- to 12-week-old female NSG mice27 were sublethally irra-
diated (225 cGy) 6–24 h before transplantation. For patients 2, 8, and 15, AML 
cells were also transplanted into 8- to 12-week-old female NOD.Cg-Prkdcscid 
Il2rgtm1Wjl Tg(CMV-IL3,CSF2,KITLG)1Eav/MloySzJ (NSG-SGM3) mice17 that 
were sublethally irradiated (225 cGy) 6–24 h before transplantation. Variable cell 
numbers were transplanted into cohorts of mice using a limiting dilution analysis 
to ensure recipients were engrafted with single LSCs. The total number of mice 
transplanted per sample depended on the number of viable cells that were available, 
but ranged from 20 to 80 recipients across all samples. There was no randomization 
or blinding. Mononuclear cells from patients with AML were depleted of CD3+ 
cells by EasySep (Stem Cell Technologies) before intrafemoral transplantation as 
previously described28. Mice were killed 8 or 16 weeks after transplantation and 
human engraftment in the injected right femur and non-injected bone marrow 
(left femur, tibias) was evaluated by flow cytometry using the following human- 
specific antibodies: anti-CD45-APC (BD Biosciences catalogue number 340943), 
anti-CD19-PE (BD Biosciences catalogue number 340364), anti-CD33-PE-Cy5 
(Beckman Coulter catalogue number IM2647U), anti-CD3-FITC (BD Biosciences 
catalogue number 349201), anti-CD14-ECD (Beckman Coulter catalogue number 
IM2707U), anti-CD15-Pacific Blue (BD Biosciences catalogue number 642917), 
anti-CD38-PE-Cy7 (BD Biosciences catalogue number 335790), and anti-CD34-
APC-Cy7 (BD Biosciences, custom order). The threshold for detection of engraft-
ment was 0.1% human CD45+ cells. All flow cytometric analysis was done on an 
LSR II flow cytometer (BD Biosciences). Xenografts were classified as leukae-
mic if > 90% of the human CD45+ cells were CD33+CD19− or multilineage if  
> 20% of the human CD45+ cells were CD19+CD33−. Of the 11 diagnosis samples,  
5 generated a myeloid leukaemia graft, 4 generated a multilineage graft, and 2 did 
not generate any graft. All of the patient samples obtained at relapse generated a 
leukaemic graft (Supplementary Table 7).
Limiting dilution assays. To determine the frequency of LSCs in a patient’s sample, 
bulk mononuclear cells were transplanted into NSG mice at doses ranging from 
6 ×  106 to 100 cells per mouse. The proportion of engrafted mice was determined at 
each dose by flow cytometry and the frequency of repopulating cells was calculated 
using ELDA software29.
ddPCR. For each patient, at least five PDVs and relapse variants identified by 
WGS were validated by ddPCR using probes designed for each variant. Amplified 
DNA (2 μ l from a 1:20 dilution of a 16 h REPLI-g Mini Kit whole-genome ampli-
fication, Qiagen) from each sorted population was tested in a 96-well plate in  
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duplicate according to the manufacturer’s protocol. Mutant and wild-type 
sequences were read using a droplet reader with a two-colour fluorescein/HEX 
fluorescence detector (Bio-Rad). The mutant allele frequency was calculated as 
the fraction of mutant-positive droplets divided by total droplets containing a 
target. The VAFs for all relapse variants and PDVs in each population from each 
patient are listed in Supplementary Table 8. To evaluate the detection limits of 
the ddPCR assay, a standard curve was generated using serial dilutions of DNA 
with a known mutation frequency mixed with non-mutated DNA. As reported in 
our previous study16, the minimum detection level was 1:1,000 (0.1%). Variants 
were considered present if there were at least three dots in the mutant fluorescein 
channel resulting in VAF > 0.1%.
Mutation order and phylogenetic analysis by median joining algorithm. To 
estimate the order in which PDVs were acquired during leukaemogenesis and 
the phylogenetic relationships between the subpopulations within each patient, 
we used a population genetics tool called median joining30. In brief, this tool can 
extract the phylogeny structure in closely related strata that have short genetic 
distances between them. Owing to small genetic differences, phylogenetic trees 
are not accurate in phylogeny reconstruction and a network display is a useful 
alternative. This network depicts evolutionary paths in the form of cycles, which 
present possible options for the genetic interactions and order of mutations30. 
To be able to apply median joining to our data, we had to relax the VAF infor-
mation to a binary description of whether the variant was present or not in each 
subpopulation. PDV data from the following subpopulations at diagnosis and 
relapse were used in the analysis: blasts, T cells, HSCs/MPPs, MLPs, common 
myeloid progenitors/megakaryocyte erythroid progenitors, granulocyte mono-
cyte progenitors, and xenografts. For each patient, a root was added representing 
the reference genome (no variants). The binary data for each subpopulation were 
uploaded to the Network software as an RDF file (Network, Fluxus Technology). 
Software can be downloaded at http://www.fluxus-engineering.com/sharenet.htm. 
Once a median joining network was reconstructed, the actual mutation order was 
estimated by choosing the path from the root onwards that was supported by 
the maximum number of subpopulations. For example, if mutations in DNMT3A 
and NPM1 appeared on the network in two different positions and more subpop-
ulations supported the occurrence of DNMT3A mutation before NPM1 muta-
tion, then the estimated order would be DNMT3A mutation followed by NPM1  
mutation.
Phylogenetic tree analysis of population relatedness by Nei genetic distance and 
neighbour joining. To complement the simplified genotypes used for the median 
joining algorithm, we used the R StAMPP package to calculate Nei’s genetic dis-
tance between all subpopulations for each patient. Nei’s genetic distance assumes 
that the input VAF is of a population (of cells in our case). All variants and sub-
populations that were genotyped by ddPCR were used in the Nei’s genetic distance 
matrix. To reconstruct the phylogeny, we used a neighbour joining algorithm via 
the MATLAB statistical tool box.
RNA sequencing and data processing. RNA was extracted from bulk peripheral 
blood mononuclear cells using an RNeasy Micro Kit (Qiagen). Libraries were con-
structed using SMART-Seq (Clonetec). A paired-end 50-base-pair flow-cell lane 
Illumina HiSeq 2000 yielded an average of 240 million sequence reads aligning to 
genome per sample. All data were assessed for quality before downstream analyses. 
The data quality was based on metrics determined by the sequences aligned to the 
reference genome (version Hg19/GRCh37), the coverage across sequenced regions 
defined by EnsEMBL gene models (version 59), and the use of virtual SAGE map-
ping to efficiently identify the presence of non-biological or contaminant sequences 
in libraries. Genes with very low counts were filtered out, and the data were then 
normalized using edgeR TMM (trimmed mean of M values) normalization. Genes 
with counts per million (CPM) > 0.45 in at least two samples were retained.
Hierarchical clustering. The diagnosis samples were hierarchically clustered 
using the ward linkage method and Euclidean distance on the basis of the scaled 
log2(CPM) of the 2,188 genes with s.d. > 3.5. AU (approximately unbiased) cluster 
probability, computed by multiscale bootstrap resampling, was calculated using 
the R package pvclust. RNA sequencing read count data from TCGA patients who 
relapsed (n =  84) were also used for hierarchical clustering using the same method 
as described above. Differential gene expression between the ROP and ROC clus-
ters was calculated using edgeR. Genes were ranked from top upregulated to top 
downregulated (ROC versus ROP) and this ranked list was compared using gene 
set enrichment analysis with the TCGA top 150 upregulated (ROC-like TCGA) 
and top 150 downregulated (ROP-like TCGA) genes.
Comparison of clusters with DMAP populations. The Gene Expression Omnibus 
dataset GSE24759 (DMAP)31, containing Affymetrix GeneChip HT-HG_U133A 
Early Access Array gene expression data of 21 distinct haematopoietic cell states, 
was compared with the genes that were differentially expressed in the ROP-like and 

ROC-like clusters. GSE24759 data were background corrected using Robust Multi-
Array Average (RMA), quantile normalized using the expresso function of the affy 
Bioconductor package (affy_1.38.1, R 3.0.1), batch corrected using the ComBat 
function of the sva package (sva_3.6.0), and scaled using the standard score. One 
population was removed from the original dataset (erythroid CD34−CD71+GlyA+, 
six samples) because it showed uniformly higher gene expression than all others 
after normalization and batch correction. Bar graphs were created by selecting 
genes that were upregulated in the ROP-like and ROC-like clusters, and calculat-
ing the number of scaled data that were above (> 0) or below (< 0) the mean for 
each population, corrected by the number of samples per population and 1,000 
random permutations.
PERT deconvolution analysis. The PERT deconvolution method25 was run on 
the TMM-normalized CPM data from the diagnosis and relapse samples. The 
batch-corrected linear RMA-normalized data from the GSE24759 (DMAP) data 
were used as the reference profile31. The vector theta from the PERT output was 
used to estimate the percentage of reference populations within each diagnosis and 
relapse sample. In the non-aggregated form, each biological replicate of the DMAP 
populations was associated with a theta value. In the aggregated form, the theta 
percentage of each biological replicate of the same populations was summed. A 
high theta value for one population means a high estimated presence of the profile 
in the diagnosis or relapse sample: for example, a theta value of 0.8 for a myeloid 
population for 6Dx means that this population is estimated to represent 80% of 
this diagnosis sample.
Therapy resistance score. A gene expression score that is predictive of refractori-
ness to primary induction chemotherapy was recently reported15. This score is cal-
culated on the basis of a weighted sum of expression of six LSC genes functionally 
defined using xenograft transplantation assays (MMRN1, KIAA0125 (also known 
as FAM30A), CD34, GPR56 (also known as ADGRG1), LAPTM4B, NYNRIN).  
A high score predicts therapy resistance and a lower likelihood of achieving a 
complete remission after 7 +  3-based induction chemotherapy.

Response score =  − 6.58 +  (MMRN1 ×  0.0442) +  (KIAA0125 ×  0.0814) +   
(CD34 ×  0.104) +  (GPR56 ×  0.208) +  (LAPTM4B ×  0.168) +  (NYNRIN ×  0.121).
Differential gene expression between diagnosis and relapse. Gene expres-
sion between diagnosis and relapse samples was compared using two different  
methods. CPM-normalized data were compared using the edgeR likelihood ratio 
test. The paired design matrix was used to reduce the pair effects of diagnosis 
and relapse. False discovery rate-corrected P values were calculated for each gene. 
RNA sequencing data were normalized to produce reads per kilobase per million 
(RPKM) values, with the following noise filter thresholds: RPKM cutoff 0.005, 
read counts cutoff 25. RNA sequencing data were discrete count data and met 
the assumptions for using a negative binomial distribution included in the EdgeR 
model. The estimate of variation within each group was included in the edgeR 
model and found to be similar between the groups being analysed. Differential 
gene expression based on RPKM values was also analysed using DEfine version 
0.9.1. For differential gene expression between diagnosis and relapse, statistical 
significance was achieved with a false discovery rate P value < 0.05 in the CPM-
normalized data and a P value score > 2 in the RPKM-normalized data. Several 
genes had significantly higher expression at relapse, including CD34, EDA2R, 
KCNK17, NPDC1, NTRK1, and RXFP1 (Supplementary Table 9). Interestingly, 
EDA2R, a transmembrane receptor protein, has been reported to be associated 
with resistance to Ara-C32, one of the cornerstones of standard AML induction 
chemotherapy.
Data availability. WGS data have been deposited at the European Genome-
phenome Archive (http://www.ebi.ac.uk/ega/) under accession number 
EGAS00001002225. All other data are available from the corresponding author 
upon reasonable request.
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Extended Data Figure 1 | Experimental design and estimated order of 
mutation acquisition for patients in PM AML cohort. a, Experimental 
design. Patient samples obtained at diagnosis and relapse were sorted into 
multiple mature and progenitor populations by flow cytometry. In parallel, 
samples were injected into NSG or NSG-SGM3 mice, and human myeloid 
and T cells were sorted from the xenografts. WGS was performed on 

blasts and T cells, and ddPCR probes were designed for selected variants. 
These were then analysed by ddPCR in all the cell populations sorted from 
patient samples and xenografts for calculation of VAF. b, Estimated order 
of mutation acquisition for patients in PM AML cohort. Estimated order 
of acquisition of pre-leukaemic (grey) and leukaemic (black) PDVs, based 
on median joining network analysis.
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Extended Data Figure 2 | Analysis of relapse origin and clonal 
relationships for patients 1 and 6. a, VAFs of PDVs as detected by ddPCR 
in various cell populations sorted directly from the diagnosis (Dx), relapse 
(Rel), or remission (Rem) samples of patient 1. No relapse variants were 
detected by ddPCR in this patient. White squares indicate populations 
in which no variants were detected. Phylogenetic tree showing clonal 
relationships for patient 1, based on analysis of VAFs of all pre-leukaemic 
and leukaemic mutations. The genetic distance between any two respective 
symbols on the phylogenetic tree was estimated using a neighbour joining 
method based on the degree of genetic relatedness (Nei’s genetic distance). 

Each coloured box contains highly related cell populations and xenografts 
inferred to represent a clone (green, pre-leukaemic; blue, diagnostic; red, 
relapse; blended blue and red, equal representation of diagnostic and 
relapse populations). b, VAFs of relapse variants as detected by ddPCR 
in various cell populations sorted directly from the diagnostic or relapse 
samples of patient 6, or in CD33+ myeloid cells isolated from xenografts 
generated from the diagnostic sample of the same patient. Abbreviations 
and display criteria are the same as in a. Phylogenetic tree showing clonal 
relationships for patient 6. The display criteria are the same as for a.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



letter reSeArCH

Extended Data Figure 3 | Analysis of relapse origin and clonal 
relationships for patient 9. VAFs of relapse variants as detected by ddPCR 
in various cell populations sorted directly from the diagnostic, remission, 
or relapse samples of patient 9, or in CD33+ myeloid cells isolated from 
xenografts generated from the diagnostic sample of the same patient. 

Abbreviations and display criteria are the same as in Extended Data  
Fig. 2a. VAFs of the only PDV detected by ddPCR in diagnostic blasts and 
in various cell populations sorted directly from the remission sample of 
patient 9. Phylogenetic tree showing clonal relationships for patient 9. The 
display criteria are the same as for Extended Data Fig. 2a.
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Extended Data Figure 4 | Analysis of relapse origin and clonal 
relationships for patient 2. VAFs of relapse variants as detected by 
ddPCR in various cell populations sorted directly from the diagnostic, 
remission, or relapse samples of patient 2, or in CD33+ myeloid cells 
isolated from xenografts generated from the diagnostic sample of the same 
patient. Abbreviations and display criteria as in Extended Data Fig. 2a. 

VAFs of PDVs as detected by ddPCR in diagnostic blasts and in various 
cell populations sorted directly from the remission sample of patient 2. 
Phylogenetic tree showing clonal relationships for patient 2, based on 
analysis of VAFs of all relapse variants, pre-leukaemic, and leukaemic 
mutations. The display criteria are the same as for Extended Data Fig. 2a.
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Extended Data Figure 5 | Analysis of relapse origin and clonal 
relationships for patient 8. VAFs of relapse variants as detected by ddPCR 
in various cell populations sorted directly from the diagnostic, remission, 
or relapse samples of patient 8, or in CD19+ B or CD33+ myeloid cells 
isolated from xenografts (DxGFM) generated from the diagnostic sample 

of the same patient. Abbreviations and display criteria as in Extended 
Data Fig. 2a. VAFs of PDVs as detected by ddPCR in diagnostic blasts and 
in various cell populations sorted directly from the remission sample of 
patient 8. Phylogenetic tree showing clonal relationships for patient 8. The 
display criteria are the same as for Extended Data Fig. 2a.
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Extended Data Figure 6 | Analysis of relapse origin and clonal 
relationships for patient 10. VAFs of relapse variants as detected by 
ddPCR in various cell populations sorted directly from the diagnostic, 
remission, or relapse samples of patient 10, or in CD33+ myeloid cells 
isolated from xenografts generated from the diagnostic sample of the same 

patient. Abbreviations and display criteria are the same as in Extended 
Data Fig. 2a. VAFs of PDVs as detected by ddPCR in diagnostic blasts and 
in various cell populations sorted directly from the remission sample of 
patient 10. Phylogenetic tree showing clonal relationships for patient 10. 
The display criteria are the same as for Extended Data Fig. 2a.
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Extended Data Figure 7 | Analysis of relapse origin and clonal 
relationships for patients 4 and 11. a, VAFs of relapse variants as detected 
by ddPCR in various cell populations sorted directly from the diagnostic, 
remission, or relapse samples of patient 4, or in CD33+ myeloid cells 
isolated from xenografts (DxM) generated from the diagnostic sample 
of the same patient. Abbreviations and display criteria are the same as in 
Extended Data Fig. 2a. Phylogenetic tree showing clonal relationships for 

patient 4. The display criteria are the same as for Extended Data Fig. 2a.  
b, VAFs of relapse variants as detected by ddPCR in various cell 
populations sorted directly from the diagnostic or relapse samples of 
patient 11. Abbreviations and display criteria are the same as in Extended 
Data Fig. 2a. Phylogenetic tree showing clonal relationships for patient 11. 
The display criteria are the same as for Extended Data Fig. 2a.
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Extended Data Figure 8 | Analysis of relapse origin and clonal 
relationships for patient 12. VAFs of relapse variants as detected by 
ddPCR in various cell populations sorted directly from the diagnostic, 
remission, or relapse samples of patient 12, or in CD19+ B or CD33+ 
myeloid cells isolated from xenografts generated from the diagnostic 
sample of the same patient. Abbreviations and display criteria are the 

same as in Extended Data Fig. 2a. VAFs of the PDVs as detected by ddPCR 
in diagnostic blasts and in various cell populations sorted directly from 
the remission sample of patient 12. Phylogenetic tree showing clonal 
relationships for patient 12. The display criteria are the same as for 
Extended Data Fig. 2a.
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Extended Data Figure 9 | ROP and ROC correlate with TCGA gene 
expression clusters and demonstrate distinct molecular and clinical 
properties. a, Gene set enrichment analysis of ROP and ROC clusters in 
the Princess Margaret Cancer Centre AML and TCGA relapsed AML 
cohorts. Diagnosis genes were ranked from top upregulated to top 
downregulated (ROC versus ROP cluster), and this rank list was compared 
using gene set enrichment analysis with the TCGA top 150 upregulated 

and top 150 downregulated genes (TCGA ROC-like versus TCGA ROP-
like cluster). ROC genes correlate with TCGA ROC-like genes and ROP 
genes correlate with TCGA ROP-like genes. b, Comparison of genetic and 
clinical parameters between the TCGA ROC-like and TCGA ROP-like 
clusters identified distinct genomic and clinical properties associated with 
relapse origin.
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Extended Data Figure 10 | AML relapse is associated with increased 
stemness transcriptional programs and therapy resistance.  
a, b, Proportion of bulk leukaemia populations that possess gene expression 
profiles of undifferentiated (a) or mature myeloid (b) cells, as determined 
by the perturbation (PERT) deconvolution analysis using gene expression 
data from known normal haematopoietic cell subsets. c, Leukaemia-

initiating cell (LIC) frequency as determined by limiting dilution analysis. 
d, Gene-expression-based therapy resistance score. For all panels, data are 
shown for diagnostic (blue) and relapse (red) samples of patients in the PM 
cohort. Patients for whom the relapse origin (ROP or ROC) was functionally 
established are boxed.
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