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Abstract 

Glioblastoma Multiforme (GBM) is a disease with terrible prognosis, having a median survival 

time of ~12-15 months for patients undergoing current treatment regimens, and a 5-year survival 

rate under 10%. There is strong evidence to suggest the existence of stem like cells, which we 

term glioma stem cells (GSCs), that are capable of repopulating the tumor after surgery and 

chemotherapy. Thus, any effective treatment for GBM will likely have to target this population. 

Evidence of functional heterogeneity of GSCs at the level of the transcriptome and drug response 

motivates a full characterization of GSCs’ biological variation. In this project, I use multiple -

omic data types from both bulk and single cell resolution to explore how multiple biological 

processes such as transcription and epigenetic regulation play into GSC heterogeneity in 

therapeutic vulnerabilities. With single cell/nuclei RNA-sequencing, in collaboration with the 

Pugh and Dirks labs and others, I establish that transcriptional heterogeneity in GSCs and more 

generally GBM can be decomposed into two major axes of variation: a Developmental/Injury 

Response transcriptional axis present in both the stem fraction of GBM tumors as well as the 

tumors themselves, and a stem to astrocyte differentiation gradient present only in the tumor 

samples. Further functional characterization with CRISPR knockout data reveals that differential 

functional dependencies between Developmental and Injury Response GSCs largely match their 

differentially expressed genes, showing that this transcriptional axis of variation translates into 

functional consequences that could inform development of combination therapies. Following 

these results, I perform an integrated analysis of genomic, transcriptomic, epigenomic, and 
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miRNA-seq data to obtain a more complete picture of both how this transcriptional axis is 

regulated as well as what other heterogeneity exists independent of transcription. Here, I find 

four major axes in multi -omics space: one corresponding to a hypermutation phenotype largely 

matching one previously characterized for GBM dependent on mismatch repair deficiency and 

temozolomide treatment, two others corresponding to apparent latent variation in regulation of 

inflammatory genes, and lastly a multi-omics axis corresponding to the coordinated regulation of 

the Developmental/Injury Response transcriptional axis by multiple biological layers. 

Collectively, the results presented in this thesis provide better mechanistic understanding of GSC 

heterogeneity and open the door to developing novel therapies.  
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1 Chapter 1: Introduction 

1.1 Glioblastoma Disease and Treatment 

Glioblastoma Multiforme (GBM) is a disease with a terrible prognosis, having a median survival 

time of ~12-15 months for patients undergoing current treatment regimens1, with survival times 

of ~3 months for those undergoing surgery alone2,3, and a 5 year survival rate under 10%4. 

Typically, GBM is diagnosed through MRI after patients present with symptoms ranging in 

severity from headaches to seizures5. The absence of specific symptoms early on makes the early 

detection of this disease difficult; for instance, only 2 in 1000 patients presenting with a 

headache will be diagnosed with brain tumors5. GBM thus represents a difficult disease to 

diagnose and treat. 

A glioblastoma tumor forms a complex environment, with a hypoxic core6 and infiltration by 

tumor associated macrophages/microglia (TAMs), which represent 30-50% of tumor mass7. 

GBM primarily manifests in the cerebrum8 and there is evidence supporting astrocytes, 

oligodendrocytes, as well as neurons as potential cells of origin9. Histologically, GBM presents 

as a diffusely invasive tumor with irregular nuclei, astroglial appearance of cells, necrosis, 

visible mitoses, and/or angiogenesis10. Within this environment, TAMs promote glioma cell 

growth and invasiveness, at least in part due to interactions mediated by cytokines7. Conversely, 

glioblastoma cells promote the tumor beneficial phenotypes of TAMs through the secretion of 

cytokines, suppressing immune response and causing a feedback loop between TAMs and the 

tumor7. Hypoxia promotes angiogenesis and invasion, with tumors expressing high levels of 

VEGF11. The invasiveness of the tumor makes complete surgical resection impossible12. Given 

the complexity of glioblastoma tumors and their interactions with their environment, it is not 

surprising that they exhibit considerable phenotypic heterogeneity both within tumors and 

between patients13–15 .  

Despite the wealth of knowledge obtained over the past two decades, treatment of GBM is still 

largely unchanged from what it was in the early 2000s, with a combination of surgery, 

radiotherapy, and temozolomide being applied to tumors, only moderately extending survival 

https://sciwheel.com/work/citation?ids=530304&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9758550&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12817125&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=58610&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11390583&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11390583&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5160490&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1133944&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11378120&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2305559&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9175204&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1133944&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1133944&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7757969&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4100623&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=24823,24822,7206017&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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time for patients16. Thus, solving the tumor recurrence problem at a mechanistic level is 

paramount to effectively treating glioblastoma.  

Evidence has accumulated over the past two decades for the existence of glioblastoma cells that 

resemble neural stem cells (called glioma stem cells, or GSCs)17–19 which are capable of 

repopulating patient tumors. Due to their role in tumor recurrence, they represent an enticing 

target, but development of targeted therapeutics is hampered by their heterogeneity both within 

and across patients20. Important questions remain as to the origin of GSCs, what sort of 

differentiation hierarchy exists among this population (if any), and how molecular variation 

translates into differential functional outcomes such as drug response. 

In this chapter, I shall introduce genomic analyses and their utility for better understanding 

heterogeneity in human cancers, application of genomic analyses to glioblastoma, and finally, 

our current state of knowledge for GSC biology. With this information, it becomes clear that 

exploring GSC heterogeneity with a variety of -omics data types will further our understanding 

of this population as well as bring us closer to the goal of targeted therapeutics against it. 

1.2 Cancer Genomics and Genomic Data Types 

1.2.1 General Description 

The problem of mechanistically understanding disease is general and must be addressed to 

develop better treatments. With the advent of gene expression microarrays, high throughput 

sequencing, as well as other genomic technologies, studying cancer no longer had to be done at 

the level of individual genes and researchers could be less constrained by prior knowledge in the 

questions they were able to ask. Over the past three decades, researchers have been able to 

perform tasks such as finding mutations likely to contribute to oncogenesis, stratifying patients 

by risk based on mutation status21 or characterizing disease stages in prostate cancer based on 

RNA transcription22. Below, I will provide a brief overview of data types used in this thesis, as 

well as examples of how they may be useful for understanding cancer. 

1.2.2 Whole Genome Sequencing (WGS) 

Whole genome sequencing is typically done via the shotgun method, which involves sequencing 

short fragments of DNA and aligning these fragments to a reference genome23. This technique 

https://sciwheel.com/work/citation?ids=808771&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=58160,66208,57826&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=2877522&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6139079&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12817241&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=719298&pre=&suf=&sa=0&dbf=0
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can be used to find mutations in cancer, such as single nucleotide variants (SNVs)24, 

insertion/deletion mutations (indels)24, copy number variation (CNVs)25, and genomic 

rearrangements26. Since only SNVs and CNVs are presented in this thesis, techniques relevant to 

their detection are what I will discuss further.  

In the context of cancer genome sequencing, SNVs and CNVs are typically detected through 

statistical techniques comparing tumor DNA sequence data to a normal genome reference24. For 

the SNV calling techniques used for this thesis, this is accomplished through modeling read 

counts as a function of tumor and normal allele fraction27–30 or, in the case of VarScan2, through 

a combination of rules based calling of variants relative to reference and a fisher’s exact test 

comparing tumor and normal allele frequencies31. For CNVs, segmentation regions can be 

performed based on probabilistic models of depth ratios32, and  cellularity, ploidy, and allele 

frequency can be estimated as well 33. Beyond estimation of copy number profiles, copy number 

aberration events that produce them can be reconstructed as well34. 

SNVs may or may not affect the function of a gene or a noncoding region, depending on factors 

such as where the mutation occurs and, if in a gene, how a codon change affects protein structure 

and function. CNVs are typically associated with changes in gene expression due to increased or 

decreased availability of particular genes35, and can be restricted to relatively small regions 

(down to 50bp)36 or be present across large swaths of chromosomes (several Mb in size)35,36.  

It should be noted that SNVs and CNVs can also be detected through array based methods37,38. In 

the case of SNP arrays, the main signal measured is the intensity of hybridization signal for a 

particular allele38. With CNVs, a technique called comparative genome hybridization has been 

commonly used39, which relies on the comparative hybridization of test (e.g. tumor) and 

reference (e.g. normal) DNA input to an array made to bind specific genomic regions. As the 

mutational calling data in this work primarily comes from WGS data (with the exception of 

estimated CNVs from scRNA-seq data, discussed in Chapter 2), I will not discuss the data 

processing relevant to these techniques further. However, many studies in the past have used 

these assays, so they are worth mentioning for the purposes of understanding the signal 

measured. 

https://sciwheel.com/work/citation?ids=5034220&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5034220&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6805021&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=148433&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5034220&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1198446,7881737,4173955,1303889&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=387329&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1198449&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3797373&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1913748&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9547565&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11036580&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9547565,11036580&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6956282,1833571&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1833571&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1398745&pre=&suf=&sa=0&dbf=0
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There are many examples of genome-wide mutational data providing either clinically valuable 

information or a better understanding of disease. For instance, Colli and colleagues were able to 

model response to checkpoint inhibitors (immunotherapy) as a function of the number of non-

synonymous mutations detected in tumors with varying degrees of sensitivity and specificity 

depending on cancer type40. In another study of breast cancer tumors, the authors found that copy 

number events contributed to gene expression phenotype, additional driver mutations for breast 

cancer, and that a combination of mutational data and gene expression data could be used to 

cluster tumors into groups with differing survival profiles41. Overall, the ability to survey the 

mutational landscape of cancers has greatly advanced cancer research. 

1.2.3 RNA-seq 

RNA sequencing measures gene expression profiles from a biological sample using next 

generation sequencing to sequence cDNAs produced from a reverse transcriptase used on 

extracted RNA42. When the sequencing data is acquired, reads are mapped to the appropriate 

reference genome using alignment algorithms42,43. One can then obtain read counts per gene, 

which can be normalized in a variety of fashions, such as counts per million or reads per 

kilobase. Often, normalized count data is log transformed to produce relatively normally 

distributed data suitable for data exploration, but more sophisticated techniques have been 

developed to scale count data for sample depth and produce normally distributed, homoscedastic 

data44. In order to compare groups of samples (e.g. tumor and normal, or different apparent 

subtypes of tumor) for differentially expressed genes, sophisticated statistical models have been 

developed that can account for the negative binomial distribution of RNA-seq count data as well 

as other experimental factors in the data (e.g. batch) should these other factors not be totally 

confounded with the groupings of interest44,45.  

Examples of the utility of RNA-seq data for precision medicine in oncology are abundant, with 

applications such as stratifying tumors by clinical stage and response to chemotherapy46 and 

defining transcriptional networks that distinguish different subsets of lung cancer47.  

1.2.4 ATAC-seq 

ATAC-seq allows the profiling of chromatin accessibility, which is a continuous readout for how 

open chromatin is and likewise its availability for gene expression or binding of transcription 

https://sciwheel.com/work/citation?ids=3513893&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=48476&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=48998&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=48998,49324&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=58173&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=58173,129353&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=8071176&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4068450&pre=&suf=&sa=0&dbf=0


5 

 

factors or other DNA binding proteins48,49. This assay works by having a modified transposase 

with adapter sequences attempt to insert itself into a cell’s genome, causing regions of open or 

accessible chromatin to have its DNA converted into fragments with adapters attached, thereby 

allowing sequencing of open regions48. After defining and mapping peaks of accessible 

chromatin, samples can be compared and explored through their ATAC-seq profiles in a similar 

manner as with other datatypes49, with analyses such as dimensionality reduction, clustering and 

differential signal analysis. Given that this data often corresponds to sites of DNA binding 

proteins, analyses can also be performed to assess the overrepresentation of DNA binding motifs 

in regions of interest49. This allows for the profiling of open regions for the potential binding (or 

differential binding) of collections of DNA binding proteins rather than profiling for binding of 

one protein at a time as would be done for ChIP-seq. 

An excellent example of the utility of ATAC-seq to learn about tumor biology was when The 

Cancer Genome Atlas project (TCGA) used ATAC-seq to profile 410 tumor samples from 23 

cancer types. In their publication, the TCGA found that clusters of samples (based on chromatin 

accessibility) largely corresponded to tumor type and showed distinct patterns of transcription 

factor binding at distal regulatory elements, many near sites of disease associated SNPs50. They 

additionally predicted putative regulatory relationships between distal regulatory elements and 

genes, validating these relationships with a CRISPR based inhibition strategy in which a dead 

Cas9 protein linked with a KRAB domain caused heterochromatin to form at these elements and 

inhibited expression of a region’s target genes if the region had regulatory function50. Overall, 

these results show the utility of ATAC-seq for understanding gene regulation at a mechanistic 

level beyond what can be seen through gene expression based analyses. 

1.2.5 DNA Methylation 

DNA methylation can serve a variety of functions, from promoting gene expression to 

suppressing it, under a variety of mechanisms. For example, promoter methylation is generally 

associated with the stabilization of heterochromatin and the prevention of transcription51, while, 

in some cases it can lead to increased affinity of a DNA binding protein for its target52. The 

effects of DNA methylation on transcription can manifest through complex mechanisms, with 

CTCF binding to methylated ‘insulator’ regions to block the action of enhancer regions on their 
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target genes51. In any case, DNA methylation is an epigenetic mechanism by which 

transcriptional states can be stabilized/potentiated. 

DNA methylation can be measured using bisulfite sequencing, which relies on the conversion of 

cytosines to uracils for non-methylated cytosines in the ‘bisulfite conversion’ reaction, and the 

protection of methylated cytosines from this reaction53. While this technique allows for genome 

wide profiling of methylation status, it is cost prohibitive to perform this technique for many 

samples. A panel covering >850,000 methylation sites, the EPIC array, was developed by 

Illumina to balance the need for providing good coverage of the genome’s potential methylation 

sites with that of keeping costs reasonably low53,54. It uses a similar bisulfite conversion step as 

with bisulfite sequencing, but with probes designed to capture methylated and unmethylated 

sequences, with the final readout represented as the ratio of methylated to unmethylated signal 

(beta-value). From our own analyses (see Chapter 3, Methods), we saw that approximately 

20,000 gene promoters were covered by the EPIC array, demonstrating that most of the human 

genome’s promoters can be profiled with this method. Additionally, enhancer regions, gene 

bodies, and intergenic regions are also profiled with these arrays. 

DNA methylation data has been used on numerous occasions to link epigenetic regulation to 

gene expression, with examples in thyroid cancer55, breast cancer56, and glioblastoma20. In 

addition to studies linking DNA methylation to gene expression, others have used it to predict 

tumor types with great accuracy. For example DNA methylation profiles provided a feature set 

allowing accurate classification of 91 central nervous system tumor classes, with most instances 

of disagreement with histopathological label leading to reassignment upon a second 

histopathological assessment57. Separately, another group was able to develop a classifier that 

could distinguish head and neck cancer from lung squamous cell carcinomas58.  Overall, DNA 

methylation has been shown on numerous occasions to have a regulatory role in affecting cancer 

phenotypes and to be reflective of tumor state. 

1.2.6 miRNA-seq 

miRNAs are small RNAs produced by cells to downregulate the translation of mRNAs into 

proteins, either through inhibition of translation or through degradation of the mRNA, with both 

actions mediated by the RISC complex59. miRNAs are capable of both promoting and 
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suppressing tumorigenesis, depending on the genes targeted as well as cellular context59. 

Likewise, miRNAs have been proposed and researched as both targets and methods for anti-

tumor therapies60. miRNA-seq experiments are typically similar to RNA-seq experiments, with 

the possibility for an enrichment step for short miRNA fragments61. Reads are processed and 

annotated in a similar manner to RNA-seq experiments, but with annotations for miRNA 

genomic features used61. An example where miRNA-seq provided the potential for novel 

therapies comes from a South Korean study in which certain miRNAs downregulated in lung 

cancer were found to decrease proliferation of lung cancer cell lines and be associated with 

longer survival in TCGA lung cancer data62. In general, miRNAs provide another lever by which 

cancer phenotypes can be modulated. 

1.2.7 CRISPR Screens 

CRISPR screens are a method that can be used to functionally profile the consequence of single 

gene knockouts for entire libraries of genes, allowing researchers to find dependencies within 

cell lines at scale63. In these screens, a library of guide RNAs are transduced to Cas9 expressing 

cells at a low multiplicity of infection via lentiviral vectors, leading to cells stably expressing 

guide RNAs used by Cas9 to cause cleavage (and likewise indel mutations from repair 

machinery) at targeted loci63. This technique was used by Hart and colleagues to show that 

different cancers have a convergent set of core fitness genes as well as cancer specific fitness 

genes, illustrating the utility of this method for characterizing biological dependencies in 

cancer63,64. 

1.2.8 scRNA-seq/snRNA-seq 

A limitation of all of the aforementioned techniques is that they only capture population-wise 

averages of phenotypes in a sample and cannot capture variation within a population. The 

development of single cell RNA-sequencing addressed this issue, giving researchers the ability 

to profile gene expression of single cells and tease apart variation within individual cell 

populations. Briefly, single cells are lysed within droplets containing beads with barcoded 

adapters, which allow for sequencing and distinction of which RNA derived cDNA reads belong 

to which cells65. An alternate method, single nuclei RNA-seq, allows for the profiling of frozen 
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tissues, though it misses some cytoplasmic RNA species and has a tendency to capture different 

proportions of cell types present in a population than scRNA-seq66. 

Examples of applications of scRNA-seq data include investigating the microenvironment of 

tumors, which frequently contain fibroblasts and immune cells67, and in learning differentiation 

trajectories with tree/path based methods such as Monocle68–70 and with ‘velocity’ methods 

which predict the direction of transcriptional change based on relative amounts of spliced and 

unspliced transcripts71,72. 

1.3 Genomic Landscape and Subtyping of GBM 

The intractability of treating GBM with current methods has led to extensive efforts to 

molecularly characterize GBM tumors. Common mutations in GBM promoting tumorigenicity 

include chromosome 10 loss, PTEN mutation/deletion (on chromosome 10), chromosome 7 gain, 

EGFR mutation/amplification (on chromosome 7), P53 mutation (in secondary GBM, on 

chromosome 17), and CDKN2 loss/mutation (on chromosome 9)4,73,74. These mutations converge 

on the PI3K/MAPK, P53, and Rb pathways4. The vast majority of glioblastomas are primary 

tumors (>90%)75, meaning that they are formed de-novo, while approximately 10% are 

secondary tumors, which tend to develop in younger patients. Almost all primary tumors are 

IDH1/2 wild type74,76, and while most secondary glioblastomas, derived from lower grade tumors 

such as astrocytomas, are mutant for IDH1 or IDH2, with 88% of secondary glioblastomas 

having an IDH1 mutation74. IDH mutations have a tendency to lead to better prognosis, with 

longer survival74,77. IDH mutations are thought to exert their pro-survival effects through a 

variety of metabolic effects, including the depletion of alpha-ketoglutarate and the accumulation 

of reactive oxygen species78. Recently, due to the distinct phenotypes exhibited by IDH mutant 

tumors in comparison to IDH wild type tumors, the WHO has recommended restricting diagnosis 

of glioblastoma to IDH wild type tumors, with IDH wild type tumors lacking traditional 

histologic features of GBM but possessing TERT amplification, EGFR amplification, or the 

combination of chromosome 7 amplification and chromosome 10 deletion recommended to be 

diagnosed as GBM as well79. In addition to these mutations commonly associated with GBM, 

mutations inactivating mismatch repair proteins such as MSH6 have been associated with 

temozolomide resistance80–83 and recently experimentally proven to be responsible in patient 
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derived cell lines81. Additionally, defects in mismatch repair were associated with poorer 

response to checkpoint inhibitor immunotherapy in gliomas, and it is thought that the 

accumulation of subclonal mutations was responsible for this association81. 

Beyond genomic alterations, epigenetic state has bearing on survival as well. Methylation of 

MGMT is associated with longer patient survival84–88. The mechanism of this association is 

thought to be through methylation decreasing the expression of MGMT, a suicide enzyme that 

repairs alkylation damage caused by temozolomide89. MGMT gene expression is anticorrelated 

with and is thought to be suppressed by promoter methylation for that gene89. 

Due to the existence of biomarkers predictive of therapeutic resistance and survival, attempts 

have been made to develop molecular subtypes based off of a variety of -omics data types in 

GBM. The Cancer Genome Atlas (TCGA) project compiled a dataset of 200 GBM samples 

(subsequently built into a larger dataset) and described 4 transcription based subtypes: Proneural, 

Mesenchymal, Classical, and Neural13. The Proneural subgroup was defined by PDGFRA 

mutation or amplification and the expression of genes involved in oligodendrocyte specification 

such as OLIG2, as well as other genes involved in neural development such as TCF4, SOX 

genes, and ASCL113. The Mesenchymal subgroup was defined by the expression of markers 

pertaining to epithelial-mesenchymal transition, such as NFKB13, while the Classical subtype 

was defined by amplifications in EGFR/chromosome 7. The Neural subtype had neuron related 

biological pathways and neuron marker genes upregulated13, but in later work it was found that 

this subtype was not able to be reproduced and was likely an artifact and was actually a signature 

of non-cancerous neural tissue12. Indeed, a further analysis of IDH wildtype GBMs from the 

TCGA using only genes that were enriched within tumors relative to tumor margin revealed only 

the Proneural, Mesenchymal, and Classical subtypes90. Despite the consistent reproducibility of 

at least the Proneural and Mesenchymal subtypes across bulk tumor90,91 and scRNA-seq14,15,92 

based studies, the only major clinically actionable feature extracted from these transcriptional 

subtypes was the apparent survival advantage of Proneural GBMs relative to Mesenchymal 

GBMs91, but this was confounded by the prevalence of IDH mutant GBMs among the Proneural 

subtype13. A later study of IDH wild type GBMs among the TCGA dataset showed no significant 

differences in survival between non-Mesenchymal and Mesenchymal GBMs unless analysis was 

restricted to patients with relatively pure populations of one transcriptional subtype90. Thus, there 
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remains further work to be done in assessing the functional and clinical relevance of 

transcriptional subtypes and in extracting therapeutically valuable information from them. 

In addition to transcriptional variation, characterization has been done for the epigenome of 

GBM. Methylation subtypes discovered by the TCGA4 bore some resemblance to the 

transcriptional subtypes discovered earlier, but beyond genomic characterization and a survival 

advantage of Glioma CpG-Island Methylation Phenotype (G-CIMP) GBM samples over samples 

without that phenotype, little was done in the way of linking methylation to functional outcomes. 

More recently, Ma and colleagues re-analyzed methylation data from the TCGA and described 3 

methylation based subtypes, again largely corresponding to the Proneural and Mesenchymal 

transcriptional subtypes93. In that study, it was found that the Mesenchymal cluster had shorter 

survival, but differences between Mesenchymal and Proneural GSCs were not investigated for 

IDH mutation or G-CIMP status93. A pathway analysis on promoter methylation associated with 

longer survival showed that genes involved in neural development tended to be differentially 

methylated among longer and shorter surviving patients’ GBMs93. Additionally, a study on 

primary and recurrent GBM tumors revealed that promoters affected by neural developmental 

transcription factors were demethylated in Mesenchymal GBMs relative to Proneural GBMs, and 

that among recurrent GBMs, promoter methylation of genes involved in neural development and 

apoptosis increased while Wnt signaling and T-Cell activation genes saw promoter methylation 

decreased94. Overall, these results reveal that there is molecular variation beyond somatic 

mutations that impacts disease phenotype and progression. 

Although studies of bulk tumors have been able to give us amazing insights as to heterogeneity 

between patients at the genetic, epigenetic, and transcriptional levels, in the past decade, single-

cell RNA sequencing (scRNA-seq) studies and clonal genetic tracing work have presented a 

more complex picture of patient tumors by revealing heterogeneity within individual patients. In 

the case of scRNA-seq , they have shown patient tumors as admixtures of cells with varying 

transcriptional phenotypes ranging primarily from a neural/glial-progenitor-like state to a more 

mesenchymal-like state14,15, with Neftel, Suva, and colleagues additionally identifying cells 

resembling astrocytes in the tumor15. Complementing this, it was shown that IDH wild type 

GBM tumors are mixtures of genetic subclones subject to selective pressures within the tumor 

microenvironment73, demonstrating a lack of uniformity of GBM cells at the genetic level as 
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well. In all, these results, in conjunction with prior results obtained on bulk -omics data, 

demonstrate substantial heterogeneity between and within individual patients, making the failure 

of monotherapies developed for GBM less surprising. 

1.4 Cancer Stem Cells in Glioblastoma 

A considerable amount of evidence has been accumulated for the existence of stem-like cells that 

are capable of initiating or re-initiating a tumor. The concept first gained traction with 

experiments performed by John Dick’s lab showing evidence for stem-like cells being 

responsible for cancer initiation in leukemia95,96 , showing similarity to normal hematopoietic 

stem cells in surface marker expression and differentiation potential and requiring only a small 

titre of cells for cancer initiation. Evidence for stem cells in brain tumors was first shown by 

Singh and colleagues for non-GBM diseases such as medulloblastoma and pediatric 

astrocytoma97, with a CD133+, nestin positive population being able to be isolated in neural stem 

cell promoting culture conditions. Interestingly, this population could be differentiated to express 

markers such as GFAP (astrocytes) and Beta-Tubulin III (neurons), supporting its identity as a 

stem-like state97. Similar CD133+ populations in brain tumors were isolated by Singh and 

colleagues for glioblastoma and other brain tumors, and shown to have, in addition to 

differentiation potential, the ability to initiate tumors in mice resembling human tumors, and to 

be able to initiate tumors repeatedly through serial transplantation18. Further evidence for the 

existence of stem-like cells capable of causing tumor recurrence was shown by Bao and 

colleagues with tumor re-initiation in response to radiotherapy19 and Chen and colleagues with a 

quiescent, nestin positive population repopulated tumors after chemotherapy, whose ablation 

resulted in extended survival of the mouse tumor models17. With the wealth of evidence 

accumulated for GSCs as the root of recurrence in GBM, there is a clear rationale for developing 

therapeutics against them. 

1.5 Heterogeneity of Glioma Stem Cells 

As enticing as GSCs are as a potential therapeutic target, the goal of targeting them is 

complicated by heterogeneity within this population. While CD133 was earlier thought to be a 

definitive marker for GSCs given the results of Singh and colleagues18, it was later shown that 

CD133- cells that resembled a mesenchymal phenotype were capable of initiating tumors98. In 

https://sciwheel.com/work/citation?ids=809431,64935&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=329888&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=329888&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=66208&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=57826&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=58160&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=66208&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1416858&pre=&suf=&sa=0&dbf=0


12 

 

establishing techniques for culturing GSCs, Pollard, Dirks, and others showed that GSCs showed 

patient level differences in markers expressed, such as markers for oligodendrocyte progenitor 

cells (OLIG2, PDGFRA) versus an astrocytic marker (GFAP-delta), as well as patient-specific 

drug sensitivity profiles99. Bhat and colleagues showed that cancer stem cells varied 

transcriptionally100 with respect to the Proneural and Mesenchymal phenotypes previously 

described in bulk tumors described by the TCGA13, and that a transition to a Mesenchymal 

phenotype promoted radioresistance100. Later Meyer, Dirks, and others showed heterogeneity 

with respect to sensitivity to a variety of drugs and transcription at the clonal level in patient 

derived GSC lines, with differential expression found between a TMZ sensitive and TMZ 

resistant clones101. Segerman and colleagues performed a much larger analysis on clonal patient 

derived GSC lines, and managed to show that, among GSCs, a Mesenchymal-like transcriptional 

phenotype was associated with multi-drug resistance and radioresistance, and that transcriptional 

heterogeneity was likely in part due to differential promoter methylation20. In addition to the 

results of Meyer and colleagues and Segerman and colleagues, while not restricted to GSCs, 

scRNA-seq analyses in GBM have revealed considerable transcriptional heterogeneity within 

tumors, with mixtures of the TCGA transcriptional subtypes14,92 as well as putative neural 

progenitor-like, astrocyte-like, mesenchymal, and oligodendrocyte progenitor-like transcriptional 

states15. Those results for scRNA-seq analyses of GBM indicate the complexity of the tumor 

environment, and combined with Meyer and colleagues’ results, raises the likelihood that similar 

scRNA-seq experiments in GSCs would reveal considerable transcriptional heterogeneity. 

Indeed, Bhat and colleagues showed that exposure to TNF-alpha, a cytokine secreted by tumor 

associated macrophages7, could convert GSCs from a Proneural state to a Mesenchymal state in-

vitro100. Thus, GSCs represent a highly heterogeneous population both within individual patients 

as well as across patients, necessitating a mechanistic understanding of GSC heterogeneity and 

how it impacts functional outcomes such as drug response. 

More recent analyses have attempted to address this issue. For example, the HGCC consortium 

in Sweden applied a drug screen of 1544 compounds to 9 GSC lines, and further characterization 

of 92 compounds was done for 52 GSC lines with matched genomic, transcriptomic, and DNA 

methylation data102. In this work, the authors found among the most variably effective drugs 

selected for further characterization, sensitivity divided GSCs into proteasome inhibitor sensitive 

and resistant lines, and that this division primarily pertained to mutation status in P53 or 
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CDKN2102. Complementing this approach of linking expression, methylation, and mutation data 

to variably effective drugs was a series of CRISPR knockout screens conducted by MacLeod and 

colleagues, which revealed gene knockouts that could sensitize GSC lines to temozolomide or 

confer resistance103. In particular, they found that defects in double strand break repair, crosslink 

repair, and homologous recombination would sensitize GSCs to temozolomide, while defects in 

mismatch repair conferred resistance103, the latter result consistent with previous results in GBM 

tumors and GSC lines80,81. Overall, these studies reveal that genomics data can be linked to 

functional outcomes in a high throughput manner, and that in addition to finding mechanistic 

insight for known effective compounds, GSC heterogeneity can be used to expand the search for 

targets for combination therapies. 

1.6 Hypotheses on the Hierarchy, Differentiation Potential, and Growth 

Dynamics of the Glioma Stem Cell 

The origin of glioblastoma tumors, as well as the growth and differentiation of GSCs as well as 

their relationship to the bulk tumor is still an area of active research. Pollard, Dirks, and others, 

in establishing techniques to isolate GSCs in adherent culture conditions, characterized the 

transcriptomes of patient derived GSC cell cultures and found that they were more similar to 

neural stem cells (NSCs) than to brain tissue but nonetheless distinct from NSCs99. There is also 

more direct experimental evidence for astrocytes, oligodendrocytes, NSCs, and neurons as the 

cell of origin for GBM9,104. Much of this evidence comes from mutating or knocking down genes 

in vivo (via Cre/Lox experiments in mice) or in cultured cells that could form GBM-like tumors 

in mice105,106. For instance, cultured astrocytes that initially expressed astrocyte markers, upon 

knockdown of P53 in combination with NF1 knockdown or an activated form of H-RAS, could 

form tumors in mice and gave an expression phenotype similar to neural stem cells105. Further 

supporting the notion of de-differentiation of committed CNS lineages, it has been shown that 

astrocytes can exhibit a dedifferentiated phenotype in response to stroke or stab wound injury in 

vivo107,108. In particular, modulation of signaling molecules such as Notch1 and TNF-alpha could 

potentiate this phenotype, allowing the production of new neurons in vivo107 and differentiation 

into non-astrocytic lineages in vitro108. While these experimental approaches are valuable for 

elucidating how GBM tumors might arise, they do not necessarily prove a cell of origin in 

human GBMs. 

https://sciwheel.com/work/citation?ids=9276994&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6816788&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6816788&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5302747,8688178&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=58512&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2305559,12817472&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=58289,5584496&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=58289&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13988,1690285&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13988&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1690285&pre=&suf=&sa=0&dbf=0
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In addition to attempting to assign a cell of origin to GBM, another area of exploration is the 

origins of cellular heterogeneity, such as clonal evolution within a patient and differentiation 

potential/cellular hierarchy (if such hierarchy exists). Recent work by Korber and colleagues 

showed clonal chromosome 7 amplifications, chromosome 9 or 10 deletions were very common 

among GBM tumors, and that among the most affected genes in these regions (EGFR, 

CDKN2A/B, PTEN), 81% of samples had a mutation in those genes73. Subclonality of TERT in 

some tumors provided evidence for selection of clones after tumor initiation73. Additional 

analyses performed by the authors led them to suggest that due to most tumor cells dying, only 

up to 31% of tumor cell divisions would contribute to tumor growth, and that given their 

estimated growth dynamics, the first GBM tumor cell could appear up to 7 years prior to 

diagnosis73. Additional work by Wang and colleagues showed that among non-hypermutated 

GBMs, about 45% of mutations were shared between the primary tumor and the recurrence, 

suggesting the selection or survival of a non-dominant clone upon temozolomide treatment90. 

They additionally found evidence for convergent evolution in several genes, such as P53 and 

PDGFRA, suggesting clonal divergence and convergent evolution of clones long before 

treatment is applied90.  

The concept of clonal evolution may also be extended to glioma stem cells. Lan and colleagues 

examined clone size distributions among tumor cells in serial xenograft transplantation 

experiments, and determined with a mathematical birth/death model that their negative binomial 

shape was consistent with a proliferative hierarchy in which slow cycling GSCs give rise to 

faster cycling progenitors which in turn output differentiated, post-mitotic cells109. They found 

that upon temozolomide treatment, most clones in tumors were eliminated, with surviving clones 

having size distributions that deviated from the negative binomial distribution but could be 

accounted for by giving additional resistance to apoptosis109. Given that only approximately 3% 

of barcoded cells were detected as clones within xenografts, with further reduction of surviving 

clones in subsequent passages109, it is likely that only a small fraction of GBM cells possess 

tumorigenicity. Considering these results, as well as the prior evidence for a quiescent cancer 

stem cell population being required to repopulate a tumor after temozolomide treatment17, it is 

likely that, whatever the cell of origin of GBM, and whatever driver mutations lead to its 

transformation to a malignant state, this cell or its descendants must adopt a GSC phenotype in 

order to sustain tumor growth. 

https://sciwheel.com/work/citation?ids=6680355&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6680355&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6680355&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5936200&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5936200&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4152289&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4152289&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4152289&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=58160&pre=&suf=&sa=0&dbf=0
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Beyond clonal structure and evolution of GBM cells and GSCs, there is evidence for differential 

stemness and differentiation capacity based on factors such as transcriptional state and exposure 

to extracellular stimuli. Complementing the earlier discussed results involving astrocytes de-

differentiating into stem-like cells upon stab-wound injury107,108, it was recently shown that the 

number of tumor initiating cells increased in GBM cell cultures exposed to temozolomide 

relative to those that were not, and that the TMZ cells expressed higher levels of neural stem cell 

markers such as SOX2 and OCT4110. Interestingly, this effect was found to be dependent on the 

Damage Associated Molecular Pattern (DAMP) protein HMGB1and TLR signaling110, 

suggesting that apoptosis caused by TMZ treatment might trigger repurposed 

inflammatory/damage related signaling pathways that in turn promote de-differentiation. 

Combined with earlier discussed results from Bhat and colleagues regarding a Proneural to 

Mesenchymal transition in transcriptional phenotype mediated by TNF-alpha100, it is clear that 

GSC state is plastic and can be affected by exposure to external stresses and stimuli. In addition 

to plasticity in response to stimuli, differentiation capacity in response to stimuli can be affected 

by transcriptional state and the availability/absence of particular signaling pathways111. Early 

work by Pollard, Dirks, and others showed that there was patient specific variation in 

differentiation potential of GSCs in culture upon growth factor withdrawal99 in cell lines 

showing inter-patient variation in expression of neural lineage markers. The Dirks lab, in 

collaboration with others, later showed that ASCL1 high GSCs (transcriptionally similar to the 

Proneural transcriptional program) could be induced to differentiate into neuron-like TUBB3 

expressing cells via Notch inhibition, while ASCL1 low GSCs (transcriptionally similar to the 

Mesenchymal transcriptional program) could not, and this effect was thought to be mediated 

through modulation of chromatin state for promoters and enhancers of neuronal genes111. These 

results were followed up by a study showing that GSCs dependent on WNT for tumorigenesis 

and stem-like state were also transcriptionally similar to the Proneural phenotype, and that WNT 

inhibitor induced differentiation in this subset of GSCs was dependent on ASCL1, again 

suggesting a role for ASCL1 in potentiating differentiation into a neuron-like, less proliferative 

and tumorigenic state112. More recent work gives further examples illustrating the mechanisms of 

maintaining a GSC state and preventing differentiation. For example, it was recently shown that 

the absence of YAP and TAZ results in impaired initiation of GBM tumors, with the absence of 

these proteins resulting in impaired de-differentiation of patient derived cell lines and in 

https://sciwheel.com/work/citation?ids=13988,1690285&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12817492&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12817492&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=58706&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10203004&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=58512&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10203004&pre=&suf=&sa=0&dbf=0
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increased differentiation as well as the inability for injected GBM cells to cause tumors in mouse 

xenograft models113. Additionally, SOX2 has recently been shown to be phosphorylated in order 

to protect from degradation, resulting in maintenance of GSC phenotype114. Overall, these results 

suggest that a balance exists between the GSC stem state and more differentiated states. 

Overall, GSCs appear to represent a state analogous to a traditional stem cell hierarchy, capable 

of producing the rest of a GBM tumor, both initially and after treatment. Based on existing 

evidence, GSCs appear to be derived from a combination of a tumorigenic genetic background as 

well as stressors that can promote dedifferentiation of neural/glial cell types. Clonal 

heterogeneity at the genetic and transcriptomic levels are likely at least in part responsible for 

GBM tumors’ resilience in response to treatment in cases beyond the obvious case of mismatch 

repair deficiency. Additionally, the activation of stemness programs in response to stress or 

(importantly) treatment, and the varied behavior and differentiation capacity of GSCs based on 

transcriptional state, reveal a complex system in which there is no statically defined population 

of GSCs, but rather a subset of phenotypic (i.e. transcriptomic, mutational, epigenetic, etc.) space 

that can be entered or left upon appropriate conditions and is primarily defined by the ability to 

initiate tumors.  

1.7 Rationale for Project and Brief Results Summary 

Given the wealth of evidence that GSCs are responsible for tumor recurrence, they present an 

enticing therapeutic target. However, their heterogeneity with respect to drug response presents a 

challenge to this goal. While there has been tremendous progress in the past two decades in 

characterizing GBM and GSC heterogeneity, the area still has open questions as to what sort of 

heterogeneity exists at the single cell level, and, mechanistically, how do different -omics layers 

function together and independently of one another to produce a phenotype in GSCs. The former 

question is worth addressing as it would inform us as to whether there are therapeutically 

relevant subpopulations within GSCs that might not be captured through bulk -omics assays (e.g. 

RNA-seq), or more broadly what the full transcriptional landscape of GSCs looks like. The latter 

question is important as, while there have been some multi -omics analyses performed in the 

past, a fuller picture of how different biological processes function together and independently in 

producing GSC heterogeneity would give a more holistic view of what integrated and 

https://sciwheel.com/work/citation?ids=10144401&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11325078&pre=&suf=&sa=0&dbf=0
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independent biological circuits exist to produce GSC phenotypes. In the two data chapters of this 

thesis, I attempted to address both of these questions. 

Work detailed in Chapter 2 of this thesis was aimed at characterizing GSC heterogeneity at the 

single cell level. Here, I worked with Laura M. Richards from Dr. Trevor Pugh’s lab in analyzing 

scRNA-seq data from 26 patient derived GSC cell lines from the Dirks and Weiss labs and found 

that GSC heterogeneity largely resided on one major transcriptional axis, defined by 

anticorrelated Developmental and Injury Response transcriptional programs. Further 

characterization was done using CRISPR-Cas9 screens from the Angers lab, which revealed 

differential perturbational sensitivity depending on location along this axis, and an integrated 

analysis with a combined dataset of GSC and patient tumor scRNA-seq data, which revealed the 

continued presence of the Developmental/Injury Response axis in patient tumors and a stem to 

astrocyte differentiation gradient progressing from GSCs to patient tumor cells orthogonal to that 

axis. We thus managed to show that GSC heterogeneity could be expressed as a continuum 

spanned by two major axes, the first carrying consequences for biological dependencies (e.g. 

metabolic, signaling) and the latter being analogous to a normal stem cell differentiation 

gradient. 

In Chapter 3, I attempted to expand on our findings in Chapter 2 and address the question of how 

biological processes function in tandem or independently to produce GSC heterogeneity. Here, I 

analyzed six data types (RNA-seq, DNA methylation, ATAC-seq, miRNA-seq, Single 

Nucleotide Variants, Copy Number Variation) from 54 patient derived GSC lines from the Dirks 

and Weiss labs. I found four major multi -omics axes, one corresponding to temozolomide 

induced hypermutation in mismatch repair, two corresponding to transcription orthogonal 

variation in chromatin accessibility and promoter methylation, and a multi -omics axis revealing 

coordinated activity among transcription, miRNA based gene suppression, promoter methylation 

of Injury Response genes, and copy number variation associated with gene expression. Overall, 

these results support a model in which mismatch repair deficiency (which causes a 

hypermutation phenotype) and a multi -omics Developmental/Injury response axis represent two 

separate dimensions in which GSCs exhibit heterogeneous functional outcomes such as 

perturbational sensitivity and tumor aggression.  
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2 Chapter 2: Gradient of Developmental and Injury 

Response transcriptional states defines functional 

vulnerabilities underpinning glioblastoma 

heterogeneity 

This work was originally published in Nature Cancer: Richards, L.M.*, Whitley, O.K.N.*, 

MacLeod, G., Cavalli, F.M.G., Coutinho, F.J., Jaramillo, J.E., Svergun, N., Riverin, M., 

Croucher, D.C., Kushida, M., Yu, K., Guilhamon, P., Rastegar, N., Ahmadi, M., Bhatti, J.K., 

Bozek, D.A., Li, N., Lee, L., Che, C., Luis, E., Park N.I., Xu, Z., Ketela, T., Moore, R.A., Marra, 

M.A., Spears, J., Cusimano, M.D., Das, S., Bernstein, M., Haibe-Kains, B., Lupien, M., 

Luchman, H.A., Weiss, S., Angers, S., Dirks, P.B.#, Bader, G.D.#, Pugh, T.J.#. Gradient of 

Developmental and Injury Response transcriptional states defines functional vulnerabilities 

underpinning glioblastoma heterogeneity. Nature Cancer 2, 157–173 (2021). 

https://doi.org/10.1038/s43018-020-00154-9 

Contributions: 

L.M.R., O.K.N.W., P.B.D., G.D.B. and T.J.P. conceived the project, designed the study and 

interpreted results. O.K.N.W. performed pathway, bulk RNA-seq, PCA analysis, signature 

analysis and outlier detection, and defined the injury response and stem cell-mature gene 

expression signatures. O.K.N.W. developed the cluster stability assessment procedure for bulk 

RNA-seq clustering. O.K.N.W. and L.M.R. performed scRNA-seq analyses on both internally 

generated and public datasets. O.K.N.W. performed malignant cell identification in publicly 

available datasets as well as signature scoring. O.K.N.W. developed a logistic regression 

classifier to identify stem-like tumour cells, and performed RNA-velocity to characterize a stem-

to astrocyte trajectory. O.K.N.W. performed pathway analysis on genome wide CRISPR-Cas9 

screen data, with L.M.R. and G.M. performing additional analyses. N.S., M.R., T.K., Z.X. and 

L.M.R. generated sc and snRNA-seq data. L.M.R. and O.K.N.W. performed scRNA-seq 

analysis. F.J.C., F.M.G.C. and P.G. generated and pre-processed bulk RNA-seq or WGS data. 

L.M.R. and F.M.G.C. performed WGS analysis. F.J.C., M.K., N.R., L.L., C.C., H.A.L. and J.E.J. 

derived GSC cultures used in the study and performed LDAs, xenografts and cytokine assays. 

G.M., M.A., D.A.B., J.E.J., N.L., E.L., N.I.P., J.K.B. and M.K. performed genome-wide 
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CRISPR–Cas9 screens. K.Y., J.S., S.D., M.B. and M.D.C. provided tumor tissue. F.J.C., D.C.C., 

M.K., M.L., B.H.K., H.A.L., S.W., M.A.M., R.A.M. and S.A. provided experimental and 

analytical support. L.M.R., O.K.N.W., G.D.B., P.B.D. and T.J.P. wrote the manuscript with 

feedback from all authors.  
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2.1 Abstract 

Glioblastomas harbor diverse cell populations, including rare glioblastoma stem cells (GSCs) 

that drive tumorigenesis. To characterize functional diversity within this population, we 

performed single-cell RNA sequencing on >69,000 GSCs cultured from the tumors of 26 

patients. We observed a high degree of inter- and intra-GSC transcriptional heterogeneity that 

could not be fully explained by DNA somatic alterations. Instead, we found that GSCs mapped 

along a transcriptional gradient spanning two cellular states reminiscent of normal neural 

development and inflammatory wound response. Genome-wide CRISPR–Cas9 dropout screens 

independently recapitulated this observation, with each state characterized by unique essential 

genes. Further single-cell RNA sequencing of >56,000 malignant cells from primary tumors 

found that the majority organize along an orthogonal astrocyte maturation gradient yet retain 

expression of founder GSC transcriptional programs. We propose that glioblastomas grow out of 

a fundamental GSC-based neural wound response transcriptional program, which is a promising 

target for new therapy development. 

2.2 Introduction 

Glioblastomas (GBMs) are the most aggressive and treatment-refractory brain tumors in adults. 

Treatment failure is rooted in the extensive heterogeneity observed within tumors and across 

patients4,14,15 . Molecular stratification of GBMs into transcriptional subgroups13,90 (proneural, 

mesenchymal and classical) has not led to the development of successful targeted therapies 115, 

hindered by the inability of bulk sequencing to reflect the layered genetic, cellular and epigenetic 

diversity of cell states. Single-cell RNA-sequencing (scRNA-seq) studies have highlighted the 

complexity of GBM biology14,15,92,116,117, demonstrating that subpopulations of cells with 

different transcriptional subtypes and variable somatic genetic events (copy-number variations 

(CNVs) and mutations) coexist within a single tumor. However, the source of this functional 

intratumoral heterogeneity remains unclear and this has impeded the development of effective 

GBM treatments.  

https://sciwheel.com/work/citation?ids=58610,24822,7206017&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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One potential source of phenotypic diversity and plasticity in GBMs lies within the rare self-

renewing GSC fraction18,109,118,119. GSCs hijack developmental stem cell programs to drive and 

maintain tumor growth, as well as acquire resistance mechanisms to evade chemotherapy and 

radiotherapy17,19,120. However, it is still unclear how diversity within the GSC pool may affect the 

cellular composition and growth of GBMs. 

Here, we applied scRNA-seq and genome-wide CRISPR–Cas9 screening to GSCs isolated from 

their in vivo primary tumor niche to study their molecular heterogeneity and function in an 

unbiased manner. Enriching for GSCs enabled us to observe a previously undescribed level of 

diversity within the cancer stem cell fraction of GBMs, a signal challenging to resolve in primary 

patient specimens due to the relative rarity of GSCs within the tumor bulk. We found that GSCs 

exist along a major transcriptional gradient between two cellular states, Developmental and 

Injury Response programs. Orthogonal to this GSC gradient, we identified an astrocyte 

maturation gradient in patient tumor cells, highlighting the transcriptional programs implicated in 

differentiation of GSCs into mature tumor cells that comprise the bulk. Our work provides a 

model that explains the source of cellular heterogeneity in GBMs and identifies a range of 

sensitivities of this fundamental cellular program that directly inform the development of new 

therapeutic strategies targeting GBMs. 

2.3 Results 

2.3.1 Transcriptional heterogeneity within GSCs  

To enrich for rare stem-like cells within primary tumors, we used established serum-free 

culturing methods99,121 to generate a collection of patient-derived GSCs capable of sustaining 

growth in vitro and initiating tumors in mice (Methods). This method supports the growth of a 

diversity of clones that closely matches human GBM xenografts109 and excludes cells of 

hematopoietic origin. To characterize heterogeneity in the GBM stem cell fraction, we profiled 

69,393 cells from 29 early passage GSC cultures (21 adherent; 8 neurosphere) derived from 26 

patients using scRNA-seq.  

To explore GSC heterogeneity within individual patients, we clustered GSCs from each sample 

independently using extensive hyperparameter optimization and validation with multiple 

https://sciwheel.com/work/citation?ids=66208,4152289,808796,530566&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
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https://sciwheel.com/work/citation?ids=58512,12228030&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4152289&pre=&suf=&sa=0&dbf=0
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algorithms (Methods, Fig 2.1). We discovered substantial intra-GSC heterogeneity, uncovering 

two to six transcriptional subpopulations per GSC, totaling 86 clusters across 29 samples (Fig. 

2.2A,B and Fig 2.1), demonstrating that in addition to the diverse cell states present in GBMs, 

rare GSC subpopulations within the tumor are heterogeneous themselves. For each cluster, we 

compared the top upregulated marker genes and across samples to identify shared subpopulations 

across GSCs. A subset of 14 clusters had increased similarity (mean Jaccard Index=0.38 versus 

0.066 for all other clusters) and shared upregulation of 358 core genes involved in cell cycling 

programs (Fig. 2.3A-D). In addition to upregulation of canonical cell-cycle genes (MKI67, 

TOP2A, AURKA), proliferating GSC clusters overexpressed genes known to promote self-

renewal and progenitor expansion in the neocortex122 (including ARHGAP11A and 

ARHGAP11B). Many of these shared proliferation genes (BRCA1, HMGB2, CDC45) are also 

targets of the transcription factor TLX, part of a regulatory network governing proliferation in 

adult neural stem cells123 and self-renewal in brain tumor stem cells124. GSCs with a larger 

fraction of actively cycling cells displayed increased aggressiveness and reduced survival upon 

implantation in an orthotopic xenograft model (Fig 2.3C). Collectively, these observations define 

a core GSC proliferation module, resembling aberrant neurodevelopmental programs, potentially 

employed by GSCs to sustain tumor growth.  

Remaining intra-GSC clusters (72 of 86) had limited marker similarity (mean Jaccard 

Index=0.066), suggesting a large portion of subpopulations within GSCs are specific to 

individual patients (Fig 2.3A). Within individual GSC samples, expression of marker genes 

drove divergence of transcriptionally distinct subpopulations. For example, G549_L consisted of 

two transcriptional states; one cluster (C1) characterized by upregulation of EDN1 and ADM, 

both HIF-1 target genes involved in angiogenic signaling125, while the second cluster (C2) 

overexpressed ASCL1, a transcription factor critical for neuronal differentiation that suppresses 

tumorigenicity in GSCs111 (Fig 2.3E,F). These results demonstrate substantial heterogeneity both 

within and between the GSC pools of individual patients, with important implications for 

designing targeted therapies against multiple subpopulations in the tumor-initiating fraction of 

GBM. 
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Figure 2.1 Visualization and benchmarking of intra-GSC clustering 

 

(A) t-SNE representation of intra-GSC heterogeneity across 29 patient-derived GSCs. Cells are 

colored by transcriptional cluster. Samples ordered by number of clusters. (B) Comparison of 

cluster number (top), marker genes per cluster (middle) and average silhouette width per cluster 

(bottom) between our original GSC smart local moving (SLM) clustering algorithm (blue), 

Louvain (yellow), Louvain with multilevel refinement (green), k-means (salmon) and spectral 

(pink) across 29 GSCs. The number of data points in the boxplots (middle, bottom) corresponds 

to the number of clusters in the matched histogram (top). Box plots represent the median, first 

and third quartiles of the distribution and whiskers represent either 1.5-times interquartile range 

or most extreme value. 
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Figure 2.2 Characterizing heterogeneity within GSCs 

 

(A) t-distributed stochastic neighbor embedding (t-SNE) visualization of GSC cultures from 

select samples demonstrating intra-sample heterogeneity defined by the presence of multiple 

transcriptional clusters. Cells colored by transcriptional cluster. (B) Breakdown of cluster 

number across 29 GSC cultures. (C) Genome-wide inferred CNV profiles for 29 patient-derived 

GSC cultures. Columns represent genomic regions, ordered by genome position across all 

chromosomes. Rows represent CNVs averaged by intra-sample transcriptional cluster, with one 

row per cluster (Fig 2.1A). Samples ordered by increasing cluster number. (D) Inferred CNV 

value (y axis) for select GSC cultures with (top) and without (bottom) CNV variation between 

transcriptional clusters. Lines are colored by intra-sample transcriptional cluster. Black bars 

represent regions of variable CNVs between clusters. 
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Figure 2.3 Defining intra-GSC transcriptional heterogeneity 

 

(A) Heat map of Jaccard Index (more similar = blue, less similar = white) between marker gene 

lists across 86 intra-GSC clusters. A subset of 14 clusters, from 13 samples, display increased 

similarity (labelled as Cluster 1). (B) Enriched pathways from 358 genes common to all 14 

clusters defined in Fig. 2.3A. (C) Spearman correlation between inferred proportion G2M cells 

from scRNA-seq data vs. survival in an orthotopic xenograft model (left; n = 18 independent 

GSC xenograft models) and doubling time in vitro (n = 15 GSC cultures) in adherent (green) or 

neurosphere (orange) GSCs. Red line represents a linear regression line. Shaded grey area 

represents 95% confidence interval. (D) 14 intra-GSC clusters share increased marker gene 

overlap and define a core proliferation module shared across 13 patients. Expression of select 

marker genes common across all clusters. Columns separated by intra-GSC cluster, bolded labels 

represent clusters with upregulation of the proliferation module. (E) Relative expression of top 5 

significant marker genes (based on logFC, one-sided Wilcoxon rank-sum test, FDR < 0.05) for 

clusters C1 and C2 within G549_L (left). UMAP visualization of select marker genes of C2 

(right). (F) Relative expression of top 5 significant marker genes (based on logFC, one-sided 

Wilcoxon rank-sum test, FDR < 0.05) for clusters C1-C5 within G837_L (left). UMAP 

visualization of select marker gene of C5 (right). 
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2.3.2 CNVs can modulate intra-GSC heterogeneity 

To evaluate whether the polyclonal structures observed at the transcriptional level are a result of 

somatic genome alterations, we inferred CNV profiles from scRNA-seq data for each intra-GSC 

cluster (Fig. 2.2C,D; Methods). We validated CNVs inferred from scRNA-seq with matched bulk 

whole-genome sequencing (WGS) for a subset of 20 samples. CNV profiles from bulk WGS 

were more similar to averaged scRNA-seq-derived profiles from all cells versus individual 

clusters (Spearman’s r=0.68 versus r=0.63, p<0.001). While the aggregate data verifies our 

scRNA-seq CNV results, cluster-level profiles support the presence of subclonal CNVs within 

GSCs not detected by bulk approaches (Fig 2.4).  

Amplification of chromosome 7 and deletion of chromosome 10 were common across clusters, 

indicating that these are likely clonal, founding events involved in the malignant transformation 

of neural stem cells (NSCs) to GSCs (Fig. 2.2C), consistent with reported frequency and 

evolutionary timing in GBMs4,13,73,126. Most GSCs harbored transcriptional clusters with unique 

CNV profiles (n=22 of 29 samples totaling 69 clusters), indicative of extensive subclonal 

genomic diversification within GSCs (Fig 2.4D). For example, in G876_L all three clusters 

shared clonal amplification of chromosome 7, in addition to private subclonal CNVs restricted to 

one transcriptional cluster. Deletion of chromosome 9 was observed in 2 of the 3 clusters (C1, 

C2) in G876_L, while amplification of chromosome 12 was exclusive to a separate, rare cluster 

of cells (C3) (Fig. 2.2D). Furthermore, 49% of clusters (n=34 of 69) had significant enrichment 

(P<0.05, Fisher’s exact test) of marker genes within altered CNV loci, highlighting the potential 

for subclonal CNVs to modulate transcriptional programs in GSCs (Fig 2.4E). However, not 

every GSC had evidence of genomic diversity. BT67_L has two transcriptional clusters 

presenting with identical inferred CNV profiles (P=0.16, Kolmogorov–Smirnov test) (Fig. 2.2D). 

Therefore, while established GBM founder CNVs are common and clonal across GSCs, 

subclonal CNVs likely drive only a portion of intra-GSC heterogeneity observed between 

patients. 

2.3.3 Characterizing GSC heterogeneity between patients 

To map GSC transcriptional heterogeneity across patients, we used uniform manifold 

approximation and projection (UMAP) to visualize inter-GSC relationships (Fig 2.5A,B). 

Unsupervised clustering identified 61 transcriptional clusters, revealing striking patient-specific  

https://sciwheel.com/work/citation?ids=58610,24823,6680355,5627773&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
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Figure 2.4 Validation of inferred single cell CNV profiles and impact on marker 

gene expression 

(A) Spearman correlation between inferred scRNA-seq CNV score from averaged intra-GSC 

clusters (left; n = 56 clusters from 20 GSC cultures) or averaged samples (right; n = 20 GSC 

cultures) and log2 ratios from matched genes from WGS of GSC samples (n = 20 GSC cultures). 

Each point represents a gene within a given sample. (B) Distribution of InferCNV scores for 

genes labelled as deletion (<0; n = 11,617 genes), neutral (0; n = 100,426 genes) or amplified 

(>0; n = 12,777 genes across) by GISTIC from corresponding WGS data. Gene counts per 

GISTIC CNV state represent a cumulative number of genes across 20 GSCs. Median scores for 

deletions (-0.15) and gains (0.17) used as cut offs to classify InferCNV scores as at least single 

copy gains or losses. Box plots within the violin plot represent the median, upper and lower 

quartiles of the distribution and whiskers represent 1.5-times interquartile range. Tips of the 

violin plot extend to the minimum and maximum values of the distribution. (C) Visualization of 

single cell CNV calls averaged by intra-GSC cluster (denoted “_C#”), averaged by sample 

(“SampleAverage”) or results of matched WGS (“_WGS”). Samples (rows separated by solid 

lines) ordered by increasing cluster number. WGS CNV track below dashed line. Sample 

average above dashed line and cluster transcriptional profiles represent remaining rows. (D) 

Binary heat map depicting chromosome arms (y-axis; sorted by genomic position) that are 

gained (red), deleted (blue) or copy-neutral (white) across intra-GSC clusters (x-axis; ordered 

alphabetically; n = 86 clusters from 29 GSC cultures). (E) Proportion of cluster marker genes 

located within a variable CNV loci (y-axis) across intra-GSC clusters (x-axis; n = 69 clusters) 

from samples with variable cluster CNV profiles (n = 22 GSC cultures) as determined in Fig 

2.4D. Clusters with significant (Fisher’s Exact Test p < 0.05) enrichment of marker genes within 

variable CNV loci are colored dark blue. 
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Figure 2.5 Defining global inter-GSC cluster relationships and evaluation of batch 

correction methods 

 

(A) UMAP projection of 69,393 GSC cells from 29 patients reveals patient-specific clustering 

patterns (left panel, cells colored by patient). Unbiased clustering reveals 61 transcriptional 

clusters (right panel, cells colored by transcriptional cluster). GSCs derived from different 

regions of the same tumor underlined with red (G945-I,J,K) and black (G946-J,K) bars. (B) 

Transcriptional clusters from the same sample and patient are more similar to each other 

compared to cells from other samples. Dendrogram of average gene expression profiles of 

transcriptional clusters defined in Fig 2.5A based on distance (1-Spearman correlation) (top). 

Sample composition of transcriptional clusters (bottom). Vertical bars colored by sample. Labels 

at bottom depict sample identifier and proportion of sample for up to the top three 

samples/cluster. (C) UMAP visualizations of global GSC clustering results with CONOS batch 

correction (top row), with Liger batch correction (middle row) and fastMNN batch correction 

(bottom row). Cells are colored by sample ID (left column) and transcriptional cluster (right 

column) (n = 69,393 cells from 29 GSC cultures). (D) Proportion of cells (y-axis) corresponding 

to a given sample across transcriptional clusters (x-axis) across original and batch corrected 

datasets. (E) Number of transcriptional clusters in original clustering pipeline vs. post-batch 

correction. (F) Box plots representing the number of samples with >10 cells per transcriptional 

cluster across original and batch corrected clustering results (Original=61 clusters; Conos=12 

clusters; Liger=78 clusters; fastMNN=39 clusters). Box plots represent the median, first and 

third quartiles of the distribution and whiskers represent either 1.5-times interquartile range or 

most extreme value. Outliers displayed as circles. 
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transcriptional programs, with most clusters (n=57 of 61) characterized by an almost entirely 

unique, patient-specific GSC transcriptional profile. To ensure patient-specific clustering 

patterns reflect true biological signals innate to cancer cells, and not technical batch effects, we 

applied three batch-correction methods (Fig 2.5C–E). No batch-correction algorithm was 

successful in unifying clusters across all samples and were inconsistent with each other, 

supporting the conclusion that our samples display substantial inter-patient heterogeneity, as has 

been observed in tumors14,15,127–134 and malignant cell lines135–138 from a variety of human 

cancers, including GBM. Supporting this, GSCs derived from different geographical regions of 

the same tumor (G945-I,J,K and G946-J,K) were more similar to each other than to GSCs 

derived from different tumors (Fig 2.5B). 

2.3.4 GSCs organize along a transcriptional gradient.  

To identify core transcriptional programs underpinning inter-GSC heterogeneity, we performed 

principal-component analysis (PCA) on the global scRNA-seq dataset of 69,393 cells. We 

removed one outlier GSC sample, G800_L, from downstream analysis on the basis of inflated 

PC2 signal, leaving 65,655 cells (Fig. 2.6A). Re-running PCA without G800_L revealed a single 

axis of variation along PC1, separating cells into two prominent groups. (Fig 2.7A).  

Cells with high PC1 loadings were associated with elevated expression of mesenchymal-related 

genes and enrichment of pathways implicated in inflammation and immune cell activation, as 

well as nuclear factor (NF)-κB and STAT signaling (false discovery rate (FDR)<0.01; Fig 2.7B 

and Fig 2.6B,C). When compared to cell types found in developing fetal brain139,140, mature adult 

brain141–145 and malignant cell states in GBMs13,15, these inflamed GSCs best resembled both the 

Cancer Genome Atlas (TCGA) Mesenchymal subtype and the mesenchymal-like cell state15 in 

GBMs, as well as neuroprotective A2 reactive astrocytes (Fig. 2.7C, Fig 2.6B). Interestingly, A2 

reactive astrocytes promote neuronal survival and tissue repair in response to ischemic 

injury142,146, perhaps paralleling mechanisms employed by GSCs to sustain growth and self-

renewal in hypoxic tumor microenvironments. Furthermore, upregulation of interferon and 

wound-healing programs suggests the mesenchymal-like phenotype in GSCs may be the result of 

microenvironment-induced transcriptional reprogramming in response to injury.  

  

https://sciwheel.com/work/citation?ids=24822,7206017,5145166,9275347,7223616,9129874,6126242,4552091,1354112,2391255&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5636956,9943539,11848188,9542574&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4588102,4946295&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=349162,2995676,3124718,3964628,6467090&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=24823,7206017&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7206017&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2995676,6318205&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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Figure 2.6 Characterization and interpretation of GSC transcriptional gradient 

 

(A) PCA plot of 69,393 cells from 29 GSC cultures. Plot colored by cell density (left). PCA plot 

with cells belonging to outlier sample G800_L, colored red. Remainder of cells colored grey 

(middle). Quantification of deviation from the mean of PC2 (y-axis) across samples. G800_L 

(red) represents an outlier with >95% of cells within the sample greater than two standard 

deviations from the mean. Horizontal dashed red line represents threshold of two standard 

deviations to determine outliers (right). Box plots represent the median, upper and lower 

quartiles of the distribution and whiskers represent 1.5-times interquartile range or the most 

extreme value. Outliers represented as circles. (B) Correlation of cell type gene signature scores 

from PC1 cell embeddings (n = 65,655 cells from 28 GSC cultures; outlier G800_L removed as 

in Fig. 2.7A). Only correlations with Spearman correlation coefficient greater than |0.5| shown. 

Bars colored by gene signature source. (C) Enriched MSigDB gene sets (FDR < 0.01) for top 

100 and bottom 100 genes for PC1. (n = 65,655 cells from 28 GSC cultures; outlier G800_L 

removed as in Fig. 2.7A). (D) Gene Set Enrichment Analysis (GSEA) on PC1 loadings (gene 

associations with PC1) visualized using EnrichmentMap (n = 65,655 cells from 28 GSC cultures; 

outlier G800_L removed as in Fig. 2.7A). Similar pathways (circles) are grouped into labeled 

clusters (larger bubbles). Blue circles denote positively associated pathways (Injury Response 

associated) and red circles denote negatively associated pathways (Developmental associated). 

Edges (lines) denote overlap between pathways. 
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Figure 2.7 GSCs converge on a single transcriptional gradient between 

Developmental and Injury Response states 

 

(A) PCA of 65,655 cells from 28 GSC cultures derived from 24 patients (middle). Cells colored 

by expression of Developmental (PC1-low) and Injury Response (PC1-high) programs (left and 

right, respectively). AUC, area under the curve. (B) Relative expression of top 100 and bottom 

100 weighted genes for PC1, in a subset of 14,000 individual GSC cells (500 cells per sample, 

randomly selected). Select enriched genes highlighted. GSC cultures ordered by increasing 

median Injury Response program score as defined in Fig. 2.7D. (C) Relative program score for 

individual cells (500 cells per sample; same cells as in Fig 2.7B) for top-correlated cell-type 

signatures. GSC cultures ordered as in Fig 2.7D. (D) Relative signature scores of individual cells 

(n= 65,655 cells from 28 GSC cultures) evaluated for Developmental (red) and Injury Response 

(black) gene signatures derived from bulk RNA-seq analysis (related to Fig 2.8 D,E). (E) Single 

cell profiles from representative GSC cultures (n= 4) show that individual GSCs fall along a 

continuous axis between Developmental and Injury Response states. Cells are colored by relative 

expression of Developmental (red) and Injury Response (black) expression programs. GSC 

cultures with intermediate scores either contain subpopulations of both subtypes or middling 

scores for both states. 
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Conversely, cells with low PC1 loadings were associated with genes and pathways related to 

gliogenesis and neural development (for example PTPRZ1, ASCL1, SOX2), highlighted by the 

expression of oligodendrocytic (for example OLIG1, OLIG2), astrocytic (for example CLU, 

APOE, S100B) and neuronal (for example STMN3) lineage markers (Fig. 2.7B and Fig 2.6B–

D). Consistently, this group of GSCs strongly resembled a spectrum of developing cell types, 

including oligodendrocyte progenitor cells (OPCs), developing astrocytes and radial glia. 

Similarly, these developmental-like GSCs mirrored transcriptional profiles of multiple malignant 

GBM cell types, such as the Classical and Proneural subtypes reported by TCGA13 and recently 

reported neural precursor (NPC), astrocyte (AC) and OPC-like cell states15 (Fig. 2.7C and Fig 

2.6B). This finding is indicative of a multipotent class of GSCs capable of differentiating into 

mature neural cell types. This result was recapitulated using Diffusion Map, an alternate 

dimensionality reduction method designed to identify gradients from scRNA-seq data147 (Fig 

2.8A,B).  

We conclude that GSCs exist between two major transcriptional programs: one reminiscent of 

neural development with differentiation capacity, which we term ‘Developmental’ (low PC1 

loadings) and the other with inflammatory and wound response signaling resembling reactive 

astrocytes, which we name ‘Injury Response’ (high PC1 loadings) (Fig. 2.7A). 

To validate the existence of two GSC states, we profiled a larger cohort of 72 GSCs (38 

adherent, 34 neurosphere) with bulk RNA-seq, a subset of which (n=23 of 72) overlap with those 

profiled by scRNA-seq. Using a resampling procedure, bulk GSC profiles separated into two 

stable clusters (Fig 2.8C,D). Consistent with our scRNA-seq data, differential gene expression 

and pathway enrichment analysis identified one GSC cluster enriched for pathways involved in 

neuro- and gliogenic signaling and development (consistent with the Developmental subtype) 

and another enriched for inflammatory response programs (consistent with the Injury Response 

subtype) (Fig 2.8E,F) 

At the population level using bulk RNA-seq profiling, GSCs were categorized discretely as 

Developmental or Injury Response (Fig 2.8d). However, at the single-cell level, we observed a 

transcriptional gradient between the two states (Fig. 2.9). For each patient, GSCs occupied a  

https://sciwheel.com/work/citation?ids=24823&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7206017&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1006249&pre=&suf=&sa=0&dbf=0
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Figure 2.8 Diffusion Map and bulk RNA-sequencing of 72 GSCs confirms 

Developmental and Injury Response transcriptional states 

 

(A) Spearman correlation between diffusion component 1 (DM1; x-axis) and principal 

component 1 (PC1; y-axis) cell embeddings for a subset of 14,000 GSCs (500 cells/sample). (B) 

Diffusion Map of 14,000 GSCs. Cells coloured by PC1 cell embeddings (left; Related to Fig. 

2.7A), scaled Developmental transcriptional program score (middle) and scaled Injury Response 

transcriptional program score (right). (C) Spectral clustering determined GSCs (n = 72 GSC 

cultures) profiled with bulk RNA-sequencing separated into two stable clusters. For each cluster 

number (x-axis), boxplots depict 200 pairwise similarities (y-axis) (adjusted Rand index, ARI) 

between the solution obtained for the full dataset and random subsets of data containing 80% of 

samples. Box plots represent the median, first and third quartiles of the distribution and whiskers 

represent either 1.5-times interquartile range or most extreme value. Outliers displayed as circles. 

(D) PCA plot of GSCs profiled with bulk RNA-sequencing colored by GSVA score for 

Developmental signature (n = 72 GSC cultures). Circles denote GSCs from the Developmental 

cluster, while triangles denote GSCs from the Injury Response Cluster. (E) GSEA on 

differentially expressed genes between Developmental and Injury Response clusters as 

determined by bulk RNA-sequencing, visualized with EnrichmentMap. Similar pathways 

(circles) are grouped into labeled clusters (larger bubbles). Blue circles denote Injury Response 

associated pathways and red circles denote Developmental associated pathways. Edges (lines) 

denote overlap between pathways. (F) Spearman correlation at the individual cell (n = 65,655) 

level between PC1 cell embeddings from scRNA-seq and Developmental and Injury Response 

gene signature scores derived from bulk RNA-sequencing. 
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Figure 2.9 Continuous transcriptional gradient of Developmental and Injury 

Response cell states across patients 

 

(A) Distribution of AUC gene signature scores for Developmental (left) and Injury Response 

(right) programs across all GSC cells (n = 65,655 cells from 28 GSC cultures). Red line marks 

classification threshold to determine if a given program is active or not. (B) Proportion of cells 

across samples categorized as being resembling Developmental or Injury Response states, as 

well as intermediate hybrid states. (C) Position of cells on the Developmental (x-axis) and Injury 

Response (y-axis) gradient across all samples (n = 65,655 cells from 28 GSC cultures). Cells are 

colored by relative expression of the Developmental (red) and Injury Response (black) 

expression programs. GSC cultures with intermediate scores either contain subpopulations of 

both subtypes or middling scores for both states. Samples ordered as presented in Fig 2.7D. (D) 

Violin plots depicting the distribution of Developmental (red) and Injury Response (black) 

programs post-fastMNN correction for cells within samples. Samples sorted by increasing 

median Injury Response program score. (E) Pearson correlation of median Developmental (top 

panel) and Injury Response (bottom panel) between transcriptional program scores derived from 

the original expression matrix (x-axis) and expression matrix post-fastMNN batch correction (y-

axis). Blue line represents linear regression line, shaded grey area represents 95% confidence 

interval and each dot represents the median raw AUC score per GSC. (F) Ridge plots depicting 

distribution of the difference in Developmental (red) and Injury Response (black) scores (x-axis) 

across cells within samples (y-axis) (n = 65,655 cells from 28 GSC cultures). Samples ordered as 

presented in Fig. 2d. Vertical black line represents the median. 
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discrete range within the Developmental and Injury Response spectrum. (Fig. 2.7D,E and Fig. 

2.9C). Patient localization to a range of the gradient is not the result of technical artifacts, as the 

same gradient existed after correcting the expression matrix for batch by matching mutual 

nearest neighbors148 across samples (Fig. 2.9D,E). Furthermore, cells from multiple patients 

mapped to overlapping regions of the Injury Response–Developmental gradient, supporting 

common cellular phenotypes across patients (Methods; Fig. 2.9F). Thus, profiling GSCs from 

many samples is necessary to characterize the full spectrum of possible transcriptional states 

giving rise to bulk GBM. 

2.3.5 Developmental and Injury Response GSC states have functional differences 

and exhibit plasticity 

We functionally validated the presence of the two GSC transcriptomic states using core cancer 

stem cell assays. Using in vitro limiting dilution assays as a readout of self-renewal, we found 

that Developmental GSCs had higher rates of sphere-forming cells (SFCs) compared to Injury 

Response GSCs (P=0.044, Student’s t-test) (Fig. 2.10B). Furthermore, Developmental gene 

signature scores were correlated with the proportion of SFCs (Spearman’s r=0.30, P=0.027), 

whereas Injury Response gene signature scores were negatively correlated (Spearman’s r=−0.32, 

P=0.018), demonstrating that GSC functional properties vary along the transcriptional gradient.  

To assess disease aggressiveness and tumorigenic potential between the two GSC states, we 

engrafted 37 GSC lines intracranially into immunocompromised mice. In line with stratification 

of patients with GBMs into transcriptional subgroups13 , we did not observe a difference in 

survival between Developmental and Injury Response GSCs in an orthotopic xenograft model 

(P=0.28, log-rank test), suggesting that both GSC states give rise to equally aggressive tumors 

(Fig. 2.10A). However, we did observe a difference in tumorigenicity. Developmental GSCs 

(n=23 of 23) had significantly higher rates of tumor formation compared to Injury Response 

GSCs (n=11 of 14; P=0.047, Fisher’s exact test), perhaps highlighting the requirement of the 

tumor microenvironment to perpetuate the Injury Response GSC phenotype. Collectively, these 

assays demonstrate that functional properties governing GSC phenotype are associated with the 

gradient of transcriptional states.  

  

https://sciwheel.com/work/citation?ids=5027066&pre=&suf=&sa=0&dbf=0
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Figure 2.10 Developmental and Injury Response GSCs have functional differences 

and potential for plasticity 

 

(A) Kaplan–Meier curve depicting overall survival in Developmental (red; n= 23 GSCs) versus 

Injury Response (black; n= 14 GSCs) GSCs in an orthotopic xenograft model. P values 

determined by a two-sided log-rank test. (B) Difference in SFCs between Developmental (red; 

n= 29 patient-derived GSCs) and Injury Response (black; n= 25 patient-derived GSCs) GSCs as 

determined by in vitro limiting dilution assays (LDAs). Box plots represent the median, first and 

third quartiles of the distribution and whiskers represent either 1.5-times interquartile range or 

the most extreme value. Each circle represents one GSC sample. A two-sided Student’s t-test 

was used for statistical analysis to compare means. (C) Cells from a Developmental GSC 

(G523_L) were treated for 48 h with a cytokine cocktail consisting of C1q (400 ng ml−1 ), TNF-

α (30 ng ml−1 ) and IL-1α (3 ng ml−1 ) or with vehicle. Gene expression was quantified by RT–

qPCR and normalized to GAPDH. Data represent mean ± s.e.m. A two-sided Student’s t-test was 

used for statistical analysis (n= 3 independent experiments). *P= 0.0205; **P= 0.00506. 
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Given the continuous nature of GSC phenotypes along the transcriptional gradient, we 

investigated the possibility of plasticity between Developmental and Injury Response states. We 

treated a Developmental GSC (G523_L) with an inflammatory cytokine cocktail (C1q, tumor 

necrosis factor (TNF)-α and IL-1α) and assessed the expression of Injury Response gene markers 

(CD44, SERPINE1 and TNFRSF1A) by quantitative PCR with reverse transcription (RT–qPCR) 

(Fig. 2.10C). The cytokine cocktail induced expression of Injury Response genes after 48h, 

demonstrating the potential for microenvironment-induced conversion of GSCs from a 

Developmental to Injury Response state. These assays mimic conditions in the tumor 

microenvironment to inform the potential of plasticity between GSC states and the origins of 

inflammatory signals we observed in vitro. These results suggest that inflammatory cytokines 

previously found to be secreted by microglia to induce the formation of reactive astrocytes142, 

may also induce the expression of Injury Response genes in Developmental subgroup GSCs. 

2.3.6 Functional dependencies identified by genome-wide CRISPR screens reflect 

Developmental–Injury Response gradient position 

To identify functional dependencies and potential therapeutic targets underpinning the 

Developmental–Injury Response gradient, we performed genome-wide CRISPR–Cas9 dropout 

screens using the 70-k TKOv3 library149 (70,948 guides targeting 18,053 protein-coding genes) 

in 11 GSCs, a subset of which overlapped those profiled by bulk (n=9 of 11) and scRNA-seq 

(n=6 of 11). We used the BAGEL algorithm103,150 to normalize gRNA reads for sample 

sequencing depth, calculate fold change for each guide RNA from the T0 baseline and compute a 

quantile normalized Bayes factor (qBF) for each gene, representing a confidence measure that 

knockout of a specific gene reduced fitness. Notably, unsupervised clustering of variable 

essential genes (1,345 genes; qBF>10 in 3–9 of 11 screens) recapitulated Developmental and 

Injury Response groups, consistent with observations from bulk and scRNA-seq (Fig. 2.11A and 

Fig. 2.12). These data emphasize the fundamental role of the GSC gradient in governing 

essential cellular phenotypes.  

Next, we calculated the difference in qBF scores between Developmental and Injury Response 

GSCs to identify differentially essential genes. Examination of top differential fitness genes (z 

score cutoff of >2 or <−2) in each respective GSC state identified dependencies resembling gene 

expression markers and biological processes identified in the transcriptomics data (Fig. 2.11B).  

https://sciwheel.com/work/citation?ids=2995676&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3920471&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6816788,2661890&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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Figure 2.11 Genome-wide CRISPR screens identify essential regulators of the 

transcriptional gradient in GSCs 

 

(A) Pearson correlation between CRISPR screens (n= 11 GSC cultures), ordered by hierarchical 

clustering. Columns annotated with gene set variation analysis (GSVA) gene signature scores 

from matched bulk RNA-seq. n.d. denotes no bulk RNA-seq data available for sample. (B) Rank 

order plot depicting differential fitness scores between Developmental (n= 4) and Injury 

Response (n= 5) GSC screens. Rank is according to differential fitness z scores (average qBF for 

Injury Response GSC screens, average qBF for Developmental GSC screens). Top ten hits per 

group are labeled. (C) Heat map of quantile normalized gene fitness qBF scores for the top ten 

differentially essential genes between Developmental and Injury Response GSCs. Rows ordered 

by position on the transcriptional gradient (related to Fig. 2.7D). Rows are annotated with GSVA 

gene signature scores from matched bulk RNA-seq. (D) Validation of state-specific fitness genes 

identified in CRISPR–Cas9 screens. Cas9-expressing Developmental (G523_L and G472_L; 

white) and Injury Response (G564_L and G691_L; gray) GSCs were transduced with lentivirally 

expressed gRNAs targeting indicated genes. gRNA-infected cells were grown in competitive 

proliferation assays against control cells expressing AAVS1 targeting gRNAs for 14 d, at which 

point relative cell number was assessed by flow cytometry. P values were calculated using 

Welch’s t-test (two-sided) comparing pooled Injury Response and Developmental replicates. 

Bars represents mean ± s.e.m. Data points represent independent biological replicates from n= 2–

5 independent experiments per gRNA. (E) Line plot depicting the proportion of Injury Response 

(gray line) and Developmental (red line) fitness genes (as defined in Fig 2.11B) that are essential 

in each GSC. Samples are ordered by position on the transcriptional gradient (related to Fig 

2.7D) and annotated with GSVA gene signature scores from matched bulk RNA-seq. 
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Figure 2.12 Genome-Wide CRISPR-Cas9 screens in GSCs 

 

(A) Box and whisker plots of TKOv3 gRNA library complexity in T0 populations for 70,948 

individual gRNAs from a single independent screen per GSC (n = 11 screens in 11 GSC 

cultures). Box plots represent the median, first and third quartiles of the distribution and whiskers 

represent 1.5-times the interquartile range. Outliers displayed as circles. (B) Precision-recall 

curves for 11 GSC CRISPR-Cas9 screen produced with BAGEL pipeline and v2 reference for 

essential/non-essential genes. (C) Barplot depicting the number of shared fitness genes across 

GSC screens. (D) Heatmap of quantile normalized gene fitness Bayes factor (qBF) scores for the 

1,484 most variable genes across 11 GSC screens. Samples (columns) annotated with GSVA 

score for Developmental and Injury Response gene signature scores from bulk RNA-sequencing. 

(E) GSEA on differentially essential genes between Developmental and Injury Response GSCs, 

visualized with EnrichmentMap. Similar pathways (circles) are grouped into labeled clusters 

(larger bubbles). Blue circles denote pathways more essential in Injury Response GSCs and red 

circles denote pathways more essential in Developmental GSCs. Edges (lines) denote overlap 

between pathways. 
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Injury Response GSCs were dependent on genes related to inflammation and integrin signaling 

(for example ITGB1, ILK) for their proliferation, whereas Developmental GSCs were dependent 

on genes implicated in neurodevelopment (for example OLIG2, SOX2, ASCL1) (Fig. 2.11c).  

Using competitive cell proliferation assays, we validated three hits each from Developmental 

(CCND2, SOX2, IRS2) and Injury Response (ILK, ITGB1, WWTR1) GSC states by testing 

individual gene knockouts (two gRNAs per gene) in a panel of four GSC lines (two 

Developmental and two Injury Response) (Fig. 2.11D). GSCs were preferentially sensitive to 

knockdown of gene hits from their respective transcriptional state. Injury Response GSCs were 

sensitive to knockdown of Injury Response gene hits, but not Developmental hits and vice versa, 

demonstrating that GSC states have unique and specific functional dependencies underpinning 

cellular growth.  

Pathway analysis on differentially essential genes revealed Injury Response GSCs were more 

sensitive to perturbations in basic cellular functions such as cell cycle, splicing and DNA repair, 

as well as immune related signaling pathways (Fig. 2.12E). Interestingly, Developmental GSCs 

relied on aerobic respiration, whereas Injury Response GSCs were more dependent on 

glycolysis. Under hypoxic conditions, tumor-initiating cells in GBMs upregulate glycolysis to 

promote drug resistance and stemness151, suggesting that GSC fitness is influenced by their 

microenvironmental niche. This is consistent with our expression data showing upregulation of 

transcriptional programs related to hypoxia and angiogenesis in Injury Response GSCs (Figs. 

2.6D and 2.8E) and demonstrates GSC functional dependencies are reflective of their 

transcriptional programming.  

Furthermore, we observed that GSCs organize along an essentiality gradient, mirroring the 

transcriptional gradient (Fig. 2.11E). The most Developmental GSCs, as defined by expression 

data (G523_L), were dependent on the greatest fraction of Developmental fitness genes. The 

same observation was true in Injury Response GSCs. GSCs located at the center of the gradient 

(for example, G809_L and G361_L), potentially representing mixed Developmental/Injury 

Response phenotypes, were the most reliant on fitness genes from both GSC states. Regardless 

of position on the gradient, all GSCs possessed essential genes from both ends of the spectrum, 

suggesting that combinatorial targeting of essential genes implicated in core Developmental and 

Injury Response processes could have general therapeutic benefit across patients. 

https://sciwheel.com/work/citation?ids=6268103&pre=&suf=&sa=0&dbf=0
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2.3.7 Position on GSC gradient is associated with specific copy-number variants 

Next, we hypothesized that specific CNVs may be preferentially enriched within Developmental 

and Injury Response GSC subtypes. Using gene signature scoring, we categorized cells into 

Developmental or Injury Response subtypes and compared the frequency and signal of CNVs 

across chromosome arms within these two groups (Fig. 2.13). To obtain a pure view of genetic 

heterogeneity within states, we excluded hybrid or unknown cells (2,733 of 65,655 cells; 4%) 

from the analysis, defined as cells classified into both subtypes and neither subtype, respectively. 

Generally, Developmental and Injury Response GSCs shared similar CNV profiles (Fig. 2.13A). 

Full or partial gain of chromosome 7 (79% Developmental, 64% Injury Response) and loss of 

chromosome 10 (42% Developmental, 38% Injury Response) occurred at similar, high 

frequencies in both GSC subtypes, consistent with reports that place these CNVs at the apex of 

GBM somatic evolution73.  

In contrast, to established founder CNVs, we identified three chromosome arms, 6q, 9p and 19p, 

as being differentially altered between Developmental and Injury Response GSCs. Chromosome 

arm 6q was frequently amplified in Injury Response cells (23% versus 1%) and deleted in 

Developmental cells (28% versus 8%) (effect size=0.99) (Fig. 2.13B). This chromosomal region 

encodes potential regulators of the Injury Response phenotype, including TNFAIP3, involved in 

TNF signaling and cytokine-mediated inflammatory responses. Chromosome arm 19p was more 

frequently deleted in Injury Response cells (46% versus 2%) and amplified in Developmental 

cells (36% versus 3%) (effect size=1.81). Deletion of chromosome arm 9p, encompassing the 

CDKN2A/B locus, was exclusive to the Injury Response state (30% versus 1%) (effect 

size=1.66) and is implicated in GBM initiation73. Both Developmental and Injury Response 

marker genes were enriched in state-specific altered regions of the genome (P<0.0001, chi-

squared test), suggesting that somatic CNVs can affect position in the GSC gradient. 

2.3.8 Heterogeneity in GBMs is defined by two transcriptional axes 

To determine where the Developmental–Injury Response GSC gradient lies within the cellular 

architecture of GBMs, we profiled 44,712 cells from seven GBM tumors using scRNA-seq. 

Using a combination of unbiased clustering, cell-type marker expression and CNV inference, we 

determined that 14,207 of 30,505 cells were malignant tumor cells (Fig. 2.14). We performed  

https://sciwheel.com/work/citation?ids=6680355&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6680355&pre=&suf=&sa=0&dbf=0
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Figure 2.13 Genetic alterations influence GSC state 

 

(A) Frequency of amplifications (red) and deletions (blue) across chromosomal arms within cells 

classified as being Developmental (left) or Injury Response-like (right). Regions variably altered 

between states are denoted by asterisks. (B) Comparison of InferCNV scores between 

Developmental (n= 25,292 cells) and Injury Response (n= 37,630 cells) GSCs across 

chromosome arms. Bar plot of effect size calculated with Hedge’s g. Chromosome arms with a 

‘large’ effect size (defined as >0.8, red bars) were determined to be variably altered between 

groups. The central dot in the violin plot represents the mean and whiskers represent s.d. Tips of 

the violin plot extend to the minimum and maximum values of the distribution. A two-sided 

Wilcoxon test was used for statistical analysis to compare means. 
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Figure 2.14 Classification of malignant cells in GBM tumors 

 

(A) Gene signature scoring and classification of cells into broad brain and immune lineages. 

Distribution of AUCell scores across cells. Vertical red line represents the classification 

threshold. Cells with an AUC value greater than the threshold were determined to be active for a 

given gene signature (left). UMAP visualization of cells colored by AUC (middle) and whether 

they are active (black) for a given gene signature (right) (n= 44,412 cells from seven tumors). (B) 

UMAP subsetted by cells classified as being of brain origin. Cells colored by scaled posterior 

probability from CONICS single-cell CNV inference tool for select chromosome arms. Higher 

probability (red) represents a cell likely belonging to the Gaussian mixture model component 

with a higher expression mean (n= 44,412 cells from seven tumors; same as in Fig 2.14A). (C) 

Expression of pan-immune (PTPRC/CD45), macrophage (ITGAM/CD11B, FCGR3A/CD16A, 

CD14), microglia (TMEM119), T-cell (CD2, CD3D), oligodendrocyte (MOG, MAG) and 

putative tumor cell (EGFR) markers (n= 44,412 cells from seven tumors; same as in Fig 2.14A). 

(D) Clustering of 44,712 cells from patient GBM tumors. Cells are colored by patient and 

annotated by cell type (left). Re-clustering of malignant cells only (right; n= 14,207 cells), 

colored by patient. (E) Quantification of malignant cells across patients, totaling 14,207 cells. 
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PCA on the combined 79,862 cancer cell dataset (65,655 GSCs and 14,207 tumor cells) to 

identify shared transcriptional programs between GSCs and GBM tumor cells. The first two 

principal components defined two core axes of variation explaining the genesis of heterogeneity 

in GBMs (Fig. 2.15A). The first, a differentiation trajectory between stem-like GSCs and 

differentiated tumor cells and the second recapitulating the Developmental–Injury Response 

gradient that we observed in GSCs alone (Fig. 2.15A). To investigate transitional dynamics 

between GSCs and differentiated tumor cells, we ran RNA velocity in combination with 

Diffusion Map on a subset of cells (n=20,343 cells; Methods; Fig. 2.15B). In general, the vector 

field points from the root of GSCs (DM1-high) to the tail of tumor cells (DM1-low), indicating 

directional flow from a stem-like phenotype to differentiated tumor cell and further supporting 

the gradients that we identified by PCA.  

Separation between GSCs and tumor cells along the differentiation trajectory underscores the 

presence of distinct transcriptional programs involved in the transition from stem-like initiating 

cells to mature differentiated tumor cells in GBMs (Fig. 2.15A). Tumor cells most distant from 

GSCs, at the end of the differentiation trajectory, resemble mature nonproliferative 

astrocytes141,152, expressing canonical markers such as GFAP, AQP4 and APOE (Fig. 2.15C,D 

and Fig. 2.16A). Conversely, the GSC pool was enriched for gene signatures related to 

progenitor cells, such as NPCs and young astrocytes, as well as elevated expression of H2FAZ, a 

gene involved in regulating gliogenesis in neural precursor cells153. The second transcriptional 

gradient was correlated with the Developmental–Injury Response gradient that we observed in 

GSCs. Both tumor cells and GSCs expressed markers of Developmental (for example OLIG1, 

OLIG2) and Injury Response (for example CD44) states (Fig. 2.15C,D). 

We further interpreted our two gradients in the context of previously described cell types in adult 

and pediatric GBM15. We projected GSCs and tumor cells onto a cellular state map consisting of 

NPC, OPC, astrocyte-like and mesenchymal-like quadrants (Fig. 2.16B). GSCs were capable of 

recapitulating all four cell states found in patient tumors. Developmental GSCs commonly 

mapped to astrocyte-like/OPC/NPC cell states, whereas Injury Response GSCs mapped 

predominantly to a mesenchymal-like state. Patient tumor cells were predominantly astrocyte-

like, confirming the phenotypes observed in our differentiation trajectory (Fig. 2.16C). Together 

these findings demonstrate that, despite culture conditions and lack of microenvironment, GSCs  

https://sciwheel.com/work/citation?ids=349162,228872&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6476586&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7206017&pre=&suf=&sa=0&dbf=0
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Figure 2.15 Heterogeneity in GBMs is defined by two transcriptional axes 

 

(A) PCA of 79,862 cells highlights overlap between GSCs (blue; n= 65,655 cells) and malignant 

GBM tumor cells (black; n= 14,207 cells) (left). GSCs (middle) and tumor cells (right) are 

colored by expression of Developmental (red) and Injury Response programs (blue). The GSC 

transcriptional gradient is represented by a yellow arrow and the astrocyte maturation gradient is 

represented by a red arrow. (B) Velocity field superimposed on Diffusion Map embeddings of a 

subset of 20,343 cells from Fig 2.15A (maximum 500 cells per sample, randomly selected). Cells 

are colored by cell type (left) and difference in Developmental and Injury Response scores 

(right). (C) Visualization of top-scoring cell-type signatures that are most descriptive of GSC or 

tumor cell populations. PCA plots binned into hexagons (hexbins). Hexbins represent median 

AUC score of all overlapping cells within a given coordinate. Contour lines represent an outline 

of GSC (blue) and tumor cell (black) data points on the PCA plot. (D) Visualization of select 

top- and bottom-loading PC1 and PC2 genes. Hexbins represent median normalized gene 

expression of all overlapping cells within a given coordinate. Contour lines represent an outline 

of GSC (blue) and tumor cell (black) data points on the PCA plot. 
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Figure 2.16 Characterization of axes of variation in glioblastoma and single nuclei 

RNA-sequencing of 53,853 nuclei from 10 patient tumors 

 

(A) Spearman correlation of cell type gene signature scores to PC1 and PC2 cell embeddings for 

combined PCA of GSC and tumor cells (n = 65,655 cells from 28 GSC cultures and 14,207 

malignant cells from 7 tumors). Only correlations with Spearman correlation coefficient greater 

than |0.4| shown. Bars colored by gene signature source. (B) Projection of GSCs (top row; 

n = 65,655 cells) and patient tumor cells (bottom row; n = 14,207 cells) onto GBM cell state map: 

astrocyte-like (AC; bottom left quadrant), oligodendrocyte precursor cell-like (OPC; upper left 

quadrant), neural progenitor cell-like (NPC, upper right quadrant) and mesenchymal-like (MES; 

bottom right quadrant). Cells are colored by density (left panels) and Developmental - Injury 

Response gradient program scores (right panels). (C) Proportion of cells across samples that map 

to each of the 4 GBM cell states. (D) UMAP visualization of 53,853 nuclei from 10 patient 

tumors colored by transcriptional cluster (left), patient (middle) and cell type (right). (E) Pearson 

correlation between average transcriptional cluster expression (left). Proportion patient cells per 

transcriptional cluster (middle), as colored in panel B. Box plots detailing expression of cell type 

marker genes per cluster (right). Box plots represent the median, first and third quartiles of the 

distribution and whiskers represent either 1.5-times interquartile range or most extreme value. 

Outliers are removed. (F), Proportion of cell types across tumors (as colored in the right panel of 

Fig 2.16D). Numbers in brackets represent the total number of nuclei per tumor. 
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mirror cell types found in primary tumors and represent a major transcriptional axis 

underpinning GBMs. 

2.3.9 GSC gradient between Developmental and Injury Response is recapitulated 

in primary tumors 

Although discovered in GSCs, primary tumor cells also organize along the transcriptional 

gradient (Fig. 2.17A). Tumor cells resembled the Developmental state more often, however 

Injury Response-like tumor cells were visible in every tumor (Fig. 2.17B–D). To validate the 

presence of rare Injury Response GSCs in a larger cohort, we profiled an additional ten patient 

tumors (42,334 of 53,853 nuclei were malignant) using single-nuclei RNA-seq (snRNA-seq) 

(Fig. 2.17A and Fig. 2.16D–F) and analyzed four public GBM sc/snRNA-seq datasets15,92,116,117   

(52 tumors; 49,018 malignant cells or nuclei) (Methods). Across all datasets, Developmental and 

Injury Response programs were anti-correlated (mean Pearson’s r=−0.70; Fig. 2.17E), mirroring 

patterns observed in our original discovery cohort. Tumor cells spanned the complete range of 

phenotypes discovered in our GSCs, including rare Injury Response-like tumor cells (Fig. 

2.17A,E). The presence of fewer Injury Response-like cells relative to Developmental-like cells 

in primary tumors could be the result of hindered differentiation capacity, limiting contribution 

of cells to the tumor bulk111. Thus, our panel of GSC lines successfully acts as a model to help 

explain global expression patterns in GBMs, including rare tumor-initiating cell types.  

To determine whether tumor cells harbor CNVs of their matched GSC states, we categorized 

tumor cells as Developmental or Injury Response-like based on the upper quartile of respective 

transcriptional program scores (Fig. 2.18A). Next, we identified tumor cells harboring at least 

one Developmental (chr6q−, chr9p+, chr19p+) or one Injury Response (chr6q+, chr9p−, 

chr19p−) CNV. Developmental and Injury Response-like tumor cells were significantly enriched 

for their corresponding state-specific CNVs compared to tumor cells with lower transcriptional 

scores (Developmental P<0.0001, Injury Response P<0.0001; chi-squared test). Individual tumor 

cells rarely harbored CNVs from both Developmental and Injury Response states (n=658 of 

14,207 cells; 4.6%), suggesting that these may be mutually exclusive events and that, in addition 

to transcriptional programs, tumor cells inherit genetic alterations of their founder GSCs (Fig. 

2.18B). These results further support the potential for CNVs to influence GSC and subsequent  

https://sciwheel.com/work/citation?ids=7206017,7664316,4558951,8041356&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10203004&pre=&suf=&sa=0&dbf=0
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Figure 2.17 GSC transcriptional states are reflected in patient tumors 

 

(A) Scoring of individual GSCs (blue; n= 65,655 cells from 28 GSC cultures) and tumor cells 

profiled by scRNA-seq (black; n= 14,207 from seven tumors) or snRNA-seq (dark red; 

n= 42,334 cells from ten tumors) for Developmental (x axis) and Injury Response (y axis) 

transcriptional programs. (B-D), Distribution of cells from select tumors (B), GSCs (C) and 

matched GSC–tumor pairs (D) on a PCA plot (related to Fig. 2.15A). Cells are colored by 

median expression of Developmental (red) and Injury Response programs (blue) and grouped 

into hexbins. Contour lines represent outline of GSC (blue) and tumor cell (black) data points on 

PCA plot. (E) Projecting malignant cells from four public GBM sc/snRNA-seq datasets 

recapitulates (cumulative n= 49,018 cells or nuclei from 52 tumors) the Developmental to Injury 

Response gradient. Visualization of scaled Developmental (x axis) and Injury Response (y axis) 

program scores across malignant cells from multiple public datasets. 
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Figure 2.18 Validation of GSC-state CNVs in patient tumors and identification of 

GSC-like tumor cells 

 

(A), Genome-wide inferred CNV profiles for 14,207 malignant cells from 7 patient tumors. 

Columns represent genomic regions, ordered by genome position across all chromosomes. Rows 

represent CNVs for individual cells, annotated by sample. (B) Developmental (left) and Injury 

Response (right) program scores across quartiles. Numbers underneath quartile labels depict the 

number of cells harbouring respective Developmental or Injury Response CNVs. Enrichment of 

CNVs between upper and lower quartiles was determined using a Chi-squared test. Box plots 

represent the median, first and third quartiles of the distribution and whiskers represent either 

1.5-times interquartile range or most extreme value. Outliers are displayed as circles. (C) Train 

and test accuracy for logistic regression model, 30 random 80:20 train test splits (left). 

Distributions of model coefficients corresponding to the 30 trained models (right). Model 

coefficients are weights by which the logistic regression model describes class likelihood as a 

function of PC1 and PC2. Box plots represent the median, first and third quartiles of the 

distribution and whiskers represent either 1.5-times interquartile range or most extreme value. 

Outliers displayed as circles. (D) Proportion of cells in GSCs correctly classified as being GSCs 

(blue) or misclassified representing tumor-like GSCs (white). Proportion of tumor cells correctly 

classified as being tumor (black) or misclassified as being GSC-like (grey). (E-F) PCA plot of all 

GSCs and tumor cells as in Fig. 2.15A. Black line represents contour encompassing 99% of 

tumor cells. Blue line represents contour encompassing 99% of GSCs. Grey dots represent tumor 

cells classified as being GSC-like. White dots with blue outline represent GSC cells classified as 

being tumor-like. (G) Differential gene expression analysis between tumor cells and GSC-like 

tumor cells. Each dot represents a gene (x-axis) ordered by average log2 fold change (y-axis). 

Red dashed line represents a log2 fold change of double between groups. (H) Differential gene 

expression analysis between GSCs and tumor-like tumor cells. Each dot represents a gene (x-

axis) ordered by average log2 fold change (y-axis). Red dashed line represents a log2 fold 

change of double between groups. (I) Expression of mature and young astrocyte gene signatures 

between tumor cells (black; n = 12,145 cells) and GSC-like tumor cells (grey; n = 2,062 cells). 

(J) Expression of mature and young astrocyte gene signatures between GSCs (blue; n = 64,502 

cells) and tumor-like GSCs (white; n = 1,153 cells).  
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tumor cell transcriptional state, although further validation is needed beyond the seven patients’ 

tumors available in this cohort.  

A fraction of primary tumor cells resembling GSCs were evident at the intersection of the 

Developmental–Injury Response and differentiation gradients. To characterize candidate stem-

like cells within patient tumors more precisely, we trained a logistic regression classifier to find 

GSC-like tumor cells (Fig. 2.18C; Methods). In agreement with the PCA, 2,062 GSC-like tumor 

cells were found in the overlapping region between GSCs and tumor cells. Every tumor 

contained a fraction of cells resembling GSCs (median 14%) (Fig. 2.18D). Notably, the tumor 

with the highest proportion of GSC-like cells was the only IDH1 mutant (p.R100Q, G620_T) in 

the cohort (Fig. 2.17D). IDH1 mutations promote convergence toward a proneural phenotype154, 

similar to what we term ‘Developmental’, potentially explaining the increased overlap with 

Developmental GSCs. Compared to the differentiated tumor bulk, GSC-like tumor cells have 

upregulated expression of stemness genes (for example SOX4, SOX11, STMN1) that overlap 

with markers of our GSC gradient (Fig. 2.18E–J). These data demonstrate that substantial 

overlap exists between GSCs cultured from patient tumors and GSCs found directly within 

surgical GBM samples. 

2.4 Discussion 

Single-cell profiling of adult and pediatric GBMs has characterized the diverse landscape of 

cellular states and genetic abnormalities present across and within individual tumors14,15,92,116,117. 

However, the fundamental source of this heterogeneity remains unclear. In this study, we 

comprehensively characterized cellular phenotypes of purified GSCs at the root of gliomagenesis 

using a combination of scRNA-seq and genome-wide CRISPR screening. We verified these 

phenotypes using sc/snRNA-seq of primary tumors and defined the relationship between GSCs 

and bulk progeny tumor cells.  

While GSCs from each patient were composed of multiple transcriptionally and genetically 

distinct subpopulations, all GSCs converged on a single biological axis, spanning two recurrent 

cell states defined by neurodevelopmental and inflammatory programs. Previously, GSC 

subtypes have been interpreted using the proneural and mesenchymal classifications derived 

from bulk RNA-seq of GBM tumors13,90,100,155 or based on similarity to neural subtypes found in 

https://sciwheel.com/work/citation?ids=5942800&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=24822,7206017,7664316,4558951,8041356&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=24823,5936200,58706,2378097&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
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normal or fetal brain development117. In contrast, our analyses suggest that both neural 

developmental and wound response programs account for a large portion of heterogeneity in 

GSCs and that plasticity could be mediated, in part, through cytokine signaling. Our results 

support a model centered around brain tumor stem cell development where transcriptional 

heterogeneity in GBMs can be explained by a combination of phenotypic gradients; a GSC 

gradient between regenerative and wound response programs and a bulk GBM gradient between 

stem-like and astrocyte-like differentiated cells.  

In response to invasive brain injuries, such as stab wounding or ischemia, astrocytes are known 

to increase proliferation and reactivate stem cell potential as a part of reactive astrogliosis156,157. 

The strong correlation between reactive astrocyte expression signatures and the Injury Response 

phenotype suggests that these GSCs may arise under similar conditions as reactive astrogliosis, 

such as hypoxia or neuroinflammation, both common features of the tumor microenvironment in 

GBMs. We demonstrated that Developmental GSCs can be converted to a more Injury 

Response-like phenotype following exposure to inflammatory cytokines. Although initially 

discovered in our in vitro model of GSCs, the Injury Response state was also observed in 

primary tumors, suggesting that this state could arise via interactions with activated microglia142 

and act as a neurodevelopmental driver via growth factor based cell–cell communication. We 

cannot, at this stage, exclude whether Injury Response programs could arise autonomously in 

cells and further understanding of deviation from a Developmental state requires additional 

experiments.  

The presence of GSC state-specific CNVs suggests that the position on the Developmental–

Injury Response gradient may be influenced by early somatic alterations. Established founder 

somatic copy-number alterations (chromosomes 7 and 10) may be responsible for the malignant 

transformation of astrocyte-like NSCs to GSCs73,126 with less-prevalent CNVs (19p, 6q, 9p) 

influencing the Developmental–Injury Response gradient position at which each GSC begins 

generation of bulk tumor. This creates a framework to further explore the influence of somatic 

variants and mutations on cellular states in the stem-like compartment of GBM and resultant 

heterogeneity in patient tumors. One model could be the acquisition of somatic alterations in pre-

GSC development cells that lie dormant until subject to injury, thereby triggering differentiation 

https://sciwheel.com/work/citation?ids=8041356&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=892151,918316&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=2995676&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6680355,5627773&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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toward an Injury Response state that is redirected toward generation of abnormal, bulk cancer 

cells.  

In conclusion, our observations have two important consequences. First, we may be able to 

explain GBMs across patients by a single biological model that involves combined mixtures of 

inflammatory wound-healing cells and NPC/OPC-like cells that cause aberrant neural growth. 

We hypothesize that GBM forms as a response to neural tissue wounding in the context of a 

mutated genomic background and that the output of this process is the dual generation of a brain 

growth and repair response that is derived from genetically abnormal brain precursor cells. This 

tissue regeneration-oriented interpretation contrasts with previous15,117 studies and the traditional 

cancer stem cell discourse that emphasizes cancer stem cell roots solely in a developmental stem 

cell paradigm. Second, the heterogeneity we have discovered at the GSC level suggests that 

therapies must be developed to simultaneously target both developmental and inflammatory 

processes observed in GBMs and GSCs. Further, our CRISPR screens directly identify a range of 

targetable sensitivities within this GBM-generating biological program. This paradigm may help 

identify new approaches to treating GBMs. 

2.5 Methods 

2.5.1 Patient samples and derivation of GSC cultures.  

All samples were obtained following informed consent from patients. All experimental 

procedures were performed in accordance with the Research Ethics Board at The Hospital for 

Sick Children (REB1000025582, REB0020010404), the University Health Network, the 

University of Calgary Ethics Review Board and the Health Research Ethics Board of Alberta, 

Cancer Committee and Arnie Charbonneau Cancer Institute Research Ethics Board (REB 

HREBA-CC-160762).  

Adherent GSC cultures (denoted “G###_L”) were cultured as previously described85 . In brief, 

cells were grown adherently on culture plates coated with poly-L-ornithine and laminin. 

Serumfree NS cell self-renewal media (NS media) consisted of Neurocult NS-A Basal media, 

supplemented with 2 mmol/L L-glutamine, N2 and B27 supplements, 75 μg/mL bovine serum 

https://sciwheel.com/work/citation?ids=7206017,8041356&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://paperpile.com/c/m3BZa9/9slo
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albumin, 10 ng/mL recombinant human EGF (rhEGF), 10 ng/mL basic fibroblast growth factor 

(bFGF), and 2 μg/mL heparin. All assays were completed with cultures between passages P8-12. 

Non-adherent GSC lines were cultured as free-floating spheres (denoted “BT###_L”) , in serum-

free media as previously described121 . Briefly, GSC lines were maintained in Serum-Free Media 

(SFM) supplemented with EGF and bFGF (20ng/ml each, Peprotech) and heparan sulfate 

(2µg/ml, Sigma) until non-adherent spheres formed, typically after 7-21 days. Upon reaching 

150-200 μm, spheres were dissociated via mechanical trituration or with AccumaxTM 

(Innovative Cell Technologies, Inc.) and re-plated as single cell suspensions in T25 flasks for 

routine maintenance. 

2.5.2 Proliferation assays.  

Cells were plated in equal numbers in a 24-well plate: triplicate wells for technical replicates and 

in four biological replicates of each technical triplicate. Each set of technical triplicates was 

lifted and absolute cell number was quantified at several discrete time points over culture. 

Population doubling time was calculated over exponential phase of growth using the calculation: 

(t2−t1)/ 3.32×(log n2−log n1), where t=time and n=number of cells.  

2.5.3 Intracranial GSC xenografts.  

Six- to 16-week-old female NOD/scid gamma or CB17/SCID mice (Charles River Laboratories) 

were orthotopically transplanted with GSCs for survival studies. A total of 100,000 cells 

dissociated to a single-cell suspension were transplanted into the right striatum or at the 

following coordinates: 1mm anterior of bregma, 2mm to the right of the midline and 3mm deep. 

Mice were housed in groups of three to five and maintained on a 12h light– dark schedule with a 

temperature of 22±1 °C and relative humidity of 50±5%. Food and water were available ad 

libitum. All attempts were made to minimize handling time during surgery and treatment so as 

not to unduly stress the animals. Animals were observed daily after surgery to ensure there were 

no unexpected complications. All animal protocols described in this study were approved by the 

Animal Care Committee at the Hospital for Sick Children and the University of Calgary, 

operating under the Guidelines of the Canadian Council on Animal Care. All animal work 

procedures were in accordance with the Guide to the Care and Use of Experimental Animals 
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published by the Canadian Council on Animal Care and the Guide for the Care and Use of 

Laboratory Animals issued by the National Institutes of Health.  

2.5.4 Limiting dilution assays.  

GSCs grown adherently were plated as serial dilutions on nonadherent 96-well plates with the 

highest density at 2,000 cells per well and the lowest at 2 cells per well. Each cell dose was 

plated in six technical replicates. GSCs grown as neurospheres were seeded in 100μl of medium 

into the inner 60 wells of a 96-well plate at ten cell densities, as serial dilutions from 512 cells to 

1 cell per well, with six replicate wells per cell density. Each LDA plate was counted as one 

technical replicate. After plating, LDA plates were incubated at 37 °C and 5% CO2 for 14 or 21d 

when all wells were scored for the presence or absence of spheres. The SFC was calculated using 

Extreme Limiting Dilution Analysis software158. Three biological replicates from each GSC 

culture were plated.  

2.5.5 Cytokine treatment and RT–qPCR 

GSCs were seeded at a density of 350,000 cells per well into six-well plates coated with poly-l-

ornithine and laminin. After 24h in NS medium, fresh medium containing vehicle or cytokines 

was added, with final concentrations as follows: TNF-α (30ngμl −1 ), C1q (400ngμl −1 ) and IL-

1α (3ngμl −1 ). Cell pellets were collected after 48h of treatment and stored at −80 °C until RNA 

extraction. RNA was extracted from cells using RNeasy Mini kit (QIAGEN). The Transcriptor 

First Strand cDNA Synthesis kit (Roche) was used to reverse transcribe 1 µg of RNA. 

Quantitative PCR was performed using SsoFast EvaGreen Supermix (BioRad) and the CFX 

Connect Real-Time PCR detection system (BioRad). 

2.5.6 Single-cell and single-nuclei RNA-seq.  

2.5.6.1 Generation of single cell and nuclei suspensions.  

We generated single-cell suspensions from viably cryopreserved, dissociated GSC lines by 

thawing and resuspending in a solution of PBS and BSA. For patient GBM tumors, high-quality 

single-cell suspensions were generated by dissociating biopsied tissues in accutase and DNase. 

Post-dissociation red blood cells (RBC lysis solution, Miltenyi) and cellular debris from 

damaged cells (Miltenyi) were removed. We generated single-nuclei suspensions from snap-
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frozen tumors. Tissues were minced on dry ice and dissolved in lysis buffer (0.32M sucrose, 

5mM CaCl2, 3mM Mg(Ac)2, 20mM Tris-HCl (pH 7.5), 0.1% Triton-X-100, 0.1mM EDTA (pH 

8.0)), followed by homogenization with a pellet pestle. Nuclei integrity and quantity was 

assessed with SYBR Green II RNA Gel stain (Thermo Fisher Scientific). Nuclei were filtered 

through a 40-µm cell strainer and sorted for intact nuclei using DAPI (Sigma-Aldrich) on a BD 

Influx FACS sorter. Using a hemocytometer, nuclei or cells were re-suspended according to 10X 

Genomics concentration guidelines to obtain a target of 2,000–6,000 nuclei per sample. Cells had 

a minimum final viability of 70%.  

2.5.6.2 Library preparation and sequencing.  

Library preparation was carried out as per the 10X Genomics Chromium single-cell protocol 

using the v2 chemistry reagent kit. Cell or nuclei suspensions were loaded onto individual 

channels of a Chromium Single-Cell Chip along with reverse transcription master mix and single 

cell 3′ gel beads. Complementary DNA underwent a two-stage purification process with Dynal 

MyONE Silane beads (Thermo Fisher Scientific), followed by SPRISelect beads (Beckman 

Coulter). Libraries were sequenced on an Illumina 2500 in High Output mode using the 10X 

Genomics recommended sequencing parameters. Samples were quantified by KAPA Library 

Quantification kit (Roche) and normalized to achieve the desired median read depth per cell 

(target mean 60,000 reads per cell).  

2.5.6.3 Single-cell and single-nuclei RNA-seq data pre-processing.  

We used the 10X Genomics CellRanger software pipeline (v.2) to demultiplex cell barcodes and 

map reads to the GRCh38 human reference transcriptome using STAR aligner. snRNA-seq data 

were aligned to a custom GRCh38 pre-mRNA reference transcriptome that included intron 

sequences to accurately quantify nuclear unspliced messenger RNA. We calculated the number 

of reads per cell barcode using the BamTagHistogram function in the Drop-seq Alignment 

Cookbook159. We determined the number of cells per sample using the cumulative fraction of 

reads corresponding to cell barcode in a library. Cell barcodes were sorted in decreasing order 

and the inflection point was identified using the R package Dropbead160 (v.0.3.1) to distinguish 

between empty droplets and droplets containing a cell. The raw matrix of gene counts versus 

cells from CellRanger (v.2) output was filtered by the list of true cell barcodes from Dropbead. 
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We processed the resultant unique molecular identifier (UMI) count matrix using the R package 

Seurat161,162 (v.2.3.4) as described below and defined detected genes as those with >0 UMIs.  

2.5.6.4 Data filtration.  

We discarded cells with >4 median absolute deviations, up to a maximum of 40%, of UMI 

counts belonging to expressed mitochondrial genome genes, potentially indicative of damaged 

cells with compromised cellular membranes. Probable cell multiplets were removed if log-library 

size or log-genes detected were more than 3 median absolute deviations above the median. Low-

quality cells with fewer than 350 genes detected were also removed. We removed lowly 

expressed genes detected in fewer than 1% of cells in a sample. 

2.5.6.5 Data normalization.  

Expression normalization was performed using the LogNormalize() function in Seurat. To adjust 

for differences in library size and cell cycle, we regressed on the number of UMIs, mitochondrial 

content and cell-cycle difference (described below) using a linear model during gene scaling and 

centering. Expression values were scaled across all samples and cells in a given dataset. Scaled z 

score residuals (‘relative expression’) were used for dimensionality reduction and clustering. For 

visualizations, we clipped relative expression to the range (−2.5, 2.5) to prevent outliers from 

dominating the scale.  

2.5.6.6 Adjusting for cell-cycle signal.  

Heterogeneity from cell cycle stage, particularly among cells grown in vitro, can contribute 

substantial transcriptomic variation and mask biological signal. However, removing all signal 

associated with cell cycle can blur the distinction between cell types where proliferation is a 

biological trait (e.g. mitotic and post-mitotic neural progenitors163 ).  

To preserve biological signal separating cycling and noncycling cells, while removing 

uninteresting differences in cell cycle, we used the ‘Alternate Workflow’ in Seurat. 

(https://satijalab.org/seurat/v2.4/cell_ cycle_vignette.html). First, we assigned cell-cycle scores 

to individual cells on the basis of expression of previously published G2/M and S-phase gene 

signatures133, using the CellCycleScoring() function. Cells expressing neither G2/M nor S-phase 

marker genes were assigned to G1. Next, we calculated the difference between S-phase and 

G2M-phase scores for each cell to give a ‘Cell Cycle Difference Score’ and regressed the 

https://sciwheel.com/work/citation?ids=5027067,7035390&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4927382&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1354112&pre=&suf=&sa=0&dbf=0


75 

 

difference in phases with a linear regression model as described above. Cell cycle phases for 

each cell are stored, so we can recall the mitotic phase for each cell post-regression. 

2.5.6.7 Dimensionality reduction.  

PCA was conducted on all expressed genes, excluding ribosomal transcripts. Significant 

principal components, as determined by the inflection point in a scree plot, were used as inputs 

for nonlinear dimensionality reduction techniques (t-SNE and UMAP), as well as cell clustering. 

Diffusion Map164 was performed on the same subset of genes as PCA using the RunDiffusion() 

implementation in Seurat. Due to memory constraints, Diffusion Map was run on a subset of 

cells by randomly downsampling each sample to a maximum of 500 cells.  

2.5.6.8 Clustering and visualization.  

To identify intra-GSC and inter-GSC clusters, we performed iterative SNN-Cliq-inspired 

clustering on significant principal components using a smart local moving algorithm as 

implemented in Seurat with a range of resolutions from 0.1 to 1. The R package scClustViz165 

(v.1.2.1) was used to perform differential expression testing (Wilcoxon rank-sum test, 

FDR<0.05) between clusters for all resolutions to assess the biological relevance of each cluster 

solution. Genes with a detection rate difference between clusters of 0.15 or greater were included 

in differential testing. To select the optimal resolution, we selected the clustering solution with 

the greatest silhouette value from all solutions with a median of >20 DE genes per cluster. 

Clusters were visualized using t-SNE and UMAP.  

We validated the ability of our clustering pipeline to accurately detect intra-GSC subpopulations 

by benchmarking four clustering algorithms: original Louvain algorithm166 (implemented in 

Seurat), Louvain algorithm with multilevel refinement (implemented in Seurat), k-means and 

spectral clustering167 (Fig 2.1B). For spectral clustering, we clustered cells across a range of 

possible centres (k=2-8) and picked the optimal number of clusters based on the highest average 

intra-cluster silhouette width. For k-means clustering (k=2-8), we selected the optimal number of 

clusters using majority rule across 30 comparative indices calculated in the NbClust R package168 

(v3.0). Both Louvain algorithms agreed completely with our original clustering across all 

samples. Spectral and k-means clustering agreed with our original clustering results in 67% and 
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78% of samples, respectively, when the top 2 solutions (k) were considered. Together, this 

demonstrates our ability to identify reproducible clusters, with limited technical bias. 

2.5.6.9 RNA velocity 

CellRanger BAM files were sorted with samtools169 (v1.10). Per sample loom files were 

generated from sorted BAM files using Velocyto71 (v0.17.13) and the GRCh38 annotation.gtf 

(10x Genomics). Loom files were merged with loompy (v3.0.6; 

https://github.com/linnarssonlab/loompy) and subset to contain cells used in Diffusion Map. For 

scvelo72 (v0.2.2) analysis, genes in the merged loom file were filtered for a minimum count of 20 

in both spliced and unspliced count matrices and with the filter_genes_dispersion function 

(n_top_genes=2000). Count matrices were normalized by counts per cell, and log transformed 

log(x + 1). The functions scvelo.tl.velocity and scvelo.tl.velocity_graph were run using default 

parameters. RNA velocity plots on Diffusion Map coordinates were generated with the 

scvelo.pl.velocity_embedding_stream function. 

2.5.6.10 Single-cell gene signature scoring and pathway analysis 

Gene signature activity in single cells, with the exception of cell cycle stage, was quantified 

using AUCell170. To determine if a given gene signature is on or off in a cell, AUCell examines 

the distribution of AUC scores across cells and nominates a score threshold based on the best fit 

of multiple distributions to the data (i.e. bimodal, normal). When directly comparing the 

difference of AUCell scores between two gene signatures, such as in Fig. 2.15A, AUCell scores 

were normalized between [0,1] by subtracting the minimum and dividing by the range.  

We curated a collection of gene signatures from cluster and cell type markers in published 

single-cell and bulk RNA-sequencing of developing human cortex139,140, glioblastoma13,15, 

mature forebrain141 and developmental astrocyte states141,142. We additionally used ‘Injury 

Response’ (4399 genes) and ‘Developmental’ (3968 genes) signatures derived from differential 

expression between the Injury Response and Developmental clusters identified with bulk RNA-

seq of GSC samples (for further information see Bulk RNA-sequencing section of this chapter). 

Marker genes and principal component top/bottom-loading gene lists were annotated using over-

representation analysis in clusterProfiler171 (v.3.10.1). For this analysis, all expressed genes in 

the dataset defined the “universe” of background genes. Over-representation analysis was 
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performed with the ‘enricher’ function from the clusterProfiler R package using a 

hypergeometric test, with a q-value cutoff of 0.01 after multiple comparison adjustment with the 

Benjamini and Hochberg (BH) procedure. Hallmark (H), curated (C2), gene ontology (GO, C5), 

oncogenic (C6) and immunologic (C7) gene sets from MSigDB18 (v7.0) were used for 

annotation. The enrichment map was generated using genes ranked by the negative of PC1 

loadings as described for Bulk RNA Sequencing (Fig. 2.8D). 

2.5.6.11 Single-cell CNV analysis 

CNVs were called from scRNA-seq data using inferCNV (v.0.3, 

https://github.com/broadinstitute/infercnv). CNVs were estimated by sorting expressed genes by 

genomic location and averaging relative expression of genetically adjacent genes using a sliding 

window of 100 genes. Resultant expression levels were compared to a reference panel of 600 

normal, diploid oligodendrocyte cells from six primary tumors. Individual CNV scores were 

averaged across intra-GSC clusters to visualize transcriptional clusters with unique CNV profiles 

in Fig. 2.7B. To validate the accuracy of our single-cell CNV calls, we compared inferCNV 

scores and WGS CNV log2 ratios at the gene level for a cohort of 20 GSCs profiled with both 

technologies. Discrete inferCNV cutoffs that define single copy gain (0.17) or loss (−0.15) were 

determined using the median inferCNV score of genes deleted or gained by GISTIC34 (v.2.0.23) 

on matched WGS data (Fig. 2.4A-C). 

2.5.6.12 CNV enrichment analysis.  

To assess how inferred CNVs may influence marker gene profiles of GSC clusters, we first 

identified GSCs with variable CNVs across chromosome arms by binning loci into deletion, 

neutral and gain bins using inferCNV score cutoffs as described in Fig. 2.4D. We then assessed 

the proportion and enrichment of cluster marker genes that reside within CNV loci that are 

variable between clusters using a Fisher’s exact test (Fig. 2.4E).  

To identify CNVs specific to Developmental versus Injury Response-like GSCs, we averaged 

CNV signals of all genes across chromosome arms for each cell. Chromosome arms with <50 

expressed genes were excluded. Next, we classified cells as being either Developmental-like or 

Injury Response-like using gene signature scoring. We excluded hybrid cells, defined as cells 

scoring as positive or negative for both states. We then compared the intensity of CNV signal, 
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represented by inferCNV scores, between Developmental-like or Injury Response-like cells 

across chromosome arms. Variably altered regions between GSC subtypes were identified using 

effect size (large magnitude, Hedge’s g≥0.8; Fig. 2.13B). 

2.5.6.13 Identification of malignant cells in patient GBMs 

To discern tumor cells from normal cells, we used a three-step approach involving unbiased 

clustering, CNVs and expression of cell-type specific marker genes. First, we used UMAP to 

visualize all cells in the same transcriptional space. Second, we classified cells as being of 

‘brain’ or ‘immune’ origin using gene signature scoring. The “brain origin” gene signature was 

derived from the union of the top 50 expressed genes for each brain subregion in GTEx172, 

resulting in 129 genes specific to normal brain tissue but agnostic of anatomical region. We used 

the ESTIMATE173 Immune score gene list as the “immune origin” signature. 

We then identified malignant tumor cells within the brain fraction using single-cell CNV 

inference. We used groups of co-clustered cells that appeared brain-like but not immune-like as 

input for CONICS174 (v0.0.0.1), a tool to identify CNVs in single cell RNA-sequencing data 

without the use of an a priori reference cell dataset by fitting a two component Gaussian Mixture 

Model to the average gene expression across all genes on each chromosome arm. The posterior 

probabilities for each cell belonging to the component with the higher mean can be used to 

visualize copy number states across cells and discern malignant brain tumor cells from normal 

brain cells. Using this information and prior knowledge of GBM CNVs4,13,73, we conclude that 

chromosome 7p/q has two copy number states, cells colored red have high probability of 

harbouring amplifications (higher mean gene expression), compared to low probability cells 

(blue) that are likely diploid at that locus. Opposite patterns are observed with chromosome 10. 

Combining CNV state prediction from chromosome 7 and 10, we were able to define a subset of 

cells that co-localize on UMAP and harbour CNVs at canonical GBM loci, as well as a copy-

quiet subset of normal brain cells (Fig. 2.14B).  

Finally, we validated our cell-type annotations with expression of canonical cell-type marker 

genes for immune, macrophage, microglial, T-cell, oligodendrocyte and putative tumor cells 

(Fig. 2.14). 
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2.5.6.14 Re-analyzing public sc/snRNA-seq datasets 

Whenever possible, we used cell annotations provided in the publications to label cells (for 

example, tumor, immune, oligodendrocytes). In the absence of annotations, we re-processed the 

data using our clustering pipeline as described above. Malignant cells were then identified using 

a combination of unbiased clustering, marker gene expression and scaled expression of genes on 

chromosome 7 and 10 as a proxy for CNVs. Normalized gene expression matrices were used for 

gene signature scoring. 

2.5.6.15 Projection onto GBM cell-state map.  

The two-dimensional cell-state representation map was created as described by Neftel et al.15 

(Fig. 2.16B). Cells were scored for cell-state gene signatures using the AddModuleScore() 

function in Seurat. NPC1/2 and MES1/2 scores were averaged to represent one score each for 

NPC and mesenchymal states. Cells were then separated into OPC/NPC and 

astrocyte/mesenchymal lineages by the sign of D=max(SCOPC,SCNPC)−max(SCAC,SCMES); where 

SC represents the transcriptional program score, D represents the y axis value, AC represents 

astrocytes and MES represents mesenchymal cells. Next, for OPC/NPC cells (D>0), the x axis 

value was computed as log2(SCOPC−SCNPC+1) and for astrocyte/mesenchymal cells (D<0), the x 

axis was computed as log2(SCAC−SCMES+1). 

2.5.6.16 Identification of GSC-like tumor cells with a logistic regression classifier 

The scRNA-seq dataset consisting of all tumor and cultured GSC cells minus all G800_L cells 

was split into an 80% training set and a 20% test set, with the split stratified by the two classes 

(tumor and GSC). The first two principal components (Fig. 2.15A) were used as inputs to be 

mapped to labels. 

On the training set, a logistic regression classifier was trained using the best hyperparameter 

determined from 5 fold cross validation. The following functions/classes from sklearn (v0.21.2) 

were called in R using the reticulate package (v1.13): “linear_model.LogisticRegressionCV”, 

“metrics.accuracy_score” and “model_selection.train_test_split”. The range of hyperparameters 

(argument Cs for LogisticRegressionCV) considered for model training was from 1e-4 to 1e4. L2 

regularization was used. To assess model stability, we repeated the 80/20 train test split 30 times 

with different random (stratified) splits and examined the distributions of test accuracy and 
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model coefficients (Fig. 2.18C). We found that the model was robust to sampling effects. We 

picked the best performing model (highest test accuracy) and used it to predict class labels for 

the entire dataset. 

2.5.7 Bulk RNA-seq 

2.5.7.1 Library preparation and sequencing. 

RNA was extracted from frozen cell pellets using the AllPrep DNA/RNA Universal kit 

(QIAGEN). Strand-specific sequencing libraries were prepared from 500ng total RNA using 

poly(A) capture of transcripts with the NEBNext Poly(A) mRNA Magnetic Isolation Module 

(E7490L, NEB). Libraries were quantified with the Qubit dsDNA HS Assay kit (Thermo Fisher 

Scientific). Clusters were generated on the Illumina cluster station and sequence was run on the 

Illumina HiSeq2500 (indexed lane using V4 chemistry) platform following the manufacturer’s 

instructions. 

2.5.7.2 Data pre-processing and clustering 

Strand-specific 75-bp paired-end reads were aligned to hg38 reference using STAR43 (v.2.4.2a) 

and annotated with University of California Santa Cruz (UCSC) source from the Illumina 

iGenome reference. The ‘ReadsPerGene’ raw counts from STAR were used for downstream 

analysis. Genes were filtered for those with at least five counts across all samples. DESeq2 (ref. 

45) (v.1.22.2) was used to calculate size factors for each sample and perform variance stabilizing 

transformation. Batch correction was performed to incorporate technical and biologically 

relevant features into the model. Following VST transformation of counts, batch correction was 

performed using the ComBat175 function in the sva package176 (v3.30.1) to incorporate, 

sequencing cohort, culture condition (adherent vs. neurosphere), sex, age, and primary/recurrent 

status into the model to avoid removing these factors’ contributions to variance in the data 

Variance stabilizing-transformed bulk RNA-seq data for 72 GSC lines were used as inputs for 

clustering. We assessed the similarity of clusters obtained on random subsamples of data to a full 

data clustering solution. Across a range of cluster numbers (k=2-4), we used kernlab177 (v0.9-27) 

to perform 200 runs of spectral clustering on the full dataset and do the same on randomly 

subsampled datasets containing 80% of samples. We then calculated the Adjusted Rand Index 

(ARI) between clustering solutions computed on the full and subsampled datasets. For each 
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value k (number of clusters) we determined which solution obtained on the full dataset had the 

highest median ARI with respect to the solutions from subsampled data, and called it the optimal 

solution for the given k. The optimal solution for k = 2 had the highest median ARI with respect 

to subsampled solutions out of all values k, so we used this solution for further analyses of bulk 

RNA-seq data (Fig. 2.8C). 

2.5.7.3 Differential gene expression and pathway analysis 

Differential gene expression analysis was carried out on count data using DESeq2 (ref. 45) 

incorporating batch status as a covariate in the expression model. Developmental and Injury 

Response signatures were defined as upregulated genes (FDR<0.05, two-sided Wald test) in the 

corresponding clusters identified above (Fig. 2.6 C-D). GSVA178 (v.1.30.0) was used to assess 

the activity of gene signatures across samples. Gene Set Enrichment Analysis (GSEA)179 (v3.0) 

was performed on differentially expressed genes ranked by sign(LFC)*(-log10(FDR)) (LFC = 

log fold change, FDR = Benjamini Hochberg False Discovery Rate). Pathways used for GSEA 

were obtained from Human_GO_AllPathways_no_GO_iea_April_01_2018_symbol.gmt 

(http://download.baderlab.org/EM_Genesets/) and filtered with a minimum size of 15 and a 

maximum size of 200 genes. Enriched pathways were filtered at FDR<0.10. Enriched pathways 

were grouped into functional themes by AutoAnnotate180 (v1.3.2) and visualized using 

Enrichment Map181 (v3.1) in Cytoscape182 (v3.7.2) (Fig. 2.6D) 

2.5.8 Whole-genome sequencing 

DNA was extracted from frozen cell pellets using the AllPrep DNA/RNA Universal kit 

(QIAGEN) and whole blood samples using the QiaAmp DNA Blood Midi kit (QIAGEN). 

Illumina-compatible sequencing libraries were constructed from 500ng gDNA using TruSeq 

DNA PCR-free kits (New England Biolabs) and sequenced with paired-end 150-base reads on 

the Illumina HiSeqX platform to a median depth of 60× for GSCs and blood normals. Sequence 

data quality checks were performed with FastQC (v.0.11.5) and aligned to the human reference 

genome hg38 with bwa183 (v.0.7.15).  

We used Genome Analysis Toolkit (GATK)184,185 (v3.5) best practices to pre-process BAM files 

using the markduplicate command, IndelRealignment and BQSR functions. Cellularity, ploidy 

and allele-specific copy number profiles were estimated from GSC-blood pairs using VarScan231 
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(v2.3.8) calls as input for Sequenza33 (v2.1.2). Log2 copy number ratios between -0.35 and 0.3 

were set to assign genome losses and gains, respectively, using GISTIC34 (v2.0.23) with the 

maximum number of segments (-maxseg) set to 24000. 

2.5.9 Genome-wide CRISPR–Cas9 screens 

We performed CRISPR–Cas9 screens using the 70-k TKOv3 library149 (Addgene, 90294) using 

previously established protocols103 with cells cultured as described above. A minimum of 8×107 

cells were transduced with gRNA library-expressing lentivirus in the presence of 0.8µg 

polybrene at a multiplicity of infection of 0.3. At 24h after transduction, lentiviral medium was 

removed and cells were cultured with 2 µgml−1 puromycin for 48–72h to select for integration of 

lentiviral cassette. After selection, surviving cells were pooled and T0 samples of a minimum of 

1.5×107 cells were collected and frozen at −80 °C for gDNA extraction. The remaining cells 

were then divided into 2–3 replicates of 1.5×107 cells and cultured for 14-cell doublings under 

standard culture conditions, maintaining a minimum of 1.5×107 cells per replicate at all times 

(~200-fold library coverage). At time points of approximately 10- and 14-cell doublings, we 

collected cell pellets of 1.5×107 cells and stored them at −80 °C for gDNA extraction. A detailed 

description of gDNA extraction, library preparation and sequencing is provided in the subsection 

gDNA extraction, library preparation and sequencing. 

2.5.9.1 gDNA extraction, library preparation and sequencing 

Genomic DNA was extracted from T0 and screen cell pellets using the QiaAMP DNA Blood 

Maxi Kit (QIAGEN) according to the manufacturer’s protocol. Following ethanol precipitation 

to concentrate gDNA samples, we amplified 50 μg of gDNA from each sample in 20 individual 

PCR reactions using Kapa HiFi Master Mix (Kapa Biosystems) and 1 μM of TKOv3 library 

primers (forward: 5’-GAGGGCCTATTTCCCATGATTC-3’, reverse: 5’- 

GTTGCGAAAAAGAACGTTCACGG-3’) for 19 amplification cycles. Individual sets of PCR 

reactions were pooled and 5 μL was used as a template for a second PCR reaction to attach 

TrueSeq adaptor sequences and unique i5/i7 barcode combinations for each sample in Kapa HiFi 

Master Mix with 1μM primer concentration for 17 amplification cycles. Barcoded PCR product 

was gel purified and sequenced on an Illumina NextSeq500 instrument with 4 x 107 reads for T0 

samples and 1.5 x 107 reads for screen samples. 

https://sciwheel.com/work/citation?ids=3797373&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1913748&pre=&suf=&sa=0&dbf=0
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2.5.9.2 Analysis of genome-wide screen data 

DNA sequencing reads for each CRISPR screen were mapped to TKOv3 library gRNAs using 

MAGECK (v0.5.8)186. The BAGEL150 (v0.91) pipeline was used to normalize gRNA reads for 

sample sequencing depth, calculate fold-change for each gRNA from the T0 baseline and 

compute a Bayes Factor (BF) for each gene representing a confidence score that gene knockout 

produces a fitness defect103,149. As a quality control step, we assessed gRNA complexity in the 

T0 population. For all 11 CRISPR screens, greater than 98% of the 71,090 gRNAs in the library 

were detected at least 30 sequencing reads, with a similar distribution across all samples (Fig. 

2.12A). Quantile normalization was performed for comparison of BF (qBF) scores across 

screens. Variable essential genes were defined as those with a qBF > 10 in 3-9 of the 11 screens 

(Fig. 2.12B) 

To identify differentially essential genes, the difference in average qBF scores between Injury 

Response and Developmental GSC screens was calculated for each gene. The resulting 

differences were transformed into z scores and a cutoff of >|2| was used to identify essential 

genes in each respective GSC state. Pathway analysis was performed on the ranked gene list 

generated by calculating the difference in average qBF scores between Injury Response and 

Developmental GSC screens and visualized with EnrichmentMap as described for bulk RNA-

seq. 

2.5.9.3 Competitive proliferation assays 

For validation of gene knockouts producing fitness defects, Cas9-expressing GSCs were first 

engineered via lentiviral transduction as previously described103. Cas9-expressing GSCs were 

then transduced with either Lentiguide-gRNA-NLS-eGFP-2A-PURO targeting specific genes of 

interest or Lentiguide-gRNA-NLS-mCherry-2A-PURO constructs targeting the AAVS1 locus. 

Each gene was targeted with two unique gRNAs. At 24h after transduction, cells were selected 

with 2 µgml−1 puromycin for 48–72h. Co-culture competitive proliferation assays were set up by 

mixing approximately 50,000 red cells (nls-mCherry gRNA-AAVS1) and 50,000 green cells 

(nls-eGFP gRNA-gene of interest). One half of this mixture was seeded in a six-well plate and 

the other half was subjected to flow cytometry using a CytoFlex S (Beckman Coulter) to assess 

the relative proportion of red and green cells at the start of the experiment. Cells were cultured 

for 14d at which point they were collected and subjected to flow cytometry as above to assess the 

https://sciwheel.com/work/citation?ids=24857&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2661890&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6816788,3920471&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6816788&pre=&suf=&sa=0&dbf=0
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relative proportion of red and green cells. Relative cell fitness was calculated as the percentage 

of green cells at T14 divided by the percentage of green cells at T0, with normalization to an 

AAVS1 versus AAVS1 competition assay. 

2.5.10  Statistics and reproducibility 

No statistical method was used to predetermine sample size. Cells with insufficient library 

complexity were excluded from the analyses as described in the methods. G800_L was removed 

as an outlier based on PCA (Fig. 2.6A). Investigators were not blinded to the study of human 

sequencing data. Plotting and statistical analysis was performed in the R statistical environment 

(v.3.5.0 and v.3.6.1) and GraphPad Prism (v.8). 

2.5.11  Data availability  

Bulk RNA-seq (EGAS00001003070 and EGAS00001004395), WGS (EGAS00001004395), sc 

and snRNA-seq (EGAS00001004656) datasets generated and analyzed in this study are available 

through the European Genome-Phenome Archive repository in the form of FASTQ or BAM 

files. Processed sc and snRNA-seq data are publicly available through the Broad Institute Single-

Cell Portal (https://singlecell.broadinstitute.org/single_cell/study/SCP503) and CReSCENT187 

(https://crescent.cloud; study ID CRES-P23). All other data supporting the findings of this study 

are available from the corresponding author on reasonable request. Previously published scRNA-

seq data that were re-analyzed in this study are available from the following sources: Wang et 

al.92 (GSE138794), Bhaduri et al.117 (http://cells.ucsc.edu/?ds=gbm), Neftel et al.15 

(https://singlecell.broadinstitute.org/single_cell/study/SCP393/) and Darmanis et al.116 

(http://gbmseq.org/). Source data are provided with this paper. 
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3.1 Abstract: 

Glioma stem cells (GSCs), thought to be the root of glioblastoma and responsible for relapse 

after the failure of standard therapies, exhibit considerable heterogeneity at the molecular level. 

This molecular variation is associated with GSC functional properties and variability in response 

to therapeutics. Here, we explore six different genomic data measurements (RNA, miRNA, 

Single Nucleotide Variation, Copy Number Variation, ATAC-seq, DNA methylation) of a panel 

of patient-derived GSCs to gain a holistic and mechanistic model of GSC biology. We identify 

four major axes of variation in GSCs at the multi-omic level. The major biological signal is an 

axis of variation among genetic and non-genetic features, including RNA, miRNA, chromatin 

accessibility, DNA methylation, and DNA copy number corresponding to a developmental to 

injury response transcriptional gradient correlated with CRISPR-based gene essentiality 

measurements. The SNV data captures an additional axis of variation corresponding to a 

hypermutation phenotype associated with shorter tumor model survival times. Our results 

provide new insight into GSC biology that will be useful to identify novel therapeutic targets for 

glioblastoma. 

3.2 Introduction: 

Glioblastoma has a terrible prognosis, with a median survival time of 12-15 months1 and a 

survival rate of under 10%4. Strong evidence, accumulated over the past two decades, points to 

the existence of stem-like glioma stem cells (GSCs), capable of repopulating a tumor after 

surgery and radio/chemotherapy17–19. Thus, any effective treatment of this lethal disease likely 

requires targeting the GSC population. Efforts to characterize GSCs have revealed variability in 

drug response20,101 and functional outputs188,189 correlated with genetic and non-genetic 

phenotypes, complicating this potential therapeutic strategy. Recently, we showed that 

transcriptional heterogeneity in GSCs can largely be decomposed into a single axis of variation, 

namely the Developmental/Injury Response axis, and that this axis delineates differential 

functional dependencies in GSCs188. Here, we further investigate this functional axis using a 

multi -omics approach.  

https://paperpile.com/c/m3BZa9/AzHSi
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https://sciwheel.com/work/citation?ids=10249975,10546824&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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To expand our picture of molecular heterogeneity in GSCs, we collected two genetic (copy 

number variation (CNV) and single nucleotide variants (SNVs) from whole genome sequencing 

(WGS)) and four functional (RNA-seq, DNA methylation, ATAC-seq, and miRNA-seq) -omics 

data types for 54 patient-derived GSC lines (Figure 3.1). Performing an integrated analysis of 

variation common among data types and specific to individual data types, we discovered four 

major axes in the multi-omics data which explained at least 10% of variation in at least one 

datatype. In addition to SNV, DNA methylation, and chromatin accessibility-specific axes, we 

report a multi-omic axis found in all data layers except SNVs. This multi -omic axis represents 

the recently discovered developmental and injury response GSC phenotype188 that correlates with 

GSC sensitivity to gene deletions, suggesting it is a useful mechanism to target therapeutically. 

Our work highlights the concerted effects of epigenetic suppression and mutually opposed 

miRNA regulation programs on transcription within this axis, identifying new GSC mechanisms 

for targeting. 

3.3 Results 

3.3.1 Integrated principal component analysis of 6 -omics data types reveals 

heterogeneity associated with and orthogonal to the Developmental to Injury 

Response transcriptional gradient 

To identify major sources of orthogonal signal across our six -omics data types from 54 GSC 

lines (Figure 3.1, Figure 3.2), we applied principal component analysis (PCA) on the most 

variable features for each data type. Immediately, we noticed that principal component 1 (PC1) 

was accounted for virtually entirely by SNV signal, while PCs 2+3 explained a large portion of 

variance in all other -omics data types (Figure 3.3A). PC1 is associated with a known 

hypermutation phenotype80,81 (Figure 3.3B), while PCs 2 + 3 are capable of separating GSCs into 

Developmental and Injury Response clusters previously identified by Richards and colleagues188 

(Figure 3.3C). PC4 and PC5 explain a substantial portion of variation in the ATAC-seq data 

(20%) and DNAm data (12%), respectively. PC4 is associated with average ATAC-seq signal 

per sample (Figure 3.3D), while PC5 is associated with average promoter DNA methylation 

(Figure 3.3E). Together, these results have identified four major axes of variation in our data: a 

multi-omics axis representing the Developmental and Injury Response, a known hypermutator  

https://sciwheel.com/work/citation?ids=10249975&pre=&suf=&sa=0&dbf=0
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Figure 3.1 Assembly of multi -omics glioma stem cell dataset 

Schematic of sample collection and data generation. Glioma stem cell (GSC) cultures were 

created as described in Methods, and were aliquoted for runs through five -omics experiments, 

producing six data types: DNA methylation, ATAC-seq, miRNA-seq, RNA-seq, whole genome 

sequence-derived copy number variation (CNVs) and single nucleotide variation (SNV). SNV 

signal was aggregated at the level of biological pathways to reduce noise before analysis.  
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Figure 3.2 Data availability and imputation strategy 

 

Table of data availability for the 54 GSC samples analyzed in this study. Samples with missing 

data had data imputed via k-nearest neighbors (KNN) before PCA and further downstream 

analyses. For miRNA, differential miRNA expression and correlation analyses were performed 

using only samples for which miRNA data existed, without imputation. For ATAC-seq, 

differential chromatin accessibility was assessed using only samples for which ATAC-seq data 

existed, without imputation. 

 

  

Impute missing values with KNN 
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Figure 3.3 PCA on multi-omics data 

(A) Variance explained (coefficient of determination/r-squared) per datatype (or for all 

datatypes) per principal component. (B) Total SNV signal (total number of called somatic 

mutations) per sample, overlaid on PCA plot. Hypermutator samples are labeled. (C) 

Developmental and Injury Response cluster labels overlaid on PCA plot for PCs 2 and 3. (D) 

Averaged ATAC-seq signal across all ATAC-seq features. ATAC-seq signal for individual 

features calculated as log(average region signal + 1). (E) Averaged DNAm signal across all 

DNAm gene features. Feature signal calculated as average m-value for a promoter at a given 

gene. 
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phenotype explaining SNV variation, and two transcription-orthogonal axes across promoter 

DNA methylation and chromatin accessibility. 

3.3.2 Hypermutated GSCs defined by signature 11 mutations and mismatch repair 

deficiency while non-hypermutators defined by common GBM mutations 

From the multi -omics PCA analysis, we immediately saw that samples separated by the 

presence or absence of a hypermutator phenotype associated with mutation signature 11, 

indicative of temozolomide treatment81,190 and captured by PC1. Indeed, we saw that MSH6 

mutation, which causes a signature 11 hypermutation phenotype81, was present in all 

hypermutated lines (Table 3.1), which we identified using k-means clustering (k=2) on SNV 

count (Figure 3.4A). Hypermutation was also associated with mutation signature 11 scoring of 

our SNV data (Figure 3.4C) using the mutSignatures package and COSMIC signatures (see 

Methods for details). GSCs derived from ten recurrent patient tumors significantly overlapped 

(though were not exclusive to) the hypermutated cluster (Table 3.2, p < 8.0 e-5, Fisher's exact 

test). Hypermutated GSCs were also associated with shorter xenograft survival time (Figure 

3.4D). Collectively, these results are consistent with prior work showing temozolomide based 

hypermutation to result in more aggressive tumors81,83. 

Individual mutations enriched in hypermutators relative to non-hypermutators (Fisher’s exact 

test, two-sided, FDR < 0.05) associated with genes in PIP signaling, cell junctions/adhesion, 

neuron differentiation, and histone modification (Fisher’s exact test, one-sided, FDR < 0.10). 

These mutations corresponded to clustering along an axis orthogonal to transcription, indicating 

that there may be changes in cellular signaling that do not result in large transcriptional changes 

but do affect cellular aggression properties. TTN, P53, PTEN, and EGFR were among the most 

commonly mutated genes in non-hypermutator GSC samples, consistent with prior results4,191 

(Appendix Table 1). There were no differentially mutated genes between Developmental and 

Injury Response GSCs (Fisher’s exact test, FDR > 0.05), suggesting that while SNVs could help 

a cell towards becoming cancerous, they are not a determinant in transcriptional phenotype along 

the Developmental/Injury Response Axis. 
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Figure 3.4 Hypermutation axis associated with drop in xenograft survival 

 

(A) GSCs clustered by total SNV signal with k-means clustering (k=2), overlaid on PCA 

coordinates from Figure 2. Blue dots represent hypermutated samples. (B) Total SNV signal in 

non-hypermutators (SNV_C1, n = 49), and non-hypermutators (SNV_C2, n = 5). Comparison: 

one-sided t-test, alternative hypothesis of SNV_C2 mean greater than SNV_C1 mean. (C) 

Signature 11 mutation score in hypermutator (n = 5) compared to non-hypermutator samples (n = 

49) (p-value = 6.4e-5, by one-sided t-test). (D) Xenograft survival (in days) among mice injected 

with hypermutator (n = 4) and non-hypermutator (n = 28) GSCs. Hypermutator GSCs result in 

shorter survival (p = 0.00013, log-rank test) 
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3.3.3 Copy Number Variation may modulate Developmental and Injury Response 

gene expression 

While the expected chromosomal patterns of copy number changes in GSCs (i.e. chromosome 7 

amplification, chromosome 10 deletion, CDKN2 deletion on chromosome 9p) were present 

(Figure 3.5, Appendix Table 2), consistent with existing knowledge of GBMs4,73, the majority of 

variation in the set of variable CNV features was explained by PC2 and PC3, suggesting 

association with the Developmental/Injury Response axis. We thus investigated the correlation of 

protein-coding gene expression with copy number status, suggestive of copy number driven gene 

expression changes (Figure 3.6A). The vast majority of significant CNV-gene expression 

correlation (examining all genes common to the CNV and RNA-seq data, n = 21833) is positive 

(n = 6633, FDR = 0.05), with a few negative correlation relationships (n = 45). Thus, there is a 

large portion of the protein coding genome in GSCs with expression potentially affected by copy 

number. When examining how these CNV-correlated genes relate to the Developmental to Injury 

Response gradient, we found 1036 Developmental associated and 1020 Injury Response 

associated genes (compared to signature sizes of 3968 and 4399 genes for the Developmental 

and Injury Response signatures, respectively) whose expression is positively correlated with 

copy number (Figure 3.6A). Developmental copy number affected genes are enriched in 

chromatin modification related pathways (Appendix Table 3) and Injury Response copy number 

affected genes are enriched for inflammatory and hypoxia related pathways (Appendix Table 4). 

These results suggest that CNV status can affect specific pathways that are part of the 

Developmental to Injury Response gradient. 

3.3.4 Injury Response genes and pathways are methylation-repressed in 

Developmental GSCs 

We next investigated DNA methylation variation associated with the Developmental to Injury 

Response gradient, which was captured by PC2 and PC3 in the multi -omics PCA. DNA 

methylation at promoters often is associated with stabilization of heterochromatin and prevention 

of transcription, although at times transcription factors can specifically prefer a methylated 

promoter for gene expression activation192. We looked for Developmental to Injury Response 

gradient genes whose expression levels are associated with promoter methylation (Figure 3.7A).  

https://sciwheel.com/work/citation?ids=58610,6680355&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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Figure 3.5 Copy Number Profiles of GSCs 

 

Gene-wise averages of estimated log2(Tumor/Blood) genomic copy number ratio, averages done 

per chromosome arm. 
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Figure 3.6 Association of copy number variation with Developmental/Injury 

Response axis 

 

(A) Genes significantly correlated (FDR < 0.05) with CNV signal (log2 (tumor/normal), GISTIC 

2.0) and with Developmental or Injury Response state. Pathways significantly enriched (FDR < 

0.05) in genes that have positive association of gene expression with CNV signal and association 

with the Developmental or Injury Response transcriptional phenotypes are shown. 
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Figure 3.7 DNA methylation as a suppressor of Injury Response phenotype 

 

(A) Genes significantly correlated (FDR < 0.05) with promoter methylation signal and with 

Developmental or Injury Response state. Pathways significantly enriched (FDR < 0.05) in DEV 

DNAm+ and IR DNAm- genes are shown. 
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Anticorrelation of promoter methylation and gene expression is potentially indicative of 

methylation stabilizing a suppressive gene expression state, while positive association could 

represent gene expression activation. This created four categories of genes depending on 

association with Developmental (DEV) or Injury Response (IR) transcriptional gradient and 

association with promoter methylation (DNAm+ for promoter methylation positive association 

or alternatively, DNAm-). Each category contained genes: DEV DNAm+ (n = 105), DEV 

DNAm- (n = 159), IR DNAm+ (n = 73), IR DNAm- (n = 527); however only IR DNAm- genes 

are strongly enriched in a large number of biological pathways, grouped into epithelial 

mesenchymal transition, inflammatory response, and hypoxia themes (Figure 3.7A, Figure 

3.8A). These results suggest that in Developmental GSCs, promoter methylation and suppression 

of Injury Response genes contributes to the maintenance of a Developmental transcriptional 

state. 

We additionally found a principal component associated with aggregate promoter methylation 

signal (PC5) (Fig 3.3E) orthogonal to the PC2/PC3 Developmental/Injury Response axis. 

Pathway analysis of genes correlated with PC5 showed that genes whose promoter methylation 

was negatively associated with PC5 were mainly enriched for immune cell differentiation and 

inflammation related pathways (Figure 3.8). Enriched biological pathways were generally 

complementary to those enriched in IR DNAm- genes, with only 11 pathways of 57 PC5 

associated pathways and 208 IR DNAm- pathways intersecting between the two sets. The gene 

sets themselves generally did not involve the same genes, with only 60 of 2966 PC5 negatively 

associated genes also in the IR DNAm- category, and none of these 60 genes enriched in 

pathways (FDR < 0.05). These results suggest that there may be a general DNA methylation-

based regulation (potentially suppression, thought we cannot tell from the data presented) of a 

subset of inflammatory related signaling that does not manifest in changes in transcriptional 

state. 

Overall, the results we have obtained for the DNA methylation data are suggestive of promoter 

methylation as an epigenetic method of suppressing Injury Response gene expression, 

contributing to Developmental/Injury Response transcriptional variation,, and any effects PC5’s 

varied promoter methylation might have on transcription dominated by the Developmental/Injury 

Response axis.   
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Figure 3.8 Pathway enrichment comparison of PC5 DNAm associated genes and 

IR DNAm- genes 

 

(A) Pathway enrichment analyses were performed using Fisher’s exact test for pathway 

membership using (separately) PC5 correlated genes (w.r.t. promoter DNAm) and IR DNAm- 

genes as query sets (FDR < 0.05). Results are visualized as an enrichment map, where pathways 

are represented as nodes connected if they share genes, and colored by the query set(s) which 

they are enriched for (either PC2/PC3 – red – or PC5 related – purple). 

  

Injury Response Genes w/ negative association with promoter DNAm 

Genes with promoter DNAm negatively associated with PC5 
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3.3.5 Chromatin Accessibility has transcription coupled and transcription 

independent components 

We then explored the GSCs within the space of the ATAC-seq data. After merging peaks across 

samples, peak features covered regions ranging in size from 200-3257 bp, with 90% of regions 

under 888bp (Figure 3.9A). This distribution of peak lengths is overall consistent with typical 

ATAC-seq fragment lengths being between less than 1000 bp48,49, though the peak detection 

method we used allowed for the detection of open chromatin regions larger than that size. 

Generally, variation in chromatin accessibility was greater between individual samples than 

across chromosomes within an individual sample (Figure 3.9B). Given the presence of a 

principal component (PC4) responsible for much variation along aggregate ATAC-seq signal 

(Figure 3.3D), and another set of principal components (PC2, PC3) responsible for a 

considerable portion of the rest of ATAC-seq related variance (Figure 3.3A), we asked if 

variation along the Developmental/Injury Response Axis could be the result of variation in 

specific sets of chromatin regions. 

We identified differentially accessible chromatin regions between Developmental and Injury 

Response GSCs (using cluster labels from Richards and colleagues188) using ATAC-seq peak 

calls for 40 GSC lines (n = 14 for Developmental, n = 26 for Injury Response). We found that 

differentially accessible regions (n = 20527 for Developmental lines, n = 4336 for Injury 

Response lines, FDR = 0.20) were mutually opposing, generally open in one transcriptional state 

and closed in the other (Figure 3.10 A,B). We then investigated if these differentially accessible 

chromatin regions are enriched for transcription factor binding motifs, and found that regions 

accessible in Developmental GSCs were enriched for RFX, CTCF/BORIS, and OCT/POU 

motifs (Figure 3.10C), while regions open in Injury Response GSCs were enriched for NFKB, 

FOSL1 (FRA1)/FOSL2 (FRA2), IRF, NRF2, BACH1, BACH2, and NFE2 motifs (Figure 

3.10D). Interestingly, RFX2 and POU3F3 were shown by Richards and colleagues188 to be 

upregulated in Developmental GSCs, while IRF1, IRF7, IRF9, NFKB, NRF2 (also known as 

NFE2L2), NFE2, FOSL1, and FOSL2 are upregulated in Injury Response GSCs. POU3F3 and 

RFX2 are involved in neural development and stemness193,194 , while NFKB, the FOS/JUN 

(AP1) transcription factors, and IRF transcription factors are involved in promoting epithelial-

mesenchymal transition and inflammatory signaling100,195–198. CTCF is involved in neural 

development and is highly expressed during embryonic development199, making its binding of  
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https://sciwheel.com/work/citation?ids=4036764,12819529&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=58706,57472,7253278,611551,10588429&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5081133&pre=&suf=&sa=0&dbf=0
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Figure 3.9 General Characteristics of ATAC-seq data for 40 GSC lines 

 

 (A) Distribution of peak widths for detected peaks; (B) Averaged log chromatin accessibility 

signal across chromosomes. 
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Figure 3.10 Differential chromatin accessibility corresponds to differentially 

expressed TFs 

 

Motif enrichment for TF motifs found by HOMER given open regions found in Developmental 

and Injury Response GSCs or PC4 Cluster 2 by ATAC-seq. Bars represent the ratio of 

percentage query region hits to percentage background region hits. (A-B) Chromatin 

accessibility signal for regions found to be more open in Developmental (A) and Injury Response 

(B) GSCs. P-values are from two-sided Wilcoxon rank sum tests. (C) Enriched motifs found in 

Developmental enriched open chromatin regions by HOMER. HOMER motif names are mapped 

to the names shown in this figure via Table 3.4. (D) Enriched motifs found in Injury Response 

enriched open chromatin regions by HOMER. HOMER motif names are mapped to the names 

shown in this figure via Table 3.5. (E) Clustering of GSCs along PC4 using k-means clustering. 

(F) Enriched motifs found in PC4 Cluster 2 enriched open chromatin regions by HOMER. 

HOMER motif names are mapped to the names shown in this figure via Table 3.6. 
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regions in the Developmental GSCs consistent with the notion that they represent a phenotype 

similar to fetal brain cell types188. Additionally, NRF2 regulates response to oxidative stress200, 

and NFE2, while normally pertaining to hematopoietic cell differentiation into 

megakaryocytes201, has been linked to metastasis in breast cancer and shown in vitro to give 

advantages in a hypoxic environment202. As for BACH1 and BACH2, given the similarity of 

NFE2 to BACH1 and BACH2 binding motifs as found by homer203 (similarity scores of 0.98 and 

0.95, respectively), it is unsurprising that these transcription factors appear as hits despite their 

lack of upregulation in Injury Response GSCs relative to Developmental GSCs188. We then ran a 

pathway analysis on genes with a promoter region or gene body in differentially accessible 

regions in Developmental and Injury Response GSCs and found that Developmental accessible 

chromatin regions pertained to neural developmental and ion channel related pathways, 

consistent with RNA-seq expression results presented by Richards and colleagues188 (Appendix 

Table 5). The genes found in accessible chromatin regions enriched in Injury Response GSCs did 

not yield statistically significant pathway enrichment, likely due to a lack of statistical power 

given the small number of genes mapped (n = 126). Nonetheless, the presence of FOSL1/2 

binding motifs within the Injury Response accessible regions suggests that epithelial 

mesenchymal transition and invasive behaviors may be promoted195,196,204. Thus, chromatin 

accessibility and transcription factor activity likely act to promote or stabilize the Developmental 

and Injury Response transcriptional programs. 

To examine PC4, which also explained a substantial portion of variance in the ATAC-seq data, 

we asked if its broad association with average ATAC-seq signal would be enriched for particular 

sets of transcription factors. We clustered samples along PC4, splitting samples by that PC 

(Figure 3.10E). Using a similar approach to finding differentially accessible regions as was done 

for Developmental and Injury Response GSCs above, we found no regions enriched in PC4 

Cluster 1 and 22640 regions enriched in PC4 Cluster 2. Interestingly, PC4 Cluster 2’s open 

regions were enriched for some of the same transcription factor motifs found in Injury Response 

open regions (e.g. JUN/AP1, BACH1, BACH2, FOSL2 and NFE2, and IRF motif sequences, 

Figure 3.10F). These results suggest that there may be differential transcription factor activity 

related to inflammatory signaling that does not result in broad changes in transcription. Taken 

together with the predicted differential transcription factor occupancy associated with the 

Developmental and Injury Response axis, the transcription-orthogonal chromatin accessibility 

https://sciwheel.com/work/citation?ids=10249975&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5590795&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8319356&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12819582&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=78959&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10249975&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10249975&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=57472,7253278,12839132&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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axis (PC5) suggests that, like promoter methylation, transcription factor occupancy is a 

contributor to, but not the only determinant of transcriptional output. 

Previous work by Guilhamon and colleagues identified three GSC states in a dataset of 27 GSC 

lines189: Constructive, Reactive, and Invasive based on ATAC-seq, DNA methylation and RNA-

seq data. Given their use of similar information to identify a state (Invasive) that displayed 

shorter survival than the two others identified, we wondered how these three states distributed in 

the space of our integrated PCA. Having data pertaining to 26 of the 27 GSC lines used in 

Guilhamon et al., 9 of which overlapped with the set of 54 GSC lines used for multi -omics PCA, 

we took ATAC-seq data from the union (n = 71) of the 26 GSCs available from the Guilhamon 

publication and 54 GSC lines used for this study (40 with measured data, 14 with imputed data), 

and performed KNN imputation of unknown Constructive, Reactive, and Invasive labels (45 

unlabeled GSCs) using known labels from the Guilhamon et al. publication189. To obtain a low 

dimensional feature space appropriate for label imputation, we obtained three open chromatin 

signatures (one each for Constructive, Reactive, Invasive, see Methods) that we applied to 

labeled and unlabeled data, and fit a KNN classifier to the 26 samples with known labels, 

predicting the labels of the 45 unlabeled GSCs (Figure 3.11 A,B). The Reactive and Invasive 

states were for the most part separated from the Constructive state along PC2 and PC3 (Figure 

3.11C). The Injury Response transcriptional phenotype broadly overlapped with the Reactive and 

Invasive states, whereas the Developmental transcriptional phenotype broadly corresponded to 

the Constructive state (Table 3.3). Additionally, the Invasive state was rare (n = 4) in our 54 

sample dataset and did not appear to be well separated by the major components of variation for 

ATAC seq (Figure 3.11C, D). Additional study of Invasive lines will be needed to link them to 

the mechanisms in the multi-omics analysis presented here. 

3.3.6 Mutually Opposing miRNA suppressive programs target Developmental and 

Injury Response genes 

The strongest source of signal in the miRNA data correlated with the Developmental/Injury 

Response axis suggesting a regulatory role for miRNAs in the two transcriptional programs. To 

identify potential miRNA regulators of the Developmental/Injury Response axis, we performed 

differential miRNA expression analysis between Developmental and Injury Response GSCs  

https://sciwheel.com/work/citation?ids=10546824&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10546824&pre=&suf=&sa=0&dbf=0
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Figure 3.11 Signature based imputation of Guilhamon et al.189 

 

(A-B) Distribution of samples with known Constructive/Reactive/Invasive labels and those 

imputed via KNN (n = 71 total), shown in space of determined ATAC-seq based signatures. (C-

D): Distribution of GSCs (n = 54) in PCA space from multi -omics PCA. Sample points are 

shaped by known GSC state (if available, NA otherwise) and colored by KNN imputed GSC 

state (GSCs with known state are colored by known state). 

  

https://sciwheel.com/work/citation?ids=10546824&pre=&suf=&sa=0&dbf=0
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(FDR < 0.05) filtering these for anticorrelation between miRNAs and RNA expression (FDR < 

0.10), and further filtering these for experimentally known miRNA-RNA relationships present in 

DIANA-TarBase v8205 (Figure 3.12A). This resulted in interactions between 98 Developmental 

upregulated miRNAs and 2802 genes (Appendix Table 6) and between 104 Injury Response 

upregulated miRNAs and 1696 genes (Appendix Table 7) A pathway analysis on the targeted 

genes (Fisher’s exact test for overrepresentation, one-sided, FDR < 0.05) revealed that 

Developmental upregulated miRNAs predominantly targeted genes in Injury Response 

associated pathways, while Injury Response miRNAs targeted genes in chromatin remodeling 

(shown by Richards and colleagues to be more expressed and essential in Developmental 

GSCs188), as well as DNA repair and cell cycle regulation (Figure 3.12B). Thus, we predict that 

the Developmental and Injury Response mRNA transcriptional programs are associated with 

mutually opposed miRNA based suppression programs, with Developmental miRNAs 

suppressing aspects of the Injury Response transcriptional program and Injury Response 

miRNAs conversely suppressing aspects of the Developmental transcriptional program. These 

results support a role for miRNAs in stabilizing and maintaining the transcriptional phenotype 

along the Developmental/Injury Response transcriptional axis. 

Richards and colleagues showed that many of the biological pathways affected by differential 

expression along the Developmental/Injury Response transcriptional axis were also differentially 

essential between Developmental and Injury Response GSCs188. To identify potentially 

important miRNA regulators, we compared our miRNAs and their targets to sensitive genes from 

CRISPR screens. We re-analyzed our published CRISPR screening data188, defining uniquely 

essential genes for Developmental and Injury Response GSC lines (Appendix Table 8, Appendix 

Table 9). We then intersected this list with Developmental and Injury Response differentially 

expressed genes188, and further intersected these with the union of DEV and IR miRNA targets 

(Figure 3.13). Interestingly, the resulting predicted Developmental miRNAs only targeted Injury 

Response genes and Injury Response miRNAs only targeted Developmental genes. These results 

suggest that Developmental GSCs express miRNAs that would render Injury Response GSCs 

less fit and that the converse would be true for Injury Response GSCs’ miRNAs, suggesting that 

miRNAs are a possible therapeutic target for GSCs. Some of the miRNAs found to be 

differentially expressed between Developmental and Injury Response GSCs have roles as tumor 

suppressors (e.g. miR-128)206 or tumor enhancers (e.g. miR-10b, miR-21)206, and in particular  

https://sciwheel.com/work/citation?ids=4689885&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10249975&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10249975&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10249975&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10249975&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11955451&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11955451&pre=&suf=&sa=0&dbf=0
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Figure 3.12 Mutually opposed miRNA based suppression programs in 

Developmental and Injury Response GSCs 

 

(A) Schematic showing workflow for discovering and filtering differentially expressed miRNAs 

and their targets in Developmental and Injury Response GSCs. Differentially expressed miRNAs 

were filtered at FDR 0.05. Developmental and Injury Response upregulated miRNAs 

(separately) underwent correlation analysis to find correlated genes (FDR 0.10), and negative 

correlation pairs were filtered against DIANA-TarBase and then fed to a pathway analysis 

(Fisher’s exact test for overrepresentation, one-sided, FDR < 0.05) (B) Pathway analysis of 

filtered miRNA gene targets as an enrichment map. Blue nodes represent pathways enriched for 

targets of Developmental miRNAs, red nodes represent pathways enriched for targets of Injury 

Response miRNAs. Edges represent overlap relationships between pathways (average of Jaccard 

and overlap coefficients). 
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Figure 3.13 miRNAs target differentially expressed, differentially essential genes 

for Developmental and Injury Response GSCs 

Network of interactions between differentially expressed, differentially essential genes and 

differentially expressed miRNAs targeting them. Red nodes represent Injury Response genes and 

blue nodes represent Developmental genes. Circular nodes represent RNA and hexagonal nodes 

represent miRNAs. Edges represent predicted suppression relationships between miRNA and 

mRNA. 
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there are examples of miRNAs shown to interact with differentially essential genes having roles 

in regulating neural developmental (miR-21, upregulated in Developmental GSCs)207 and 

invasive/metastatic phenotypes (miR-598, upregulated in Injury Response GSCs)208. While the 

one-to-many and many-to-one relationships between miRNAs and their targets complicate the 

prediction of phenotypes upon overexpression or knockdown (e.g. with the risk of transforming 

Developmental GSCs to Injury Response GSCs, or vice versa, without decreasing proliferation 

or survival), understanding the role of miRNAs in maintaining heterogeneous gene expression 

programs provides another handle by which we can manipulate GSC biology and attempt to 

downregulate those programs essential to GSCs’ survival. 

3.4 Discussion 

Here, leveraging the information in six -omics data types from five large scale -omics data 

collection efforts, we show the existence of four major components of variation in GSCs across 

multiple -omics layers, one defined by the Developmental/Injury Response transcriptional axis 

and the other three defined by hypermutation, promoter methylation, and chromatin state. With 

the results presented here, as well as the differential essentiality results among Developmental 

and Injury Response GSCs described by Richards and colleagues188,189, we present evidence that 

the space represented by two of these axes translates into differences in functional behavior 

depending on a GSC’s position within it. In particular, we have found that hypermutation 

phenotype and its associated reduction in xenograft survival occur largely independently of 

position on the Developmental/Injury Response transcriptional axis, whereas that axis, with its 

associated variation in gene essentiality, is affected through all other molecular processes we 

measured in this study, whether through miRNAs, promoter methylation, chromatin 

accessibility, or DNA copy number. 

We hypothesize that separate biological processes are involved for hypermutation and the 

Developmental/Injury Response axis, while promoter methylation and transcription factor 

binding may make partial contributions to inflammatory transcriptional phenotype. Touat and 

colleagues81, observing that recurrent GBMs were enriched for but not exclusively composed of 

hypermutated tumors, suggested that temozolomide treatment selected for mismatch repair 

mutated cells, which appears to be the case in our GSC lines given the enrichment of 

https://sciwheel.com/work/citation?ids=2312501&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12840544&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10249975,10546824&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=8688178&pre=&suf=&sa=0&dbf=0
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hypermutated GSCs among those derived from recurrent tumors. For the Developmental/Injury 

Response axis, from the data presented alone it cannot be determined which biological process, if 

any, precedes all others in promoting a Developmental or Injury Response transcriptional state. 

Copy number variation and non-genetic processes (i.e. chromatin state or promoter methylation) 

may precede transcriptional state, or may reinforce it and be selected due to known associations 

between biological pathways’ differential expression and their differential essentiality among 

Developmental and Injury Response GSCs188. GSC state is plastic and Developmental GSCs can 

be induced to Injury Response phenotype through exposure to cytokines, activation of 

transcription factors, or miRNAs100,188,207, and while the reverse transformation, to our 

knowledge, has yet to be demonstrated, there are at the very least multiple possible pathways to 

an Injury Response-like state.  We also hypothesize that variation in inflammatory transcription 

factor occupancy and promoter methylation state for inflammatory genes can contribute to the 

expression of Injury Response transcriptional phenotype without being the sole determinants of 

final transcriptional output, explaining the apparent transcription-associated and transcription-

orthogonal axes observed for promoter methylation and chromatin state. Thus, we hypothesize 

that a GSC’s position on the Developmental and Injury Response axis are affected by a variety of 

mechanisms, and while coordinated effects of various biochemical processes may act to stabilize 

position in one state or another, intrinsic or environmental signals are capable of shifting 

transcriptional and epigenetic state. More broadly, our results are suggestive of a recurrence 

enriched hypermutation phenotype due to mismatch repair, and a bidirectional transcriptional 

axis with stable state preceded by a variety of non-genetic events that can be potentiated or 

stabilized by CNVs (Figure 3.14). 

Given the complexity and heterogeneity demonstrated here at multiple levels within the cancer 

stem cell population in glioblastoma, it is unsurprising that previous efforts at targeted single-

agent therapeutics have been largely unsuccessful. With the knowledge of what axes of variation 

exist and which molecular processes act in a coordinated fashion or independently of one 

another, future studies should be able to better develop targeted therapies for GSCs. In particular, 

miRNAs may represent a potential lever to modulate transcriptional phenotype and target 

differentially essential genes. Given the heterogeneity and plasticity of GSCs100,188,189 and 

apparent redundancy in the molecular mechanisms observed, it is likely that future GBM 

https://sciwheel.com/work/citation?ids=10249975&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=58706,10249975,2312501&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=58706,10249975,10546824&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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therapeutics will need to target multiple aspects of these molecular mechanisms in order to 

prevent or delay recurrence. 
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Figure 3.14 Summary of proposed model of GSC Multi -Omic heterogeneity based 

on presented findings 

 

Arrows represent activation/positive regulation relationships, while lines indicate 

suppression/negative regulation relationships. Blue relationships indicate events occurring in 

Developmental GSCs, while red relationships indicate events occurring in Injury Response 

GSCs.
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3.5 Methods 

3.5.1 RNA-sequencing 

RNA-sequencing, count data generation, and VST transformation were performed as described 

by Richards and colleagues188 for 54 GSC samples, minus the batch correction step as we 

excluded 18 samples from the Richards et al. study that displayed large batch effects. A log2 

FPKM matrix was created as well for this 54 GSC dataset. 

3.5.2 DNA Methylation 

Bisulfite conversion and Illumina EPIC array experiments were performed as described by 

Guilhamon and colleagues189 for 54 GSC samples. Data preprocessing was performed using the 

ChaMP package (v2.6.4)209 as described by Guilhamon and colleagues189. Processed beta values 

were transformed to m-values, and average m-values were calculated for gene promoters using 

annotations from gencode-v12210 to map probes to ENST identifiers where the probe location 

was within 200 bp of the transcription start site and using BioMart211,212 to map ENST identifiers 

to HGNC symbols from Ensembl213 for the GRCh38 human genome assembly (ENSEMBL 

103). M-values (averaged for each probe for a promoter) were used for integrated PCA and 

correlation analyses. 

3.5.3 Whole Genome Sequencing 

Whole genome sequencing for matched GSC and patient blood samples was performed as 

described by Richards and colleagues188. CNV calls were performed as described by Richards 

and colleagues188. For SNV calls, SNVs were kept if 3 or more out of 5 callers (Strelka27 v 

1.0.14, VarScan231 v2.3.8, Mutect228 from GATK v3.8, MuSE29 1.0rc, and multiSNV30 2.3-12) 

reported the SNV. To generate a total count of SNVs for each GSC line, the total number of 

nonsynonymous, stopgain, or stoploss events detected for a GSC line (i.e. change of amino acid, 

truncation, or extension of polypeptide encoded). Due to the sparse nature of SNVs, and the 

desire to find pathway-level signal for mutations, for the SNV data input to KNN imputation and 

PCA, we performed pathway level aggregation of signal, using the same GMT file described in 

the Pathway Analysis section. To do this, we summed the number of times a gene in a pathway 

had one or more non-synonymous, stopgain, or stoploss mutations. 

https://sciwheel.com/work/citation?ids=10249975&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10546824&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1443516&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10546824&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10151180&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=831523,252618&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12030759&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10249975&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10249975&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1198446&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=387329&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7881737&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4173955&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1303889&pre=&suf=&sa=0&dbf=0
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Noticing that there were only a handful of samples with high mutation frequency, we decided to 

divide samples by total SNV signal (defined as total number of nonsynonymous, stopgain, or 

stoploss mutations) using k-means clustering (k = 2). 

For mutational signature scoring, we used the mutSignatures package (v 2.1.1) and COSMIC 

v3.2 SBS signatures (available at 

https://cancer.sanger.ac.uk/signatures/documents/453/COSMIC_v3.2_SBS_GRCh38.txt) 

3.5.4 ATAC-seq 

ATAC-seq experiments and peak calling were performed as described by Guilhamon et al.189, 

with the exception that reads were aligned to hg38. In initial preprocessing steps, we used the 

union of 40 of 54 GSCs used for PCA that had non-imputed ATAC-seq data and the 26 samples 

available from Guilhamon and colleagues’ work189. The bedtools software (v2.29.2) was used to 

create a merged set of peaks (bedtools merge) across all samples, and peak intensities for each 

merged peak for a given sample was the average of the sample’s peaks occurring within the area 

of the merged peak. Features present in 50% or more samples (from PCA set/Guilhamon paper 

union) were kept for further analysis. Log-transformed ATAC-seq signal from this matrix was 

used for the integrated PCA (described in Data Integration). 

To find differentially accessible regions, we used the 40 samples for which ATAC-seq peak calls 

were made and performed Fisher's Exact Test to assess overrepresentation of called peaks in 

Developmental (n = 26) and Injury Response (n = 14) GSCs. Differentially open regions were 

filtered at FDR 0.20, and fed through HOMER203 (v 4.11.1) for motif enrichment analysis, with a 

background set defined as all called ATAC-seq peaks (n = 410316) in the set of the 40 samples 

(not just those present in 50% or more samples). Enriched motifs were filtered to have a ratio >= 

2 of percent target region hits to percent background region hits. 

For pathway analysis on enriched open regions, we obtained all genes with a transcription start 

site inside an enriched open region or within 2000 bp downstream of an enriched region. We 

repeated this process on the background set of open regions to obtain a background set of genes 

to use for pathway analysis. 

https://cancer.sanger.ac.uk/signatures/documents/453/COSMIC_v3.2_SBS_GRCh38.txt
https://sciwheel.com/work/citation?ids=10546824&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10546824&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=78959&pre=&suf=&sa=0&dbf=0
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To assess how our results related to those of Guilhamon et al.189 we developed three signatures 

(one each for the Constructive, Reactive, and Invasive states) by using limma (v3.38.3) to find 

differentially accessible regions between the three clusters (FDR 0.10). 9 of 26 samples available 

from this study were present in the 54 samples used for multi-omics PCA. To classify the 45 

unclassified GSC lines, we used the combination of imputed and non-imputed ATAC-seq data 

(see Data Imputation and Integration for more details) for these samples as well as the data for 

the 26 GSC labeled lines from the Guilhamon publication as input for GSVA (v 1.3.0) signature 

scoring. We then trained a KNN classifier (scikit-learn, v 0.22.2, ported through reticulate v 

1.15) on the 26 labeled GSC lines and used that classifier to predict the label of all 45 unlabeled 

GSC lines. 

3.5.5 miRNA 

Samples were processed and count data generated as described by Chu and colleagues61. Once 

counts were obtained, data was VST transformed and normalized across cohorts using 

ComBAT176 using the Surrogate Variable Analysis (sva) package (v 3.30.1). This data was used 

as input for the integrated PCA. Since the Developmental/Injury Response axis accounted for the 

strongest signal in miRNA data, we looked for miRNAs that varied along this axis as well as 

candidate interactors. To do this, we performed differential miRNA expression using DESeq245 

(v 1.22.2) with miRNA count data to obtain differentially expressed miRNAs. We then 

correlated VST transformed miRNA data with log-transformed RNA FPKM data, and filtered 

anticorrelation relationships through DIANA-TarBase v8205, using miRBase v22214 

accession/name mappings to use the most up to date names.  

For pathway analysis, Fisher’s exact test was used, with Developmental miRNA targets and 

Injury Response miRNA targets used as queries. The background set of genes used for this 

analysis was the set of genes present in the set of DIANA-TarBase interactions filtered for 

miRNAs present in our miRNA count matrix and genes present in the RNA log FPKM matrix. 

To create the network shown in Figure 3.13, we filtered the set of putative miRNA/RNA 

interactions we found for the union of genes uniquely essential in Developmental or Injury 

Response GSCs. 

https://sciwheel.com/work/citation?ids=10546824&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1529538&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=673951&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=129353&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4689885&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6108315&pre=&suf=&sa=0&dbf=0
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For details on determining uniquely essential genes that putative miRNA targets were compared 

against, see CRISPR Screens. 

3.5.6 Data Imputation and Integration 

Data imputation was performed using K-nearest neighbors (KNN) based imputation (scikit-learn, 

v 0.22.2, ported through reticulate v 1.15) using all available features for the six data types 

present (Figure 3.2). To prevent scale of features and number of features from a given data type 

from skewing the imputation (i.e. to give each data type equal weighting in imputation), we zero 

centered all features and scaled each centered feature f for data type d by scale factor cf = 1/(sf * 

sqrt(pd)), where sf is the standard deviation of f and pd is the number of features present in data 

type d. After this centering and scaling, KNN imputation was performed, with imputed data 

divided by the appropriate scale factor and added to the original feature mean to obtain our final 

imputed data. 

For PCA, imputed data was filtered as follows: take top 2000 most variable features for each 

data type with the exception of pathway aggregated SNV signal and miRNA and then standard 

normalized prior to PCA. The subsetting of other genomic features was done to avoid a situation 

with data types which included an order of magnitude more features (ATAC-seq: 53267 features, 

CNVs: 25988 features, DNAm: 21482 features, RNA: 23005 features) drowning out signal from 

ones with fewer features – pathway aggregated SNV signal (5410 features) and miRNA signal 

(1729 features). 

3.5.7 CRISPR Screens 

The dataset of quantile-normalized Bayes-factor (qBF) scores for essentiality was the same used 

by Richards and colleagues188. Genes were determined to be essential for a group of GSC lines if 

the median qBF was greater than 10, and genes were determined to be uniquely essential for that 

group if they were essential for that group and no other group of cell lines. We identified 

uniquely essential genes for both Developmental (n = 4 lines) and Injury Response (n = 5 lines) 

GSCs in this manner.  

https://sciwheel.com/work/citation?ids=10249975&pre=&suf=&sa=0&dbf=0
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3.5.8 Network Visualization 

All biological networks were visualized using Cytoscape (v3.7.2)182. Enrichment Map (v3.1)181 

and AutoAnnotate (v1.3.2)180 were used to visualize pathway enrichment analysis results. 

3.5.9 Xenograft Experiments 

Xenograft experiments were performed and survival times determined as described by Richards 

and colleagues188, using a subset (n = 32) of data used for that publication. 

3.5.10 Pathway Analysis 

For all pathway analyses described in this paper, the following GMT file was used: 

Human_GO_AllPathways_no_GO_iea_April_01_2018_symbol.gmt, available at the URL: 

http://download.baderlab.org/EM_Genesets/April_01_2018/Human/symbol/Human_GO_AllPat

hways_no_GO_iea_April_01_2018_symbol.gmt 

3.5.11 Other Software 

All statistical analyses were performed using R version 3.5.2, and, where python dependencies 

were used, python 3.6.9 from Anaconda was used. 

  

https://sciwheel.com/work/citation?ids=7392489&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=327716&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5845875&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10249975&pre=&suf=&sa=0&dbf=0
http://download.baderlab.org/EM_Genesets/April_01_2018/Human/symbol/Human_GO_AllPathways_no_GO_iea_April_01_2018_symbol.gmt
http://download.baderlab.org/EM_Genesets/April_01_2018/Human/symbol/Human_GO_AllPathways_no_GO_iea_April_01_2018_symbol.gmt
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3.6 Tables  
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Table 3.1 MSH6 mutation status in hypermutator and non-hypermutator GSCs 

Shown is MSH6 mutation status (WT = wild type, MUT = nonsynonymous, stoploss, or stopgain 

mutation) in SNV_C1 (non-hypermutator) and SNV_C2 (hypermutator) samples. 

Overrepresentation in SNV_C2 was tested with a one-sided fisher’s exact test (p = 3e-7). 

 SNV_C1 SNV_C2 

MUT 0 5 

WT 49 0 
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Table 3.2 Recurrence status of GSCs’ source tumors vs SNV cluster 

SNV Cluster Primary Recurrent 

1 44 5 

2 (hypermutated) 0 5 
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Table 3.3 Comparison of Guilhamon et al. 2021 chromatin based GSC states and 

Richards et al. 2020 Developmental and Injury Response transcriptional 

phenotypes 

 Developmental 

Injury 

Response 

Constructive 30 2 

Invasive 2 2 

Reactive 4 14 

  



124 

 

Table 3.4 Name Mapping for Developmental Motifs 

 

Homer Motif 
Shortened 
Name 

BORIS(Zf)/K562-CTCFL-ChIP-Seq(GSE32465)/Homer BORIS(Zf) 

CTCF(Zf)/CD4+-CTCF-ChIP-Seq(Barski_et_al.)/Homer CTCF(Zf) 

OCT:OCT(POU,Homeobox)/NPC-Brn1-ChIP-
Seq(GSE35496)/Homer 

OCT/POU 
(2) 

OCT:OCT(POU,Homeobox)/NPC-OCT6-ChIP-
Seq(GSE43916)/Homer 

OCT/POU 
(1) 

RFX(HTH)/K562-RFX3-ChIP-Seq(SRA012198)/Homer RFX(HTH) 

Rfx2(HTH)/LoVo-RFX2-ChIP-Seq(GSE49402)/Homer Rfx2(HTH) 

X-box(HTH)/NPC-H3K4me1-ChIP-Seq(GSE16256)/Homer 
X-
box(HTH) 
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Table 3.5 Name Mapping for Injury Response Motifs 

 

Homer Motif Shortened Name 

AP-1(bZIP)/ThioMac-PU.1-ChIP-Seq(GSE21512)/Homer AP-1(bZIP) 

Atf3(bZIP)/GBM-ATF3-ChIP-Seq(GSE33912)/Homer Atf3(bZIP) 

Bach1(bZIP)/K562-Bach1-ChIP-Seq(GSE31477)/Homer Bach1(bZIP) 

Bach2(bZIP)/OCILy7-Bach2-ChIP-Seq(GSE44420)/Homer Bach2(bZIP) 

BATF(bZIP)/Th17-BATF-ChIP-Seq(GSE39756)/Homer BATF(bZIP) 

Fos(bZIP)/TSC-Fos-ChIP-Seq(GSE110950)/Homer Fos(bZIP) 

Fosl2(bZIP)/3T3L1-Fosl2-ChIP-Seq(GSE56872)/Homer Fosl2(bZIP) 

Fra1(bZIP)/BT549-Fra1-ChIP-Seq(GSE46166)/Homer Fra1(bZIP) 

Fra2(bZIP)/Striatum-Fra2-ChIP-Seq(GSE43429)/Homer Fra2(bZIP) 

ISRE(IRF)/ThioMac-LPS-Expression(GSE23622)/Homer ISRE(IRF) 

Jun-AP1(bZIP)/K562-cJun-ChIP-Seq(GSE31477)/Homer Jun-AP1(bZIP) 

JunB(bZIP)/DendriticCells-Junb-ChIP-Seq(GSE36099)/Homer JunB(bZIP) 

MafK(bZIP)/C2C12-MafK-ChIP-Seq(GSE36030)/Homer MafK(bZIP) 

NF-E2(bZIP)/K562-NFE2-ChIP-Seq(GSE31477)/Homer NF-E2(bZIP) 

NFE2L2(bZIP)/HepG2-NFE2L2-ChIP-Seq(Encode)/Homer NFE2L2(bZIP) 

NFkB-p65-Rel(RHD)/ThioMac-LPS-
Expression(GSE23622)/Homer 

NFkB-p65-
Rel(RHD) 

Nrf2(bZIP)/Lymphoblast-Nrf2-ChIP-Seq(GSE37589)/Homer Nrf2(bZIP) 

RAR:RXR(NR),DR5/ES-RAR-ChIP-Seq(GSE56893)/Homer RAR 

T1ISRE(IRF)/ThioMac-Ifnb-Expression/Homer T1ISRE(IRF) 

ZFP3(Zf)/HEK293-ZFP3.GFP-ChIP-Seq(GSE58341)/Homer ZFP3(Zf) 
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Table 3.6 Name Mapping for PC4 Cluster 2 Motifs 

 

Homer Motif 
Shortened 
Name 

Bach1(bZIP)/K562-Bach1-ChIP-Seq(GSE31477)/Homer Bach1(bZIP) 

Bach2(bZIP)/OCILy7-Bach2-ChIP-Seq(GSE44420)/Homer Bach2(bZIP) 

Fosl2(bZIP)/3T3L1-Fosl2-ChIP-Seq(GSE56872)/Homer Fosl2(bZIP) 

Fra2(bZIP)/Striatum-Fra2-ChIP-Seq(GSE43429)/Homer Fra2(bZIP) 

IRF2(IRF)/Erythroblas-IRF2-ChIP-Seq(GSE36985)/Homer IRF2(IRF) 

ISRE(IRF)/ThioMac-LPS-Expression(GSE23622)/Homer ISRE(IRF) 

Jun-AP1(bZIP)/K562-cJun-ChIP-Seq(GSE31477)/Homer 
Jun-
AP1(bZIP) 

NF-E2(bZIP)/K562-NFE2-ChIP-Seq(GSE31477)/Homer NF-E2(bZIP) 

NFE2L2(bZIP)/HepG2-NFE2L2-ChIP-Seq(Encode)/Homer NFE2L2(bZIP) 

Nrf2(bZIP)/Lymphoblast-Nrf2-ChIP-
Seq(GSE37589)/Homer Nrf2(bZIP) 
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4 Chapter 4: Discussion 

GBM is an aggressive and lethal disease, and previous attempts at linking genomic and non-

genetic phenotypes to clinically relevant consequences have had limited success, with the 

exception of a handful of mutations and MGMT methylation status81,84–88. Given that glioma 

stem cells are responsible for the regeneration of tumors after therapy and presumably the 

formation of the primary tumor, they thus present an enticing treatment target to prevent 

recurrence in GBM. However, their heterogeneity leads to variable responses to individual 

therapies such as temozolomide and other small molecules20. It is thus imperative that we 

understand the underlying biology of this heterogeneity to understand why treatment so often 

fails, especially given that only 4 FDA approved drugs for treating GBM have been developed 

over the past 5 decades providing only marginal benefit to survival215. In this section, I discuss 

the implications of the work presented in this thesis towards addressing this area in the context of 

others’ work, and propose future experiments that would logically follow to address new and 

remaining questions. 

4.1 The Transcriptomic Landscape of GSCs and Their Relation to Bulk 

Tumors 

The potential originating events of GBM and GSCs, as well as their mutational and clonal 

evolution have been known before our work73,109. Bulk RNA-sequencing data has also suggested 

plasticity between two transcriptional states, which we later interpreted in Chapter 2 as a 

Developmental and Injury Response20,100,101 , and differential capacity for differentiation and 

radioresistance between these phenotypes. However, the distribution of GSC transcriptional 

phenotypes at a single cell level was previously unknown. Additionally, the relationships 

between different transcriptional phenotypes and differentiated tumors was still incomplete. 

Potential hypotheses for the landscape of transcriptional phenotype could include a singular apex 

cell with more differentiated progeny216,217, or a variety of potential phenotypes that could enter a 

more differentiated state109, with the potential for very distinct clusters of cells in this landscape 

or for a continuum of cell states. Beyond this, our understanding of the consequences of 

transcription on functional dependencies was still incomplete. Thus, there was a rationale for 

https://sciwheel.com/work/citation?ids=8688178,4484341,58989,8663140,916344,12845876&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=2877522&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12087891&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6680355,4152289&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=2877522,58706,809115&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9222610,59073&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4152289&pre=&suf=&sa=0&dbf=0
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both performing scRNA-seq on patient derived GSC lines and patient tumors and performing 

functional characterization of GSCs based on transcriptomic state. 

In Chapter 2, we performed experiments and analyses to address these open questions, and found 

that GSCs lie on a continuum between a Developmental and Injury Response axis and that GBM 

cells in general lie on a stem to astrocyte differentiation gradient orthogonal to this axis. We saw 

that Developmental and Injury Response GSCs could serve as the source of GBM tumors, and 

that position along the Developmental/Injury Response gradient affected functional 

dependencies in a manner consistent with the biological pathways associated with each 

transcriptional program. We additionally showed that the Developmental/Injury Response axis, 

while more pronounced in GSC cultures, was present in patient tumors as well, which harbored a 

stem-like fraction of cells that overlapped cultured GSC in the two-axis transcriptional space. 

Interestingly, additional efforts to characterize the differentiation axis and hierarchy of GSCs 

have also shown that GSCs and the rest of the tumor exist along a continuum of differentiation, 

in which an Injury Response/mesenchymal phenotype resides within a subset of the GSC 

portion. In work by Castellan and colleagues, a bifurcation event between a more astrocytic 

phenotype and a more oligodendrocytic phenotype was found to be preceded by a stem-like 

state113. Interestingly, they found that in the stem-like state (which they termed G-STEM), cells 

exhibited a more mesenchymal phenotype, suggesting that the pool of GSCs in a patient’s tumor 

exhibits phenotypes that are especially accentuated in Injury Response GSCs113. In all, our 

results, combined with recent results from others, support the presence of inflammatory 

phenotypes in addition to stem-like properties within the GSC compartment of GBM tumors. 

4.2 Wound Healing as a Mechanism Behind GSC 

Formation 

It will be very difficult to know exactly how a GBM forms due to its location in the brain and its 

early start of an estimated 1-7 years prior to diagnosis73,218, though recurring founder mutations 

in genes such as EGFR, PTEN, and CDKN2A/B have been identified through lineage tracing 

work73, and evidence exists for multiple neuronal and glial cell types as the cell of origin for 

GBM9,104,105,126. In particular, Lee and colleagues showed the existence of astrocyte-like stem 

https://sciwheel.com/work/citation?ids=10144401&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10144401&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6680355,7501909&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6680355&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2305559,12817472,58289,5627773&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
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cells in the sub-ventricular zone (SVZ) which in over half of patients studied shared driver 

mutations with GBM tumors (e.g. in EGFR, P53, PTEN) and which, if carrying those driver 

mutations, could initiated GBM tumors in mice126. Additionally, others have demonstrated the 

dedifferentiation of astrocytic cells to a stem like state upon injury107,108. Interestingly, there is 

evidence in other cancers (e.g. breast, lung, colon cancer) for inflammatory signaling and wound 

healing to be mechanisms by which cancer stem cells can be induced219–223. For instance, it was 

shown that in patient derived colon cancer cell lines, CD44 mediated STAT3 signaling 

upregulated the expression of stemness markers such as SOX2 and OCT4, and CD44 enhanced 

tumorigenicity of patient derived cell lines, in addition to promoting mesenchymal properties222. 

Additionally, in a lung cancer model of cancer stem cells, it was shown that expression of stem 

markers as well as tumorigenicity was considerably reduced upon inhibition of NFKB221, while 

in cell line and xenograft models of breast cancer, breast cancer stem cell markers and 

mammosphere formation were upregulated upon chemotherapy in a TGF-beta dependent 

manner223. Thus, there is evidence both within and outside the context of the brain that injury 

related or inflammatory signaling could serve as a means by which cells with an appropriate 

mutational background could acquire a stem-like, tumorigenic, phenotype. In the context of 

GBM, this mutational background would likely involve the mutation of genes such as EGFR, 

PTEN, and CDKN2A/B, with chromosomal instability leading to common copy number 

aberrations such as chromosome 7 amplification and/or 10 deletion. This background, combined 

with injury or inflammation induced gains in self-renewal/pluripotency capacity, could lead to 

the formation of cancer stem cells in GBM. 

From the results presented in Chapter 2, we see that a large portion of GSCs adopt an Injury 

Response transcriptional phenotype. While they adopt this phenotype to a more extreme extent 

than seen in bulk tumors, we saw that in tumors themselves there was still variation with regards 

to which cells adopted the Developmental and Injury Response transcriptional phenotypes in a 

manner similar to that seen in GSCs (i.e. anticorrelation). Importantly, we showed the similarity 

of the Injury Response expression program to that of reactive astrocytes142. There is, however, an 

apparent discrepancy between the increased tumorigenicity of Developmental GSCs relative to 

Injury Response GSCs in our work and the apparent requirement of wound response related 

signaling pathways for the formation of stem-like cells in other cancers or in astrocytes. It may 

well be that in the context of glioblastoma, inflammatory signaling could result in de-

https://sciwheel.com/work/citation?ids=5627773&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13988,1690285&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6826447,12819796,6965360,8465509,617045&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=8465509&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6965360&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=617045&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2995676&pre=&suf=&sa=0&dbf=0
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differentiation, but excessive activity of this signaling could impair differentiation capacity (and 

from there tumorigenesis) as evidenced by results from Park and colleagues111. Indeed, there is 

already considerable evidence that inflammatory signaling mediates induction or maintenance of 

GSCs. As early as 2012, it was shown that IRF7 could induce stem-like characteristics and 

tumorigenicity in glioblastoma cell lines, and its loss resulted in a decrease in the ratio of GSCs 

to differentiated cells in patient derived GSC lines224. More recently, Gao and colleagues showed 

that TMZ can induce GSCs in a DAMP/TLR dependent fashion110. Overall, the results presented 

in this thesis, combined with prior work by others, suggests Injury Response related signaling as 

a mechanism by which a de-differentiated, stem-like state in GBM cells can be obtained. Our 

work in describing a Developmental/Injury response axis as the major axis of variation in GSCs 

and the similarity of the Injury Response phenotype to an existing wound response program 

broadens the conceptualization of GSC origination from a traditional neural stem cell hierarchy 

to that of plasticity and de-differentiation within adult neural tissue. 

4.3 Mechanisms Behind GSC Phenotype Adoption 

 

Beyond the origin of GSCs, the question arises of how GSCs branch off along relatively discrete 

phenotypes such as mismatch repair associated hypermutation and more continuous spectra such 

as the Developmental/Injury Response axis. This question, with respect to mismatch repair 

deficiency and hypermutation, appears to have been largely answered for GBM tumors and with 

GSC cultures80,81,103 , with mismatch repair deficiency conferring resistance to temozolomide 

treatment, and a hypermutation phenotype upon temozolomide treatment likely accounting for 

increased immune invasion. In Chapter 3, we were able to partially address the question of how 

the Developmental and Injury Response transcriptional phenotypes come to bifurcate by 

identifying the coordinated actions of DNA methylation, miRNA based suppression, and (likely) 

transcription factor activity as processes that can stabilize the Developmental and Injury 

Response transcriptional states, with copy number variation likely driving GSCs towards one 

transcriptional pole or the other. The coordination of regulatory activities across a variety of 

biological processes suggests that normal processes to ensure a neural developmental or 

inflammatory signaling state are tightly regulated and are present in GSCs as pre-existing 

circuitry. The capacity of differentiated astrocytes to de-differentiate upon stimulation with 

https://sciwheel.com/work/citation?ids=10203004&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7020380&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12817492&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5302747,8688178,6816788&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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inflammatory signaling or in response to stresses such as stab wounds supports this notion107,108. 

Moreover, it has been shown that miR-21, upregulated in Injury Response GSCs, is upregulated 

upon spinal cord injury near the site of a lesion concomitant with the expression of stem markers, 

suggesting a combination of stem and inflammation/epithelial mesenchymal signaling may be 

involved in tissue repair225. Interestingly we found gene expression independent components of 

variation in chromatin accessibility as well as promoter methylation, specifically pertaining to 

variable accessibility in regions enriched for Injury Response related transcription factor motifs 

and variable promoter methylation for genes pertaining to certain biological pathways 

upregulated in Injury Response GSCs. This result suggests that there may be variable underlying 

influences from transcription factor activity and epigenetic state on the Developmental/Injury 

Response axis that do not manifest into the transcriptional state we observe and are instead 

overshadowed by other influences such as DNA copy number and miRNAs. While this result 

does argue for potential latent epigenetic regulation that can be regulated, future work will need 

to further investigate this, as detailed in the Future Directions section. Overall, we managed to 

identify the previously characterized mismatch repair deficiency dependent hypermutation 

phenotype as well as many novel aspects of the coordinated action of multiple biological 

processes to regulate the Developmental/Injury Response transcriptional axis identified in 

Chapter 2. 

4.4 Future Directions 

4.4.1 Using Spatial Transcriptomics Data to Assess Immune/GSC Interactions 

 

There is considerable evidence from recent studies that Injury Response-like GBM cells (GSCs 

or otherwise) are products of interaction with immune cells, both through in vitro cytokine 

treatment experiments done by ourselves and others100, as well as through spatial transcriptomics 

data226 and direct in vivo experiments227. Additionally, cells with an Injury Response phenotype 

are thought to in turn contribute to immunosuppression through driving cytotoxic T-cells to an 

exhausted state226. This raises the question of where GSCs fit into the immune interaction and 

suppression paradigm. Future studies to address this question could include the application of 

GSC gene expression signatures to spatial transcriptomics data in GBM tumors, and assessing 

the localization of GSCs relative to immune infiltrates, as well as more generally the spatial 

https://sciwheel.com/work/citation?ids=13988,1690285&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9062405&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=58706&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12534698&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11145748&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12534698&pre=&suf=&sa=0&dbf=0
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distribution of the Developmental and Injury Response transcriptional programs within the GSC 

and differentiated compartments of the tumor. Ideally, we would use a technique with true single 

cell resolution such as Seq-FISH228 or the more recently developed sci-Space method229, though 

the lack of single cell resolution in spot based methods such as the 10X Visium assay230,231 can 

be dealt with (albeit imperfectly) using deconvolution techniques232.  Under the wound response 

hypothesis, we would expect at least a large subset of GSCs to be spatially close to infiltrating 

immune cells. Indeed, it has already been shown that GSCs can interact with immune cells as 

well as blood vessels7. Overall, further understanding of the place of GSCs within tumors will 

require understanding of their interactions with both the rest of the tumor and the tumor 

microenvironment. 

4.4.2 Mechanistically Investigating the Wound Healing Hypothesis 

 

The results presented in this thesis and in other work suggest that wound response is a natural 

mechanism by which dedifferentiation of cells into cancer stem cells can take place, particularly 

in the context of GBM. Future experiments should look to go beyond initial in vitro and 

xenograft based results for GBM and attempt to recapitulate the early events of tumorigenesis in 

this context, perhaps with co-culture (with 2D culture or 3D organoids) and experiments 

involving macrophages and differentiated neural/glial cell types with founder mutations such as 

chromosome 7 amplification and/or chromosome 10 deletion, with xenograft transplantation as 

well as scRNA-seq assays performed. Through these experiments, we can assess if wound 

response signaling in the context of oncogenic mutations is sufficient to induce de-differentiation 

and tumorigenicity. If the co-culture based experiments provide evidence for this hypothesis, 

scRNA-seq experiments could also be performed with genetically engineered mice harboring 

such mutations in the neural, oligodendrocytic, or astrocytic compartments of the brain, with stab 

wound injury, middle cerebral artery occlusion, or cytokine treatment used to induce 

inflammatory signaling based de-differentiation, with rates of tumor formation compared in 

between injured and non-injured mice. Overall, these proposed experiments would aim to 

mechanistically assess the hypothesis that wound response can be responsible for tumor 

origination and if this can be shown in vivo. 

https://sciwheel.com/work/citation?ids=6712564&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11316964&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12641799,11787289&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10434310&pre=&suf=&sa=0&dbf=0
https://paperpile.com/c/m3BZa9/xnhF
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4.4.3 Finding the Origin of GSC Heterogeneity 

 

What our results in Chapter 3 do not answer concerns earlier origination of the steady state data 

we see in our GSC lines. For example, does epigenetic and genetic state serve as an origin event 

driving GSCs to one transcriptional state or the other? Does epigenetic state act as a stabilizer of 

transcriptional state preceded by environmental influences on transcription? Is copy number 

variation an early contributor to the transcriptional phenotype adopted by GSCs, and is it a trait 

selected for under microenvironmental conditions pushing GSCs one way or the other, given the 

differential essentiality of biological pathways such as aerobic/anaerobic respiration and immune 

related signaling? Potential future experiments to address these questions could include 

performing the aforementioned co-culture experiments (assuming we are able to induce de-

differentiation and tumorigenic activity this way) with and without treatment of cytokines known 

to provoke a Developmental to Injury Response transition (e.g. OMS227, TNF-alpha100), or with 

transient overexpression of Developmental transcription factors such as SOX2 and NOTCH, and 

the profiling of treated and untreated cell lines over time for RNA-seq, ATAC-seq, DNA 

methylation, WGS, and miRNA. This would allow us to assess the degree to which pre-existing 

genetic and non-genetic potentiation (i.e. from the start of tumorigenesis) influence 

transcriptional phenotype, and assess if there is selective activity upon copy number variation 

depending on transcriptional state over time as well as microenvironmental cues. 

4.4.4 Characterizing stability of Developmental and Injury Response 

Transcriptional States Given Genetic and Epigenetic Influences 

 

It was shown in Chapter 2 that GSC transcriptional state could be plastic in response to 

cytokines, and in Chapter 3 that there was apparent latent variation in methylation for promoters 

of inflammatory signaling related genes, as well variable chromatin accessibility in regions 

enriched for Injury Response transcription factor binding motifs. This raises the question of how 

robust the Developmental and Injury Response transcriptional states are to perturbation given 

influences such as genetic background (i.e. copy number for a variety of Developmental and 

Injury Response genes) and epigenetic state. Experiments that could be done to address this 

could include overexpression of miRNAs or transcription factors that could potentially change 

transcriptional state from Developmental to Injury Response (or vice versa) and the examination 

https://sciwheel.com/work/citation?ids=11145748&pre=&suf=&sa=0&dbf=0
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of both the transcriptome and the epigenome over time. While some of the experiments proposed 

in this subsection might be similar to those proposed in the previous subsection (e.g. assessing 

GSCs’ response to cytokines as a function of prior genetic/epigenetic state), I would be very 

interested in assessing the plasticity of transcriptional and epigenetic state along the 

Developmental and Injury response axis once established (i.e. well after any ‘origination’ event), 

meaning that these experiments could be performed with patient derived GSC lines derived as 

was done in this thesis (i.e. without attempting to de-differentiate neuronal/glial cell types). This 

work has to some extent been started, with Park and colleagues overexpressing ASCL1 (a 

Developmental transcription factor) in ASCL1 KO cells (which failed to differentiated upon 

Notch inhibition, similar to ASCL1 low cells that resembled Injury Response GSCs) and finding 

that genes involved in neural differentiation have their chromatin opened and an increase in cell 

differentiation occurs under these conditions111. Given our richer understanding since this work 

of both genetic and non-genetic influences on the Developmental and Injury Response state, it 

will be interesting to see to what extent influences from DNA methylation and chromatin 

accessibility can be overridden by other influences such as miRNA or transcription factor 

activity, how much DNA methylation and chromatin accessibility change in response to 

overexpression of those items, and how quickly. 

4.4.5 Novel Avenues for Potential Therapeutics 

 

With a mechanistic characterization of how the Developmental and Injury Response programs 

are maintained as well as their functional importance, we have opened the door to the 

development of new therapeutic targets and methods, particularly with the potential for miRNAs 

to be used to target differentially essential genes (e.g. FOSL1, OLIG2). Future experiments 

should be conducted to follow up the results regarding differentially expressed miRNAs 

targeting differentially essential genes among Developmental/Injury Response GSCs. 

Particularly, an experiment that should be attempted is the overexpression in Injury Response 

GSCs of Developmental miRNAs targeting Injury Response essential genes, as well as the 

overexpression in Developmental GSCs of Injury Response miRNAs targeting Developmental 

essential genes. Additionally, inhibitors of differentially essential biological pathways such as 

inflammatory signaling and the NuRD complex could be used to assess differential efficacy 

among compounds in Developmental and Injury Response GSCs. Indeed, in the context of breast 

https://sciwheel.com/work/citation?ids=10203004&pre=&suf=&sa=0&dbf=0
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cancer, others have used antibodies to inhibit STAT3 signaling by targeting OSMR233, recently 

shown to be responsible for mesenchymal conversion in GBM227, and HDAC inhibitors have 

already been shown to reduce proliferation in stem-like glioblastoma cell lines234. In addition to 

single agent experiments, combination therapies could be assessed as well, due to both the 

functional heterogeneity we have described in this thesis and the likelihood that aberrantly used 

wound response and neural developmental programs have built-in redundancies to handle 

perturbations. Overall, the greater understanding of the Developmental/Injury Response axis 

gleaned from the work presented in this thesis has allowed for new hypotheses on novel 

therapeutics. 

Taking a broader look at actual and potential therapeutics applied to GBM, in some cases applied 

specifically to GSCs, it is clear that single agents are insufficient to treat GBM. An obvious 

example concerns the case of mismatch repair deficiency and resulting resistance to 

temozolomide treatment, with resulting hypermutated tumors displaying worse response to 

immunotherapy than to systemic agents81. More specifically applied to GSCs, a multi -omics 

study that matched transcriptomic, methylomic, and mutation data in GSC lines similar to those 

used in this thesis found that out of the 94 compounds they identified as variably effective (out of 

an initial screen of 1544 compounds of varying mechanism of action), the major identifiable 

component of variation in drug response corresponded to variable response to proteasome 

inhibitors depending on activity in the P53 pathway102, showing an entire class of compounds to 

be less effective in a large subset of GSCs compared to sensitive GSCs. Applying cocktails of 

therapeutics designed to be effective against large, partially overlapping, subsets of GSCs could 

thus represent a strategy to destroy or inhibit growth for as much of the GSC population as 

possible. For example, given that mismatch repair deficiency dependent temozolomide resistance 

and is largely orthogonal to the Developmental/Injury Response axis, one could imagine a 

cocktail of temozolomide paired with specific targeting of Developmental and Injury Response 

GSCs. Indeed, there have already been numerous studies involving various potential 

combination therapies showing increased efficacy relative to monotherapy in cell culture or 

xenograft models, such as combination treatments involving temozolomide, receptor tyrosine 

kinases, and radiotherapy235. Likewise, there is a clear rationale for future studies to incorporate 

results from mechanistic and functional studies of GSC heterogeneity into the search for 

combination treatments. 

https://sciwheel.com/work/citation?ids=12819828&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11145748&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8283706&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8688178&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9276994&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8750104&pre=&suf=&sa=0&dbf=0
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4.5 Concluding Remarks 

 

Glioblastoma is a lethal disease, with GSCs responsible for recurrence. Our understanding of 

GSCs has shifted from that of a relatively homogenous population to that of a subset of 

transcriptional space that is associated with the ability to initiate or repopulate tumors, with 

heterogeneity with respect to drug response posing a considerable challenge towards developing 

new therapies. Prior to this project, there remained questions regarding the nature of 

transcriptional heterogeneity of GSCs at the single cell level as well as their relation to the bulk 

tumor. Additionally, there was a lack of understanding of how biological heterogeneity beyond 

transcription in GSCs manifested in terms of coordinated biological processes and independent 

sources of heterogeneity. In the work presented in this thesis, I addressed these questions by 

performing analyses on RNA-seq , CRISPR screening, and scRNA-seq data from GSC cultures 

as well as bulk patient tumors, and performing an integrated multi -omics analysis of 

transcriptional, genomic, and epigenetic data. With the work presented in Chapter 2, we 

discovered that at the single cell level, GSCs lie on a continuum between the Developmental and 

Injury Response transcriptional programs, an axis which was orthogonal to a stem-astrocyte 

differentiation axis. I further validated and characterized the Developmental/Injury Response 

Axis using an expanded bulk RNA-seq dataset of GSCs. We found that in addition to GSCs, bulk 

tumors also exhibited a continuum of expression between the Developmental and Injury 

Response axis. Importantly, this transcriptional axis could be linked to differential functional 

dependencies, which carries implications for the development of combination therapies against 

the GSC fraction of GBM tumors. With the multi -omics characterization of GSC heterogeneity 

presented in Chapter 3, I found that GSCs could largely be partitioned among a hypermutation 

axis pertaining to mismatch repair deficiency and temozolomide treatment as well as a 

coordinated multi -omics axis pertaining to the Developmental and Injury Response 

transcriptional programs and the genetic and non-genetic influences on the transcriptional state a 

cell adopts. The discovery of the multi -omics axis gives insight as to the fixed (genetic) and 

active (non-genetic) means by which a GSC might tend towards a transcriptional state and how 

that state is maintained. A particularly exciting part of these results was the discovery of 

differentially expressed miRNAs among Developmental and Injury Response GSC lines that 

target genes that are upregulated in and exclusively essential in cell lines expressing the opposite 
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transcriptional program (Developmental is opposite to Injury Response, as these transcriptional 

programs are highly anticorrelated). Overall, these results give us a fuller picture of the 

heterogeneity of GSCs, the underlying mechanisms behind that heterogeneity, and a larger 

repertoire of handles by which we can target therapies at multiple subpopulations of GSCs.  
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5 Appendix 

NOTE: All tables described in appendix are not displayed here, but included in a supplementary 

file appendix_files.zip 
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Table 5.1 Nonsynonymous Mutation Status in Genes, Ranked by Frequency in 

SNV C1 (Non-Hypermutator) GSCs 

Listed are gene, frequency of having >=1 nonsynonymous mutation in an SNV C1 GSC, and, 

where available, frequency of mutation according to TCGA4 (downloaded from 

https://www.cbioportal.org/study/summary?id=gbm_tcga_pub2013)  

https://sciwheel.com/work/citation?ids=58610&pre=&suf=&sa=0&dbf=0
https://www.cbioportal.org/study/summary?id=gbm_tcga_pub2013
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Table 5.2: Gene-Wise Copy Number Statistics 

 

Columns: Gene.Symbol: Gene symbol; Cytoband: cytoband; chr.arm: chromosome arm; chr: 

chromosome; arm: arm; avg_call: mean of amplification and deletion calls across all GSC lines 

with CNA data present, for a matrix with 1 = amplification, 0 = no amplification or deletion, -1 = 

deletion. CNV calls were thresholded at 0.30 log2(tumor/blood) for amplification and -0.30 

log2(tumor/blood) for deletion; amp_freq: amplification frequency, for call threshold as 

described frequency; del_freq: deletion frequency, for call threshold as described previously.   
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Table 5.3: Enriched Pathways for Developmental Genes with CNV Association 

Developmental genes with CNV association (association with Injury Response GSVA score < 0, 

FDR < 0.05; association with CNV signal > 0, FDR < 0.05) underwent pathway analysis using a 

fisher’s exact test for overrepresentation, at FDR 0.05.  
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Table 5.4: Enriched Pathways for Injury Response Genes with CNV Association 

Developmental genes with CNV association (association with Injury Response GSVA score > 0, 

FDR < 0.05; association with CNV signal > 0, FDR < 0.05) underwent pathway analysis using a 

fisher’s exact test for overrepresentation, at FDR 0.05.  
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Table 5.5: Pathways Enriched in Regions More Accessible in Developmental GSC 

lines 

ATAC-seq open chromatin regions were mapped to HGNC symbols as described in Methods, 

and resulting HGNC symbols were used for a fisher’s exact test for overrepresentation. Pathways 

were filtered at FDR 0.10.  
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Table 5.6: DIANA-TarBase miRNA/RNA interactions matched to anticorrelation 

relationships in GSC data, Developmental upregulated miRNAs  
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Table 5.7: DIANA-TarBase miRNA/RNA interactions matched to anticorrelation 

relationships in GSC data, Injury Response upregulated miRNAs  
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Table 5.8: Genes Uniquely Essential in Developmental GSCs 

See methods in Chapter 3 for details.  
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Table 5.9: Genes Uniquely Essential in Injury Response GSCs 

See methods in Chapter 3 for details. 
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