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Background: Children with medulloblastoma have a 72% chance of surviving more than

5 years under current treatment, and those who survive suffer long-term developmental

and neurocognitive deficits due to treatment-associated toxicity. We believe that refin-

ing the classification of medulloblastoma will facilitate the optimization of treatment

intensity and the discovery of novel therapeutics. Recent studies have identified four

molecular subgroups of medulloblastoma with distinct expression patterns: WNT, SHH,

Group3, and Group4. These subgroups represent different molecular entities that arise

through and rely on different oncogenic processes. Accordingly, we aim to improve pre-

diction of patient survival by identifying prognostic markers for each subgroup, and we

hope to abrogate non-specific cytotoxic treatments by discovering candidates for targeted

intervention against each subgroup.

Methods: We proposed and validated a new classification method for medulloblastoma

based on molecular patterns. Using this method, tumours were classified into molecular

subgroups. Their DNA copy-number profiles (n = 1087) were analyzed to identify so-

matic copy-number aberrations (SCNAs) and recurrently disrupted genes and pathways.

Prognostic SCNAs were identified by Kaplan-Meier survival analyses on a discovery set

(n = 673), and the candidates were validated by FISH on a tissue microarray of validation

samples (n = 453).

Results: Tumours of each subgroup harbour recurrent SCNAs disrupting different path-
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ways. WNT medulloblastoma is characterized by CTNNB1 mutation, SHH medul-

loblastoma by activated Gli signaling, Group3 medulloblastoma by MYC activation,

and Group4 medulloblastoma by SNCAIP duplication. Further, patients of different

subgroups exhibit differential response to standard treatments. Incorporating subgroup

data into survival models significantly improved predictive performance. Using six FISH

biomarkers on FFPE tissues, we reproducibly stratified patients into risk groups with

distinct survivorships.

Conclusion: The stark differences in genetic alterations among molecular subgroups of

medulloblastoma suggest that each subgroup arises through different biological mech-

anisms. The molecular classification of medulloblastoma not only improved survival

prediction but also revealed pathways for therapeutic intervention. We have identified a

panel of prognostic markers that can be used to select patients for therapy de-escalation

in future trials, and we have also discovered candidates for targeted therapy.
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of Technology), Dr. Brain Caffo (Johns Hopkins Bloomberg School of Public Health),

Dr. Rafael Irizarry (Harvard School of Public Health), and Dr. Tom Mitchell (Carnegie

Mellon University).

I am grateful to open source software communities for openly sharing their work,

including authors, contributors, and maintainers on CRAN, Bioconductor, PyPI, GitHub,

and numerous other repositories. Their spirit of openness is infectious.

This work is supported by the Frederick Banting and Charles Best Canada Grad-

uate Scholarship, the Michael Smith Foreign Study Supplement, the Ontario Graduate

Scholarship, and the University of Toronto Fellowship.

v



Contents

List of Tables ix

List of Figures x

Abbreviations xii

1 Introduction 1

I Epidemiology and genetic predisposition . . . . . . . . . . . . . . . . . . . . . . . 4

II Molecular biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Wingless (Wnt) signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Sonic hedgehog (Shh) signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Notch signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

phosphoinositide 3-kinase (PI3K) signaling . . . . . . . . . . . . . . . . . . . . . 12

Crosstalk of signaling pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

III Histological classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

IV Molecular classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

V Risk stratification of patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

VI Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Molecular classification of medulloblastoma for clinicians 18

I Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Patient samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Tissue sample processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

RNA integrity assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

nanoString CodeSet design and expression quantification . . . . . . . . . . . . . . 22

nanoString data processing and class prediction . . . . . . . . . . . . . . . . . . . 22

Regression analysis of prediction accuracy . . . . . . . . . . . . . . . . . . . . . . 25

Outlier detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

III Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Clinical prognostication within molecular subgroups of medulloblastoma 31

I Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Patient information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vi



Tumor material and patient characteristics . . . . . . . . . . . . . . . . . . . . . 39

Prognostic biomarker identification . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Multiple hypothesis testing correction . . . . . . . . . . . . . . . . . . . . . . . . 40

Time-dependent ROC analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Risk-stratification model selection . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

II Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Prognostic significance of clinical variables within medulloblastoma subgroups . . 42

Subgroup and metastatic status are the most predictive markers . . . . . . . . . 44

Subgroup specificity of published molecular biomarkers . . . . . . . . . . . . . . . 47

SHH patients can be stratified into three distinct risk groups . . . . . . . . . . . 49

Three biomarkers demarcate high-risk Group3 patients . . . . . . . . . . . . . . . 53

Identification of a low-risk group of metastatic Group4 patients . . . . . . . . . . 55

III Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Discovering therapeutic targets by genomic profiling of medulloblastoma 62

I Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Patient samples and nucleic acid extraction . . . . . . . . . . . . . . . . . . . . . 64

DNA copy number analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Subgroup enrichment analysis of recurrent copy-number events . . . . . . . . . . 68

Integration of gene expression and copy-number events . . . . . . . . . . . . . . . 68

Identification of candidate driver genes in each significant region . . . . . . . . . 69

Mutual exclusivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Network analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Unsupervised clustering analysis of copy number events . . . . . . . . . . . . . . 71

Expression array processing and data analysis . . . . . . . . . . . . . . . . . . . . 71

nanoString CodeSets and data analysis . . . . . . . . . . . . . . . . . . . . . . . . 72

Statistical and bioinformatic analyses . . . . . . . . . . . . . . . . . . . . . . . . . 73

II Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Molecular subgroups have disparate patterns of genomic events . . . . . . . . . . 74

Recurrent events target known cancer-associated genes . . . . . . . . . . . . . . . 75

Chromothripsis is rare in WNT medulloblastoma . . . . . . . . . . . . . . . . . . 75

Subgroup-specific events converge on oncogenic pathways . . . . . . . . . . . . . 75

III Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Conclusions and future directions 93

6 Appendix 96

I Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Gene nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Animal model nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

II Signaling Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Wnt signaling (CTNNB1-dependent) . . . . . . . . . . . . . . . . . . . . . . . . . 98

vii



Shh signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Notch signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

PI3K signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

III Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Class discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Class prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

IV Cancer treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chemotherapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

V Prognostic biomarker discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Log-rank tests vs. Cox proportional-hazards test . . . . . . . . . . . . . . . . . . 105

Construction and validation of risk stratification models . . . . . . . . . . . . . . 106

Rare cytogenetic events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Isolated vs. non-isolated events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Publications Arising from Thesis 108

References 113

viii



List of Tables

1.1 Genetic disorders predisposing to medulloblastoma . . . . . . . . . . . . . . . . . 5

1.2 Incidence of medulloblastoma in Shh-activated mouse model . . . . . . . . . . . . 11

1.3 Incidence of medulloblastoma in irradiated Ptch1 +/- mouse model . . . . . . . . 12

4.1 Criteria for DNA copy number aberrations . . . . . . . . . . . . . . . . . . . . . 66

4.2 Tiered evidence-based framework for identifying candidate driver genes . . . . . . 69

ix



List of Figures

2.1 Cross-validation comparison of candidate classification algorithms . . . . . . . . . 26

2.2 Validation of classification assay on independent medulloblastoma cohorts . . . . 27

2.3 Classification performance on formalin-fixed paraffin embedded archival samples 28

3.1 Overall survival curves for molecular subgroups of medulloblastoma . . . . . . . 36

3.2 Sample sizes of recent prognostic marker studies . . . . . . . . . . . . . . . . . . 38

3.3 Ten-year overall survival curves for WNT medulloblastoma . . . . . . . . . . . . 43

3.4 Overall survival curves for age groups within SHH, Group3, and Group4 subgroups 44

3.5 Overall survival curves for metastatic status within SHH, Group3, and Group4
subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Molecular subgroup and metastatic status are the most important prognostic
biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Subgroup-driven and subgroup-specific molecular biomarkers . . . . . . . . . . . 48

3.8 Overall survival curves for molecular biomarkers in SHH medulloblastoma . . . . 50

3.9 Overall survival curves for significant cytogenetic biomarkers in SHH medul-
loblastoma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.10 Combined clinical and molecular biomarkers improve risk-stratification of SHH
patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.11 Overall survival curves for molecular biomarkers in Group3 medulloblastoma . . 53

3.12 Combined clinical and molecular biomarkers improve risk-stratification of Group3
patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.13 Overall survival curves for molecular biomarkers in Group4 medulloblastoma . . 56

3.14 Combined clinical and molecular biomarkers improve risk-stratification of Group4
patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Significant regions of focal SCNA identified by GISTIC2 . . . . . . . . . . . . . . 74

4.2 Recurrent high-level amplifications in medulloblastoma . . . . . . . . . . . . . . . 76

4.3 Recurrent homozygous deletions in medulloblastoma . . . . . . . . . . . . . . . . 77

4.4 Verification of focal somatic copy-number aberrations (SCNAs) by nanoString . . 78

4.5 WNT medulloblastomas sustain a paucity of recurrent focal SCNAs. . . . . . . . 78

4.6 Recurrent amplifications of PPMID, MDM4, and PIK3C2B in SHH medulloblas-
toma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Core pathways genetically disrupted in SHH medulloblastoma . . . . . . . . . . . 80

4.8 Recurrent amplifications target receptors of the TGFβ superfamily in Group3 . . 82

x



4.9 TGF-β signaling is recurrently disrupted by SCNAs in Group3 . . . . . . . . . . 82

4.10 NF-κB pathway is recurrently disrupted in Group4 . . . . . . . . . . . . . . . . . 83

4.11 A multitude of amplicons disrupt the MYC /PVT1 locus . . . . . . . . . . . . . . 84

4.12 Chromothripsis disrupts the MYC /PVT1 locus. . . . . . . . . . . . . . . . . . . 85

4.13 SNCAIP is a Group4 signature gene . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.14 SNCAIP duplication is restricted to one subtype of Group4 . . . . . . . . . . . . 86

4.15 Hierarchical clustering of broad and focal SCNAs in medulloblastoma . . . . . . 87

xi



Abbreviations

aCGH array comparative genomic hybridization.

AIC Akaike information criterion.

Akt Protein kinase B.

ATRT atypical teratoid/rhabdoid tumour.

AUC area under the curve.

CBS circular binary segmentation.

CLIA Clinical Laboratory Improvement Amendments.

CNA copy-number aberration.

CNS central nervous system.

CNS-PNET central nervous system primitive neuroectodermal tumour.

DNA dexoyribonucleic acid.

Egfr Epidermal growth factor receptor.

EMD empirical mode decomposition.

ETMR embryonal tumours with multilayered rosettes.

FFPE formalin-fixed, paraffin-embedded.

FISH fluorescence in situ hybridization.

GISTIC Genomic Identification of Significant Targets in Cancer.

GLAD Gain and Loss Analysis of DNA.

HR hazard ratio.

IQ intelligence quotient.

KNN k-nearest neighbour.

xii



LCA large cell/anaplastic medullobalstoma.

LDA linear discriminant analysis.

LOH loss of heterozygosity.

MAGIC Medulloblastoma Advanced Genomics International Consortium.

MB medulloblastoma.

MBEN medulloblastoma with extensive nodularity.

MRI magnetic resonance imaging.

NICD NOTCH1 intracellular domain.

NMF nonnegative matrix factorization.

NOS not otherwise specified.

PAM prediction analysis of microarrays.

PCA principal component analysis.

PCR polymerase chain reaction.

PI3K phosphoinositide 3-kinase.

PNET primitive neuroectodermal tumour.

RNA ribonucleic acid.

ROC receiver-operating characteristics.

SCNA somatic copy-number aberration.

SCNAs somatic copy-number aberrations.

Shh Sonic hedgehog.

SNP single nucleotide polymorphism.

SVM support-vector machine.

TCAG The Centre for Applied Genomics.

Tgf-β Transforming growth factor β.

WHO World Health Organization.

Wnt Wingless.

xiii



Chapter 1

Introduction

One in 285 children are diagnosed with cancer before the age of 20, and cancer is the

second leading cause of death in children25;26. Owing to advances in treatment, the 5-

year survival of children with cancer has steadily increased from 63% in 1975 to 85% in

200627. Improvements in survival, however, vary considerably across cancer types. In

1975, the 5-year survival rates for childhood leukemia and central nervous system (CNS)

tumour were 50% and 57%, respectively. In 2006, the survival rate for the former reached

87% while the latter lagged behind at 74%27. Indeed, leukemia and CNS tumour are bi-

ologically very different types of cancer: they arise from different cells within different

organs, hijack different cellular signaling programs to effect uncontrolled proliferation,

and reside in different locations with different accessibilities to treatment. It should

come as no surprise then that leukemia and CNS tumour respond differently to similar

modern anti-cancer treatments (consisting of chemotherapy and radiotherapy). Further-

more, leukemia and CNS tumour can each be classified into additional cancer subtypes,

which also respond varyingly to treatment. Within leukemias, the 5-year patient survival

of acute lymphocytic leukemia is 92% and that of acute myelogenous leukemia is 66%27.

Within CNS tumours, the 5-year patient survival of pilocytic astrocytoma is 94% and

that of medulloblastoma is 72%28. In general, the responses of cancers to therapy depend

on not only the affected tissue (blood vs. CNS) but also the cellular origin (lymphoid

vs. myeloid and astrocytic vs. embryonal). Using anatomical locations and cellular ap-

pearance, clinicians classify cancer into different types in order to predict the responses

to treatment. Current post-surgical treatment modalities eradicate cancer largely by one

predominant mechanism (inhibiting cellular division and inducing apoptosis), but emerg-

ing anti-cancer therapies are increasing in specificity against aberrant cells and diverging

in mechanisms of action. Accordingly, the classification of cancer with progressively finer
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Chapter 1. Introduction 2

granularity will become critical for selecting the right treatment for each patient.

While the current classification of cancer based on organ system and cell morphol-

ogy has been useful for predicting patient response, the advent of molecular profiling and

sequencing technologies can refine this classification further and facilitate the develop-

ment of therapies targeted against specific aberrations within cancer. The World Health

Organization (WHO), in its current classification of CNS tumours published in 2007, clas-

sifies CNS tumours into 86 distinct entities primarily using histological appearance29. In

comparison, WHO recognized only 36 subtypes of CNS tumours in 199330. Despite a

more detailed classification system, the 5-year survival of children with CNS tumours has

remained stagnant at about 75% since 199627. Although histological features can help

identify aggressive cancers, the discrepancy between the discovery of new CNS tumour

histotypes and the lack of therapeutic improvement over the past decade suggests that

the histological classification of CNS tumours may be insufficient to identify biologically

similar tumours and to facilitate the development of effective novel therapy. In particular,

it was noted as early as 1971 that medulloblastoma with desmoplastic histology exhibits

longer patient survival in response to radiotherapy31; however, it remains unclear why

the desmoplastic phenotype is associated with longer survival or which novel therapeutic

agent may be effective against this histological variant. In comparison, a medulloblas-

toma tumour with a loss-of-function mutation in PTCH1 (endogenous suppressor of Shh

signaling) would depend on hyperactive Shh signaling for growth; therefore, the patient

would be expected to — and indeed does — respond to inhibition of Shh signaling32.

Characterizing the genetic mutations and understanding the biology of a tumour can

therefore help guide the discovery of novel therapies and the selection of suitable treat-

ment modality or intensity.

In order to identify cancer mutations against which therapeutic intervention may

be beneficial, we would need to distinguish between mutations that contribute to tumouri-

genesis (known as driver mutations) from those that do not (known as passenger muta-

tions). Cancer cells accumulate somatic mutations by disrupting DNA damage response

or DNA repair pathways. Moreover, somatic mutations, in general, occur stochastically

(with some exceptions including antibody diversification by activation-induced cytidine

deaminase). Thus, most mutations in a cancer cell would be deleterious or neutral to

the cell, and mutations that confer selective advantage would increase in cellular fre-

quency (proportion of cells that harbour the mutation) within a tumour. There are two

caveats, however. First, not all mutations observed at high cellular frequency contribute
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to tumourigenesis. Since multiple mutations may occur each time a cancer cell replicates

its DNA and multiple cell divisions may occur before a new driver mutation arises, a pop-

ulation of cancer cells arising from the same parental cell will share one driver mutation

and many additional mutations that do not contribute to tumourigenesis. Second, not all

driver mutations become clonal (i.e. reach 100% cellular frequency) due to complex cell-

cell interactions. In glioblastoma multiforme, for example, cancer cells expressing mutant

EGFR secrete cytokines to promote the growth of cells expressing wild-type EGFR33;

hence, tumour heterogeneity in glioblastoma can be sustained by this paracrine mech-

anism, and EGFR mutation does not become clonal. Taking these two scenarios into

consideration, high cellular frequency is neither a necessary nor a sufficient condition for

a mutation to be a driver. Instead, an alternative, more robust method for distinguish

driver from passenger mutations would be to assess its recurrence frequency: the

frequency that a mutation is observed across samples. If a mutation drives tumour for-

mation, we would expect to find it across tumours from different patients, provided that

the collection of tumours is biologically similar and arises through a common molecular

mechanism. Above all, in order to use recurrence frequency as a criteria for identifying

driver mutations and recognizing genomic patterns, we would need to first classify the

tumours into molecularly homogeneous groups.

This thesis will focus on refining the classification of medulloblastoma, a malig-

nant brain tumour occurring in the cerebellum and the posterior fossa. WHO classifies

medulloblastoma as a grade IV (highly aggressive) embryonal tumour29. Its diagnosis

is made by the anatomical location of the tumour and the histological morphology of

the cells. Medulloblastoma was once a universally fatal disease; today, 58% of patients

are expected to live longer than 15 years25. To predict whether a patient will respond

favourably to treatment, clinicians currently categorize medulloblastoma by such features

as metastatic presentation and histological variants. Medulloblastoma may be divided

into classic, desmoplastic/nodular, and large cell/anaplastic histotypes. While this his-

tological classification of medulloblastoma can help predict patient outcome, it provides

scant insight into potential biological mechanisms. Therefore, several studies generated

RNA expression profiles of primary medulloblastoma tumours using microarrays and

sought to characterize medulloblastoma by patterns of RNA expression. Since each ex-

pression profile captures a snapshot of the overall molecular state of a tumour, biologically

similar tumours would exhibit similar expression profiles. Therefore, tumours with similar

expression profiles can be clustered (grouped) together to discover biologically homoge-

neous molecular classes. By these clustering analyses, four molecular classes (henceforth
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known as subgroups) of medulloblastoma were discovered: WNT, SHH, Group3,

and Group4 medulloblastoma34–38. As the names suggest, WNT medulloblastoma have

hyperactive Wnt signaling and SHH medullobalstoma have increased Shh signaling com-

pared to the other subgroups, while Group3 and Group4 are less well defined35;36;38.

We hypothesize that classifying medulloblastoma into these molecular sub-

groups will shed light on its cancer biology; consequently, this classification

will improve prediction of treatment response and point to novel therapeutic

targets.

The remainder of this chapter will discuss genetic and non-genetic factors in

medulloblastoma and their implications for the classification and treatment of medul-

lobastoma. At the end of this chapter, the main research objectives of this thesis are

outlined. In Chapter 2, we will propose and validate a method whereby medulloblastoma

tumours may be molecularly classified in the clinical setting. The immediate utility of

this molecular classification system for patient risk stratification will be shown in Chap-

ter 3, and the potential implication of molecular classification for therapeutic discovery

will be presented in Chapter 4. Finally, conclusions and future directions arising from

this thesis are outlined in Chapter 5. To make this thesis accessible to a broader audi-

ence, the Appendix presents clarifications for topics including gene nomenclature, mouse

model notation, signaling pathways, biomarker discovery, and computational algorithms.

I Epidemiology and genetic predisposition

Medulloblastoma occurs at an annual incidence of 4.1 per million children under 20, rank-

ing as the most common type of malignant brain tumour in childhood28. The majority

of patients with medulloblastoma are diagnosed before the age of 20, and the median

age at presentation is 8 years1. As medulloblastoma is almost 10 times more likely

to afflict children than adults, medulloblastoma is a disease of childhood39, suggesting

that perhaps genetics may play a role in this disease. Consistent with this proposition,

medulloblastoma can occur simultaneously in monozygotic twins40, and having an af-

fected sibling increases a child’s risk of developing medulloblastoma by 4 fold41. While

most medulloblastoma cases are sporadic with unknown genetic contribution, several ge-

netic disorders can predispose children to developing medulloblastoma, as well as many

other malignancies (Table 1.1). For instance, mutations in genes of DNA damage re-

sponse and repair pathways, including TP53, ATM, BRCA2, NBN, predispose a child to



Chapter 1. Introduction 5

develop a spectrum of tumours, including medulloblastoma, at a young age42–55.

Table 1.1: Genetic disorders predisposing to medulloblastoma

Genetic disorder Mutated genes Reference

Li-Fraumeni syndrome TP53 42–47

Ataxia telangiectasia (Louis-Bar syndrome) ATM 48; 49

Fanconi anemia BRCA2 (FANCD1 ) 50–52

Nijmegen breakage syndrome NBN (NBS1 ) 54; 56; 57

Fragile X syndrome FMR1 46; 55

Neurofibromatosis type 1 (Von Recklinghausen’s disease) NF1 46; 58

DICER1 syndrome DICER1 59

Rubinstein-Taybi syndrome CREBBP 60

Basal cell nevus syndrome (Gorlin syndrome) PTCH1, PTCH2, SUFU 46; 61–66

Turcot syndrome APC 67

Medulloblastoma can also arise as a consequence of germline mutations in develop-

mental signaling pathways. Germline loss-of-function mutations in negative regulators of

Shh signaling, including PTCH1, PTCH2, and SUFU, causes basal cell nevus syndrome

(Gorlin syndrome) and predisposes patients to medulloblastoma, basal cell carcinoma

(most common type of skin cancer), and other cancers. In the context of these mu-

tations, hyperactive Shh signaling during neural development presumably would cause

patients to develop SHH medulloblastoma. This notion is supported by mouse models

with heterozygous Ptch1 mutation68–72 and the Sufu+/- Trp53 -/- mouse model73, which

both develop medulloblastoma with active Shh signaling. Further, Gorlin syndrome is

highly prevalent in human patients with SHH medulloblastoma9, though it is yet un-

clear whether patients with Gorlin syndrome exclusively develop SHH medullobalstoma.

Additionally, germline mutations in APC activates Wnt signaling, manifests as Turcot

syndrome, and predisposes patients to medulloblastoma. The tumours arising in these

patients would be expected to be of the WNT subgroup; however, the crosstalk between

the Shh and the Wnt signaling pathways in the context of neural development and dif-

ferent genetic backgrounds could modulate the phenotypic outcome of APC mutation.

Germline mutations in SMARCB1 (SNF5 /INI ) had been associated with medul-

loblastoma74;75, but brain tumours in these patients are now classified as atypical ter-

atoid/rhabdoid tumour (ATRT), a tumour type that WHO first recognized in its 1993

classification30. ATRT and medulloblastoma are similar by histology76 and by magnetic

resonance imaging (MRI)77. Currently, SMARCB1 mutation is widely accepted as a di-
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agnostic indicator of ATRT and distinguishes ATRT from medulloblastoma78;79. Indeed,

SMARCB1 is an example in which a genetic mutation superseded histological diagnosis

and redefined cancer classification.

While mutations are pivotal factors in the formation of medulloblastoma, numer-

ous other factors shape the context under which the mutations exert their effects. The

genetic mutations listed in Table 1.1 all have incomplete penetrance, highlighting the

contribution of genetic background (as well as environmental factors). Furthermore, dis-

parate incidence patterns of mouse tumours arising from engineered mutations in negative

regulators of the Shh signaling pathway (SUFU and PTCH1 ) point to several possible

contributing factors, including the limitation of inbred mouse models, involvement of

genes in multiple biological pathways, and potential modifying genetic polymorphisms or

mutations. On the C57BL/6 genetic background, SUFU +/- mice do not develop medul-

loblastoma within the same time frame as PTCH1 +/- mice, even though both SUFU and

PTCH1 negatively regulate Shh signaling80. Conversely, in a Manchester cohort of 171

Gorlin syndrome patients, germline SUFU mutation had about 20 times higher risk than

germline PTCH1 mutation for developing medulloblastoma81. The observation that only

2 (1.7%; n = 115) Manchester patients with PTCH1 mutation developed medulloblas-

toma81 starkly contrasts the findings in inbred mouse strains (C57BL/6 and 129X1/Sv)

with PTCH1 mutation, which spontaneously develop medulloblastoma at a frequency of

about 18% (n = 507; Table 1.3)68;69;80;82. The difference in the penetrances of mutations

in SUFU vs. PTCH1 suggests that these genes may have other functions beyond the Shh

pathway or they regulate the pathway in dissimilar manners. However, the inversion in

the relative penetrances of SUFU and PTCH1 mutations in a human population com-

pared to mouse models suggest that polymorphisms or mutations in possible modifier

genes may influence the manifestation of mutant SUFU and PTCH1. Alternatively, this

observation may indicate that the Shh signaling pathway regulate neural development

in critically different ways in mouse and human. Accordingly, these possibilities prompt

the need for further studies in additional human populations and mouse strains in order

to tease out the intricate interplay between mutant genes and genetic background.

The phenotypic manifestation of genetic mutations is also influenced by the state

of the mutation-harbouring cells. PTEN (endogenous inhibitor of PI3K signaling) is

frequently homozygously deleted in medulloblastoma83, suggesting that PTEN may be

a tumour supressor. Heterozygous germline PTEN mutation, however, leads to adult tu-

mours (PTEN hamartoma tumour syndrome) but not medulloblastoma84. Instead, one
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mutant copy of PTEN leads to Lhermitte-Duclos disease, which presents as a benign tu-

mour of the cerebellum85. The cells in the tumour have complete loss of wildtype PTEN

expression85. Curiously, the granule neurons exhibit dysplasia (disorganization of tissue

structure), increased size, aberrant migration, but not abnormal cellular proliferation86,

in contrast to neoplastic neurons in medulloblastoma. This example illustrates that the

cell state during nervous system development influences whether the cells progresses to

neoplasia (cancer). In the case of PTEN, other mutations would need to co-occur with

PTEN loss-of-function in order for patients to develop medulloblastoma. Indeed, patients

with germline PTEN and Pten+/- mice do not develop malignant brain tumours, despite

predisposition to various other tumours86. In contrast to Pten loss alone, concomitant

overexpression of SHH ligand (human protein) causes medulloblastoma in mouse follow-

ing irradiation87. More generally, the effect of a mutant gene is modulated by the state

of the cell harbouring the mutation, and this state can be shaped by genetic background,

cooperating mutations, and developmental signaling. As a cell matures and differentiates

down various lineages during development, it may reach a state that permits a specific

mutation (germline or somatic) to transform it into cancer with supporting signals from

the surrounding microenvironment.

II Molecular biology

CNS development involves the coordination of innumerable signaling pathways and the

highly controlled proliferation of cells along various lineages. Tumours arise when un-

fortunate accidents (e.g. germline mutations, genetic background, and DNA damage)

coincide with conducive conditions (e.g. cell state and extracellular signals). Simply put,

medulloblastoma occurs when normal neural development goes awry. Several develop-

mental signaling pathways are important in medulloblastoma formation, including Wnt,

Shh, Notch, and PI3K. (See page 98 in the Appendix for general descriptions of these

pathways.)

Wnt signaling

Patients with Turcot syndrome (mutation in APC ) who developed medulloblastoma pro-

vided one of the first clues that medulloblastoma involves activation of Wnt signaling67.

Additionally, CTNNB1 nuclear localization and CTNNB1 mutation were frequently ob-
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served in medulloblastoma88;89. CTNNB1 is the transcription factor that serves as the

downstream effector of Wnt signaling. As part of the CTNNB1 destruction complex

containing AXIN and APC, GSK and CSNK1A1 normally phosphorylates CTNNB1 at

multiple serine/threonine residues (S45, T41 S37, and S33) within a region encoded

by exon 3, flagging CTNNB1 for ubiquitination and subsequent proteosomal degrada-

tion90. Mutation in APC therefore aborgates the interaction between the destruction

complex and CTNNB1, preventing the degradation of CTNNB1. Similarly, CTNNB1

mutations at or near the phosphorylation sites also stabilizes CTNNB1, permitting its

signaling2;90;91. Curiously, a mouse model expressing stabilized human (S37F mutant)

CTNNB1 under the mouse promoter of Prnp did not develop medulloblastoma on a

Trp53 -/- background92. Conversely, Gibson et al. generated medullobalstoma using a dif-

ferent mouse model expressing stabilized CTNNB172. In this Cre-recombination model,

mouse Ctnnb1 is converted to a stabilized form by Cre-mediated somatic deletion of

exon 3 (which was flanked by loxP sequences)93. Ctnnb1 is under endogenous promoter

control, but deletion of exon 3 is controlled by expressing Cre under a selected pro-

moter; therefore, expression of stabilized Ctnnb1 can be restricted to cell types that

activate the selected promoter. Ctnnb1 +/lox(ex3) mice crossed to Atoh1-Cre mice did

not produce progeny (Atoh1-Cre;Ctnnb1 +/lox(ex3)) that develop hyperplasia or medul-

loblastoma, suggesting that Atoh1-expressing cells are not the developmental origin of

Wnt-activated medulloblastoma72. In contrast, Blbp-Cre;Ctnnb1 +/lox(ex3) mice showed

hyperplasia in the dorsal brainstem and eventually developed medulloblastoma in the

context of Trp53 deficiency, which presumably caused additional tumourigenic mutations

or inhibited apoptosis72. In sum, only Blbp-Cre;Ctnnb1 +/lox(ex3);Trp53 flx/flx mouse de-

veloped Wnt-activated medulloblastoma, and these tumours arise from the dorsal brain-

stem and not the cerebellum (in contrast to the Shh-activated medulloblastoma to be

described later). Tumour development not only requires expression of the oncogene (sta-

blized Ctnnb1 ) in a suitable cell type (Blbp-expressing) but may also need additional

mutations (secondary to Trp53 deletion).

Shh signaling

Medulloblastoma can also develop due to activated Shh signaling. Patients with Gorlin

syndrome provided the first clue that Shh signaling is activated in a subset of medul-

loblastoma. Patients with germline loss-of-function mutations in negative regulators of

Shh signaling — PTCH1, PTCH2, or SUFU — can develop medullobastoma during
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childhood, and basal cell carcinoma and other tumours later in life due to hyperactive

Shh signaling46;61–66. Moreover, somatic PTCH1 mutation, activating SMO mutation,

PTCH1 homozygous deletions, GLI2 amplifications are recurrently observed in medul-

loblastoma tumours2;83;94;95, which provide further evidence that Shh signaling is acti-

vated in some medulloblastoma cases. In mouse, homozygous Ptch1 loss is embryonic

lethal, but heterozygous Ptch1 mutant mice exhibit hyperplasia in the external granule

layer of the cerebellum, and a subset of mutant mice develop cerebellar medulloblas-

toma68;69. Frequently, the external granule layer of the developing cerebellum exhibits

hyperplasia (cell mass with increased proliferation) before medulloblastoma96;97. The

incidence medulloblastoma in Ptch1 +/- mice ranges from 8% to 45% and is influenced

by the genetic background (Table 1.2). (Additionally, the incidence of medulloblastoma

in Ptch1 +/- models is affected by the occurrence of rhabdomyosarcoma and other tu-

mours whose early appearance may preclude the development of medulloblastoma68;98.)

This incomplete penetrance suggests that additional events beyond single-copy Ptch1 loss

may be necessary for tumour progression. Indeed, Ptch1 +/- mice developed tumours with

much higher frequency in the context of Trp53 deficiency (Table 1.2) and when subjected

to neonatal irradiation, depending on the genetic background (Table 1.3). Presumably,

Trp53 deficiency and irradiation generate additional mutations that cooperate with Ptch1

haploinsuffiency to promote progression of hyperplasia to medulloblastoma. Since APC

mutation did not enhance tumour incidence in Ptch1 +/- mouse, the Wnt signalling path-

way may not play a major role in the development of Shh-activated medulloblastoma70.

Similarly, homozygous loss of mouse p19ARF did not enhance medulloblastoma formation

in Ptch1 +/- mice70, suggesting that the hyperproliferation of external granule neuron

precursors caused by activated Shh signaling does not trigger p19ARF-dependent cell cy-

cle arrest. (Mouse p19ARF is encoded by Ckdn2a and mediates p53-dependent cell cycle

arrest, similar to the human homolog p14ARF.) In contrast, concurrent haploinsufficiency

of either of two other cell cycle inhibitor, Cdkn2c (encodes p18Ink4c) or Cdkn1b (encodes

p27Kip1), in Ptch1 +/- mice further increased cell proliferation and enhanced medulloblas-

toma incidence99;100. The tumours in these mice invariably lost the wild-type copy of

Ptch1 99;100. Indeed, complete loss of Ptch1 is highly frequently observed in medulloblas-

toma tumours and may be a key event for medulloblastoma progression96;99–104. Activated

Shh signaling in Ptch1 -/+ granule neuron precursors induces cellular proliferation and in-

creases accumulation of DNA breaks, which can lead to the loss of the wildtype Ptch1

allele, further induction of Shh/Gli signaling independent of Shh ligand or Shh corecep-

tor Boc, and progression of medulloblastoma103. Although homozygous loss of Ptch1
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is not absolutely required for progression of hyperplasia to medulloblastoma69;103;105,

conditional homozygous loss of Ptch1 in Atoh1-expressing cells (e.g. external granule

neuron precursors) or GFAP-expressing cells (e.g. neural stem cells) is sufficient for

developing medulloblastoma from the external granule layer with 100% penetrance97.

Similarly, activated Smo (inhibited target of Ptch1 and positive regulator of Shh sig-

naling) induced tumour formation in a dose-dependent manner106. When one copy of

the activated mouse Smo allele habouring the W539L mutation (also known as SmoA1

and corresponds to the human SmoM2 allele) was expressed under the promoter of Neu-

rod2 (which is expressed in cerebellar granule neuron precursors), the mice developed

medulloblastoma with 48% penetrance, and mice carrying two copies of the activated

Smo allele (Neurod2-SmoW539L/W539L) develop medulloblastoma with near complete pen-

etrance106;107. Morever, GLI (downstream effector of Shh signaling) promotes cell survival

by directly upregulating the prosurvival factor BCL2108;109 and disabling DNA damage

checkpoint110. These results support the notion that activated Shh signaling is suffient for

medulloblastoma formation and may be necessary for tumour maintainence, highlighting

this pathway as a candidate for therapuetic intervention.

Notch signaling

Notch signaling plays important roles in embryonic development; in the central nervous

system, Notch signaling prevents precocious neuronal differentiation and maintains the

pluripotency and self-renewal of neural stem and progenitor cells113;114. While Notch1 +/-

mice are viable, homozygous Notch1 mutants die before E11.5 and possibly partly due

to the depletion of neural stem cell pool113–115. The embryonic lethality of Notch1 -/-

also suggests that Notch1 is not completely functionally redundant with other mam-

malian Notch homologs (Notch2, Notch3, and Notch4 ). Conversely, conditional ac-

tivation of Notch signaling by transgenic expression of a constitutively active Notch,

NOTCH1 intracellular domain (NICD), in GFAP-CreER;ACTB-N1ICD blocked cell cy-

cle exit of neural progenitors and inhibited neuronal differentiation114. (In this model,

N1ICD is conditionally expressed by Cre excision of an upstream stop cassette.) Con-

ceivably, hyperactive Notch signaling may promote tumour formation by blocking cell

cycle exit and differentiation. Consistent with this proposition, Shh-activated medul-

loblastoma in Neurod2-Smo+/W539L mice show increased expression of Notch pathway

targets (HES1 and HES5 ) as well as Notch1, suggesting that the Notch pathway is active

in medulloblastoma induced by Shh signaling107. When Neurod2-Smo+/W539L mice were
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Table 1.2: Incidence of medulloblastoma in Shh-activated mouse model

Genotype Genetic background Incidence (95% CI) Reference

Ptch1 +/- 129X1/Sv 15 (10–22) 68; 69; 96

Ptch1 +/- CD-1 8 (2–19) 82

Ptch1 +/- C57BL/6 45 (36–54) 18; 80; 82; 103

Ptch1 +/-;Sufu+/- C57BL/6 48 (35–62) 80

Ptch1 +/-;Boc+/- C57BL/6 54 (37–71) 103

Ptch1 +/-;Boc-/- C57BL/6 19 (5–42) 103

Ptch1 +/- C57BL/6 × DBA/2 (B6D2F1) 19 (9–33) 68

Ptch1 +/- C57BL/6 × 129X1/Sv 13 (10–16) 70; 99; 111

Ptch1 +/-;Ptch2 +/- C57BL/6 × 129X1/Sv 15 (9–24) 111

Ptch1 +/-;Ptch2 -/- C57BL/6 × 129X1/Sv 17 (9–29) 111

Ptch1 +/-;Trp53 +/- C57BL/6 × 129X1/Sv 14 (7–25) 70

Ptch1 +/-;Trp53 -/- C57BL/6 × 129X1/Sv 95 (85–99) 70; 112

Ptch1 +/-;Cdkn2c+/- C57BL/6 × 129X1/Sv 37 (19–58) 99

Ptch1 +/-;Cdkn2c-/- C57BL/6 × 129X1/Sv 46 (33–58) 99

Atoh1-Cre;Ptch1 flx/flx C57BL/6 × FVB/N 100 97

GFAP-Cre;Ptch1 flx/flx C57BL/6 × FVB/N 100 97

Sufu+/- C57BL/6 0 (0–14) 80

Sufu+/-;Trp53 +/- C57BL/6 × 129P2/OlaHsd 0 (0–6) 112

Sufu+/-;Trp53 -/- C57BL/6 × 129P2/OlaHsd 58 (44-71) 112

Neurod2-Smo+/W539L C57BL/6 48 (38–58) 107

Neurod2-SmoW539L/W539L C57BL/6 94 (85–98) 106

crossed to Atoh1-Cre;Notch1 flx/flx or Atoh1-Cre;Notch2 flx/flx mice, the progeny (Neurod2-

Smo+/W539L;Atoh1-Cre;Notch1 flx/flx and Neurod2-Smo+/W539L;Atoh1-Cre;Notch2 flx/flx) did

not develop medulloblastoma at a higher incidence116. While the conditional knock-

out of one Notch homolog could perhaps be rescued by another homolog, treatment

with multiple gamma-secretase inhibitors (which prevent Notch cleavage and activa-

tion) did not affect tumour incidence, tumour size, apoptosis, or cell proliferation in

Neurod2-Smo+/W539L mice, nor did it affect xenograft engraftment in immunocompro-

mised mice116. Similarly, constitutive knockout of an important downstream target Hes5

in Neurod2-Smo+/W539L;Hes5 -/- mutants did not reduce medulloblastoma incidence ei-

ther116. Therefore, Notch signaling is not necessary for formation, progression, or main-

tenance of Shh-activated medulloblastoma116;117. However, expression of NICD in GFAP-

Cre;ACTB-N1ICD ;Trp53 -/- mice resulted in medulloblastoma with 69 (39–91) percent
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Table 1.3: Incidence of medulloblastoma in irradiated Ptch1+/- mouse model

Genetic background Treatment Incidence (95% CI) Reference

CD-1 non-irradiated 8 (2–19) 82

CD-1 3 Gy at P1 81 (58–94) 102

CD-1 3 Gy at P4 51 (37–65) 71

CD-1 3 Gy at P10 3 (0–16) 102

C57BL/6 non-irradiated 45 (36–54) 18; 80; 82; 103

C57BL/6 3 Gy at P1 53 (27–79) 82

incidence, suggesting that Notch signaling is sufficient to induce medulloblastoma for-

mation with concurrent circumvention of Trp53-dependent apoptosis4;118. Further, these

Notch-activated mouse medulloblastoma tumours exhibited transcriptional profiles re-

sembling Shh-activated medulloblastoma4, suggest that these tumours may share acti-

vation of similar pathways or arise from common origins.

PI3K signaling

Homozygous deletions of PTEN in medulloblastoma first highlighted that PI3K sig-

naling may play a role in medulloblastoma83;104;119. The PI3K family phosphorylates

the plasma membrane lipid phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] to produce

phosphatidylinositol-3,4,5-trisphosphate [PI(3,4,5)P3 or PIP3]120. In turn, PIP3 serves

as an intermediate signaling molecule for multiple pathways. AKT1 binds to PIP3 via its

pleckstrin-homology domain and becomes anchored to the plasma membrane by PIP3;

consequently, PIP3-anchored PDPK1 phosphorylates and activates AKT1, which regu-

lates numerous downstream pathways such as inhibition of apoptosis (via BAX121 and

BAD122) and cell cycle arrest (via CDKN1A123;124 and CDKN1B125). (PDKP1 is the offi-

cial symbol for 3-phosphoinositide dependent protein kinase 1, and it is commonly known

as PDK1, which also ambiguously refers to pyruvate dehydrogenase kinase, isozyme 1.)

Conversely, PTEN (a phosphatase) inhibits the PI3K pathway by dephosphorylating

PIP3 to PI(4,5)P2. Therefore, loss of PTEN may potentiate PI3K signaling and AKT1

activation, inducing cell survival and proliferation. Curiously, germline PTEN loss-of-

function mutations underlie a collection of disorders known as PTEN hamartoma tumour

syndromes and increase the risk of a diverse array of tumours that usually occur in adult-

hood84. In fact, patients can develop a benign overgrowth of neurons in the cerebellum

but not medulloblastoma86. Mouse models of conditional homozygous PTEN knock-out



Chapter 1. Introduction 13

reveal that the neuronal cells exhibit migration defect and increased cell size but not pro-

liferation, suggesting that complete PTEN loss is insufficient for childhood malignancy in

the cerebellum86. Nonethless, PTEN loss in Shh-activated mouse models of medulloblas-

toma accelerates tumour progression and contributes to resistance against inhibition of

Shh signaling126, as well as resistance against irradiation87.

Crosstalk of signaling pathways

Although the aformentioned pathways are described as distinct linear series of signal-

ing events, the molecular players are in fact highly interconnected by several shared

components (e.g. GSK3 and BTRC). Notably, many of the presented signaling path-

ways converge on Myc family proteins, and this convergence underscores the central

role played by the Myc family in medulloblastoma. Similarly, the upstream regulators

of Wnt and Shh signaling, SMO and FZD, are both G-protein coupled receptors. Al-

though their G-protein activities were underappreciated in the past, both receptors can

regulate intracellular cAMP signaling, and these pathways may cooperate in promoting

tumourigenesis. How various pathways are connected would likely depend on cell type

or cell lineage, in addition to dynamic extracellular signals during development; hence,

the cellular origins of medulloblastoma may dictate the molecular mechanisms of tumour

initiation, progression, and maintenance.

III Histological classification

The WHO classification of CNS tumours standardizes the nomenclature for different

cancers arising in the CNS and rests on the premise that each tumour type arises from

the transformation of a specific cell type29;30. The cellular origin, in turn, may predict

prognosis and guide treatment decisions. The classification evolves with new discoveries

and emerging insights, though it relies primarily on morphological features and protein

marker expressions analyzed by immunohistochemistry.

WHO now recognizes medulloblastoma as a distinct entity29. Medulloblastoma

and central nervous system primitive neuroectodermal tumour (CNS-PNET) used to be

grouped collectively as primitive neuroectodermal tumours (PNET), but WHO now clas-

sifies them as separate diseases29. The WHO classification currently includes four his-

tological variants of medulloblastoma: desmoplastic/nodular medulloblastoma, medul-
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loblastoma with extensive nodularity (MBEN), anaplastic medulloblastoma, and large

cell medulloblastoma. The last two variants are often grouped together as large cell/anaplastic

medullobalstoma (LCA), but some evidence suggest that they may have different prog-

noses127. Medullomyoblastoma and melanocytic medulloblastoma used to be considered

histological variants of medulloblastoma in the 1993 classification30; however, in the

latest WHO classification (2007), they are no longer considered distinct histotypes of

medulloblastoma29. About 70% of medulloblastoma are of the classic histological vari-

ant1. Within this histotype, patient response to treatment varies greatly, indicating that

the classic histotype encompasses a biologically heterogenous group of tumours1. The

prognostic significance of the histotypes are discussed further in Chapter 3.

IV Molecular classification

More recently, molecular subgroups of medulloblastoma have been identified based on

unsupervised clustering of RNA expression profiles of tumours34. These classes consist

of WNT, SHH, Group3, and Group4 medulloblastoma. The subgroups have been

independently identified in multiple studies35;37;38;88;128, and this classification system can

be applied objectively using a computer algorithm (see Chapter 2) so that the process

is streamlined and the results are reproducible. Although each of the molecular sub-

groups may be further subclassified into additional molecular subtypes, the division into

four classes provide groups of tumours that are sufficiently homogeneous for predicting

treatment outcome and revealing biological insights1;2;34.

Molecular classification by expression profiles has been described in numerous

other cancer types, though the molecular classes are often not reproducibly discovered

across studies and the classes often provide little scientific insight or clinical utility. For

example, the classification of CNS-PNET is not very robust129, partly because CNS-

PNET is very rare and highly heterogeneous. Another problem occurs when a set of

tumours is transcriptionally homogeneous. Although most clustering algorithms will

nevertheless produce clusters from the expression profiles of these tumours, the resulting

clusters may not represent biologically meaningful classes and will not be reproducible

across cohorts5. To emphasize, molecular classes discovered by unsupervised clustering

should be reproduced across multiple cohorts.

In other cancer types, many other molecular classification approaches have been

used. For example, the molecular classes of breast cancer were initially discovered by
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expression profiling130, but it is now predominantly classified by three protein markers

— estrogen receptor, progesterone receptor, and ERBB2 (HER2) — as well as a marker

for cellular proliferation (Ki67) into four main molecular subtypes: luminal A, luminal

B, HER2 type, and basal-like131–134. Prostate cancers can be molecularly classified into

two classes: positive or negative for a gene fusion involving two ETS transcription fac-

tors, ERG or ETV1, which is found in approximately half of all prostate cancers135. In

contrast, the classification of leukemia is far more complex and involves both histological

features and cytogenetic abnormalities (e.g. chromosomal rearrangements)136. Regard-

less of the metholody used, the ultimate objective of molecular classification is the same:

separate cancers reproducibly into biologically similar classes so that they may share sim-

ilar responses to treatments. Given this objective, one may consider classifying cancer

types based on patient survival; however, this approach will likely not produce biologi-

cally similar classes, because patients can die for various reasons and patient survival can

be heavily influenced by the treatments rendered.

Importantly, the molecular subgroups of medulloblastoma are biologically distinct

molecular entities whose clinical and genetic differences may require separate therapeu-

tic strategies35;37;38;88;128. WNT medulloblastoma responds favourably to standard ther-

apy2;35. While targeted therapies based on the genetics of the disease are not currently in

use, inhibitors of SMO have shown some early evidence of efficacy in SHH medulloblas-

toma32. With a deeper understanding of the genomics and biology of medulloblastoma

subgroups, we hope to herald a new era of medulloblastoma treatment based on selective,

specific therapy.

V Risk stratification of patients

Current treatment protocols for medulloblastoma stratify patients based on clinical fea-

tures: patient age, metastatic stage, and extent of resection. Patients are stratified into

standard-risk and high-risk groups based on evidence of metastasis and size of the resid-

ual tumour after surgery. Additionally, infants are not irradiated to prevent impairment

of neurological function by craniospinal irradiation. Typically, patients whose tumour

was incompletely (subtotally) resected by surgery or has metastasized are classified as

high-risk137. To date, histological features have not been widely used to stratify patients

into risk groups in prospective clinical trials.

Stratification schemes can differ across continents, however. For example, whether
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a patient should receive radiotherapy is usually determined by an age cutoff, but this

threshold can be 2 years138;139, 3 years137;140–143, 4 years36;144;145, or 5 years146;147. Con-

versely, hospitals in Japan (and other places) do not use strict age cutoffs to determine

eligibility for radiotherapy148. Sometimes, infants of less than 1 year of age can receive

reduced doses of chemotherapy as well.

VI Research objectives

Our study will focus on three obstacles that hinder the development of targeted therapy

against molecular subgroups of medulloblastoma. First, current methods for classifying

medulloblastoma into molecular subgroups are difficult to apply in the clinical setting.

Second, current clinical prognostication of medulloblastoma poorly predicts patient sur-

vival and does not consider molecular subgroups. Third, few actionable therapeutic

targets for WNT, Group3, and Group4 medulloblastomas have been discovered to date.

In addressing these problems, we demonstrate the clinical significance of the molecular

classification of medulloblastoma.

Aim 1: Molecular classification of medulloblastoma for clinicians

Although the retrospective classification of medulloblastoma has been scientifically in-

formative, molecular classification has not been applied in the context of a prospective

clinical trial. One major obstacle is the lack of fresh-frozen samples for most clinical

cases. Expression profiling, on which the molecular classification of medulloblastoma

was based, depends on the availability of high-quality RNA. In contrast, clinical sam-

ples are routinely subjected to formalin-fixation and paraffin-embedding, which preserves

tissue integrity but causes nucleic acid degradation. To facilitate the development of ther-

apy specifically targeted against molecular subgroups, we sought to establish a molecular

classification assay that can be clinically applied on formalin-fixed, paraffin-embedded

(FFPE) samples. We have established an analytic pipeline for molecular classification

using expression data generated by nanoString assays, and demonstrated its high clas-

sification accuracy on FFPE samples3. To further make the assay clinically applicable,

we have implemented several quality-control measures that identify cases which cannot

be reliably assigned molecular subgroups due to poor specimen quality or assay reaction

failure.
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Aim 2: Clinical prognostication within molecular subgroups of

medulloblastoma

Prior clinical prognostication studies in medulloblastoma have identified biomarkers with-

out discriminating between the molecular subgroups of medulloblastoma. Given that

medulloblastoma subgroups are biologically and molecularly distinct disease entities, we

hypothesized that incorporating molecular subgroup into prognostication can enhance the

accuracy of survival prediction and improve the reliability of risk stratification. Prac-

tical and reliable identification of risk could allow for therapy intensification in high-

risk children to improve survival and therapy de-escalation in low-risk children to avoid

complications of therapy. By identifying clinical and molecular biomarkers within medul-

loblastoma subgroups, we have designed risk stratification schemes for SHH, Group3, and

Group4 medulloblastoma that can achieve unprecedented levels of prediction accuracy.

Aim 3: Discovering therapeutic targets by genomic profiling of

medulloblastoma

Following the adoption of the molecular classification of medulloblastoma, we then sought

to identify molecular targets in medulloblastoma. Unlike SHH medulloblastomas, action-

able therapeutic targets for WNT, Group3, and Group4 tumours have yet been identified.

Since prior attempts have been underpowered to discriminate the genomic differences

among the four molecular subgroups, the Medulloblastoma Advanced Genomics Inter-

national Consortium (MAGIC), consisting of scientists and physicians from 43 cities

across the globe, has gathered > 1200 medulloblastomas. We analyzed the genomic

copy-number profiles of the tumours by single nucleotide polymorphism (SNP) arrays

and identified genes and pathways that characterize each medulloblastoma subgroup2.
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Molecular classification of medulloblastoma

for clinicians

Objective. We aim to develop a clinically applicable method for classifying medulloblas-

toma into molecular subgroups.

Medulloblastoma can be classified by RNA expression profiles into four molecular

subgroups: WNT, SHH, Group3, and Group4. These four subgroups show some modest

association with the histological subtypes of medulloblastoma. The desmosplastic histo-

type is enriched in SHH medulloblastoma (i.e. it is observed more often than expected by

chance), while the large cell/anaplastic histotype is enriched in Group3 medulloblastoma.

Nonetheless, the molecular classification is quite different from the histological classifi-

cation. Despite its relative infancy, the molecular classification of medulloblastoma has

gained widespread acceptance in the research community since Taylor et al.34 published

a consensus report on classifying medulloblastoma by molecular profiles. Prior to this

consensus report, several groups have independently discovered various molecular classes

of medulloblastoma using different clustering analyses (hierarchical clustering and non-

negative matrix factorization (NMF) consensus clustering) for class discovery35;37;88;128.

On the surface, these studies discovered different molecular classes; moreover, each study

discovered a different number of classes. Upon closer inspection, all the studies reported

the delineation of a Shh-activated and a Wnt-activated molecular class. Furthermore,

most studies (those with sufficient sample size) discovered at least two additional molec-

ular classes; the exact number of classes discovered depended on the granularity of the

clustering or partitioning analysis. Indeed, the number of molecular classes is not as bio-

logically important as the existence of each molecular entity. (Refer to the Classification

section on page 100 in the Appendix for a discussion on the difficulty in ascertaining

18
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the number of classes.) In fact, most studies identified molecular classes bearing sem-

blance to the GroupC and GroupD subtypes discovered by Northcott et al.35, which have

been renamed Group3 and Group4, respectively. To emphasize, each of the currently ac-

cepted WNT, SHH, and Group3, Group4 molecular subgroups have been identified in

multiple studies, and these subgroups represent molecular entities that differ genetically,

epidemiologically, and clinically34.

We sought to develop a method for classifying medulloblastoma samples into the

four molecular subgroups. This method consists of two components: an experimen-

tal assay for measuring marker expression and a computational classifier for assigning

molecular subgroup to an unknown medulloblastoma sample. We used the nanoString

nCounter technology149 to directly measure the expression level of 22 subgroup-specific

marker genes, each of which is overexpressed in one of the four molecular subgroups. We

then selected the optimal classification algorithm from a panel of algorithms by comparing

cross-validation accuracies. Subsequently, we validated the trained classifier on external

datasets of medulloblastoma samples with independently assigned molecular subgroups.

We did not use expression microarrays for measuring RNA expression because

they have long been considered tools ill-suited for clinical diagnostics150–160. While the

aforementioned class-discovery studies used expression arrays (Affymetrix U133 or Exon

ST 1.0) to measure the expression of all protein-coding genes (more than 20 000), we

only needed, for our purpose, to measure the expression of genes that help discrimi-

nate between the molecular subgroups. Reducing the number of genes to be measured

simultaneously reduces the number of hybridizing probes, which in turn mitigates the

potential for cross-hybridization (binding of probes to sequences other than the target

sequence)161;162. Critically, expression microarrays typically require fresh-frozen samples

and perform poorly on FFPE samples. Even on microarray platforms specifically de-

signed for FFPE samples, the signal-to-noise ratios of FFPE samples are generally poor.

Formalin fixation and paraffin embedding preserve cellular and tissue architecture but

cause extensive degradation of nucleic acids, especially RNA. Furthermore, microarrays

are plagued by complex and diverse preprocessing procedures (probe signal normaliza-

tion and subsequent processing), in addition to experiment-specific effects (unwanted

variations). All these limitations preclude the widespread adoption of microarrays in

diagnostic laboratories. Conversely, the nanoString technology is less sensitive to RNA

degradation and provides high reproducibility between experiments.

The nanoString platform provide high-quality measurements of RNA expression
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and differs from expression microarrays in important ways149. In nanoString, the probes

are custom designed to a relatively small set of target gene transcripts, and the cross-

hybridization limitation of microarrays can be circumvented in part by reducing the num-

ber of hybridization targets and designing probes against non-homologous sequences149;161;162.

nanoString measures transcript abundance directly while expression microarrays require

in vitro transcription (or reverse transcription) and polymerase chain reaction (PCR)

amplification. These enzymatic reactions can introduce bias (e.g. GC content bias) and

variation (e.g. stochastic amplification by PCR). Additionally, in an nanoString assay,

transcripts are detected by the simultaneous binding of a pair of probes (a fluorescent-

labeled reporter probe and a biotinylated capture probe) in solution (i.e. 3-dimensional

space); for expression arrays in comparison, each target sequence is designed to bind to

one immobilized probe at a time, with no cooperativity, on a 2-dimensional surface of

a chip or bead. (Newer expression platforms typically contain probes targeting multi-

ple regions of a gene in order to achieve higher redundancy. Notably, mismatch probes

present in older microarray designs such as Affymetrix U133 are often ignored during

data normalization, and they have been eliminated in newer designs such as Affymetrix

Exon ST 1.0.) These properties of nanoString may potentially explain why nanoString

can achieve reliable quantitation on FFPE tissue163.

While clustering analysis has been instrumental in discovering the molecular

classes of medulloblastoma, it is ill-suited for predicting the class of a new, unknown

sample. (See page 100 in the Appendix for the distinction between class discovery

and class prediction.) Clustering analysis can be sensitive to changes in sample size:

removal or addition of samples can drastically influence the clustering results. The in-

clusion of samples with poor quality measurements may also completely reorganize the

clustering structure. Moreover, clustering analysis is prone to batch effects, where the

discovered classes represent different technical batches of samples and do not reflect un-

derlying biology. In comparison, class prediction can mitigate these effects by selecting

for features that discriminate between the different classes and by assessing training and

testing accuracies separately. Admittedly, clustering algorithms can be adapted for class

prediction, but existing classification algorithms are applied more widely, tested more

extensively, and understood more deeply. Furthermore, model-based classifiers can be

designed under the classification framework in order to exploit specific statistical prop-

erties of the input data and thus improve prediction accuracy. Above all, we prefer to

use or refine a ready suitable tool rather than to re-purpose a tool designed for another

task.
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We show that our method can accurately predict the molecular subgroup of medul-

loblastoma samples. The method is reproducible across different nanoString service cen-

tres and across different datasets. The assays only cost about $50 a sample. Thus, we

have developed a molecular classification method for medulloblastoma that is rapid, re-

liable, and reproducible, and this method can be readily adopted for use in a diagnostic

laboratory.

I Materials and methods

Patient samples

All samples were obtained in accordance with the Research Ethics Board at the Hos-

pital for Sick Children (Toronto, Canada). Primary medulloblastomas comprising the

training series for nanoString (n = 101) have been previously described by Northcott et

al.35 Samples contributing to the validation series (n = 131) were obtained from external

collaborators as total RNA extracted from fresh-frozen tissue from the DKFZ (Heidel-

berg, Germany; Remke series, n = 56)37, the Dana-Farber Cancer Institute (Boston,

USA; Cho series, n = 39)38, and Marcel Kool (DKFZ, Heidelberg, Germany; Kool series,

n = 36)128. FFPE cases (n = 84) were obtained as paraffin sections from the Hospital for

Sick Children (Toronto, Canada; n = 34), Johns Hopkins University (Baltimore, USA;

n = 25), and the DKFZ (Heidelberg, Germany; n = 25).

Tissue sample processing

Total RNA was extracted from fresh-frozen tissue using the Trizol method (Invitrogen)

according to the manufacturer’s instructions. For FFPE samples, 3 to 5 paraffin sec-

tions per sample were first deparaffinized with xylene prior to RNA extraction using the

RNeasy FFPE kit (Qiagen) as directed by the manufacturer. RNA concentration was

measured using a Nanodrop 1000 instrument (Nanodrop). Paul Northcott processed the

samples.
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RNA integrity assessment

RNA derived from FFPE material was analyzed with the Agilent Bioanalyzer to deter-

mine RNA integrity at The Centre for Applied Genomics (TCAG). Smear analysis was

performed using the Agilent 2100 expert software to determine the proportion of RNA

C300 nucleotides within a given sample.

nanoString CodeSet design and expression quantification

Signature genes for each medulloblastoma subgroup were included in the CodeSet on

the basis of their observed subgroup-specific expression as previously determined by

Affymetrix exon array analysis. The CodeSet was designed to consist of a total of 25

genes with 5 to 6 signature genes included for each subgroup: WNT (WIF1, TNC, GAD1,

DKK2, EMX2 ), SHH (PDLIM3, EYA1, HHIP, ATOH1, SFRP1 ), Group3 (IMPG2,

GABRA5, EGFL11, NRL, MAB21L2, NPR3 ), Group4 (KCNA1, EOMES, KHDRBS2,

RBM24, UNC5D, OAS1 ). Three housekeeping genes (ACTB, GAPDH, and LDHA)

were also included in the CodeSet for biological normalization purposes. Probe sets for

each gene in the CodeSet were designed and synthesized at nanoString Technologies. See

Northcott et al.3 for details on the subgroup-specific expression of the markers (note that

Group C has been renamed Group3 and Group D has been renamed Group4 since the

publication of this study).

Total RNA (100 ng) from fresh-frozen tissue and FFPE material was analyzed

using the nanoString nCounter Analysis System at the University Health Network Mi-

croarray Centre (Toronto, Canada), the Oncogenomics Core Facility at the University of

Miami (Miami, USA), and the Frontiers in Genetics Facility at the University of Geneva

(Geneva, Switzerland). All procedures related to mRNA quantification including sample

preparation, hybridization, detection, and scanning were carried out as recommended by

nanoString Technologies.

nanoString data processing and class prediction

Raw nanoString values were log-transformed (zero counts were mapped to zero). For each

raw log2 value x(i) in sample i of n total samples, the normalized value x̃(i) is calculated
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as

x̃(i) = x(i) − p(i) + p− b(i) + b

where p(i) is the mean signal from the positive control probes in sample i, and b(i) is the

mean signal from the three endogenous biological control probes targeting housekeeping

genes (LHDA, GAPDH, and ACTB) in sample i. Additionally, p and b are the mean

positive control and biological control signals across all n samples in the dataset.

p =
1

n

n∑
i

p(i) b =
1

n

n∑
i

b(i)

Following normalization of nanoString counts using all samples, the normalized log2

expression values were used for downstream class prediction analysis.

A series of medulloblastomas with known subgroup affiliation (n = 101) were used

to establish a training dataset for subsequent class prediction analysis of independent

cohorts used in the study. Various class prediction algorithms were assessed by a 10-fold

cross-validation scheme, using a set of scoring indices to establish a pipeline for predicting

medulloblastoma subgroups with nanoString data derived from the training series. Based

on superior performance in cross-validation analysis, the PAM method was selected for

all downstream class prediction analyses.

All class prediction analyses were performed in the R statistical programming en-

vironment (v2.13). Implementations of the class prediction algorithms were imported

from the following R packages: MASS v7.3 (linear discriminant analysis; LDA), class

v7.3 (k-nearest neighbor; KNN), e1071 v1.5 (support vector machine; SVM), nnet v7.3

(multinomial log-linear model; MULT), and pamr v1.51 (prediction analysis for microar-

rays; PAM)164. During cross-validation, the training set of 101 samples was randomly

split into 10 partitions. Each class predictor was trained on nine of the partitions, and

the performance of the predictor was subsequently tested on the one remaining partition.

Each of the 10 partitions was used as the testing set once in a round of cross-validation.

This cross-validation process was repeated for a total of 10,000 partitionings. The entire

experiment was repeated at least 3 times with reproducible results.

The scoring indices used during testing were simple accuracy, Jaccard similarity

index, Rand index, adjusted Rand index, and FowlkesMallows index. The latter four

indices are different indices for determining the similarity between two groupings, which

are the known and predicted classifications of samples in the current analysis. These
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indices serve as more stringent measures of accuracy in multiclass prediction. Aside from

the aforementioned measures of accuracy, the reliability of a classifier was also determined

using Shannon entropy as a measure of uncertainty:

H(Y ) = −
∑
y∈Y

P (y) log2P (y)

where Y is taken to be the predicted class label of the classifier for a given sample.

Accordingly, P (y) is estimated by the empirical frequency that the classifier predicts the

sample to be class y across all cross-validation rounds. The mean entropy value for a

classifier is averaged across all training samples. Hence, classifiers with varying predicted

classes for the same sample across cross-validation rounds have higher entropy values and

are hence less reliable.

Since the model parameters for SVM can affect the prediction performance, these

parameters were optimized by a grid search in a separate round of cross-validation for

SVMs with linear, radial basis, polynomial, and sigmoid kernels for observations xi and

xj as shown below.

Kernel K(xi,xj)

linear x>i xj

polynomial (γx>i xj + r)d

radial basis function exp(−γ‖xi − xj‖2)

sigmoid tanh(γx>i xj + r)

The optimal values for the kernel parameters (γ > 0, r, d) were searched in:

γ ∈ {2−15, 2−13, 2−11, . . . , 23}

r ∈ {−1,−0.9,−0.8, . . . , 1}

d ∈ {2, 3, 4, . . . , 8}

Furthermore, the optimal value for penalty parameter C > 0 was searched among the

grid points {2−5, 2−3, 2−1, . . . , 215}. Similarly for KNN, the best model was selected from

models with k ∈ {1, 2, . . . , 10}.
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Regression analysis of prediction accuracy

Define ct as the number of correctly classified samples and nt as the number of samples

with age xi ≤ t

nt =
∑
i

I(xi ≤ t)

ct =
∑
i

I(xi ≤ t ∩ i ∈ C)

where i iterates over samples, I(·) is the indicator function, C is the set of correctly

classified samples. Cumulative accuracies were calculated for each sample age year bin

t as yt = ct/nt, and yt was fitted as a 5-parameter logistic function of t, using the

implementation in the drc v2.1 R package:

f(t) = γ +
δ − γ

(1 + exp(β(log(t)− log(ε))))ζ

The maximum asymptote parameter δ was constrained at 1 in order to reflect the high

accuracy that the predictor achieved with recent FFPE samples.

Outlier detection

Gaussian mixture models were fitted to the mean endogenous control signals and the

mean positive control signals of all collected nanoString data to establish the reference

ranges for the endogenous and positive controls. Samples with mean endogenous control

or positive control signal that deviate significantly from the respective reference range at

a significance level of 0.001 were identified as outliers using the one-sample z test.

II Results

In order to select a classification algorithm that predicts most accurately and reliably, we

evaluated the class prediction performance of a panel of well-known classifiers: support-

vector machine (SVM), linear discriminant analysis (LDA), multinomial logistic regres-

sion, k-nearest neighbour (KNN), prediction analysis of microarrays (PAM). (Note that

PAM is to be distinguished from the clustering algorithm, partitioning around medoids;

LDA is also to be distinguished from latent Dirichlet allocation, another unsupervised
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learning algorithm.) These classifiers were trained on a training set of 101 fresh-frozen

medulloblastoma samples with known molecular subgroups. Classifiers that have tuning

parameters (SVM, PAM, and KNN) were tuned using a separate round of 10-fold cross-

validation. The performance of all classifiers were assessed using repeated, stratified,

10-fold cross-validation using various measures of accuracy. PAM consistently showed

superior performance to all other classifiers (Figure 2.1). Its predictions are most consis-

tent across multiple rounds of cross-validation, indicating that its predictions are reliable

(Figure 2.1d). In comparison, multinomial logistic regression predicted different sub-

groups for the same sample when it was trained on different subsets of the training data,

illustrating that it does not generalize well and its predictions are unreliable. Further,

the test accuracy of the PAM algorithm as assessed by cross-validation was the high-

est (Figure 2.1a-c). Admittedly, the test accuracies of all classification algorithms were

high and roughly in the same range, though PAM consistently outperformed all the other

classifiers in repeated rounds of cross-validation.
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Figure 2.1: Cross-validation comparison of candidate classification algorithms. a-c, Accuracy
assessment of trained classifiers by repeated, stratified, 10-fold cross-validation, using measures of
accuracy: (a) proportion of correctly classified samples, (b) Jaccard similarity index, and (c) adjusted
Rand index. d, Consistency of trained classifiers during cross-validation, as measured by Shannon
entropy. Bars represent mean Shannon entropy values averaged across all training samples.

Therefore, we proceeded to evaluate the performance of the trained PAM classifier

on external datasets of medulloblastoma samples with independently assigned molecular
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subgroups. The original molecular subtypes from the previous studies were mapped to

the consensus molecular subgroups using the mapping detailed in the consensus report34.

The performance of the trained classifier was tested on an external set of 130 fresh-frozen

medulloblastoma samples. By testing on an external validation set that is disjoint from

the training set, we show that our classifier generalizes well and is insensitive to irrelevant

variability across datasets. Indeed, our method achieved an overall classification accuracy

of 98% (Figure 2.2).
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Figure 2.2: Validation of classification assay on independent medulloblastoma cohorts. a-c, Ex-
pression heatmaps of medulloblastomas of known molecular subgroup as published by Remke et al.37

(a), Cho et al.38 (b), and Kool et al.128 (c). Samples are arranged according to subgroup predic-
tions. Known molecular subgroups and erroneously classified cases are marked above the heatmap.
d, Left, Pie chart depicting the known subgroup distribution of medulloblastomas from the three
independent cohorts analyzed in a-c (n = 130) and the subgroups predicted by nanoString profiling.
Misclassified cases are marked within each slice according to the predicted subgroups. Right, Pie
chart of class prediction accuracy (127/130) on the validation set. Adapted from Northcott et al.3

Aside from being highly accurate, our method for determining molecular sub-

groups is also reproducible across multiple centres. Our method yielded reproducible

predictions of molecular subgroups when the same samples were processed in three inde-

pendent laboratories3.
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Furthermore, our classifier, which was trained on fresh-frozen training samples,

continued to predict molecular subgroups accurately on FFPE samples. Since fresh-frozen

samples are generally rare in the clinical setting and most samples are only available in

FFPE archival form, our method would need to achieve acceptable performance on FFPE

samples if it is to be used in diagnostic laboratories. Indeed, the clinical applicability

of our method was demonstrated by its high predictive accuracy on FFPE samples of

archival ages ≤ 8 years (Figure 2.3). The accuracy decreased on older FFPE samples,

presumably due to poorer RNA integrity, though standard measurements of RNA quality

were not correlated with accuracy3. Taken together, these results suggest that any fresh

frozen or recent FFPE samples may be reliably assigned molecular subgroups using our

classification method.
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Figure 2.3: Classification performance on FFPE samples. a, Top, Cumulative class prediction
accuracy in relation to sample age of archival medulloblastomas stored as FFPE material (n =
49). Samples obtained within the past 8 years exhibit accuracies of ≥ 95%. Bottom, Frequency
distribution of sample age, grouped according to prediction correctness. b, Heatmap of nanoString
data showing class predictions for FFPE cases of ≤ 8 years confidently predicted by the assay
(n = 28). Samples are sorted according to subgroup prediction. All cases satisfying prediction
probability threshold were assigned to the correct subgroup (28/28). Adapted from Northcott et
al.3
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Since the initial publication of this work3, we have used the method to classify

over 1000 medulloblastoma samples, of which 538 samples now have known subgroup

affiliations determined from unsupervised clustering analysis on expression profiles. Using

the classifier trained on the original training set (n = 103) to predict the subgroup

of fresh-frozen samples in a non-overlapping new validation set (n = 453) yielded a

classification accuracy of 92%, which is lower than the accuracy previously achieved (98

%) on the original external validation set of fresh-frozen samples (n = 131; Figure 2.2).

Additionally, a few samples with replicate nanoString assays produced different class

predictions. Further examination revealed that poor sample quality and suboptimal

assay conditions likely contributed to errors in class prediction.

Therefore, additional quality control measures were implemented to identify unre-

liable results due to poor RNA quality and nanoString assay failure. Given that standard

measurements of RNA quality were insufficient for predicting assay accuracy3, the mean

signals of the endogenous-control probes included in the nanoString assay were used to

assess whether sufficient quantities of intact RNA were present in the samples, using

an outlier detection method. Samples with low endogenous-control signal, presumably

due to extensive RNA degradation, cannot be reliably assigned a molecular subgroup,

and they may require repeat RNA extraction or alternative classification methods using

DNA copy-number or methylation profiling. Similarly, nanoString assays may fail due

to suboptimal reaction conditions (caused by pipetting error or sample contaminants).

The mean signals of positive-control probes were therefore used to identify assay failures

using outlier detection. The endogenous-control and positive-control quality measures

helped improved accuracy on the new validation set to 94%. Although the improvement

in prediction accuracy on fresh-frozen samples is very modest, we expect a much greater

improvement for FFPE samples, which typically have much poorer RNA quality3.
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III Discussion

We have developed and validated a reliable method for classifying medulloblastoma into

molecular subgroups. Importantly, our classification method complements rather than

substitutes histological diagnosis. The diagnosis of medulloblastoma from a cerebellar

or posterior fossa tumour requires histological examination and exclusion of genetically

defined brain tumour entities including ATRT, which is characterized by SMARCB1 mu-

tation, and embryonal tumours with multilayered rosettes (ETMR), which is character-

ized by amplification of the chromosome 19 microRNA cluster. Given a medulloblastoma

sample, our method produces probabilities of the sample belonging to each subgroup. A

sample with a low prediction probability for the most probable subgroup would warrant a

second examination of its histological diagnosis. Given an unknown brain tumour sample,

we would also need to entertain the possibility that a non-medulloblastoma sample may

exclusively express markers that define one of the medulloblastoma subgroups. Notwith-

standing these limitations, we show that our method produces reproducible results across

different centres and on multiple validation datasets. Furthermore, the method performs

well on FFPE material, allowing it to be readily adopted in diagnostic laboratories.

Since the publication of our classification method in Northcott et al.3, we have made

additional improvements to the method. Currently, we are refining the classification

method for Clinical Laboratory Improvement Amendments (CLIA) certification.

In order to reliably guide clinical decision making, we are designing classifiers that

emit calibrated prediction probabilities. Presently, the trained classifier can output class

probabilities that deviate from true probabilities. For example, samples that are predicted

to be SHH medulloblastoma at a class probability of 99% contain less than 99% true SHH

medulloblastoma samples; that is, more than 1% of the predicted SHH samples at class

probability ≥ 99% are in fact not SHH medulloblastoma. Calibrated probabilities are

desirable because they can be incorporated into the decision theory framework to achieve

the optimal balance between risks and benefits of future treatments targeted against each

specific molecular subgroup of medulloblastoma.

As later chapters will show, the classification of medulloblastoma into WNT, SHH,

Group3, and Group4 is practically useful and catalyzes research in elucidating the molec-

ular mechanism underlying medulloblastoma. Indeed, the molecular classification of

medulloblastoma led to numerous discoveries in the community1;2;6–21.
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Clinical prognostication within molecular

subgroups of medulloblastoma

Objective. We aim to stratify patients into risk groups based on clinical and molecular

biomarkers within medulloblastoma subgroups for the purpose of effecting risk-adaptive

treatment.

Medulloblastoma was a uniformly fatal disease with a survival duration of mere

months until the introduction of systematic irradiation of the entire central nervous sys-

tem in the 1940s165. Prior to the adoption of craniospinal (whole brain and spine) irradi-

ation, medulloblastoma cases treated with surgical resection and localized radiotherapy

recur with metastases in the subarachnoid space166. Although the propensity of medul-

loblastoma to metastasize necessitated whole CNS radiotherapy, exposing the developing

brain to irradiation led to long-term neuropsychological sequelae that were beginning to

be documented in the 1960s166;167. Integration of chemotherapy in the 1970s into the

standard treatment of medulloblastoma led to a concomitant rise in patient survival167.

Chemotherapeutic drugs, however, can also have immediate and long-term adverse effects

on neurocognitive function168–170. Today, patients with medulloblastoma are treated by

surgical resection, followed by craniospinal irradiation and combination chemotherapy.

While advances in imaging and surgical technologies have largely eliminated operative

mortality and minimized damage to the brain during resection, craniospinal irradiation

and combination chemotherapy continue to impair neural development and cause debil-

itating neurocognitive decline of long-term survivors167;171–173. With modern treatment,

patients with medulloblastoma can be cured, but at great cost to their qualities of life.

Aside from impairing brain development, chemotherapy and radiotherapy can

31
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cause various other side-effects in long-term survivors of childhood cancer. They can

cause endocrinological complications, resulting in delayed puberty, hypothyroidism, growth

hormone deficiency, and stunted growth; and neurological complications, leading to symp-

toms including limb weakness, prolonged pain, reduced sense of touch, balance problems,

permanent hearing loss, blindness, seizures, tremors, and paralysis170;174–179. Ironically,

these anti-cancer treatments can also predispose patients to second cancers170;174;177–180.

The Childhood Cancer Survivor Study reported sobering statistics for adult sur-

vivors of childhood cancers and highlighted adverse, long-term socioeconomic conse-

quences of chemotherapeutic and irradiation treatment181;182. The survivors, compared

to unaffected siblings, are 5 times more likely to suffer from functional impairments that

prohibits independent living, 2 times more likely to earn less than $20 000 in annual

household income181. (Most participants of this study were based in the United States,

in which the median household income is more than $50 000 during the same period183.)

Specifically for childhood CNS cancers, the survivors are 18 times more likely to suffer

from functional impairments181. Moreover, 70% of survivors diagnosed with CNS can-

cer before the age of 6 years require special education services to cope with learning or

emotional difficulties182. The survivors’ use of special education is directly related to

the treatment received: cranial irradiation treatment alone increases the odds of needing

special education by 7 times, while methotrexate treatment alone increases this odds by

1.3 times, compared to unaffected siblings182. While the long-term neurocognitive effects

of chemotherapy, radiotherapy, and the brain tumour itself are intertwined, these findings

suggest that cranial irradiation may be the most damaging treatment, and chemotherapy,

albeit less harmful, is not entirely innocuous many years after treatment either.

Radiotherapy causes apoptosis (programmed cell death) of dividing cancer cells,

but it can also cause normal dividing cells to die, leading to physical, endocrinologic,

and neurologic sequelae. In a developing brain, dividing neural progenitors are sensitive

to irradiation. Additionally, quiescent neural progenitors or stem cells can also incur

radiation-induced DNA damage whose effect may manifest later in life. In patients with

acute lymphoblastic leukemia, cranial radiation causes decline in intelligence, and this de-

cline is progressive, showing more impairment of cognitive function with increasing time

since radiation therapy184. Nowadays, cranial irradiation is reserved for the fewer than

20% of children with acute lymphoblastic leukemia who are considered to be at high risk

for CNS relapse, in order to spare the maturing brain of the neurotoxic side-effect of ra-

diotherapy185. Conversely, brain tumours usually require irradiation for complete tumour
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eradication and long-term patient survival, though clinicians are increasingly aware of

neurologic sequelae following radiotherapy. A recently completed prospective trial assess-

ing 54 Gy conformal (targeted against the tumour bed) radiotherapy in low-grade glioma

patients revealed a striking correlation between age at treatment and subsequent decline

in intelligence quotient (IQ) score: the younger the survivor was during conformal radio-

therapy, the more severe was the decline in intelligence186. Similarly, younger children

with medulloblastoma treated with high-dose irradiation had worse progressive decline

in intellectual outcome and academic performance compared to children of older age at

diagnosis171–173;187;188. Even with a reduced dose of craniospinal radiotherapy, survivors

continue to show progressive decline in intellectual and academic outcomes188–191.

Several attempts have been made over the past three decades to minimize expo-

sure of the developing brain to irradiation. One of the first prospective trials in reducing

radiotherapy for patients with medulloblastoma reported an increased rate of tumour

recurrence and consequently closed early192, highlighting the need for a planned strat-

egy for salvaging non-responding disease in order to maintain patient survival. While

earlier attempts at reducing craniospinal irradiation led to poorer survival192–195, other

attempts at reducing craniospinal irradiation achieved relative success by incorporating

chemotherapy into the treatment regiment196–202. Extending this approach, numerous

oncology groups sought to postpone or eliminate radiotherapy in young children by us-

ing chemotherapy to control or eradicate the tumour139–141;144–146;148;201;203–214. Unfortu-

nately, postsurgical chemotherapy alone often cannot achieve complete response of the

residual tumour, leading to eventual use of radiotherapy. For example, combination

chemotherapy with vinblastine, cisplatin, and etoposide was insufficient by itself to in-

duce complete remission of residual medulloblastoma, and patients often progress during

chemotherapy.204;208;215. Patients with chemoresistant tumours could be salvaged with

subsequent radiotherapy; however, survivors treated with delayed radiotherapy can still

suffer from neurodevelopmental deficits146;215.

In yet other trials, clinicians have successfully used high-dose combination ther-

apy to eliminate irradiation treatment in young children with non-metastatic medul-

loblastoma. Geyer et al. showed that two combination therapy regimens (vincristine,

cisplatin, cyclophosphamide, and etoposide; or vincristine, carboplatin, ifosfamide, and

etoposide) could both obviate the need for radiotherapy in patients with no metastatic or

residual tumour after surgery140. Similarly, Grill et al. used combination chemotherapy

(carboplatin, procarbazine, etoposide, cisplatin, vincristine, cyclophosphamide) and sal-
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vaged progressive medulloblastoma with radiation and additional high-dose chemother-

apy (busulfan, thiotepa, and melphalan)146. Patients without metastasis or residual

tumour exhibited favourable outcome, and the survivors in this study also had im-

proved intellectual outcome compared to radiotherapy-treated patients146. Rutkowski

et al. used combination chemotherapy alone (including vincristine, carboplatin, etopo-

side, cyclophosphamide, and methotrexate) and achieved favourable survival outcomes

for children without metastasis or residual tumour141. Decline in IQ was still evident

among the non-irradiated survivors, albeit less severe than those who had received radio-

therapy141. Chi et al. using combination chemotherapy (vincristine, cisplatin, etoposide,

cyclophosphamide, methotrexate, and thiotepa) and autologous stem cell transplant fol-

lowing the consolidation chemotherapy, yielded complete response in macroscopically

metastatic medulloblastomas without the need for radiotherapy216. Hence, efforts in

using chemotherapy to ward off radiotherapy led to the adoption of the practice of with-

holding or postponing radiotherapy for treating young children with medulloblastoma in

most of North America and Europe.

Based on the results of more recent trials, however, clinicians remain divided on

the use of radiotherapy in young children. The HIT 2000 trial (2001–2005) confirmed

that combination chemotherapy (cyclophosphamide, vincristine, carboplatin, etoposide,

and methotrexate) can maintain favourable survivorship without radiotherapy in non-

metastatic medulloblastoma145. Unless complete remission was achieved following induc-

tion, the authors recommended contingent treatment with local radiotherapy, secondary

surgery, and consolidation chemotherapy (cisplatin, lomustine, and vincristine)145. Con-

versely, the COG-P9934 trial (2000–2006) brought back unconditional, planned irra-

diation and showed that conformal radiotherapy (localized to posterior fossa and tu-

mour bed) in addition to chemotherapy achieved superior progression-free survival than

chemotherapy alone by comparing against the POG-9233 trial142. Despite known risk

for long-term neurotoxicity in children, the authors contended that radiotherapy is still

required for optimal survival of patients with nonmetastatic medulloblastoma142.

Given the limited capability for chemotherapy to replace radiotherapy in all pa-

tients, it is important to select the patients who are at low risk of progressive or recurrent

medulloblastoma and evaluate their candidacy for therapy de-escalation. Currently, the

main risk factors for medulloblastoma relapse are residual tumour after subtotal surgical

resection and presentation with metastasis either macroscopically or in the cerebral spinal

fluid. As earlier trials have shown, patients with residual disease or metastasis are poor
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candidates for reduced or withheld radiotherapy141;146, though one trial had some suc-

cess with metastatic medulloblastoma216. Additionally, the 5-year overall survival rate

for nonmetastatic, completely resected medulloblastoma in young children (age < 3)

of the HITSKK92 trial (1992–1997) was an impressive 93% (n = 17), while the POG-

9233 trial (1992–ongoing) reported a 5-year overall survival rate of 43% (n = 37) for

nonmetastatic, completely resected medulloblastoma. Indeed, the results from the two

trials are difficult to compare, given differences in the chemotherapy regimen, surgical

resection, imaging technologies, and supportive care. Nonetheless, the striking difference

in survival for what should be similar cases of medulloblastoma suggest that the two

cohorts are, in fact, biologically dissimilar. Accordingly, the prognostic factors currently

used in patient risk stratification, metastasis at diagnosis and extent of resection, fail to

accurately identify favourable responders to chemotherapeutic treatment.

What has been missing in past clinical trials is the classification of medulloblas-

toma into molecular subgroups. As medulloblastoma subgroups exhibit different sur-

vivorships (Figure 3.1), we believe that subgroups may be useful for risk stratification of

patients. Further, given the distinct origins of subgroups72, we hypothesize that prognos-

tic markers would be influenced by subgroups. That is, some markers may be prognostic

only in specific subgroups while others may be surrogate markers of subgroup status and

have no prognostic value themselves. Therefore, by incorporating molecular subgroups

into risk stratification, we believe that we would be able to more accurately predict

favourable responders to treatment and obviate the need for indiscriminate adminis-

tration of intensive treatment to children, who will suffer long-term treatment-induced

toxicities. By improving risk stratification and tuning treatment intensity, we hope to

minimize collateral damage to the patient’s developing brain and preserve the survivor’s

quality of life.
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The current paucity of markers used in risk stratification is not due to a lack of

biomarker studies. Indeed, the medulloblastoma literature is rife with reports of prog-

nostic markers. Most of the purported markers, however, do not reproducibly predict

survival in different cohorts due to small sample sizes and distributional differences in

underlying covariates1. We purport that disagreements in prior biomarker identification

attempts may be explained by differences in the composition of medulloblastoma sub-

groups in the different cohorts. For example, patients with desmoplastic medulloblastoma

often exhibit better survival31;36;141;142;145;209;211;217, and the discordant survival outcomes

between the POG-9233 and the COG-P9934 trials could be due the latter having a higher

proportion of desmoplastic medulloblastoma, leading to better patient survival142. The

aforementioned difference in survival outcomes between the POG-9233 and the HIT-

SKK92 trial could also be due to a similar reason. Indeed, the small sample sizes in

these trials (POG-9233, n = 112; HITSKK92, n = 62; COG-P9934, n = 82) makes

uneven distribution of covariates likely, and these covariates may be responsible for the

outcome differences. Further, while desmoplastic histology has been proposed to be one

such covariate, it is likely that unobserved covariates such as molecular subgroups and

genetic mutations may better explain the differences in response. In addition to its status

as a favourable prognostic factor, desmoplasia has also been reported to be a prognostic

factor for poor survival in medulloblastoma by some147;218;219 and an insignificant factor

by others217;220. High interobserver and intraobserver variability in histological exami-

nation may be responsible for these discrepancies. Therefore, difficulty and variability

in assessment can limit the utility of a biomarker, and competing covariates should be

assessed carefully.

In order to mitigate the problems of small sample size and competing unobserved

covariates, we assembled an large, international cohort of 673 medulloblastoma samples

with clinical annotation. The cytogenetic and focal copy-number events were determined

using copy-number profiling on this discovery cohort. We identified subgroup-specific cy-

togenetic events and integrated them with clinical variables to develop subgroup-specific,

multivariate risk-stratification models based on the discovery cohort. In order to vali-

date the models and ensure that the technique was generalizable to routine pathology

laboratories, we then studied a panel of six cytogenetic biomarkers (GLI2, MYC, 11, 14,

17p, and 17q) using interphase fluorescence in situ hybridization (FISH) on an FFPE

medulloblastoma tissue microarray that includes a set of 453 medulloblastomas that were

treated at a single center and does not overlap with the discovery cohort.
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of recent prognostic marker
studies. This meta-analysis
was performed by Marc
Remke.

The size of our discovery and validation cohorts provides unprecedented power

for clinical prognostication and enables comprehensive, multivariate modeling of patient

survival to identify robust prognostic markers Figure 3.2. In this retrospective study,

we wish to comprehensively assess cytogenetic markers in the context of the molecular

subgroups of medulloblastoma and determine whether subgroup affiliation could com-

plement clinical variables for more accurate risk stratification of patients and predict

favourable responders for de-escalation of radiotherapy, in order to improve the quality

of life for survivors. Being retrospective, our cohort is subject to recall bias (for cases

with frozen samples), and it encompasses heterogeneously treated patients from multiple

centres and continents. Our histology records were not centrally reviewed; nevertheless,

our study reflects the typical clinical experience more closely and implicitly reveals the

weakness of histological diagnosis in decentralized clinical practice. Further, the lack of

surgical details and treatment protocols precludes analyses on how specific treatments

and extent of surgical resection affect survival outcome. Notwithstanding the limitations

of our discovery cohort, the findings are highly reproducible in an independent cohort of

patients.
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I Materials and methods

Patient information

All tissues and clinicopathological information were collected in accordance with insti-

tutional review boards from various contributing centers. In the discovery set, although

precise treatment dates were often unavailable, at least 95% of the patients were treated

within the past 15 years using modern treatment protocols, including surgical resection,

craniospinal (whole brain and spine) irradiation, or chemotherapy. Discovery set samples

were collected between 2005 and 2013, with a focus on samples with available fresh-frozen

material. Among the samples with treatment details, the earliest diagnosis is July 1997

and the latest is August 2012. Samples in the validation set were all obtained from the

Burdenko institute with no selection criterion applied. All patients in the validation set

were treated between 1995 and 2010 according to standardized therapy protocols of the

German HIT study group.

Tumor material and patient characteristics

A discovery set of 673 medulloblastoma samples with clinical follow-up was acquired

retrospectively from 43 cities around the globe. These samples were copy-number pro-

filed on the Affymetrix SNP6 array platform in order to identify potential molecular

biomarkers2. An independent validation set of 453 samples with clinical follow-up on

a medulloblastoma tissue microarray was analyzed by FISH as previously described35.

The validation set consisted only of patients treated in Burdenko, Moscow. Tumors were

classified based on signature marker expression into molecular subgroups as previously

described3; additional tumours were classified based on cytogenetic aberrations using

standard conditional probability models. Subgroup affiliation was not available for 162

discovery samples. The validation set includes an additional set of 50 WNT tumours that

were not on the tissue microarray. Nucleic acid isolation, tissue microarray construction,

and β-catenin mutation analysis were performed as previously described2. Tissue mi-

croarray analysis was performed by collaborators Andrey Korshunov and Stefan Pfister.
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Prognostic biomarker identification

Cytogenetic events and copy-number aberrations were identified as previously described

in the discovery set2. All chromosomal events (or chromosome arm events) were com-

pared against reference samples with balanced copy-number for the chromosome (or

chromosome arm); samples with copy-number changes in the opposite direction were

specifically excluded from each comparison. Subsequent to biomarker discovery, cross-

validation with correction for multiple hypothesis testing was performed to estimate the

reproducibility and generalizability of the potential biomarkers in an independent cohort.

During cross-validation, the discovery set was split randomly into two subsets. First, the

biomarkers are tested by the log-rank test on the first subset. Then, statistically signif-

icant biomarkers (p < 0.05) are tested again by the log-rank test on the second subset,

with correction for multiple hypotheses testing. This process was repeated 10 000 times

to estimate the expected validation rate of each biomarker. The expected validation rate

of each biomarker is nv/nd, where nd is the number of times a biomarker is significant in

the first subset and nv is the number of times a discovered biomarker is also significant in

the second subset. The final set of biomarkers was further validated in the external val-

idation set. Additionally, sample size estimates for prospective trials of each biomarker

were calculated under univariate Cox models based on the observed hazard ratios. (See

page 105 in the Appendix for more details on prognostic biomarker discovery.)

Multiple hypothesis testing correction

Within each biomarker identification analysis, correction for multiple hypothesis testing

was performed by the Benjamini-Hochberg method221 during cross-validation. Inde-

pendent analyses were corrected for multiple hypotheses testing independently: clinical

biomarker identification across medulloblastoma, within WNT medulloblastoma, within

SHH medulloblastoma, within Group3, and within Group4; molecular biomarker iden-

tification across medulloblastoma, within WNT medulloblastoma, within SHH medul-

loblastoma, within Group3 medulloblastoma, and within Group4 medulloblastoma.

Time-dependent ROC analysis

Time-dependent receiver-operating characteristics (ROC) analyses were performed using

the CoxWeights function provided in the risksetROC (v1.0.4) R package. This func-
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tion calculates areas under time-dependent ROC curves as described by Heagerty and

Zheng222. Estimates of area under the curve (AUC) for the fitted multivariate Cox

model being assessed were calculated every month, from 1 month to 60 months, in order

to determine the collective predictive performance of the biomarkers in the Cox mod-

els. Differences in AUC estimates among Cox models across time points were tested by

Friedman rank sum tests.

Risk-stratification model selection

Candidate prognostic markers, including all cytogenetic events, focal copy-number events,

and all clinical features, were first tested by univariate survival analyses (log-rank tests)

individually. Significant univariate markers were tested under multivariate Cox proportional-

hazards models including age and gender as covariates. Significant multivariate markers

(including age) were included in the model selection step.

The candidate survival models for each medulloblastoma subgroup were deter-

mined by unbiased model selection procedures: stepwise regression using forward se-

lection, backward elimination, and bidirectional elimination. To make the final model

practical for use with FISH in diagnostic laboratories, up to a maximum of three molec-

ular (cytogenetic or copy-number) markers were accepted in a candidate survival model.

Therefore, if a candidate model contains more than three moelcular markers, only the

three most significant multivariate markers were kept. In most cases, all model selection

procedures produced the same survival model. When more than one candidate models

were generated, the candidate models were compared by analysis of deviance tests223 (as

implemented in the anova.glm function of the R stats package, v2.15) to determine the

model that best fits the data.

The survival data was re-analyzed by the final model (for each medulloblastoma

subgroup) in order to assess the survival of patients with each combination of variable

levels; the risk-stratification trees were manually designed in order to group patients into

distinct risk groups. For example, suppose a final model consists of prognostic binary

variables A, B, and C. The survival data is re-analyzed by fitting a multivariate Cox

model with variables A, B, and C. The most significant variable (say A) of the three

is chosen for the initial risk-stratification tree split, and the outcomes of patients with

A = 0 and A = 1 are compared and the two branches are sorted in ascending order of

survival. Then, the next significant marker (say B) is added to the tree to both branches;
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however, a split must result in two branches each with combinations of variable levels that

are observed. For instance, the splitting of the A = 1 branch with the B variable is only

considered if the combinations (A = 1, B = 1) and (A = 1, B = 0) are both observed.

The outcomes of patients with different combinations of variable levels are compared,

and the combinations are again sorted in ascending order of survival. The last significant

marker (C) is added in the same manner. Finally, combinations of variable levels at the

leaves of the tree are collapsed into three risk groups by comparing survivals of adjacent

combinations using the log-rank test. The three risk groups may be further collapsed to

two risk groups if adjacent groups do not have different survival.

Statistical analysis

Patient survival characteristics were right-censored at 5 years (or 10 years) and analyzed

by the Kaplan-Meier method. Univariate comparison of two or more survival curves

were performed using log-rank tests and the Cox proportional-hazards regression models.

The predictive values of biomarkers were assessed by analyses of deviance tests under

multivariate Cox models and by time-dependent ROC analyses. Associations between

covariates and risk groups were tested by the Fisher’s exact test. All statistical analyses

were performed in the R software environment (v2.15), using R packages survival (v2.36),

risksetROC (v1.0.4), powerSurvEpi (v0.0.6), and ggplot2 (v0.9.3).

II Results

Prognostic significance of clinical variables within medulloblas-

toma subgroups

Many prior medulloblastoma biomarker publications were limited by sample size, a prob-

lem that will only be exacerbated once cohorts are divided into their molecular sub-

groups. The current study includes 1126 medulloblastoma patients (673 discovery plus

453 validation patients), which is more than double the sample size of any prior medul-

loblastoma biomarker publication, and one of only a very few that includes a validation

cohort (Figure 3.2). Although the discovery cohort accumulated by MAGIC consists of

medulloblastomas gathered from 43 different treating centers from around the world, the

subgroup-specific outcome mirrors what has been previously published with very good
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outcomes for WNT patients, poor outcomes for Group3 patients, and intermediate out-

comes for SHH and Group4 patients (Figure 3.1) suggesting that the discovery cohort

is a representative sample1.

0.0

0.2

0.4

0.6

0.8

1.0

Time (months)

O
ve

ra
ll 

su
rv

iv
al

0 12 24 36 48 60 72 84 96 108 120

p = 0.029
n = 52Pediatric

Adult

43 38 34 27 21 19 12 10 9 7 7

9 9 9 8 7 6 5 4 4 3 2

Pediatric

Adult

Age Group
Infant

Child

Adult

0.0

0.2

0.4

0.6

0.8

1.0

Time (months)

O
ve

ra
ll 

su
rv

iv
al

0 12 24 36 48 60 72 84 96 108 120

N.S.
n = 44M0

M2/M3

41 38 35 26 21 18 10 8 7 5 4

3 3 3 3 2 2 2 1 1 0 0

M0

M2/M3

M Status
M0

M2/M3

WNT WNT
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are evaluated by log-rank tests; HR estimates are derived from Cox proportional-hazards analyses.

In order to assess long-term survivors, WNT patients were followed for up to 10

years, and only two deaths were observed, both late in the follow-up period and due

to recurrence of medulloblastoma (Figure 3.3). Among the SHH tumours, there is a

significantly better outcome in the adult patients as compared to children or infants

(Figure 3.4). There is a trend towards a worse outcome for infants with Group3 tu-

mours that is not statistically significant (Figure 3.4). Infants with Group4 tumours

have a significantly worse outcome than children or adults (Figure 3.4), suggesting that

radiation therapy is critical in the treatment of Group4 medulloblastoma. There is no

reproducible association between gender and prognosis in any of the four subgroups (1).

Desmoplastic histology portends a more favorable prognosis than classic histology, which

is more favorable than anaplastic histology among SHH tumours1. Large cell/anaplastic

histology has prognostic significance for Group3 medulloblastomas in the discovery co-

hort, but does not validate as significant in the validation cohort.

While metastatic status is not prognostic for patients with WNT medulloblastoma,

macroscopic metastasis (M2/M3) is consistently associated with poor survival in all non-

WNT subgroups, though the clinical effect is very slight among patients with Group4

disease (Figure 3.5). While the prognostic significance of M0 disease as compared to
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M2/3 disease is very clear across SHH, Group3, and Group4, the prognostic significance

of isolated M1 disease is less clear (Figure 3.5). Isolated M1 disease is associated with

increased risk in Group3 in the discovery cohort, but not the validation cohort, with the

opposite pattern seen in the SHH patients. However, for both discovery and validation

cohorts, there are no survival differences survival between M0 and M1 patients with

Group4 disease. There are no CNAs in any of the subgroups that are associated with

an increased risk of leptomeningeal dissemination (not shown). Overall, many clinical

biomarkers continue to exhibit prognostic significance when medulloblastoma is analyzed

in a subgroup-specific fashion.

Subgroup and metastatic status are the most predictive markers

Multivariate survival analyses were conducted in order to dissect the relative predictive

value of clinical variables (age, gender, metastatic status, and histotype) and molecular

subgroup affiliation. Stepwise Cox proportional-hazards regressions revealed that molec-

ular subgroup significantly contributes to multivariate survival prediction, on top of a

regression model already parameterized by clinical variables gender, age, metastatic sta-

tus, and histology (Figure 3.6a). Further, Cox models parameterized with both clinical

biomarkers and molecular subgroup achieve higher prediction accuracy in time-dependent

ROC analyses (Figure 3.6b). In isolation, each biomarker has modest prediction accuracy

(Figure 3.6c) compared to the complete multivariate model (Figure 3.6b). In the com-
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plete model, the removals of metastatic status and subgroup lead to the greatest decreases

in predictive accuracy (Figure 3.6d). Taken together, these results suggest that subgroup

affiliation and metastatic status are the most important predictive biomarkers, and that

they make non-redundant contributions to the prediction of survival. We conclude that

combining both clinical biomarkers (metastatic status) and molecular biomarkers (sub-

group affiliation) will make the optimal tool for predicting survival of medulloblastoma

patients.
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Subgroup specificity of published molecular biomarkers

Several cytogenetic biomarkers have been previously reported to be associated with pa-

tient survival across medulloblastoma, but their prognostic values have seldom been

assessed in the context of medulloblastoma subgroups1. Loss of chromosome 6 is sig-

nificantly associated with improved survival across all medulloblastoma (Figure 3.7a).

However, the prognostic value of chr6 loss can be completely attributed to its enrichment

in WNT medulloblastomas, as chr6 loss has no prognostic value among WNT patients,

or among non-WNT patients, when compared to their respective controls with balanced

chr6 (Figure 3.7b). We would suggest that chr6 loss is a subgroup-driven biomarker

in that its prognostic significance is driven by its enrichment in a particular subgroup,

and it thus has no further significance in subgroup-specific analysis. Further, based

on these results, we would caution against using chr6 loss as the lone diagnostic crite-

ria for WNT medulloblastoma, since it is also observed in non-WNT medulloblastoma

(7/49 chr6 loss medulloblastomas were not WNT (14%)), and chr6 loss is only present

in 42/53 WNT tumours (79%). The prognostic role of isochromosome 17q (iso17q) has

been very controversial; in our cohort, iso17q is a statistically significant predictor of

poor outcome overall (Figure 3.7c). However, subgroup-specific analysis demonstrates

that iso17q is highly prognostic for Group3 medulloblastoma, but not for Group4 medul-

loblastoma (Figure 3.7d), indicating that it is a subgroup-specific molecular biomarker.

Similarly, while chr10q loss is a modestly significant predictor of poor outcome across

medulloblastoma subgroups (Figure 3.7e), its prognostic power is limited to the SHH

subgroup of tumours in a subgroup-specific analysis (Figure 3.7f). We conclude that

determination of molecular subgroup is crucial in the evaluation and implementation of

molecular biomarkers for patients with medulloblastoma, as some putative biomarkers

are merely enriching for a specific subgroup (subgroup driven) while most others are

only significant within a specific subgroup (subgroup specific).
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Figure 3.7: Subgroup-driven and subgroup-specific molecular biomarkers. a, Overall survival curves
and frequency distribution of chr6 status across the entire cohort. b, Overall survival curves for
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SHH patients can be stratified into three distinct risk groups

We identified 11 CNAs that are prognostically significant in our SHH medulloblastoma

discovery set in univariate survival analyses (Figure 3.8, Figure 3.9). Given the consider-

able number of candidates, the reproducibility of the identified biomarkers was assessed

by cross-validation. Furthremore, the expected sample sizes required for validation in

future prospective trials were estimated using power analyses under Cox proportional-

hazards models, in order to guide candidate prioritization in future prospective trials.

Specific amplifications but not broad gains encompassing GLI2 or MYCN are associated

with bleak prognosis (Figure 3.8a–b). Loss of chr14q confers significantly inferior sur-

vival (Figure 3.8c). There is no minimal region of deletion on chr14 in SHH patients,

and recent medulloblastoma re-sequencing efforts have not identified any recurrent SNVs

on chr14 in SHH medulloblastoma1. The presence of chromothripsis (chromosome shat-

tering) is associated with worse survival in SHH patients (Figure 3.8d).

To integrate the individual biomarkers into a risk stratification model, multi-

variate Cox proportional-hazards analyses were performed on all significant prognostic

markers. Through multiple stepwise regression procedures, a consensus set of biomark-

ers was selected for inclusion in the model in an unbiased manner. The proposed risk

stratification scheme represents the model that was most consistent with available data

in the discovery cohort, from among many possible alternatives (Figure 3.10a)1. GLI2

amplification, chr14q loss, and leptomeningeal dissemination (M+ disease) identify high

and standard risk patients. Specifically, GLI2 amplification alone can identify patients

with bleak prognosis (Figure 3.10a)1. Absence of these markers demarcates a low-risk

group of patients who exhibit survivorship reminiscent of WNT patients. Importantly,

none of the covariates, particularly age and anaplastic histology, can explain the survival

differences observed among the risk groups (Figure 3.10a)1. Direct application of the

proposed risk stratification scheme on the independent validation cohort yields distinct

survivorships for the three risk groups, thereby validating the model (Figure 3.10c).

Two additional stratification schemes were constructed using only clinical biomark-

ers or only cytogenetic markers; however, the proposed model, which combines both types

of biomarkers, yields the highest prediction accuracy (Figure 3.10b)1. Furthermore, the

accuracy of the combined risk model is reduced when applied across non-SHH patients,

further underscoring the importance of taking subgroup into consideration during risk

stratification. By using two molecular biomarkers (GLI2 and 14q FISH) and metastatic

status, we can reliably predict prognosis for patients with SHH medulloblastoma.
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Figure 3.8: Overall survival curves for molecular biomarkers in SHH medulloblastoma: a, GLI2
copy number status; b, MYCN copy number status; c, chr14q status; and d, chromothripsis status.
Numbers below x-axis represent patients at risk of event; statistical significances are evaluated by
log-rank tests; HR estimates are derived from Cox proportional-hazards analyses.
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Figure 3.9: Overall survival curves for significant cytogenetic biomarkers in SHH medulloblastoma.
Numbers below x-axis represent patients at risk of event; statistical significances are evaluated by
log-rank tests; HR estimates are derived from Cox proportional-hazards analyses.
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Figure 3.10: Combined clinical and molecular biomarkers improve risk-stratification of SHH pa-
tients. a, Risk stratification of SHH medulloblastomas by molecular and clinical prognostic markers.
Top-left, decision tree; bottom-left, events plot depicting status of molecular and clinical markers
across the risk groups; right, overall survival curves for SHH risk groups. b, Average time-dependent
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regimens are applied to SHH and non-SHH medulloblastomas. ***, p < 0.001, Friedman rank sum
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sent patients at risk of event; statistical significances are evaluated by log-rank tests; HR estimates
are derived from Cox proportional-hazards analyses.
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Three biomarkers demarcate high-risk Group3 patients

In Group3 patients, iso17q and MYC amplification remain the only cytogenetic markers

associated with poor survival, whereas chr8q loss and chr1q gain are the only good prog-

nosis markers (Figure 3.11)1. In multivariate survival analyses, patients with metastasis,

iso17q, or MYC amplification represent the high-risk group (Figure 3.12a). Critically,

absence of these markers can identify a population of Group3 patients who have a sur-

vivorship much longer than Group3 taken as a whole. The risk groups are not associated

with any clinical covariates, including age (Figure 3.12a)1. Consistent with the findings

in SHH patients, optimal risk stratification in Group3 patients requires the use of both

clinical and molecular prognostic markers, which have reduced or no prognostic value

outside of Group3 (Figure 3.12b)1. Our proposed risk stratification scheme was vali-

dated on the non-overlapping validation cohort using three molecular biomarkers (MYC,

17p, and 17q FISH) and metastatic status (Figure 3.12c).
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Figure 3.11: Overall survival curves for molecular biomarkers in Group3 medulloblastoma: a, chr17
copy number aberrations; b, MYC copy number status; and c, chr8q status. d, Risk stratification
of Group3 medulloblastomas by molecular and clinical prognostic markers. Numbers below x-axis
represent patients at risk of event; statistical significances are evaluated by log-rank tests; HR
estimates are derived from Cox proportional-hazards analyses.
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Figure 3.12: Combined clinical and molecular biomarkers improve risk-stratification of Group3
patients. a, Risk stratification of Group3 medulloblastomas by molecular and clinical prognostic
markers. Top-left, decision tree; bottom-left, events plot depicting status of molecular and clinical
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Identification of a low-risk group of metastatic Group4 patients

Group4 patients with whole chromosome loss of chr11 or gain of chr17 exhibit better

survival under univariate Cox models (Figure 3.13a), in addition to chr10p loss1. There

is no cytogenetic marker associated with poor prognosis1. Specifically, neither MYCN

gain nor amplification is associated with poorer survival in Group4, in stark contrast to

SHH patients, reinforcing the distinction in their underlying biology (Figure 3.13b)1.

Similarly, none of the cytogenetic biomarkers identified for Group3 patients (e.g. iso17q)

have any prognostic value in Group41. Following unbiased model selection, the con-

sensus set of biomarkers results in a risk stratification scheme in which leptomeningeal

dissemination identifies high-risk Group4 patients, except in the context of chr11 loss or

chr17 gain (Figure 3.14a). The biology underlying chr11 loss is not apparent as there

is no obvious minimal common region of deletion, nor are there any recurrent SNVs

on chr11 reported in the recent medulloblastoma re-sequencing publications1. Group4

patients with either chr17 gain or chr11 loss, irrespective of their metastatic statuses,

exhibit survivorship that is characteristic of WNT patients in both the discovery and

validation cohorts (Figure 3.14a,c), and the survival differences are not explainable by

covariates1. Significantly, the low-risk Group4 cohort also included some patients with

anaplastic histology, suggesting that anaplasia may not be universally prognostic for poor

outcome. Consistent with other subgroups, the risk stratification model using both clin-

ical and molecular biomarkers achieve the highest accuracy (Figure 3.14b). Critically,

the cytogenetic biomarkers identify low-risk Group4 patients whom would be otherwise

designated as high-risk by evidence of metastasis and/or anaplastic histology, and this

finding cannot be extrapolated to SHH and Group3 patients (Figure 3.14). We con-

clude that through the use of three molecular biomarkers (chr11, 17p, and 17q FISH)

and metastatic status, we can accurately and reliably predict the survival of patients

with Group4 medulloblastoma.
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Figure 3.13: Overall survival curves for molecular biomarkers in Group4 medulloblastoma: a, whole
chr11 status and whole chr17 status; and b, MYCN copy number status. Numbers below x-axis
represent patients at risk of event; statistical significances are evaluated by log-rank tests; HR
estimates are derived from Cox proportional-hazards analyses.
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Figure 3.14: Combined clinical and molecular biomarkers improve risk-stratification of Group4
patients. a, Risk stratification of Group4 medulloblastomas by molecular and clinical prognostic
markers. Top-left, decision tree; bottom-left, events plot depicting status of molecular and clinical
markers across the risk groups; right, overall survival curves for Group4 risk groups. b, Average time-
dependent AUCs for risk groups stratified using only clinical or molecular markers, or both. Risk
stratification regimens are applied to Group4 and non-Group4 medulloblastomas. ***, p < 0.001,
Friedman rank sum tests. c, Survival curves for Group4 risk groups in the validation cohort. Numbers
below x-axis represent patients at risk of event; statistical significances are evaluated by log-rank
tests; HR estimates are derived from Cox proportional-hazards analyses.
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III Discussion

The analysis of > 1000 medulloblastoma patients clearly demonstrates that subgroup

affiliation enhances prognostication with clinical biomarkers and that the majority of

published molecular biomarkers are only relevant in the setting of a single subgroup.

The combination of clinical variables, molecular subgroup, and six cytogenetic markers

analyzed on FFPE tissues can achieve an unprecedented level of prognostic prediction

for medulloblastoma patients that is practical, reliable, and reproducible. The proposed

risk stratification models represent those that best fit the available data in the discovery

cohort. Despite the large size of our discovery cohort, missing data and the complexity of

multivariate analyses may necessitate the use of even larger cohorts to assess the inclusion

of additional prognostic markers. Moreover, while we strive to include the most important

markers in multivariate models, we cannot exclude the possibility that alternative markers

may perform equally well. Our results nonetheless elucidate the prognostic potential of

known and novel markers and highlight clinically useful risk-stratification schemes.

The prognostic significance of M1 status (presence of cells in the cerebrospinal

fluid) has long been controversial. Most reports agree that presence of metastasis por-

tends poor prognosis and warrants intensified treatment36;141;146;147;217;224–227; however, it

is unclear whether M1 disease has the same prognosis as M2/M3 (macroscopic metasta-

sis). Kortmann et al. contended in a prospective trial that M2/M3 status were indicators

of poor outcome in medulloblastoma, but residual disease or M1 status were not228. In

another prospective trial, Zeltzer et al. maintained that both M1 and M2/M3 statuses

were prognostically unfavourable227. In subsequent studies, some investigators group M0

and M1 together in one category141;217, while others group M1, M2 and M3 together

as M+36;143;147;217. In a retrospective review, Sanders et al. reported that M1 patients

do not have better survival than M2/M3 patients under the same treatment229. In our

cohorts, the prognostic significance of M1 disease may be subgroup specific, though the

small sample size of M1 patients hinders a definitive conclusion1. Based on our data, it is

unlikely that M1 status is a universal indicator of poor outcome. Nevertheless, irrespec-

tive of whether M1 was categorized with M0 or M2/M3, our risk-stratification models

can reproducibly and robustly predict patient survival.

Controversy also surrounds the prognostic value of anaplastic histology. Large

cell and anaplastic histologies are often grouped together because these histological fea-

tures often co-occur and can be difficult to distinguish. Several studies reveal that large
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cell/anaplastic histology is prognostically unfavourable36;217;230;231. von Hoff et al. distin-

guished between large cell and anaplastic histologies and reported that large cell histology

was a negative prognostic factor while anaplasia was not127. The authors further sug-

gested that MYC amplification, which co-occurred with large cell histology, may be the

underlying cause of poor prognosis; however, the precise definition of MYC amplification

remains contentious127;232. We clarify this issue by demonstrating that only high-level

MYC amplification but not single copy gains of MYC (focal or broad) is prognosti-

cally significant. Additionally, large cell/anaplastic histology has no prognostic value

in a multivariate model accounting for MYC amplification. Possibly, MYC amplifica-

tion may be a marker for apoptotic resistance, leading to resistance against radiotherapy

and chemotherapy. Although MYC promotes cell proliferation, it also normally induces

apoptosis; therefore, MYC amplification is incompatible with tumour formation except

in the context of apoptotic pathway disruption233.

Another marker notably absent from our risk-stratification schemes is TP53 mu-

tation, which is a well-known indicator of poor prognosis14. Loss of TP53 function ab-

rogates the apoptotic pathway and contributes to resistance against chemotherapy and

radiotherapy. While we had some TP53 mutation data in our cohorts, a substantial

proportion of samples were not interrogated for TP53 status. Additionally, TP53 muta-

tion appears to be predominately prognostic for long-term survivors14, and the follow-up

lengths in our cohorts were insufficient to evaluate the long-term prognostic impact of

TP53 mutation. Therefore, the utility of TP53 mutation in multivariate patient risk-

stratification should be further assessed in a cohort with more complete data and longer

follow-up.

The absence of age in our risk stratification schemes bodes well for the modern

practice of restricting the role of radiotherapy in the treatment of young children. Indeed,

age groups are not associated with the risk groups defined by our models, and the survival

differences among the risk groups cannot be explained by differences in age distributions.

Furthermore, age (discretized or otherwise) has no prognostic value in multivariate sur-

vival models once such prognostic factors such as metastatic status is included1. The

univariate significance of age for poor outcome may be explained by the notation that

early age at diagnosis is simply a proxy for tumour aggressiveness. While some aggressive

tumours arise early, not all early arising tumours are aggressive. Accordingly, age has

little independent prognostic value in a multivariate survival model, despite that infants

often receive less intensive treatment in contemporary protocols. Our results suggest that
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elimination of radiotherapy and dose reduction in chemotherapy has not contributed to

poorer survival of infants; rather, aggressive tumours that respond poorly to treatment

sometimes present in infants.

Above all, our risk stratification models identify patient groups who are promising

candidates for de-escalation or elimination of irradiation during treatment. In particu-

lar, WNT patients exhibit excellent long term survival; with careful monitoring, these

patients may respond well to reduced radiotherapy with postsurgical chemotherapy. For

SHH medulloblastoma, the finding that infants in the low-risk group under our model

respond favourably to multimodal treatment (with presumably reduced or eliminated

radiotherapy) points to the tantalizing possibility that the remaining patients in this low

risk group (defined by absence of all unfavourable markers) may similarly respond well to

chemotherapy alone. Given that SHH medulloblastoma tends not to recur with metas-

tasis11, localized radiotherapy may be sufficient to prevent recurrence. Among patients

with Group4 medulloblastoma, some patients with metastatic disease show excellent sur-

vival. Since patients presenting with metastasis are traditionally considered high risk,

their apparent favourable outcome in our cohorts begs the question: Did these patients

need the intensified radiotherapy for tumour eradication? If their favourable survival is

not attributable to intensified treatment, these patients may benefit from radiotherapy

de-escalation and survive with improved qualities of life. Encouragingly, recent findings

suggest that the dose of craniospinal irradiation might be reduced in high-risk medul-

loblastoma (metastatic or residual disease) without compromising survival by supple-

menting the treatment with tandem high dose chemotherapy (and autologous stem cell

transplantation)202.

To conclude, we demonstrate that medulloblastoma molecular subgroups are highly

informative for predicting patient outcome, and we can dramatically improve the accu-

racy of survival prediction by incorporating molecular subgroup with conventional clinical

parameters for patient risk stratification. Moreover, we proposed, tested, and validated

novel subgroup-specific risk stratification models that consider both clinical and molec-

ular variables. These models perform robustly and reproducibly both in the discovery

cohort consisting of a heterogeneously treated group of patients and in a large, non-

overlapping validation cohort of patients treated at a single institution according to a

single treatment protocol. Given that we do not have detailed treatment information for

patients in these cohorts, it is highly possible that treatment effects (type, duration, or

intensity) could impact our results. We would suggest that this can only be accounted
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through examination of our stratification model in a sufficiently large prospectively fol-

lowed cohort of patients with medulloblastoma. While the current study uses either SNP

arrays, or interphase FISH on FFPE sections, it is possible that other approaches such

as array comparative genomic hybridization (aCGH) could also be used to determine the

copy-number status of the six cytogenetic markers. Our results demonstrate the utility

of incorporating tumour biology into clinical decision-making and offer a novel perspec-

tive on risk stratification using FISH (applicable on paraffin sections), and thus should

be validated in prospective multi-centre trials and be translated into routine clinical

practice.
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Discovering therapeutic targets by genomic

profiling of medulloblastoma

Objective. We hypothesize that each medulloblastoma molecular subgroup is character-

ized by specific genomic alterations, and we aim to identify potential therapeutic targets

specific to each molecular subgroup.

Increased awareness of long-term neurotoxcities of craniospinal irradiation has

motivated the de-escalation of radiotherapy by incorporating dose-intensive combination

chemotherpay into the treatment regime. In order to eradicate tumour cells, chemother-

apy is often intensified to the point where autologous stem cell transplants are required

to circumvent patient mortality. Albeit less harmful, chemotherapy is not without neu-

rocognitive and functional consequences for survivors. In one trial, addition of chemother-

apy to craniospinal irradiation caused long-term survivors of medulloblastoma to suf-

fer poorer health status234. In another trial, patients with medulloblastoma who were

treated with chemotherapy alone (vincristine, carboplatin, etoposide, cyclophosphamide,

and methotrexate) suffered from declines in neurocognitive function141. Perhaps part

of the decline could be due to the disease itself; however, even for patients with acute

lymphoplastic leukemia, chemotherapy alone (vincristine, methotrexate, prednisone, and

antracyclines) can cause reduction in volumes of several neuroanatomic structures of

the brain and consequent decline in processing speed, executive function, learning and

memory169. Furthermore, chemotherapy causes a myarid of other side-effects; for exam-

ple, it increases the risk of infection for patients due to suppression of immune system.

Chemotherapeutic drugs such as cisplatin can cause permanent hearing loss and periph-

eral neurotoxicity170.

62
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Aside from mounting evidence for long-term adverse effects, combination chemother-

apy encountered yet another setback when a prospective trial reported that prolonged

dose-intensive chemotherapy (with cisplatin, cyclophosphamide, vincristine, etoposide)

for patients with medulloblastoma yielded no improvement in survival (and also resulted

in several treatment-associated deaths)143. In this trial, the authors treated the patients

with 72 weeks of dose-intensity combination therapy, and patients with medulloblas-

toma showed no improvement in survival (though patients with ependymoma did)143.

Similar to prior attempts, dose-intensive chemotherapy also caused patient death (toxic

mortality) about 10 times more frequently than standard dose143;209. These negative

findings indicate that patient survival cannot be improved by simply increasing the dose

of chemotherapy, whose arsenal has essentially remained unchanged for decades.

To faciliate the discovery of novel therapeutic targets, we sought to identify re-

currently dysregulated genes and pathways by analyzing the DNA copy-number profiles

of > 1000 primary medulloblastoma samples (before radiotherapy and chemotherapy).

Genes amplified recurrently across tumours are candidate proto-oncogenes, against which

therapeutic agents may be developed. Conversely, genes deleted recurrently are candidate

tumour suppressors, and therapeutic interventions may be designed against downstream

pathways. Earlier studies aimed at identifying recurrent copy-number aberration (CNA)

or mutations did not identify any highly recurrent focal genetic lesions across medulloblas-

toma tumours (without classification into subtypes): most focal genetic lesions occur at

frequency of less than 10%, with MYC amplification and PTCH1 mutation represent-

ing the most commonly observed events in medulloblastoma83;235. These observations

suggest that medulloblastoma is genetically heterogeneous, and classifying medulloblas-

toma into molecular subgroups may aid the identification of genes and pathways that are

recurrently disrupted above the background mutation rate in medulloblastoma.

The four molecular subgroups of medulloblastoma exhibit activation of different

transcriptional progrms, which may be shaped by different genetic abnormalities. We

therefore stratify our medulloblastoma samples by subgroup status into more homoge-

neous groups, and we sought to identify recurrent CNS enriched in or specific to each

molecular subgroup. We hypothesize that each medulloblastoma subgroup incurs dif-

ferent genetic events. Accordingly, we hope to reveal dysregulated genes and pathways

underlying the tumourigenesis of each subgroup in order to facilitate the development of

precise, targeted therapeutic interventions.
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I Materials and methods

Patient samples and nucleic acid extraction

All patient samples were procured in accordance with the Research Ethics Board at The

Hospital for Sick Children (Toronto, Canada). Samples were obtained as frozen tissue

biopsies at the time of diagnosis and stored at -80 ◦C until processed for purification of

nucleic acids. Frozen tissue was available for 75-80% of cases included in the study; the

remaining cases were shipped as pre-isolated DNA and/or RNA. Whenever possible, tu-

mour isolates were partitioned for both standard DNA and RNA extraction. Tissues were

either manually homogenized using a mortar and pestle in the presence of liquid nitrogen

or in an automated manner using a Precellys 24 tissue homogenizer (Bertin Technologies,

France), according to the manufacturers instructions. High molecular weight DNA was

extracted by SDS/Proteinase K digestion followed by 2-3 phenol extractions and ethanol

precipitation. Total RNA was isolated using the Trizol method (Invitrogen, USA) using

standard protocols. DNA and RNA were quantified using a NanoDrop 1000 instrument

(Thermo Scientific, USA) and integrity assessed either by agarose gel electrophoresis

(DNA) or Agilent 2100 Bioanalyzer (RNA; Agilent, USA) at The Centre for Applied Ge-

nomics (TCAG, Toronto, Canada). RNA with an RNA Integrity Number (RIN) ≥ 7.0

was required for analysis by either Affymetrix Gene array or RNASeq. Paul Northcott

performed the nucleic acid extractions.

DNA copy number analysis

SNP array processing and quality control

Genotyping and copy-number profiling of DNA samples was performed on the Affymetrix

Genome-Wide Human SNP Array 6.0 platform, which includes more than 906 600 probes

for the genotyping of SNP loci and more than 946 000 probes for the detection of copy

number variations. With a total of 1.8 million probe markers, the median distance be-

tween markers is less than 7000 bases. DNA was prepared, labeled, and hybridized to the

Affymetrix SNP 6.0 arrays as previously described2. Sample quality control was assessed

using Affymetrix Genotyping Console as previously described2. TCAG performed the

SNP array processing and quality control.
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Generation and normalization of copy number profiles

Affymetrix SNP6 CEL files were processed in dChip236 to obtain raw copy number esti-

mates. Arrays were normalized by quantile normalization and signal intensities computed

using the MBEI method (PM-only). To generate a diploid reference baseline for copy

number analysis of medulloblastoma samples, we used Affymetrix SNP6 data from 132

individuals from the Ontario Population Genomics Platform epidemiological project and

the HapMap project. Germline DNA from these samples was genotyped in the same

microarray facility as the tumour samples, using identical experimental protocols as de-

scribed above.

The normalized copy number estimates from dChip were subsequently imported

into the R environment, and the copy number profiles were segmented using the circular

binary segmentation (CBS) algorithm from the DNAcopy (v1.24) package237, with the

undo split option enabled (method = sdundo, undo.SD = 1). The resulting segmenta-

tion profiles were further processed to reduce artificial segments. Segments with fewer

than 10 markers were removed. Adjacent segments whose copy number states differed

by less than 0.25 were merged together using their size-weighted mean. This merging

step is repeated iteratively until no more segments can be merged. The segmentation

profile of each sample was then median-centered. Further, normal CNVs reported in the

Database of Genomic Variants (DGV, v10)238 were filtered from the segmentation pro-

files. Segments that reciprocally overlapped (Dice coefficient > 0.5) with normal CNVs

were removed. CNVs reported on BAC End Sequencing, BAC Array CGH, ROMA, and

FISH were excluded from this filter. Upon removing a segment, the upstream segment

was merged to the downstream segment using a size-weighted mean. The aforementioned

merging and CNV-filtering steps helped reduce the occurrence of broad segments being

broken into non-contiguous pieces by artificial segments or normal CNVs (which influ-

ences the downstream GISTIC2 analysis and segment classification). The copy number

segments were classified as balanced or one of 6 copy number aberrations based on the

criteria in Table 4.1.
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Table 4.1: Criteria for DNA copy number aberrations

Class Log2 R ratio (r) Size in Mbp (s)

Balanced |r| ≤ 0.2 —

Gain r > 0.2 —

Loss r < −0.2 —

Focal gain r > 0.2 s < 12

Focal loss r < −0.2 s < 12

High level amplification r > log2(5/2) s < 12

Homozygous deletion r < −log2(0.7/2) s < 12

Identification of recurrent copy number aberrations

The post-processed segmentation files profiles were analyzed using two algorithms, GIS-

TIC2 and modified CMDS, to identify recurrent copy number events. GISTIC2 requires

prior single-sample segmentation, and hence may be affected by the presence of segmen-

tation artifacts. In contrast, CMDS requires no single-sample segmentation and works

with the raw copy number profiles directly. Many post-processing steps were lacking

from the distributed CMDS program (e.g. multiple hypothesis correction, peak calling,

CNV filtering); therefore, a number of post-processing steps were added.

GISTIC2 (v2.0.12)239 was run with default parameters unless specified otherwise

(brlen = 0.5, conf = 0.9), on the segmentation profiles of the entire cohort and of

each subgroup separately. The significant peaks were filtered based on the gene content

(ge1 gene spanned), size of the wide peak (< 12 Mbp), and additionally based on con-

tainment within a normal CNV region (one-way overlap > 90%) reported in the filtered

DGV database. This second CNV-filtering step ensures that amalgamated regions re-

ported in DGV are considered, as these regions would often have poor reciprocal overlap

with individual query segments and would be missed by the previous CNV-filtering pro-

cedure. It is not possible to apply this secondary CNV-filtering procedure directly on the

segmentation file, as the CNV regions are often very large and this filtering can cause

the loss of many informative CNA segments.

CMDS (v1.0)240 was run using default parameters unless specified otherwise (w =

40, s = 1), on the unstratified and subgroup-stratified segmentation profiles, for each

chromosome separately. Since the raw outputs had a high false positive rate, the outputs
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were processed further. The z-scores were recalculated (separately for each chromosome)

from the Fishers z-transformed of the Pearson correlations, using the means of the dom-

inant components from Gaussian mixture models (k = 3). This recalculation ensured

that the z-scores were not skewed due to the presence of multiple modes in the raw out-

put. The z-scores were further detrended using empirical mode decomposition (EMD)241,

which corrects for trends due to recurring broad events. The p-values derived from the

z-scores were then corrected for multiple hypothesis correction using the qvalue R pack-

age (v1.1)242. Finally, the peak regions were identified using a simple q-value threshold

(FDR = 0.05).

Estimation of the copy number states of genes

The copy number states of all RefSeq genes in each sample were inferred from the respec-

tive post-processed segmentation profiles. The state for a given gene was determined by

the copy number segment (classified as described earlier) that spans the greatest propor-

tion of the gene (if multiple segments span the gene). Further, a gene is considered lost

or deleted if any portion of its coding region is spanned by a loss or deletion segment; a

gene is considered gained or amplified if at least 50% of the coding region is spanned by

a gained or amplified segment.

Identification of recurrent broad events

Identification of recurrent CNAs above explicitly excluded broad events (based on a broad

length cutoff in GISTIC and by a detrending procedure after CMDS). Therefore, broad

events in the segmentation profiles were analyzed separately, using an approach similar

to GISTIC’s broad event analysis239. The log2 R ratio (LRR) of each chromosome was

calculated using a size-weighted mean of all segments mapping to the chromosome. A

chromosome was declared gained if its LRR was greater than 0.2, lost if the LRR was less

than -0.2, and balanced otherwise. Unlike GISTIC, gained and lost broad events were

analyzed together. The significance of the frequency of each broad event was tested using

the exact binomial test. Each broad event frequency was compared to the background

frequency, which was determined from a robust regression of the observed frequencies

with respect to gene content (i.e. number of RefSeq genes) across all chromosomes.
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Identification of chromothripsis

The occurrence of chromothripsis was identified using tumour copy number profiles as

previously described20. Using the post-processed segmentation profiles, chromothripsis

was identified on a chromosome based on the presence of greater than 10 copy num-

ber state changes. The enrichment of chromothripsis on a chromosome for a subgroup

was determined using the hypergeometric test, comparing the observed incidence to the

background incidence (tallied across all samples). Select samples inferred to have chro-

mothripsis were confirmed by whole-genome sequencing to identify rearrangements.

Subgroup enrichment analysis of recurrent copy-number events

Recurrent SCNAs identified by GISTIC2 in the unstratified and subgroup-stratified anal-

ysis were tested for subgroup enrichment. In the case of stratified analysis, regions iden-

tified in each subgroup were combined together. Since the reported region coordinates

of common SCNAs events can differ among the strata, regions that reciprocally over-

lap (Dice coefficient > 0.2) were merged together using their union. In the enrichment

analysis, the frequency of recurrent SCNAs in each subgroup was compared against the

remaining subgroups, and odds ratios were estimated using Fisher’s conditional max-

imum likelihood estimate. SCNAs with odds ratios greater than 2.0 were considered

subgroup-enriched. A similar enrichment analysis was repeated for comparing combi-

nations of two subgroups against the remaining, in order to identify SCNAs that are

enriched in the ensemble of two subgroups (and are not otherwise enriched in a single

subgroup).

Integration of gene expression and copy-number events

To directly assess the correlation between significant somatic copy-number aberration

(SCNA) and gene expression, expression profiles were generated on 285 medulloblas-

tomas from our study, including samples from SHH (n = 51), Group3 (n = 46), and

Group4 (n = 188), using the Affymetrix Gene 1.1 ST platform. Global integration of ex-

pression data was performed by comparing expression levels of amplified or deleted genes

relative to genes in balanced regions (Mann-Whitney tests). Further, specific integration

of expression data at each significant SCNA locus was done by comparing expression of

genes in samples with the aberration against those that do not, within each medulloblas-
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toma subgroup. Multiple hypothesis correction by the false discovery rate method was

applied to each locus independently, and the false discovery rate threshold was adaptively

tuned at each locus so that no false positives are expected. The resulting lists of genes

with copy-number driven expression were used in candidate identification.

Identification of candidate driver genes in each significant region

Many of the significant regions identified using GISTIC and CMDS span multiple genes.

Therefore, multiple lines of evidence were used to prioritize putative target genes within

each region. Evidences collected from integrated expression data, the literature, and

multiple datasets were classified into the tiers in Table 4.2.

Table 4.2: Tiered evidence-based framework for identifying candidate driver genes

Type Description Tier

Correlated expression Gene expression is driven by SCNA in the integrated analysis I

Medulloblastoma literature Implicated in medulloblastoma based on the literature (PubMed) I

Cancer Gene Census Documented in the Cancer Gene Census I

Parsons Reported to be somatically mutated in the Parsons et al.235 study on

SNVs identified in medulloblastoma

III

ICGC Reported to be somatically mutated in the ICGC medulloblastoma study III

Northcott signature gene Reported in the Northcott et al.35 medulloblastoma expression study IV

Cho signature gene Reported in the Cho et al.38 medulloblastoma expression subgroup study IV

RNASeq SNV Identified in the pilot RNASeq screen for SNV (Group 3 and 4 only) IV

Gli1 target Identified as a Gli1 target in Lee et al.243 (SHH subgroup only) IV

Shh-inducible target Identified as a Shh-inducible gene by a screen in cerebellar granule neuron

precursors (SHH subgroup only)

IV

COSMIC Documented in the Catalogue of Somatic Mutations in Cancer V

The priority of each gene in a region was ranked based on the total score of the

above lines of evidence, weighted by their respective tiers. A higher tier (lower number)

is assigned a higher weight. The weights were assigned so that supporting evidence from

the next tier is only considered for breaking ties at previous tiers. At most two genes

from each region were selected for network analysis using this evidence-based ranking.
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Mutual exclusivity analysis

The significant gene lists were analyzed to detect mutual exclusive relationships by iter-

ating through all possible subsets of genes in the list (for set sizes from 2 to 6). Within

each subgroup, sets of genes with the highest total exclusivity scores were identified. We

define the total exclusivity score as the fraction of all samples that harbour exactly one

aberration among the genes in the set; in other words, the total exclusivity score is the

product of proportion coverage and proportion exclusivity as defined by Miller et al 244.

Proportion coverage is the proportion of samples that contain at least one aberration

within a given set of genes, and proportion exclusivity is the proportion of covered sam-

ples that contain exactly one aberration within the set of genes. For a set of genes G
and samples S, we designate total exclusivity as TExcl(G), proportion exclusivity as

Excl(G), and proportion coverage as Cover(G); then,

TExcl(G) =

∑
s∈S I

(∑
g∈G M[g, s] = 1

)
|S|

Cover(G) =

∑
s∈S I

(∑
g∈G M[g, s] > 0

)
|S|

Excl(G) =

∑
s∈S I

(∑
g∈G M[g, s] = 1

)
∑

s∈S I
(∑

s∈G M[g, s] > 0
)

where I(·) is the indicator function, and M[g, s] = 1 if gene g is aberrant in sample s

and M[g, s] = 0 otherwise.

Network analysis

Pathway enrichment analysis of copy number aberrations was carried out using the

g:Profiler web server245 and visualized in Cyotscape as an Enrichment Map network246.

Candidate driver genes from selected GISTIC2 regions were compiled for SHH, Group3,

and Group4, ranked by frequency, and subsequently queried for significantly enriched

functional categories with g:Profiler using the ordered list algorithm (FDR-corrected

cutoff p = 0.05, hypergeometric test). Detected categories were filtered with a custom

R script to include only Gene Ontology, Reactome, and KEGG pathway terms, using

an upper limit of 500 genes per gene set and the requirement that at least two puta-

tive driver genes intersect with the gene set. A small number of non-informative KEGG
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pathways were removed from the final list. The overlap coefficient value 0.6 was used

in Enrichment map visualization. Enrichment maps were manually adjusted to high-

light the most significant themes for visualization purposes. Jüri Reimand performed the

network analysis.

Unsupervised clustering analysis of copy number events

All significant broad events (spanning chromosome arms) and focal events identified in

the pan-cohort analysis were used in the agglomerative hierarchical clustering of medul-

loblastoma samples, by the Ward linkage method and the Euclidean distance metric, as

implemented in the R environment. The copy number states were converted to absolute

values and samples with unknown subgroup affiliation were removed prior to clustering.

The agreement between the observed clusters and the medulloblastoma subgroups were

assessed by the adjusted Rand index and tested by the χ2 test.

Expression array processing and data analysis

For gene expression array profiling, 400 ng total RNA was processed and hybridized to the

Affymetrix Gene 1.1 ST array at TCAG according to the manufacturers instructions. The

CEL files were quantile normalized using Expression Console (v1.1.2; Affymetrix, USA)

and signal estimates determined using the RMA algorithm. Prior to clustering analysis

of Group 4 medulloblastomas, 500–1000 genes with the highest standard deviations were

selected and the expression signals anti-log transformed. Unsupervised clustering was

carried out using the NMFConsensus module available on the GenePattern public server

(Broad Institute, USA) with default parameters247.

NMF consensus clustering247 generates clusterings for a range of predefined num-

ber of clusters, k. Clustering results with k = 2 up to k = 5 were generated, and the

resulting fit of the NMF consensus clusters to the data for each value of k was assessed

using the cophenetic correlation coefficient248, and the value of k (the number of clusters)

that led to the highest cophenetic correlation coefficient was chosen.

The cophenetic correlation coefficient is a measure of the degree to which cophe-

netic distances preserve the original distances among the observations, and it is most

commonly used in hierarchical clustering. Given distances d(x, y), as measured by some

distance metric such as Euclidean distance, among all pairs of data points, a cophenetic
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distance c(x, y) between two observations x and y is the linkage distance at which the x

and y are first merged into a single cluster. The linkage distance is defined by the link-

age method used (e.g. average linkage, single linkage, complete linkage). For example,

average linkage between two disjoint clusters A and B is

l(A,B) =
1

|A||B|
∑
a∈A

∑
b∈B

d(a, b)

Accordingly, if x ∈ A and y ∈ B, then c(x, y) = l(A,B). Due to cluster merging, the

cophenetic distance c(x, y) and the original distance d(x, y) may differ. The cophenetic

correlation coefficient ρ̃ is the Pearson correlation cor(·) between c(x, y) and d(x, y) for

all pairs of observations:

ρ̃ = cor(c,d)

where c is a vector of the cophenetic correlations between all pairs of observations xi and

xj for i < j and d is the corresponding vector of the original distances. Ordinarily, cophe-

netic correlation does not measure clustering stability; however, Brunet et al. consider

cophenetic correlation to be a measure of clustering stability when hierarchical clustering

is applied to a consensus clustering matrix. (Brunet et al., in their NMF consensus clus-

tering algorithm, generate this consensus clustering matrix by applying multiple rounds

of non-negative matrix factorization on the data).

nanoString CodeSets and data analysis

To determine subgroup affiliation of the MAGIC cohort, a custom nanoString CodeSet

was designed to assess the expression status of 22 medulloblastoma signature genes and

samples processed as described previously3. Samples were processed as recommended by

nanoString at the University Health Network Microarray Facility using an input of 100

ng total RNA. Raw nanoString counts were normalized as described in Chapter 2, and

the normalized log2 expression data was used as input for class prediction analysis using

the PAM algorithm. A series of 101 medulloblastomas with known subgroup affiliation

were used as a training dataset for class prediction35.
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Statistical and bioinformatic analyses

Statistical and bioinformatic analyses were performed in the R statistical environment

(v2.13) or using custom programs/scripts written in Python, C++, or Go. Enrichment

analyses were done using the hypergeometric test. The significance of chromosome arm

frequencies were done using the exact binomial test, comparing the observed frequency

to the expected frequency derived from a robust regression of event frequency and gene

content, in a manner similar to the broad analysis in GISTIC2. Comparisons of event

frequencies across medulloblastoma subgroups were performed using Fisher’s exact test.

Expressions of genes across samples were compared using the Mann-Whitney test (and

confirmed with the Student’s independent t-test). Where applicable, multiple hypothesis

corrections were performed using the false discovery rate method242. Univariate survival

analyses were done using the log-rank test, as implemented in the survival R package

(v2.36).
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Figure 4.1: Significant regions of
focal SCNA identified by GISTIC2
in pan-cohort or subgroup-stratified
analyses. A total of 62 signif-
icant regions were identified when
the cohort was analyzed as a sin-
gle group, whereas 110 significant re-
gions were captured when the cohort
was analyzed according to subgroup.
The number of significant subgroup-
enriched regions identified more than
doubled (73 vs. 30) when the sub-
groups were analyzed independently.

II Results

Molecular subgroups have disparate patterns of genomic events

Copy-number profiles were generated on > 1200 medulloblastomas using the Affymetrix

Genome-wide SNP6 platform. After quality control and clinical criteria filtering, copy-

number profiles of 1087 primary medulloblastomas were available for further analysis

in identifying SCNA events: regions of aberrant gains and losses in the tumour genome.

The tumours were stratified based on molecular subgroups, as determined by the method

described in Chapter 2. The copy-number and cytogenetic profiles of medulloblastoma

subgroups were highly divergent, demonstrating that medulloblastoma subgroups are ge-

nomically heterogeneous2. Indeed, when the cohort was analyzed by each subgroup inde-

pendently, an increased number of SCNAs were identified, many of which were subgroup-

enriched (Figure 4.1).
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Recurrent events target known cancer-associated genes

Among the recurrent high-level amplifications (copy-number ≥ 5) identified (Figure 4.2),

the most prevalent events targeted members of the Myc family (MYCN, MYC, MYCL),

with MYCN predominantly amplified in SHH and Group4, MYC in Group3, and MYCL

in SHH medulloblastomas. The most common homozygous deletions targeted known

tumour suppressors PTEN, PTCH1, and CDKN2A/B, all of which were enriched in SHH

tumours (Figure 4.3). A selected set of genes were assessed using custom DNA copy-

number nanoString assays, and 90.9% of events were verified (Figure 4.4). Additional

genes were validated on external cohorts by FISH2.

Chromothripsis is rare in WNT medulloblastoma

Chromothripsis (chromosome shattering) leads to co-occurrence of high-level amplifica-

tions and disruption of several genes localized to specific regions in one or multiple chro-

mosomes. Several samples exhibited genomic aberrations reminiscent of chromothripsis,

which has recently been implicated in cancer formation249–254, as well as in medulloblas-

toma20. In our cohort of chromothripsis, the incidence of chromothripsis is not uniform

across subgroups (p = 0.015, Fisher’s exact test). While the incidence of chromothripsis

is depleted in WNT tumours compared to non-WNT tumours (p = 0.0028), chromoth-

ripsis is neither enriched nor depleted in the SHH, Group3, or Group4 (p > 0.05). The

incidence of chromothripsis is about 12% among SHH, Group3, and Group4 tumours.

These findings are consistent with the observation that WNT medulloblastoma shows no

recurrent SCNA other than chr6 loss and appear more genomically stable (Figure 4.5)2.

Subgroup-specific events converge on oncogenic pathways

The disparate genomic landscapes of medulloblastoma subgroups lead to the identi-

fication of a multitude of focal SCNAs that characterize each molecular subgroup2.

Novel genes identified in this study include: PPM1D, PIK3C2B, and MDM4 in SHH

(Figure 4.6); ACVR2A, ACVR2B, and TGFBR1 in Group3 (Figure 4.8); and NFK-

BIA and USP4 in Group4 (Figure 4.10). Conversely, WNT medulloblastoma have few

recurrent SCNAs (Figure 4.5).
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Figure 4.2: Recurrent high-level amplifications in medulloblastoma. Frequency of genes amplified
(segmented copy-number ≥ 5) in at least two samples are shown with the distribution of the event
across subgroups. The number of genes mapping to the peak region as defined by GISTIC2 (where
applicable) are listed in parentheses after the candidate driver gene.
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Figure 4.3: Recurrent homozygous deletions in medulloblastoma. Frequency of genes targeted by
homozygous deletion (segmented copy-number ≤ 0.7) in at least two samples are shown.
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SHH medulloblastoma, which is characterized by activation of Shh signaling34;35;37;38;128,

exhibits frequent SCNAs in the Shh pathway. Genes involved in focal SCNAs amplifi-

cations are significantly associated with SHH medulloblastoma signatures genes2, sug-

gesting that copy-number changes contribute in part to the altered expression signatures

previously observed in SHH tumours. Accordingly, positive regulators of Shh signal-

ing (MYCN and GLI2 ) were recurrently amplified, while a negative regulator of Shh

signaling (PTCH1 ) was recurrently lost. Consistent with their functions in the same

pathway, these events were mutually exclusive; however, they lead to different clinical

outcomes2. In additional to Shh signaling, other core pathways recurrently disrupted in

SHH medulloblastoma are TP53 signaling and PI3K signaling (Figure 4.7).
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Figure 4.7: Core pathways genetically disrupted in SHH medulloblastoma. Summary of SCNAs
affecting components of Shh signaling, TP53 signaling, and PI3K signaling are depicted. Colours
reflect the frequency by which the respective genes are targeted by focal or broad events in SHH
medulloblastomas (red for amplification, blue for deletion). Significance values indicate the preva-
lence with which each pathway is targeted in SHH vs. non-SHH cases (Fisher’s exact test).
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The signaling pathways involved in Group3 and Group4 medulloblastomas are less

well understood, as suggested by their names. Nonetheless, at the copy-number level,

distinct pathways are dysregulated in Group3 and Group42. Group3 tumours are char-

acterized by amplification of MYC and OTX2, which occur in a mutually exclusive pat-

tern2. This observation is consistent with the tendency of the two oncogenic transcription

factors to bind the same promoter regions255. Further, the TGF-β signaling pathway is

frequently disrupted by SCNAs in Group3 (Figure 4.9). Conversely, the NF-κB pathway

appear to be genetically targeted in Group4 medulloblastomas (Figure 4.10).

While MYC amplification is a known pivotal player for Group3, our data indi-

cate that other genes in close proximity to the MYC locus may also play cooperative

roles. This locus was frequently disrupted by a multitude of high-level amplicons2 as

well as massively genomic rearrangements termed chromothripsis (Figure 4.12). As a

consequence of these events, the adjacent PVT1 gene and miR-1204 are frequently co-

amplified with MYC. Moreover, amplifications of the MYC /PVT1 locus frequently result

in the formation of fusion transcripts. Concurrent with MYC-PTV1 fusion expression,

miR-1204 (hosted within PTV1) is upregulated2. MYC, PVT1, and miR-1204 all have

been previously shown to play independent functional roles in other tumours256–259, and

may synergistically promote tumourigenesis.

The most prevalent focal gain in Group4 is the somatic tandem duplication of

the SNCAIP gene2. SNCAIP expression is highly elevated in Group4 medulloblastomas

(Figure 4.13). In fact, SNCAIP duplication is restricted to the Group4α subtype and

may play a functional role in this medulloblastoma subtype (Figure 4.14).
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Figure 4.11: A multitude of amplicons disrupt the MYC/PVT1 locus. Copy-number plot of
8q24.21 is shown for a representative sample. Dots represent raw copy-number estimates and lines
denote copy-number segments and state (red: gain, blue: loss). 71.4% of MYC -amplified (20/28)
cases exhibit (partial) co-amplification of adjacent non-coding PVT1 gene and miR-1204. PVT1-
MYC fusion transcripts were detected by RNA-seq, qRT-PCR, and Sanger sequencing in 8/20
samples2.
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Figure 4.13: SNCAIP is a Group4 signature gene. Left, Box-plot depicting SNCAIP significant
upregulation in Group4 (Mann-Whitney test), as determined by expression analysis of a previously
published cohort of 103 primary medulloblastoma35. SNCAIP ranks among the top 1% of most
highly expressed genes in Group4 medulloblastoma (rank 39 out of 16758). Right, Validation of
SNCAIP as a Group4 signature gene across five published medulloblastoma expression datasets:
Thompson88, Kool128, Fattet, Cho38, and Remke37. Expression datasets total 396 cases on four
different array platforms. In all datasets, SNCAIP exhibits the highest expression in Group4.
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Figure 4.14: SNCAIP duplication is restricted to one subtype of Group4. a, Non-negative matrix
factorization (NMF) consensus clustering performed on expression profiles of Group4 cases (n = 188)
reveal two transcriptionally distinct subtypes of Group4, designated 4α and 4β. SNCAIP duplicated
is significantly enriched in the Group 4α subtype (Fisher’s exact test). b, SNCAIP expression is
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Figure 4.15: Hierarchical clustering of broad and focal SCNAs in medulloblastoma. Agglomerative
hierarchical clustering was performed on 827 primary medulloblastoma samples with known molecular
subgroups, in order to assess the association between the clusters driven by DNA copy-number
profiles and the classes defined by expression signatures. Coloured top-side bar indicates known
expression subgroups (WNT: blue, SHH: red, Group 3: yellow, Group 4: green). Only focal events
identified in the pan-cohort GISTIC2 analysis were included in the clustering. Resulting clusters
show significant agreement with known expression subgroups (p < 0.001, χ2 test, ARI = 0.323).
Adjusted Rand index (ARI) is a measure in [0, 1] of the effect size of the agreement.
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III Discussion

This study raised several bioinformatic challenges particularly due to the lack of germline

samples. Owing to current and historical practices, the medulloblastoma samples amassed

in this study were often not paired with germline samples. Fortunately, somatic and

germline copy-number events are distinguishable on account of the rarity of large germline

copy-number variants (spanning > 1 Mbp or > 10 probes) in the control population2.

Additionally, we also dismissed copy-number variants observed in both cases and con-

trols at high frequency (> 90%). Identified germline copy-number variants were removed

from copy-number profiles along with the breakpoints they introduced. However, despite

our best efforts, some likely germline events and hybridization artifacts (unrelated to

submission batch but possibly related to reagent lot) remain in the copy-number profiles

of the samples. Nonetheless, with additional post-processing, careful curation, focus on

high frequency events, and integration with multiple sources of evidence, we successfully

identified recurrently disrupted genomic loci, though we caution against the isolated use

of individual tumour copy-number profiles for future studies. The poor interpretability

of individual copy-number events in a single tumour sample stems from non-systematic

hybridization biases, poor sample DNA quality, the general genomic instability of some

samples, and the notion that most genetic events during cancer evolution do not con-

tribute to cancer cell survival and tumour formation. In light of these limitations, we

prioritized genomic events observed frequently across multiple samples. Furthermore,

we split samples into more homogeneous groups in order to identify such events above a

background mutation rate. Indeed, we discovered significantly more recurrent CNA when

the samples were split by subgroup than when they were analyzed together, reinforcing

the utility of classifying medulloblastoma as four distinct diseases. To emphasize, we

discovered patterns hidden in complex genomic profiles of tumours by comparing and

contrasting biologically similar groups of samples.

Another common issue that arises in cancer genomics studies is the role that ge-

nomic instability plays in tumour formation, progression, or recurrence. We contend that

genomic instability in itself does not impact outcome, though the underlying cause or the

consequent disruption of specific genes may affect tumour aggressiveness. For example,

TP53 mutation may predispose to chromothripsis, but only the former portends poor

outcome in multivariate survival analyses1. Chromothripsis does not exclusively occur

in TP53 mutated cases; instead, it may be associated with mutations in other DNA

damage response or repair genes, not all of which may contribute to tumour resistance
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against chemotherapy or radiotherapy. Further, chromothripsis in SHH medulloblastoma

often results in amplification of GLI2, but only the latter is independently prognostic for

poor survival1. These findings in our medulloblastoma cohort contrast the association

of chromothripsis with poorer survival (by univariate instead of multivariate analysis) in

neuroblastoma254. Further, our pattern of chromothripsis incidence also contrasts that

of a smaller cohort of medulloblastoma20, in which the authors observed significantly

higher frequency of chromothripsis in SHH medulloblastoma. In contrast, the incidence

of chromothripsis is fairly uniform across SHH, Group3, and Group4 medulloblastomas

and significantly depleted in WNT medulloblastoma. These results could be due to

characteristic differences between the two cohorts of medulloblastoma examined. Both

studies used the same method and algorithm to identify chromothripsis (the same re-

searcher processed the raw SNP array data and made the chromothripsis calls in both

studies). Interactions among competing covariates may obscure meaningful interpreta-

tion and may explain the observed discrepancies across studies; furthermore, recall biases

in retrospective studies may skew distributions of specific variables, especially in studies

with small sample sizes.

Notwithstanding the technical, biological, and statistical challenges, we have suc-

cessfully identified recurrent amplifications and deletions of genes that converge on spe-

cific signaling pathways contributing to tumourigenesis within each molecular subgroup

of medulloblastoma. WNT medulloblastoma is surprisingly devoid of recurrent genomic

aberrations aside from chr6 loss and CTNNB1 activating mutation. While the func-

tional consequence of chr6 is unclear, the high frequency of CTNNB1 mutation suggest

that activated Wnt signaling may be the predominant tumourigenic mechanism in WNT

medulloblastoma. Similarly, recurrent CNA events converge on and conspire to activate

Shh signaling in SHH medulloblastoma. In a subset of SHH cases, TP53 signaling and

PI3K signaling are also recurrently disrupted by CNA, and the latter may be a candidate

pathway for therapeutic intervention against tumours with aberrations upstream of the

drug target. The dominant theme in Group3 medulloblastoma is recurrent disruption of

signaling of the super Transforming growth factor β (Tgf-β) family; in particular, CNA

converge on activation of activin signaling, and this pathway may be the first rational

candidate pathway for therapeutic intervention in this aggressive subgroup. While no

signaling pathway is highly recurrently dysregulated in Group4 medulloblastoma, tan-

dem duplications of SNCAIP is frequently observed and may play an important role in

the pathogenesis of Group4 medulloblastoma. Taken together, copy-number profiling of

medulloblastoma samples have led to the discovery of several frequently disrupted genes
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and pathways that may serve as candidates for targeted therapeutic intervention.

The disparate patterns of recurrent CNA among medulloblastoma subgroups not

only support the distinct etiologies of the subgroups but also raise questions regarding the

origin of the molecular subgroups of medulloblastoma. Most recurrent CNA were enriched

(observed at higher frequency) in specific subgroups but were not exclusively found in

one subgroup. Further, unsupervised clustering by copy-number profiles produced groups

that showed only modest agreement with the molecular subgroups of medulloblastoma

based on transcriptional profiles (Figure 4.15). These results taken together suggest that

the CNA events do not determine the molecular subgroups, though they may modulate

the expression patterns of the subgroups. In contrast, DNA methylation patterns can

identify, without supervision, four medulloblastoma classes that show high concordance

with the subgroups identified by expression patterns260;261. This finding indicates that the

epigenetic landscape in the cell of origin controls the expression patterns of the developing

tumour and may also provide contexts that favours specific genomic aberrations, thus

forming disparate genetic landscapes for each medulloblastoma subgroup.

The Myc family of proto-oncogenes is amplified in a curious pattern across the

medulloblastoma subgroups, and this pattern poses a question regarding whether and

how epigenetic patterns influence amplification patterns of the Myc family, compris-

ing MYC, MYCN, and MYCL. These homologous genes were found to be amplified in

lymphoma, neuroblastoma, and lung carcinoma, respectively, which possibly points to

functional differences in Myc family proteins in diverse cancer types. Similarly, Myc fam-

ily genes are amplified in a non-random pattern in medulloblastoma: MYC is amplified

predominately (albeit not exclusively) in Group3, MYCN is amplified preferentially in

SHH and Group4 medulloblastomas, and rare MYCL amplifications are observed only in

SHH medulloblastoma. At the expression level, most medulloblastomas of either WNT

or Group3 subgroup upregulate RNA expression of MYC independent of DNA ampli-

fication. Similarly, SHH medulloblastomas express MYCN at a higher level than other

subgroups and normal cerebellums even without MYCN amplification. In neuroblas-

toma, MYCN amplification is found in about 20% of cases254;262, but amplification of

MYC or MYCL is very rarely observed254. These observations raise the question of why

MYC, MYCN, and MYCL is preferentially dysregulated in one cancer type or subtype

as compared to another. Conceivably, Myc family genes could interact with different

sets of co-transcription factors, drive dissimilar transcriptional programs, and cooperate

with dysregulation of disparate signaling pathways in promoting tumour formation. Ac-
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cordingly, the amplification of different Myc family genes could modulate the expression

patterns of medulloblastoma subgroups. Additionally, genes nearby the MYC or MYCN

locus can modulate the effect of amplifications spanning these loci.

An alternative hypothesis is that differential accessibilities at genomic loci in the

cell of origin govern which of the three human Myc family gene is amplified. Under

this model, MYCN amplification preferentially occurs in SHH medulloblastoma because

MYCN is expressed in the cell of origin for SHH medulloblastoma (e.g. external gran-

ule neural precursor) during normal development, rendering the genomic locus accessible

to such enzymes as deaminases (e.g. AICDA, APOBEC ), which initiate double-strand

breaks that can ultimately lead to DNA rearrangement. Similarly, MYC amplification

may preferentially occur in Group3 medulloblastoma because the MYC locus is per-

missible to structural rearrangement in the cell of origin of Group3. In other words,

the observed patterns of Myc family gene amplification can arise due to variations in

accessibility of these genomic loci in different cellular origins instead of functional differ-

ences among Myc family members. Consistent with this model, MYCN is functionally

redundant with MYC, and knock-in of MYCN into the MYC locus rescues the loss of

MYC in mouse development, cell growth, and cell differentiation263. MYC and MYCN

double knock-out mice exhibit much more severe phenotype in neurogenesis than either

one alone, suggesting that loss of one Myc family member can be partially rescued by

another member with overlapping expression pattern264. Further, MYC and MYCN are

interchangeable in promoting tumour formation: MYCN coding region can substitute

for that of MYC in the transformation of pro-B cell265. Similarly, MYC can cooper-

ate with SHH ligand to enhance formation of SHH medulloblastoma in a virus-induced

mouse tumour model, despite that MYC amplification is rarely observed in human SHH

medulloblastoma2;266. Therefore, Myc family genes may indeed encode functionally simi-

lar proteins (whose transcriptional regulation may differ) that promote medulloblastoma

formation by a common mechanism.

Despite being an important player in transforming normal cells into cancer or

in inducing pluripotency in differentiated cells, a Myc family gene may exert different

effects in different tumour contexts. In Group3 medulloblastoma, MYC amplification

is associated with poorer survival. However, MYCN amplification is associated with

poorer survival only in SHH medulloblastoma but not in Group4 medulloblastoma1.

The amplification of a Myc family gene is thus not universally associated with poorer

outcome, and the function of Myc in medulloblastoma may be modulated by cooperating
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disruption of other pathways in the tumour-initiating cell and by extracellular signals in

the context of neural development.

The story of the Myc family illustrates a broader theme of how genomic alter-

ations lead to different subgroups of medulloblastoma. MYC amplifications can drive

tumour formation, but only in the suitable cellular context and with other cooperating

mutations233;266. Indeed, MYC and SHH overexpression are sufficient to induce tumour

formation in the external granule layer of the cerebellum but not in the cerebrum266.

Accordingly, MYC overexpression alone likely does not create Group3 medulloblastoma.

Rather, (possibly multiple) cellular origins and cooperating alterations provide the neces-

sary context for the amplification of MYC and consequent induction of medulloblastoma,

and they dictate the molecular subgroup identity of the resulting tumour. Similarly,

MYCN amplification is a common mechanism of tumourigenesis in subsets of SHH and

Group4 medulloblastoma cases, and this genetic event does not induce an overwhelming

transcriptional change that by itself justifies the definition of an distinct MYCN -amplified

molecular subgroup. Indeed, gene amplification of the Myc family does not create a tran-

scriptionally homogeneous entity that is distinct from other molecular subgroups. The

functional outcome of Myc amplification very much depends on the molecular subgroup

of the tumour in which Myc amplification occurs1. In experimental models, Myc fam-

ily overexpression, along with cooperating mutations, can likely transform multiple cells

of origin, and the subgroup of the resulting tumour would likely be determined by the

cellular origin rather than the Myc family member. More generally, tumours of spe-

cific subtypes arise due to interaction between genetics and context. The cellular origin

provides the permissive context for genomic alterations to exert their effects, and the nu-

clear organization, epigenetic landscape, chromatin architecture within the cell of origin

jointly influence the accessibility of genomic loci and shape the mutational landscape of

the cancer cell267.

In summary, medulloblastoma subgroups are characterized by distinct genomic

alterations that disrupt disparate signaling pathways. The mutational profiles do not

define each subgroup; instead, they are shaped by the molecular and cellular context

within each subgroup, and the functional consequences of the mutations may also depend

on the molecular subgroup. Hence, genes and pathways that are recurrently disrupted

by genomic alterations within each subgroup likely play pivotal roles in the formation

and perhaps maintenance of the tumours, and such genes and pathways serve as prime

candidates for design of rational, targeted therapeutic intervention.
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Conclusions and future directions

The discovery of the four molecular subgroups of medulloblastoma has paved the road

for the informed development of specific targeted therapy and promises hope for achiev-

ing personalized medicine in the treatment of medulloblastoma, where each patient will

receive an individualized regimen that maximizes efficacy and minimizes side-effects.

Medulloblastomas, not unlike many other malignancies, arise due to a multitude of ge-

netic aberrations, leading to disruptions of biological processes that differ from patient to

patient. These aberrations begin to form clear patterns when viewed against the back-

drop of molecular subgroup. To streamline scientific research and clinical practice, we

hope to introduce molecular classification in the clinic. Currently, two major obstacles in

the adoption of molecular subgroup classification in the clinic are the lack of applicable

specimens for genomic analysis and the discrepancy in quality control standards between

research and clinical labs. To overcome these challenges, we have tested and validated

an assay suitable for subgroup classifcation of FFPE samples, and we have implemented

rigorous quality controls to ensure that the assay results are reproducible, credible, and

suitable for guiding clinical decision-making. If molecular subgroup information does

not influence clinical treatment, however, the assay would have little clinical utility.

We have therefore identified, through genomic profiling, actionable signalling pathways

within medulloblastoma subgroups that may serve as rational targets for future ther-

apeutic development. To further fuel the motivation for classifying medulloblastoma

subgroups in the clinic, we have identified molecular biomarkers that, together with clin-

ical biomarkers, successfully stratify patients into risk groups using schemes specific to

each molecular subgroup and attain unprecedented prognostic accuracy. Accordingly, we

have addressed some of the challenges that face the treatment of patients with medul-

loblastoma and provided evidence that supports the classification of medulloblastoma by
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molecular subgroups in the clinic. We hope that the adoption of molecular classifica-

tion will inform the next generation of clinical trials and facilitate the development of

personalized targeted therapy.

While in pursuit of this long-term goal, we need to address some remaining ques-

tions regarding the classification of medulloblastoma. While anatomical location and his-

tology will likely continue to be an integral core of CNS tumour classification, numerous

other ways of categorizing cancer present the problem of choosing or appropriately inte-

grating classification schemes. One alternative classification of medulloblastoma could be

based on genetic alterations, as in many other cancer types. While some genes identify

specific cancer types – RB1 (retinoblastoma) and SMARCB1 (ATRT) – other genes may

be less useful for defining cancer types. For example, TP53 mutation or loss leads to

a spectrum of tumours, and restoring TP53 function will not restore the genomic dam-

ages already incurred. Additionally, given that most observed mutations in cancer likely

do not contribute to tumourigenesis, identifying and validating tumourigenic mutations

may be difficult without first grouping cancers into sufficiently homogeneous subtypes.

Moreover, disruption of multiple genes in the same pathway may lead to the same molec-

ular phenotype, and it can be difficult to identify recurrently disrupted pathways prior

to molecular classification2. The most problematic issue for defining medulloblastoma

based on genetic alterations is the relatively low frequency of most mutations. Conversely,

epigenetic profiles may reflect the cellular origin that shape the genomic landscape of the

tumour, and it may be useful for the classification of medulloblastoma. Encouragingly,

DNA methylation profiles define similar subtypes as RNA expression profiles, suggesting

that both may be integrated to develop a robust classification of medulloblastoma.

Since medulloblastoma is now classified into four molecular subgroups, mouse

models of medulloblastoma would also need to be classified into the same subgroups.

Numerous mouse models purport to recapitulate a specific molecular subgroup of hu-

man medulloblastoma,4;22–24 but the molecular subgroup of some mouse models are con-

tested268. Better comparative transcriptomics may therefore be needed to resolve con-

troversies surrounding mouse models of medulloblastoma (and similarly for other cancers

or diseases). We would need to move beyond general descriptions of the conservation or

divergence of transcriptomes and attempt to draw parallels between individual human

and mouse transcriptional programs in order to more precisely identify conserved molec-

ular mechanisms and enable specific hypotheses regarding human diseases to be tested

in mouse models.
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Concurrent with ongoing scientific inquiries, the search for more effective therapy

for medulloblastoma continues. With the recognition that medulloblastoma comprises

four different diseases, many prospective trials are now testing emerging therapies for

specific medulloblastoma subgroups, consistent with the spirit of precision medicine.

For Group3 medulloblastoma, an in vitro drug screened identified pemetrexed and gemc-

itabine as a potential combination therapy, and this combination showed efficacy in mouse

models of Group3 medulloblastoma (but not SHH medulloblastoma)269. Similarly, BET

bromodomain inhibition of MYC -amplified medulloblastoma is currently under investi-

gation270. For SHH medulloblastoma, SMO inhibitors (e.g. vismodegib and sonidegib)

showed some efficacy and present a promising avenue for further development271–274. In

addition, mouse models of SHH medulloblastoma appear sensitive to inhibition of Auroa

and Polo-like kinases13 or inhibition of BIRC5 (survivin)275. In order to expand the ar-

senal of anti-cancer drugs, it may be prudent to consider administering candidate drugs

before standard combination chemotherapy in future clinical trials, as precedent exists for

drugs to be effective against untreated tumours but not recurrent tumours. For example,

topotecan (topoisomerase inhibitor) is ineffective in recurrent medulloblastoma276;277 but

is effective upfront in untreated, high-risk medulloblastoma278. In trials of novel therapy

on untreated medulloblastoma, salvage treatment with chemotherapy should of course

be planned so that patient survival is not compromised; furthermore, prior trials on re-

placing radiotherapy with chemotherapy would provide invaluable insight for planning

salvage treatments. Past clinical experiences and novel scientific knowledge will together

help usher in a new era of medulloblastoma treatment based on individualized targeted

therapy that enhances the quality of care and preserves the quality of life for the patients.
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Appendix

I Nomenclature

Gene nomenclature

Although a discussion of nomenclature may be pedantic, unambiguous nomenclature is

important to avoid confusion and misinterpretation of scientific results, as exemplified by

a retracted Nature publication279. This thesis uses standard notations commonly seen in

the literature to distinguish between genes and proteins from different species, but not all

publications (including those cited herein) use the notations presented here. For the most

part, gene symbols serve merely as identifiers for genes in this thesis; accordingly, full

gene names are usually not provided. (In particular, some genes such as AKT1 have no

full names due to the systematic nature of their discoveries.) Genes are often known by

several names owing to multiple discoveries in different research laboratories. Although

one unique official symbol is used to identify a gene, genes often have pleiotropic functions,

and some researchers prefer to refer to a gene by a particular alias that reflects one facet

of the gene’s function of interest. On other occasions, genes were initially assigned generic

names such as p21, p27, p53 (referring to proteins with masses 21 kDa, 27 kDa, and 53

kDa, respectively), and these names have become standard in the literature. This thesis

instead uses official gene symbols to ensure that genes can be uniquely identified and

that no unfortunate misinterpretation will arise, as in the study of Kawasaki et al 279. To

learn more about a particular gene, readers may wish to query the Entrez Gene database

(http://www.ncbi.nlm.nih.gov/gene).

As much as possible, official gene symbols as approved by the Human Genome Or-
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ganisation Gene Nomenclature Committee or the Mouse Genome Informatics are used,

and where appropriate, followed by common gene name aliases in parentheses. Human

gene symbols appear in uppercase, and mouse gene symbols, in title case. Italicized

names refer to genes, whereas non-italicized names refer to gene products. For example,

the human gene on chromosome 9 (at location 98205264–98279247 of the GRCh37 human

genome assembly) encoding the first family member of the patched 12-pass transmem-

brance receptor is denoted PTCH1, and its protein counterpart, PTCH1. The mouse

gene encoding the patched homologue gene is denoted Ptch1 and its protein, Ptch1.

Specifically in this thesis, SHH and WNT usually refer to the molecular subgroups of

medulloblastoma and not the protein or protein family.

Animal model nomenclature

The nomenclature for genetically engineered mouse models is extensive280;281. This the-

sis will use the following simplified notation: Ptch1 -/- is homozygous mutant, Ptch1 +/-

is heterozygous mutant, and Ptch+/+ is homozygous wildtype at the Ptch locus. The

(+) symbol denotes a wildtype or non-mutated allele, and the (-) symbol denotes a null

or loss-of-function allele. Multiple genetic modifications are separated by a semicolon:

Ptch1 +/-;Trp53 +/- is heterozygous mutant for both Ptch and Trp53. While these no-

tations omit the mouse strain, the genetic background of the mouse model can indeed

modulate the mutant phenotype82;282;283.

Gene function may be disrupted constitutively (knocked out). Homozygous

knock-outs, which abrogate gene function completely, may cause embryonic lethality and

preclude further study (e.g. Ptch1 -/- mice die before birth)68. In addition to studying

heterozygous knock-outs (e.g. Ptch1 +/-), researchers may also conditionally disrupt of

gene function using Cre recombination. A sequence flanked by loxP sites is knocked

into the native gene locus. Cre recombinase recognizes loxP sites and recombines the

DNA, causing deletion of the region f lanked by loxP sites (the region is floxed and

subsequently deleted). Whenever and wherever Cre is expressed, the floxed region of

the gene would be deleted. Such a model requires two genetic contructs: the floxed

gene (e.g. Ptch1 flx/flx where flx denotes ‘floxed’) and Cre with a promoter (e.g. Atoh1-

Cre). The floxed region may encompass the entire gene or (usually) critical exons of the

gene so that the no functional products would result from the recombined gene. The

promoter is often named after the gene from which it was derived. That is, Atoh1-Cre
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indicates that Cre is placed downstream of the promoter for Atoh1 (and not the coding

sequence of the Atoh1 gene itself). Therefore, in the Atoh1-Cre;Ptch1 flx/flx mouse97, Cre

would be expressed in Atoh1-expressing cells and delete both of the floxed Ptch1 alleles;

consequently, the Atoh1-expressing cells would incur a homozygous deletion of Ptch1 and

lose Ptch1 function completely.

A transgenic construct may also be integrated (randomly) into the genome to ex-

press a gene. For example, the Neurod2-Smo+/W539L mouse has the Neurod2-SmoW539L

construct integrated into the genome once (later mapped to chr14)106, the activated Smo

(with a substitution mutation from tryptophan to leucine at residue 539) is expressed

under the promoter of Neurod2. The Cre recombination system may also be used to condi-

tonally express a gene using a more complex design, such as the CAGGS-CreER;Rosa26-

SMOW535L mouse284. In this mouse, the human SMO gene with an activating W535L

mutation is knocked into the ubiquitously expressed Rosa26 locus, whose official symbol

is Gt(ROSA)26Sor. (This human SMO gene is known as SmoM2285 and corresponds to

mouse SmoW539L, which is known as SmoA1107.) However, since a floxed polyadenylation

stop sequence cassette is placed upstream of the SMOW535L gene, the latter is only ex-

pressed subsequent to Cre-mediated deletion of the cassette. Cre is expressed here under

the synthetic CAGGS promoter (which drives high-level, generalized expression), and its

activity is (somewhat) tamoxifen-dependent because it is fused to the estrogen receptor.

Therefore, the expression of SMOW535L is ultimately controlled by the administration of

tamoxifen (at least in design).

II Signaling Pathways

Wnt signaling (CTNNB1-dependent)

In the absence of WNT ligand, CTNNB1 (β-catenin) is continuously marked for degra-

dation by the CTNNB1 destruction complex, consisting of AXIN, APC, GSK, and

CSNK1A1 (CK1). GSK and CSNK1A1 primes CTNNB1 by phosphorylation, which

leads to ubiquinylation by the CUL1-containing E3 ligase complex and subsequent com-

plete degradation by the proteome. Upon binding of WNT to FZD, DVL1 is activated

via an unknown mechanism, and DVL1 phosphorylates LRP5/6, which then sequesters

AXIN and frees CTNNB1 from the destruction complex. CTNNB1 accumulates in the

cytoplasm and translocates to the nucleus to activate target genes such as MYC, CCND1,
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and AXIN2. Two AXIN genes exist in humans: AXIN1 and AXIN2. GSK consists of two

subunits: GSK3A and GSK3B (catalytic). CTNNB1 regulates expression in concert with

the TCF/LEF family of co-transcription factors, such as TCF7, TCF7L1, TCF7L2, and

LEF1. WNT signaling also activates many other pathways independently of CTNNB1;

these pathways include: planar cell polarity, WNT-Ca2+, and others. Both WNT and

FZD encompass a large family of proteins.

Shh signaling

GLI transcription factors, including GLI1, GLI2, and GLI3, are downstream effectors

of Shh signaling. The proteome can completely degrade GLI proteins or proteolytically

process them into activators or repressors forms, depending on post-translational modi-

fications on the full-length GLI proteins. GLI1 and GLI2 predominantly function in the

activator form and activates transcription, while GLI3 mainly functions in the repressor

form and represses transcription. Shh signaling modulates the marks on full-length GLI,

thereby influencing downstream transcription. In the absence of SHH ligand, SMO ac-

tivity is repressed by PTCH. Upon SHH binding to PTCH, this repression is relieved,

leading to active SMO signaling, which favours the processing of GLI into the active

form; consequently, transcription of target genes including cell cycle genes (CCND1 and

CCNE1 ), MYC, and negative regulators of Shh signaling (PTCH1 and HHIP) is in-

duced. The precise mechanism whereby SMO (indirectly) activates GLI is not conserved

between fly and mammals and remains unknown in mammals. Four proteins bind to

and regulate GLI processing: KIF7, SUFU, SPOP, and BTRC. Both KIF7 and SUFU

are negative regulators of Shh signaling via unclear mechanisms. The role of SUFU re-

mains contentious; possible roles include: nuclear export of GLI, protection of GLI from

degradation, recruitment of GLI3 for processing into the repressor form. Conversely,

SPOP and BTRC (βTRCP) serve to recognize GLI and they function as subunits of

E3 ligase complexes, which mark (by ubiquitination) GLI for proteolytic processing by

the proteome. The CUL1 containing complex is also known as the Skp, Cullin1, F-box

(SCF) complex, Via BTRC-mediated recognition, this complex ubiquitinates many other

proteins, including CTNNB1 from the Wnt pathway. Mammals have three hedgehog lig-

ands: DHH, IHH, and SHH. PTCH encompasses PTCH1 and PTCH2. PKA is a tetramer

composed of two catalytic subunits (protein family includes PRKACA, PRKACB, and

PRKACG) and two regulatory subunits (protein family includes PRKAR1A, PRKAR1B,

PRKAR2A, and PRKAR2B).
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Notch signaling

When NOTCH binds DLL that is expressed on the surface of an adjacent cell, NOTCH is

extracellularly cleaved by ADAM10 or ADAM17 (TACE), and it is subsequently cleaved

intracellularly by the gamma-secretase/presenilin complex. This proteolytic event re-

leases the NOTCH intracellular domain (NICD) from the cell surface, allowing it to

translocate to the nucleus in order to activate transcription of target genes such as

MYC, HES, CDKN1A, CCND3. Mammals have four Notch family members (NOTCH1,

NOTCH2, NOTCH3, and NOTCH4), and these receptors can bind ligands DLL1, DLL3,

DLL4, JAG1, and JAG2.

PI3K signaling

Kinases from the PI3K family phosphorylate PIP2 to produce PIP3, which serves as the

intermediate signaling molecule for many pathways. One well-studied binding target

for PIP3 is AKT1, which in turn inhibits apoptosis and promotes cell cycle progression.

PI3K signaling is activated downstream of many cell-surface receptors, including receptor

tyrosine kinases, cytokine receptors, integrins, and G-protein coupled receptors. PTEN

is a negative regulator of PI3K signaling and functions by dephosphorylating PIP3 to

form PIP2.

III Classification

Classification is the central preoccupation of one of the oldest disciplines, taxonomy,

which seeks to place organisms into groups based on shared characteristics. Just as

classifying organisms facilitates their study, classifying diseases also helps clinicians un-

derstand common mechanisms underlying disease and develop rational treatment against

each type of disease. Classification encompasses two parts: first, the classes are estab-

lished by exploring features and grouping the samples based on similarity of features; sec-

ond, a method is created to classify new sample using features that discriminate between

classes. In bioinformatics, the first part is referred to as class discovery, and the sec-

ond, class prediction. In taxonomy, the term classification only refers to the first part

while the term identification refers to the second part. In machine learning, the first

part is equivalent to unsupervised learning, and the second, supervised learning.
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In statistics, the term classification only refers to the second part. Notwithstanding

the different terminologies in various fields and the conflation of different meanings of

the term ‘classification’, the two components have distinct objectives. While some algo-

rithms can be used for both class discovery and class prediction, algorithms specifically

designed for prediction usually outperform other algorithms in the class prediction prob-

lem. Furthermore, class prediction algorithms are well developed for the case in which

the classes are known for a set of samples. Conversely, the class discovery process may be

contentious: when using different features results in discovering different sets of classes,

which set of classes is correct? Indeed, a classification system is practically useful insofar

as it is widely accepted and stable. Once such a classification system is discovered and

becomes established, one can focus on predicting the class of a new sample (as least until

a new classification system arises).

Class discovery

The objective of class discovery is to group (or split) samples into disjoint classes. One

systematic and unbiased way of achieving this goal is by clustering (or partitioning)

a set of samples. Given measurements for various features (characteristics), clustering

groups samples with similar features together, whereas partitioning split the samples into

dissimilar groups. The distinction between clustering and partitioning is moot because

the same overall objectives are achieved; however, different algorithms often produce dif-

ferent results. A variety of clustering (or partitioning) algorithms are available, including

hierarchical clustering, k-means, self-organizing map, affinity propagation, spectral clus-

tering, graph clustering, mixture models, and consensus clustering. The two most pop-

ular clustering algorithms are hierarchical clustering and k-means (these are also among

the oldest). These clustering algorithms have many additional variants. Hierarchical

clustering may be divisive or agglomerative; it may calculate distance between groups

using various linkage methods (single, complete, average or others). k-means have

variants such as k-medians or k-medoids, where different methods are used to represent

the center of a group. k-means uses the mean of all the group members (i.e. centroid),

k-medians uses the median, and k-medoids uses the group member whose average dis-

tance to all other group members is minimal. A variant of k-medoids is partitioning

around medoids, which uses a particular method for initializing the groups and updat-

ing the clusters. Furthermore, the aforementioned clustering methods may use different

measures of distance between individual samples. Self-organizing map, affinity propa-
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gation, and spectral clustering are less popular in computational biology (at least for

now). Graph clustering encompasses a myriad of algorithms that cluster a graph (a

collection of nodes with interconnecting edges, known more informally as a ‘network’).

These algorithms rely on known independence (lack of edges) between samples (nodes),

whereas most of the other algorithms consider connections between all pairs of samples

as presented in a distance matrix or similarity matrix. Mixture models attempt to model

the data as a mixture of statistical distributions, such as multivariate Gaussian distri-

butions, and the class assignments are probabilistic. Consensus clustering runs multiple

clustering algorithms or variants (with different parameters) to generate multiple cluster-

ing results; then, it define classes based on the census of the clustering results. A type of

consensus clustering algorithm that has gained popularity recently is NMF consensus

clustering. In this method, the data matrix is randomly factorized into two matrices

using NMF and samples are assigned preliminary groups based on one of the factor ma-

trices (using an arbitrary rule); subsequent to multiple NMF runs, the clustering results

are combined using consensus clustering, by apply hierarchical clustering on the census

matrix, which counts the number of times that each pair of samples were assigned the

same group.

The foremost decision in class discovery is deciding which type of features to use.

For example, one could run clustering analysis with expression data, DNA methylation

data, gene mutation data, patient, and other data. One could also combine different

types of features and perform clustering in an integrative manner (while taking care to

weight the different types appropriately). Due to the exploratory nature of class discovery,

there are no formal guidelines for the choice of features (though interval-scale features

are more mathematically amendable to clustering analysis than nominal-scale features).

Often, the type of features can be chosen to discover classes for specific objectives, such

as using expression classes to identify tumour types with activation of different biological

pathways. Indeed, a rational researcher guided by the same objective would be unlikely

to group patients into classes based on their birth days, months, and years.

Another challenge of clustering analysis is to determine the number of classes rep-

resented in the data, k. Some algorithms begin by putting all samples into one class

and proceed to partition the samples into smaller classes recursively (e.g. divisive hi-

erarchical clustering), some algorithms begin by putting each sample into its own class

and proceed to cluster the samples into bigger classes recursively (e.g. agglomerative

hierarchical clustering). Either way, a decision must be made as to when to stop parti-
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tioning or clustering. In the case of hierarchical clustering, this decision is usually made

informally. Other algorithms require the number of classes k to be specified a priori (e.g.

k-means, finite mixture models). One recent algorithm that circumvents this requirement

is Dirichlet Process infinite mixture model, which allows for all possible values of k

and discovers k from the data. However, Dirichlet Process can be very computationally

intensive. An alternative approach is evaluate the clustering results for different values

of k. (For algorithms in which k is not specified a prior, one runs the algorithm until k

clusters are created.)

There is no concensus on the best method for evaluating the quality of the clusters.

Often, practitioners evaluate clustering results by considering external information. This

external evaluation of the data should be done with care in order to avoid overfitting

and optimistic bias. Additionally, since the objective of class discovery is to discover

new classes, comparison with known classes would not likely help guide the evaluation of

clustering results. As an example, suppose we evaluate clustering results by assessing the

association of the discovered classes with survival (i.e. how different are the survival times

among the classes). Using this criterion, we compare the association with survival among

different clustering algorithms or parameter settings, and we choose the algorithm with

the parameter setting that achieves the most significant association with survival. Unless

we have additional samples not used during clustering to validate the association of the

classes with survival, we may be overfitting the algorithm (or parameters) to the existing

data, and the optimistically biased association may disappear in a new dataset. In other

words, we may have discovered classes that are spuriously associated with survival in

our available data, and we may not observe this association again in a new dataset. We

may mitigate this problem by using a subset of the data for optimizing the clustering

algorithm and evaluating the results on the remaining data. Alternatively, we may also

evaluate the clustering results without using external data. This internal evaluation

of the data involves measuring the distance between sample pairs within each cluster

as well as the distance between sample pairs from different clusters. The best cluster

assignments should minimize the within-cluster distance and maximize the between-

cluster distance. Different measures for evaluating and combining these two objectives

have been proposed, including the silhouette width and the Dunn index. However, these

internal measures depend on the definition of distance between samples: the results

would change if a different distance measure were used. Indeed, evaluating the results

of a clustering algorithm can be difficult and far from straightforward. Due to this

difficulty in evaluating clustering results, there is also no concensus on the best clustering
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method. There is simply no substitute for applying class discovery on multiple datasets

and confirming that the same classes are discovered in each dataset.

Class prediction

Given a set of samples with known classes (labeled data), the objective of class pre-

diction is to learn the association between the labels and the features of the samples

and subsequently predict the class of a new sample. The class labels could be defined

by expert opinion, discovered by systematic clustering, or determined by other means.

Class prediction involves three steps: training, testing, and application. That is, a

classifier must be trained on a labeled dataset and tested on another labeled dataset

before it can be applied on samples with unknown classes (unlabeled data). During

training, the classifier learns the association between labels and features in a first labeled

dataset (training data). During testing, we evaluate how well the classifier generalizes

its learned association to a separate labeled dataset (testing data). Finally, only when

we are certain that the classifier can predict classes accurately, we apply it to unknown

samples and make downstream decisions.

One simple measure of classifier performance is accuracy: the percentage of

samples classified correctly. A high accuracy on the training data indicates the classifier

has sufficient capacity to learn from the data, and a high accuracy on the testing data

implies that the classifier can generalize well. When a classifier has high training accuracy

but low testing accuracy, the classifier is likely overfitted to the training data. In such an

event, possible remedies include simplifying the complexity of the classification algorithm

(by permitting fewer free parameters) or collect more training data.

For a classification problem with two classes (positive and negative), common

evaluation methods include receiver-operating characteristics curve or precision-recall

curve. These methods simultaneously evaluate how often a classifier falsely assigns a

positive label to a true negative sample and how often a classifier falsely assign a negative

label to a true positive sample. For multiclass problems, common evaluation methods

include Rand index or Jaccard index. Alternatively, a multiclass problem can be split

into multiple two-class sub-problems, in which each sub-problem addresses whether a

sample belongs to a given class.
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IV Cancer treatment

Chemotherapy

Chemotherapy is the use of drugs that target general cellular processes such as cell divi-

sion in order to eradicate cancer cells. The drugs may damage DNA directly (by alkyla-

tion or forming DNA adducts), interfere with DNA synthesis (by inhibiting folic acid, sub-

stituting for a nucleotide, intercalating into DNA, or inhibiting topoisomerase), prevent

mitosis (by inhibiting microtubules), or various other mechanisms. Often, chemotherapy

relies on triggering the (hopefully intact) apoptotic program of the cell in response to

recognition of DNA damage. For example, loss-of-function mutation in TP53 (responsi-

ble for triggering apoptosis) can lead to resistance against chemotherapy. Overexpression

of efflux pumps is another major mechanism of chemoresistance.

Chemotherapeutic treatment typically lasts from weeks to months, and it is given

at different stages. The purpose of induction chemotherapy is to induce a remission,

while consolidation chemotherapy is given, typically at high dose, at the end of induction

to complete remission. Conversely, maintenance chemotherapy is given at low dose over

a long period to prevent cancer recurrence.

Sometimes, chemotherapy are described as adjuvant or neoadjuvant. Adjuvant

therapy is given to assist the main treatment in eradicating the cancer and is given

during or after the latter; neoadjuvant therapy is given before the main treatment. In

solid tumours, some literature consider surgical resection as the main treatment while

others consider radiotherapy to be of prime importance.

V Prognostic biomarker discovery

Log-rank tests vs. Cox proportional-hazards test

The survival analyses presented were based on log-rank tests and Cox proportional-

hazards tests, which may yield considerably different p-values. As log-rank tests do

not assume proportional hazards, their results were presented instead of those of Cox

proportional-hazards tests. Univariate Cox proportional-hazards analyses were performed

to estimate hazard ratios and sample sizes required for prospective studies.
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Construction and validation of risk stratification models

In order to identify novel and robust prognostic biomarkers, the present study examined

a discovery set and a validation set of medulloblastoma cases. The discovery set consisted

of cases with patient survival follow-up, whole-genome copy-number profiles, and varying

degree of clinical details, including age, gender, metastatic status, and histological sub-

type. This set of cases was acquired from several hospitals and tumour banks around the

globe. Therefore, patients in the discovery set represent a heterogeneously treated group

with diverse ethnic backgrounds. In contrast, the validation set consisted of medulloblas-

toma patients who were uniformly treated at a single institution in Moscow (Burdenko

Hospital).

All available clinical variables and molecular markers were tested for prognostic

association in the discovery set. Several clinical variables, such as metastatic status

and age group, were categorized in multiple different ways, due to disagreements in the

literature and clinical practice across continents. Due to the large number of candidate

markers tested, a rigorous selection procedure was applied in order to select a small

number of candidates to be validated in the external validation set using fluorescence in

situ hybridization (FISH), which is routinely performed in modern pathology laboratories

within hospitals.

Accordingly, the clinical and molecular candidate biomarkers were assessed by

three approaches. First, the candidates were assessed by a cross-validation method, in

order to estimate the expected validation rate of the biomarker. That is, whether the

biomarker will likely validate in an independent cohort. Second, the sample size required

for further validation in a prospective study was estimated for each candidate. Prog-

nostic markers with small effect size (i.e. hazard ratio) or with low frequency may need

impractically large sizes and are thus clinically irrelevant. Third, the candidates were

combined in multivariate Cox proportional-hazards models in order to assess whether

the biomarkers have prognostic values independent of one another. Biomarkers were

prioritized by high validation rates, reasonably small sample sizes, and/or prognostically

significance in multivariate models. The selected biomarkers were then used to construct

the risk stratification models for each medulloblastoma subgroup.

The proposed risk stratification models represent promising candidates for future

prospective trials. The constituent biomarkers were selected based on analyses within

a heterogeneous discovery set, and are likely generalizable to different patient popula-
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tions. For a specific treatment protocol within a specific patient population, there may

be prognostic markers that have better prognostic value, particularly those that were

not assessed in the present study due to scope. Notwithstanding these limitations, the

proposed risk stratification models have been validated in an independent cohort, and

can serve as the basis for the informed design of a future prospective trial.

Rare cytogenetic events

Some molecular biomarker candidates (e.g. MYC amplification, chr17 gain) have only

been observed in a relatively small number of patients (≈ 10). Notwithstanding their

infrequency in specific subgroups of medulloblastoma (a rare disease), their prognostic

significances are supported by log-rank tests, likely due to their large ‘effect size’ (i.e.

hazard ratio). Such biomarker candidates, however, have low expected validation rates

from cross-validation and large estimated sample sizes from power analysis. On accounts

of their potential therapeutic impact, these candidates were nonetheless included in the

risk stratification models based on their independent prognostic significance under mul-

tivariate Cox models. Indeed, the candidates were ultimately validated to be bona fide

prognostic biomarkers in the external validation set.

Isolated vs. non-isolated events

Isolated arm events occur in the absence of whole-chromosome event; non-isolated events

may occur in the context of a whole-chromosome event.
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