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Abstract

Background

PDZ domains are structural protein domains that recognize slmeé amino acid motifs,

often at protein C-termini, and mediate protein-protein interact{®®s) in importan
biological processes, such as ion channel regulation, cell polaritpeandl developmen
PDZ domain-peptide interaction predictors have been developed based am dord

peptide sequence information. Since domain structure is known to influendendp

specificity, we hypothesized that structural information could bed use predict nev
interactions compared to sequence-based predictors.

Results

We developed a novel computational predictor of PDZ domain and C-terpepide
interactions using a support vector machine trained with PDZ idostraicture and peptic
sequence information. Performance was estimated using extemnssge validation testin
We used the structure-based predictor to scan the human proteolgarfds of 218 PD
domains and show that the predictions correspond to known PDZ domain-j
interactions and PPIs in curated databases. The structure-bedetiopris complementary
the sequence-based predictor, finding uniqgue known and novel PPIs, and ipéstedeor
training—testing domain sequence similarity. We used a functemaihment analysis of o
hits to create a predicted map of PDZ domain biology. This map ¢ighliPDZ domai
involvement in diverse biological processes, some only found by thetusaimaseq

predictor. Based on this analysis, we predict novel PDZ domain invehtemn xenobioti¢

metabolism and suggest new interactions for other processes incdimgl healing an
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Conclusions

We built a structure-based predictor of PDZ domain-peptide intenactivhich can be used
to scan C-terminal proteomes for PDZ interactions. We also shatwthe structure-based
predictor finds many known PDZ mediated PPIs in human that werdonotl by our
previous sequence-based predictor and is less dependent on trainmg-ei@stain sequencge
similarity. Using both predictors, we defined a functional nedphuman PDZ domain
biology and predict novel PDZ domain function. Users may accesstrogture-based and
previous sequence-based predictors at http://webservice.baderlab.org/de®ains

Background

PSD95DIgA/Zo-1 (PDZ) domains are modular peptide recognition domains that are
generally found in eukaryotic signalling pathways, often in sadiffigl proteins that are
responsible for regulating protein complex assembly and localiz&ti specialized sites in
the cell, especially at membranes [1]. Their importance in higtganisms is highlighted by
their increasing abundance from yeast to human (with only 2 st wea over 250 encoded
in the human genome) and association with diseases such as fiysigis and
schizophrenia, and pathogens, such as human papillomavirus [2-4]. PDZ dartthingofa
globular structure consisting of gixstrands and twa helices (Figure 1) and often bind their
targets through the recognition of hydrophobic C-termini. Canonical ati@na occur
between the target peptide side chains and a hydrophobic binding pocket fbetween
domain 2 strand anda2 helix, though other binding modes are known. The binding
specificity of PDZ domains has been categorized into two masseda where class |
domains prefer to bind C-terminal motifs X[S/T®Xand class Il domains prefer to bind
X®Xd (where X is any amino acid anl is a hydrophobe) [5]. More recent studies have
found that the PDZ domain can be specific up to seven residues [6,7].

Figure 1 3D structure of a bound PDZ domain.The PDZ domain folds into a structure
consisting of si3 strands and twa helices. Canonical interactions occur through C-terminal
target side chain interactions and the hydrophobic domain binding pocket formed between
domain stran@2 and helixa2. The ten core domain binding sites are highlighted in blue and
the bound peptide (RRETQV) is in orange. PDB:20QS (NMR first model) [74].

Recent high throughput experiments have resulted in the availability of laegsetsiof PDZ
domain-peptide interactions [7,8]. As a result, several computatioatiions have been
developed to predict PDZ domain-peptide interactions using sequenckeib&s®nation
only [8-12]. Previously, we developed a sequence-based predictor to staonps of
multiple organisms for binders of PDZ domains [10]. Although this prediit more
accurate and precise at proteome scanning compared to previous sdopsst predictors,
like others, it performs better on sequences similar to those in the traihiitgssknown that
structure features within the domain binding pocket play importans fioledetermining
binding specificity [13-15]. Since domain structure features captdfereht information
about binding compared to sequence features, we hypothesized thatgtraith such
features would result in a predictor that is complementary tegt@ence-based predictor. In
particular, such a predictor would be less dependent on sequencetyiaidrwould predict
additional interactions not predicted by the sequence-based prediu®mvould expand the
coverage of PDZ domain C-terminal peptide interactions that caentiyrbe predicted by
sequence-based predictors alone.



Structure-based predictors have been developed to more generallst pretkin-protein
interactions. For instance, Hue et al., used a support vector m&SMNg to predict PPIs
using a structure kernel [16]. Methods utilizing structure infoilenato more specifically
predict PPIs mediated by peptide recognition domains have also beéopddvé&anchez et
al., used an empirical force field to calculate structureebasergy functions for human SH2
domain interactions [17]. Fernandez-Ballester et al., constructetioposeight matrices of
all possible SH3-ligand complexes in yeast using homology modelling [18h $hal., used
protein backbone sampling to predict binding specificity for 85 human &idzains [19].
Kaufmann et al., developed an optimized energy function to predict thiadpispecificity of
PDZ domain-peptide interactions for 12 PDZ domains [20].

In this paper, we present a structure-based predictor for PDZ nlqepiide interactions that
can be used for proteome scanning. Our predictor uses a varibtiedgnt structure features
that are known to play roles in protein structure stability anidltéaimg PPIs. Through leave
12% of domain out cross validation, we showed that the structure-pesgidtor depends
less on training—testing domain sequence similarity compared frexious sequence-based
predictor. Based on human proteome scanning results, we also shoetkatitture-based
predictions correspond to known experimentally determined PDZ domaiiagept
interactions and known PPIs involving PDZ domain containing proteinsul#stantial
number of the structure-based predictions correspond to known PPIs nouphepredicted
by the sequence-based predictor (48% increase), confirming tretubiire-based predictor
finds different interactions than the sequence-based predictor. Padgetions from both
methods, we created a functional map using all predicted human PDiatedePPls and
identify xenobiotic metabolism as a novel biological process enriched in PDZditaes.

Finally, we developed a website called POW! PDZ domain-pejigeaction prediction
website (http://webservice.baderlab.org/domains/POW), which enabé¥s ts run our
sequence-based and structure-based predictors online in human, mouse, fly and worm.

Methods

Domain binding site definition

A number of positions in the PDZ domain that are in close contaht thit peptide are
important for binding [7,8]. Following previous work, we defined the bindirng wsing ten
domain positions (core positions) that are in close contact with thiEd@digand (< 4.5
angstroms) across nine PDZ domain structures. In total, 218 out of B&hRDZ domains
could be used because they don’t have gaps in their binding sites baaedDuh family
multiple sequence alignment (8 structures), and we could obtaictises and compute
features for them (41 structures). For mouse, fly and worm, reésggctl78 of 237, 85 of
117 and 64 of 81 known PDZ domains are supported with 11, 14 and 7 of the remaining
domains containing gaps. All PDZ domains were defined by HMMER 310 §gainst
UniProt defined PDZ proteins as of Apr 2012. Overall, the struttased predictor supports
the majority of PDZ domains (i.e. 82%, 74%, 73% and 79% of known PDZidghfar
human, mouse, fly and worm, respectively.

Although previous studies used a binding site definition of 16 domain positicupérset of
the ten we use), these positions were identified from only a sPiQl& domain-peptide
complex structure [9,10] and many domains contain gaps using tler la6-position



binding site definition (based on a multiple sequence alignmehtother PDZ domains). A
comparison of cross validation performance (see section on PredietbornRance
Evaluation) using ten versus 16 binding site positions showed that tlppddions were
adequate for achieving good predictor performance (see Additional file 1: SRple

Domain structure data

The initial set of PDZ domain structures consists of one NMR1an¥-ray structures for
human collected from the Protein Data Bank (PDB) [22] with epading interaction data
from phage display or protein microarray experiments [7,8]. Five Nd¢tRctures were
collected from the PDB for mouse. For NMR structures, only tre¢ firodel was used.
Homology models were used to increase the number of structurggbbe/dor domain
structure feature encoding. In total, 11 human and 54 mouse PDZ domain mwedels
modelled by SWISS-MODEL [23] (downloaded Feb-Sep 2011) through the Ph\telal
Portal, which is a website providing access to structure modelsageshdy different protein
structure resources [24].

The quality of the homology models was estimated by computinguheer of identical
residues between the target and template sequence (i.eateers@fiuence identity). It has
been shown that target-template sequence identity is positiveglated with model quality.
In particular, state-of-the-art algorithms can always buih fjuality models (RMSD < 2 A)
if the target-template sequence identity is higher than 35-40%hdfontre, there is no
significant variation in model quality for targets with sequesinglarity between 40-70%. If
the similarity is 35%, there is no correlation [25,26]. All trainmgdels have greater than
50% sequence similarity to their template structure (averagg. ¥i%his threshold, models
are expected to have the correct fold with most inaccuraggsgafrom structural variation
in templates and incorrect reconstruction of loops [25,26]. We alsoutechthe QMEAN
score which is a scoring function measuring multiple geoméaggects of protein structure
including torsion angle potential, secondary structure-specificgaiction potentials and
solvation exposure potential [27]. This score ranges from zero tevibhescores closer to
one indicating more reliable models. The minimum QMEAN scoretoitraining models is
0.520 (average 0.836). Please see Additional file 2: Table S1 forsdetaihll training
domains.

Domain-peptide interaction data

PDZ domain-peptide interactions were collected from published Highudhput phage
display and protein microarray experiments for human and mousectiespy [7,8]. Since
the phage display data consisted of only positive interactions (of wiacdly could be non-
genomic, meaning not similar to any genomic peptide), we usedtablished protocol to
filter the interactions to enrich for genomic interactions andetoegate artificial negative
interactions [10]. Briefly, this protocol involves creating a posit@ight matrix for a given
training domain using its experimentally determined binders (pesjtiand then using the
matrix to scan a pool of C-terminal peptides (last 5 positions)lolar scoring binders
(negatives). We adopted a minor modification of this procedure to &lothe inclusion of
additional class Il type PDZ domains to increase coverage &fDEefamily — the minimum
number of genomic peptides required for inclusion was relaxed frontotéaur. Only
domains with both positive and negative interaction data were used for predictor training



Domain structure feature encoding

Structure features across the entire PDZ domain structure eonputed and values
corresponding to the ten core binding site positions were exdréician the larger list of
features computed for all domain positions. Four types of structaterés (detailed below)
involved in protein folding and stability were computed to describe Eed®dmain structure
(Figure 1). Three-dimensional geometric descriptors were investidpaut were not included
because they resulted in inferior cross validation performaeeeAdditional file 1: Figure
S1). In total, the PDZ domain structure as defined by thepmsi#ions was represented by a
vector of length 240 features. Each value in the feature waetoiscaled to lie between zero
and one. Details regarding software parameters used to conmeut®libwing structure
features are available in Additional file 1, section A.

Solvent accessibility, hydrogen bonding and positerzphi angle properties

The first feature type consists of five values describing prateucture and were computed
using the JOY web server [28]. Solvent accessibility indicateshe@héhe protein surface in
the area at the given core residue position is available toahteith ligands. Therefore, the
first value indicates whether a given residue is solvent abtess inaccessible. Patterns of
hydrogen bonding are important in forming protein secondary and yestraiccture and are
known to be important for canonical C-terminal peptide binding to the PDZ domain. The next
three values indicate if there is a residue side chain hgdrbgnded to a main chain amide,
carbonyl or another side chain. Finally, since positive main chain phi angle®stiégt what
types of residues may be accommodated at a given position, thallzstindicates if the
residue has a positive phi angle. These binary features (i.e. aliséngaesence is 1) were
computed for each core residue position resulting in a binary vedemgih 50 (5 features x
10 core positions).

Solvent accessible area

The second feature type is a single value indicating how much esyrfacarea) for a core
residue is available for binding to a ligand residue. This feat@® a@mputed using the
SURFV software [29] for each residue resulting in a numeritoved length 10 (1 feature x
10 core positions).

Electrostatic potential and hydrophobicity

Protein-protein interactions are facilitated by the electtiostaand hydrophobic
complementarity of molecular surfaces. Therefore, the third andhfteature types describe
the electrostatic potential and hydrophobicity along the surfatteeolomain. At each core
residue position, nine values were sampled from the surfaceimgsuit a total of 90
electrostatic and 90 hydrophobicity values (9 features x 10 corgopey These features
were generated by the VASCo software [30].

Peptide sequence feature encoding

Peptides were encoded using a sparse binary vector encodingeriisedes previous work
[10]. Briefly, each residue in a peptide of length five wasesented using a binary vector of



length 20 with each bit corresponding to an amino acid type. The seetoe concatenated
to form the final feature vector of length 100.

Support vector machine

We used the support vector machine (SVM) binary machine learngthoch for our
predictor [31,32]. Given interaction training data,¥¥,...,(Xm,Ym) wWherem is the number of
samples, xis a feature vector for domainahd peptidepandy is a class label such that=
{-1, +1}[33], the SVM assigns a class label of +1 if a given exd@on feature vector
encodes a positive interaction or —1 otherwise. The decision functevaligated to assign
the binary label:

f(X) =sgn(w x+b)
where sgn(0) = +1, otherwise —1. The weight vector w and erasht describe a maximum

margin hyperplane (W) that separates positive and negative training examples. Horasuc
hyperplane:

w :Zm:aiyixi

i=1

where they’s are positive real numbers that maximize the following optimization problem:

m 1 m
Zai _E aa; Yy K ,% )
=) =1

subjecttoGca; <C forall= 1,.m ,and a,y =

i=1

whereK(x;,x;) can be thought of as describing the similarity between tatoife vectors, and
C is a cost parameter that penalizes training errors. W thseradial basis function (RBF)
kernel, defined as:

K(x,,x;) =€l

A grid search was used to find locally optimal valuesyfandC [34]. Instead of explicitly
balancing the positive and negative training examples, weightedveassised according to
C" = (n'/m) C, where fi is the number of positive training interactions and the number
of negative training interactions. The LibSVM software libreugs used to build the SVM
[35].

Semi supervised negative training set expansion

An initial predictor was built using the data for 88 PDZ domains riest above. A
preliminary assessment of the predictor’s proteome scannifmympance was performed by
scanning the human proteome (defined by genome assembly Ensembl:37.64) for each domain
in the training set. This initial predictor returned a large Inemof hits (1000 or more) for

over half of the domains with an average number of predictions returneidmpain of over



2000 (see Additional file 1: Figure S2, left boxplot). Since previous pldgelay
experiments detected fewer than a hundred binders per domain &ifmmg of random
peptides, the majority of these initial predictions are likalgd positives. We surmised that
the initial negative training data did not adequately cover thgative proteomic interaction
space. Therefore, we used a semi supervised learning approaitdr soma method
previously used to expand negative training data sets when tleer® aregatives initially
available [36]. This predictor was used to scan the human proteonméeli@ctors of training
domains as we did for the initial predictor. We found that adding megateduced the
number of hits returned per domain. The final predictor was trained astotpl of 942
positive and 1843 negative interactions involving 83 PDZ domains and 872 pepadiés (
1). When scanning the human proteome again, the final predictor pret€i@r more hits
for only five out of 83 training domains (approximately 6% of traind@mains). The
average number of predictions per domain returned by the final nedias approximately
400 (see Additional file 1: Figure S2, right boxplot). Please seetidddi file 1, section E
for more details.

Table 1 Summary of the training data

Domain Interactions

Organism Source # Pos # Neg #Pos  # Neg
Mouse Protein microarray 58 53 527 1026
Mouse SVM Negatives - 24 - 210
Human Phage Display 25 - 415 -
Human PWM Negatives - 25 - 407
Human SVM Negatives - 20 - 200

Totals 83 - 942 1843

Predictor performance evaluation

We carried out multiple cross validation strategies to provide seiima&e of predictor
performance. First we performed ten fold cross validation wimeblves partitioning the
training data into ten randomly selected interaction sets, indepntielding out each set
for testing against a predictor trained using the remainder afdfa and computing average
performance across all ten runs. Following previous prediction adetland to better
compare our results with previous work, we held out 12% of the domanss{imate
performance dependence on specific sets of domains), 8% of thelegefid estimate
predictor performance dependence on specific sets of peptides) ari®othf the domains
and 8% of the peptides (to estimate predictor performance dependespedfic sets of
domains and peptides) and tested on the rest, again repeating this ten timegej8drah the
training domain features are more similar to each other (avér8§eusing normalized dot
product similarity), compared to the peptide features (average TR, we also performed
leave 12% of domains out cross validation with training set figethased on domain
sequence similarity and compared the performance of the strietsee- predictor to our
previously published sequence-based predictor. This involved holding datallor 12% of
domains for testing and training with only remaining domains anditttenactions that had
sequence similarity less than a given threshold to all testing domains.

We computed the following statistics to measure predictor performance:



» Sensitivity or Recall: TP/(TP + FN)
» Specificity: TN/(TN + FP)
* Precision: TP/(TP + FP)

where TP is the number of true positives, FP is the number of galséves, TN is the
number of true negatives, FP is the number of false positives. Thalleformance was
summarized by computing the area under the receiver operatiragteretic (ROC) curves
and Precision/Recall (PR) curves [37,38].

Functional enrichment analysis

A gene function enrichment analysis was performed on the preédeguence-based and
structure-based gene targets using Gene Ontology (GO) bidlpgozzess terms [39]. The
BINGO (Biological Network Gene Ontology tool) software lilyaj40] was used to
determine the enriched terms. The hypergeometric test wabs taseompute gp-value
assessing the GO term enrichment for a given set of prediyeeds. Multiple testing
correction was performed using the Benjamini and Hochberg Falsevery Rate (FDR)
correction. GO v1.2 (downloaded Dec 7, 2011) and human GO annotations (doweaded
7, 2011) were used. Only gene-sets with between five and 300 geregsgdrfrom the GO
ontology (defined by the GMT file dated Dec 6, 2011 and available at
http://www.baderlab.org/Data/StructurePDZProteomeScanning). A lishiaéhed termspf
value < 0.05 and FDR < 0.1) with more than one gene interactor amtladsd with more
than two domains were retained. To better interpret the stedbised and sequence-based
enrichment results, we created an enrichment map, a network-baseldreggesentation of
enriched terms that groups similar terms and eases idatitfi of functional themes. We
used the Enrichment Map Cytoscape plugin software to creatntidament map [41,42],
using the parametegsvalue < 0.05, FDR Q value < 0.1 and “Jaccard + overlap similarity”
cutoff = 0.517.

Results

The structure-based predictor achieves high crossalidation results

To estimate the generality of the predictor, we ran multiplescvalidation tests and plotted
the ROC and PR curves to summarize the performance. The preatibieves high ROC
and PR area under the curve (AUC) scores compared to random pederiidCs over all
cross validation strategies. In particular the ten fold crosdatadn ROC and PR AUCs were
0.96 and 0.936, respectively (random ROC AUC 0.5, PR AUC 0.253). The leave 8% of
peptides out cross validation ROC and PR AUCs were 0.935 and 0.909 re$péetingom
ROC AUC 0.5, PR AUC 0.358). The leave 12% of domains and 8% of peptidesosest
validation out ROC and PR AUCs were 0.927 and 0.886 respectively (ran@@&nARIC

0.5, PR AUC 0.347). Finally, slightly lower AUCs were obtained for ldeve 12% of
domains out cross validations, which achieved 0.872 and 0.785 respectively (ra@dom R
AUC 0.5, PR AUC 0.33) (Figure 2). Like our previously published sequieased predictor,
the cross validation results were lower for strategiesitivaived leaving sets of domains
out. A one-tailed t-test showed that the mean AUC scores wgridicantly higher for the
structure-based predictor compared to those of the sequenceilraskctior (p-value <
0.025) (Table 2). Blind testing results on a small number of genomise, worm and fly
interactions suggest that the predictor is able to correctgigrinteractions in different



organisms. However since these data sets are small, additiomad datjuired to verify this.
Please see Additional file 1, section H for blind testing results.

Figure 2 Predictor performance estimation using cross validationPredictor performance
measured using ten fold (red), leave 12% of domains out (blue), leave 8% of peptides out
(green), leave 12% of domains and 8% of peptides out (black) cross validation.

Table 2 Structure-based predictor achieves better cross validation resulthan the
sequence-based predictomptvalue < 0.025)

ROC PR
Structure Sequence Structure Sequence
10 Fold 0.96 0.939 0.936 0.896
0,
95% Cl (0.957 ~0.962 (0.936 ~0.941) (0.932 ~0.940) (0.890 ~ 0.900)
Domain 0.872 0.851 0.785 0.764
0,
95% Cl (0.860 ~0.882) (0.839 ~0.862) (0.765 ~ 0.805) (0.747 ~0.779)
Peptide 0.935 0.893 0.909 0.838
95% ClI
° (0.929 ~ 0.941) (0.883 ~ 0.902) (0.898 ~0.918) (0.825 ~ 0.850)
Domain + Peptide 0.927 0.87 0.886 0.794
95% ClI

(0.919 ~ 0.934) (0.862 ~ 0.877) (0.875 ~ 0.896) (0.783 ~ 0.804)

The structure-based predictor is less dependent dmaining—testing domain
sequence similarity

In previous work, we showed that the performance of the sequenakfiraskéctor depends
on how similar in binding site sequence a given testing domain its teearest training
domain. In particular, as the domain binding site sequence simitbatseases so does the
predictor's average performance until it is comparable to that rdive nearest neighbour
sequence predictor [10]. To more rigorously compare structusstb@sd sequence-based
predictor performance as training—testing domain sequence siynilaries, we performed a
leave 12% of domains out cross validation with domain sequence similarity-based) tsat
filtering for each predictor. For each fold, 12% of domains and thi&ractions were held
out, and of the remaining domains, only those and their correspondingticiesawere
retained for training if the domain sequence similarity was than a given threshold for all
testing domains. All training sets had no more than 500 interactiongolfis were executed
and repeated ten times for a total of 100 runs. For each run, theaRODER AUCs were
computed and plotted as box plots according to the similarity thre¢Rigidre 3). A one-
tailed t-test showed that the mean ROC and PR AUC scoressigmificantly higher for the
structure-based predictor when training—testing domain sequendarigynis < 0.7 p-value

< 0.029). These results show that on average, the structure-basetbpiedess dependent
on training—testing domain sequence similarity compared to theseefbased predictor at
lower similarity thresholds.

Figure 3 Predictor performance dependence on training—testing domain seguee

similarity. Leave 12% of domains out cross validation was performed with domains retained
for training in each fold if their sequence similarity to all testing dasaias less than a

given threshold. This was performed for structure-based (blue) and sequence-bdistal pr



(magenta). ROC and PR AUC scores were computed for each run and displayed in box plots
according to training—testing domain sequence similarity threshold (toptkefigit). Based

on significance testing using a one-tailed t-test, the mean struct@er@slictor ROC and

PR AUC scores are significantly higher than the sequence-based predictessvghen
training—testing domain sequence similarity is < @-¥glue < 0.029). The mean AUC scores

for structure-based (blue) and sequence-based (magenta) predictors aregaaistd a

sequence similarity threshold (bottom left and right).

Structure-based predictions are validated by knowrPDZ domain-peptide
interactions

We used the predictor to scan the human C-terminal proteome (defirggthome assembly
Ensembl:GRCh37.64) [43] for binders of 45 PDZ domains with known interactions
PDZBase that we could obtain structures and compute featuresofoeaEh domain, this
involved scanning 43827 unique C-termini of length five (including spliceamis).
Structures for these domains were obtained from the PDB orheenelogy modelled and
are at least 35% sequence similar (average over 80%) to thgplate structures. The
minimum QMEAN score for these models is 0.36 (average 0.78). Pdeas&dditional file
2: Table S3 for more details.

The structure-based predictor has a true positive rate (TPRB®fand precision of 0.0033
and correctly predicted interactions for 22 of the 45 domains. thRese domains
approximately 73% of known PDZ domain-peptide interactions in PDZBasmdependent
data source not used for training, were predicted (see AdditideaR:fiTable S4). The
sequence-based predictor had a higher TPR of 0.46 and correctly predietactions for 28
out of 45 domains. For these domains, 65% of known PDZ interactions wdretguteand
the precision was 0.0024. Although the sequence-based predictor has arRBhiran the
structure-based predictor, its precision and coverage of known PDaimois lower. This is
likely because the sequence-based predictor predicts on average imteractions per
domains than the structure-based predictor (average 426.89 and 239.71 pem domai
respectively). The low precision for both predictors is due to thekfeown interactions per
domain that are available from PDZBase (average 2.2 interactions per domain)

We also tested the false positive rate (FPR) of the predising two real negative data sets
for human, which were used in a recent study [44] to benchmark ansego@sed predictor
developed by Chen et al. [9]. The first data set consists of 466Gireneally validated
negative interactions involving peptides that contain a PDZ binding footnd from the
literature. The second data set consists of 133 negative Uiedéscribed interactions
involving peptides with a non-binding PDZ motif caused by a mutationsitrbeture-based
predictor made predictions for 410 negative interactions from the dat set and 126
negative interactions from the second data set, which resultedkPRrof 0.145 and 0.0,
respectively. The sequence-based predictor had a FPR of 0.09 and 0.@danpredictions
for 421 and 128 negative interactions for the first and second data esgigctively.
Compared to our structure-based and sequence-based predictors, thediiemtesbased
predictor has a much higher FPR of 0.482 and 0.256 for the first anddselata sets,
respectively [44] (see Additional file 2: Table S5).



Many structure-based predictions correspond to know PDZ domain
containing protein-protein interactions

To determine how many structure-based predicted interactiorespond to known PPlIs, we
scanned the human proteome to predict interactions for 218 human PDZ domains with known
PPIs (that we could obtain structures and compute structure feidrdsnown PPIs were
retrieved from iReflndex [33], which is a database integratmeractions from different
databases including BIND [45], BioGRID [46], CORUM [47], DIP [4BRRD [49], IntAct

[50] and MINT [51]. In total, 61 XRAY and nine NMR structures (only the first modeld)use
were obtained from the PDB and 148 homology models were createchofléls had a
template sequence similarity of at least 22% (average a2%h)QMEAN score of at least

0.36 (average 0.78) Please see Additional file 2: Table S3 for more details.

In total, 88 domains had predicted interactions that corresponded to kndgynwitR an
average of greater than 21% of known PPIs being correctly predoetedlomain. The
number of PPIs successfully predicted per domain was signifjparatiue < 0.05, Fisher’'s
exact test) for all but ten domains. A caveat of this resuthat PDZ domain containing
proteins may contain multiple PDZ domains and other domains, so it iposstble to
uniquely assign a PPl to a PDZ domain. This could result in errof@sasnegative or true
positive statistics for the above tests. However, the restillisserve as an estimate of
predictor performance and show that the predictor is able to pmdicy known human
PPIs.

The structure-based predictor is complementary tohe sequence-based
predictor

We next compared the structure-based predictor’s proteome scanadictions to the ones
obtained using our previously published sequence-based predictor [10]. Jrthetatsults

for 221 domains where both predictors were able to make predictionsevepared. A total

of 172 out of 925 known PPIs were predicted by both methods, 116 were unique to the
sequence predictor and 56 were unique to the structure-based prdéigiioe @). Thus the
sequence and structure-based predictors both predict unique known PPlsreand a
complementary.

Figure 4 Summary of predictions for domains with hits validated by known PPIs(A)
Breakdown of the number of proteome scanning predictions per domain made by the
structure-based predictor only (blue), sequence-based predictor only (pink), and both
predictors (yellow). Only domains with hits matching known PPIs (physical andmeptal
interactions) in iReflndex are shown. (B) Pie chart of the number of validatedddistpd
by the structure-based predictor only (blue), sequence-based predictor onlylpihk)
predictors (yellow).

To better understand how unique predictions are made, we comparedulte iresnore
detail. The unique structure based predictions arise for differapbme. Some domains (43
domains) are more challenging for the sequence-based predictoh, ietirns a low number
of hits per domain (ten or less) with none corresponding to known PPIs (see Addiigoal
Table S8) (e.g. APBA1-1, CNKSR2-1, IL16-1, IL16-3). The structuréipter fares better
for nine of these domains (ARHGEF11-1, IL16-1, I1L16-3, MPDZ-12, MPP6RLR2-3,
PDzZD2-5, RAPGEF6-1, SCRIB-3) and is able to predict many mosepat domain (on



average approximately 510 hits) with on average approximatelykhosen hits per domain.
On the other hand, the structure-based predictor has difficulty predidts for 19 domains
(e.g. DLG5-3, MPDZ-6, MPDZ-8), of which four are better preslicby the sequence-based
predictor (MLLT4-1, MPDZ-8, MPP3-1, PDZD2-2; average 383 hits) withaeerage one
known PPI hit per domain. In another scenario, two domains may havieatlbntding sites
at the sequence level (e.g. DLG1-1 and DLG2-1), but be differéhe atructure level. The
sequence-based predictor cannot distinguish between the two domalms gade, even
though the domains may actually bind different proteins. While thetste-based predictor
uses features corresponding to ten core positions, these featuoesmgputed by considering
the entire domain structure. Therefore, even if two domains haveathe binding site
residues, the resulting features will be different if their whddmain structures are different.
The structure-based predictor’'s ability to distinguish between daamaith highly similar
binding site sequences helps explain why it is able to predia muque interactions than
the sequence-based predictor. Overall, these results demorstiettons where the
structure-based predictor can be used to make predictions for dahmtiretherwise could
not be easily predicted by the sequence-based predictor and thugistobeth methods are
complementary.

Structure-based predicted binding specificities reapitulate experimental
binding specificities

Since validation data is limited, we more generally assabgsesults of proteome scanning
by comparing predicted binding specificities to those known from plgm@ay. We
constructed position weight matrices to summarize the domain’socamcid binding
preference at each position in the ligand, using all predicted inhtgrgmeptides from C-
terminal proteome scanning. Sequence logos were then used to vispedisent the binding
specificities. In total, 26 domains could be compared (i.e. they Isadthan four genomic
peptides from phage display experiments), covering known PDZ ddmaling classes |
and Il (see Additional file 1. Figure S3). For 14 domains, the stedtased predicted
binding specificity is more similar to the phage display deteechibinding specificity than
the sequence-based predicted binding specificity, and better tdatgstthe preference of
residues at specific positions. For example, the structure-bastiwbdnbetter predicts the
preference for acidic residues Glu or Asp at position -3 for EERB-1, for hydrophilic
residues such as Gly or Thr at position -2 for DVL2-1 and for pekidues at position —4
and a Thr or Ser at position -1 for TIAM2-1 (position numbering countek@ads from
the zero C-terminal position) (Figure 5). Three domains, APBA3IP1713 and TJP2-3, had
both structure-based and sequence-based predicted binding spesifiaiyrities much
lower than the average (less than 0.5). This seems to be daugembr representation of
these domains in the training set (Figure 5). More validation stadald be used to more
reliably compare the binding specificities for these domairtbke future. Furthermore, since
phage display experiments select optimal binders and cellulaagtitars may not be optimal
(e.g. to aid interaction regulation), we expect some differebhetgeen phage display and
proteome scanning-based profiles. In general, the similarity bette structure-based
predicted and experimentally determined binding specificities is high (0.636).

Figure 5 Comparison of predicted and phage display determined binding spedtities. A
comparison of phage display determined and predicted PDZ domain binding speifociti
the last five terminal binding positions visualized as sequence logos. The bipeificgy
similarity between two domains was computed using the normalized Euclidesrcdist
between their corresponding position weight matrices (see Additional fitpidtien 1).



Non-genomic phage display peptides were removed from the set of binders for each domai
Only domains with four or more peptides after this filter were used to crepterse logos
describing the domain’s binding specificity. Based on a previously establishedgbyat

peptide was considered to be genomic if the last four residues could be found in a proteomic
tail, otherwise it was considered to be non genomic [10]. Numbers in bold indicate which
similarity (sequence or structure) is higher (i.e. which predicted logossr to the

experimental l0go).

Predicted binding specificities are supported by kawn structural
determinants of PDZ domain binding specificity

As noted above, there are many cases where the structucegredieted binding specificity
is closer to the experimental binding specificity than the seqtlmasmd predicted binding
specificity. For some examples, the structure-based predicted bisgexificity better
predicts the experimental binding specificity at certain positiergs MLLT4-1, TJP1-1 and
DVL2-1). To examine if this is caused by specific structuealidres used by the structure-
based predictor, we searched the literature to find known structimend®ants influencing
these specific amino acid preferences and compared them to olis.rEsr MLLT4-1, the
structure-based predictions indicate a preference for a hydwphiliresidue at position -2.
The preference for a hydrophilic Thr residue at position -2 is equlaby the findings of
Chen et al. [15]. Their work showed that the Thr preference at gosi® is due to its
interaction with GIn at position2-1 of the domain, which forms a hydrophilic binding site
pocket at position —2. This preference is reflected in the strdbased predicted binding
specificity, whereas a completely different preferenceaftrydrophobic lle residue at this
position is predicted by the sequence-based predictor (Figure 5)ddrhain TJP1-1 is
another example where the predicted structure and sequence-based bpdtiificities are
very different (Figure 5). Appleton et al., showed that this dont@a a bi-specific
preference for Trp or Tyr at position -1 [13]. The Trp preferea@commodated through
main chain interactions witf2 andp3 strands, while the Tyr preference is accomplished
through hydrogen bonding with Asp at positi3-5 of the domain. The bi-specific
preference for a Trp or Tyr at position -1 is reflected in $treicture-based binding
specificity, while only a preference for Tyr is indicated in #$eguence-based binding
specificity. Finally, the predicted binding specificities for damRaVL2-1 are very different
(Figure 5). Zhang et al. found that the —2 binding site of the domaialgcaccommodates a
Gly-Tyr pair [52]. The preference for a Gly at position -2 eflected in the predicted
structure-based binding specificity whereas there is no obviofesrgamee in the predicted
sequence-based binding specificity. Since the binding specifittiiethese examples are
determined by specific domain structure features, this eipkain why the structure-based
predictor can better predict their binding preferences than the sequendeizaietor.

A functional map of PDZ domain biology highlights BDZ involvement in a
variety of biological processes

To identify gene functions better predicted by sequence or sktlchased methods, we
performed GO-based gene function enrichment analysis on all f@edids. The results
were visualized using an enrichment map, which groups related generutecins to ease
identification of functional themes (Figure 6). Enrichment resiutisy both sequence and
structure-based predictions were plotted on the same map to @asication of

overlapping or unique themes, with sequence-based enrichment scoeepaading to node



centre colour and structure-based scores corresponding to node bavder el example, a
number of themes are enriched in hits from both methods, such as ‘pkptorecell
maintenance’, ‘hippo signalling’ and ‘cell junction assembly’ (i.e. noelgre and border are
red). Other themes are only enriched in sequence-based (i.et lsogtey, node centre is
red) or structure-based predictions (i.e. border is red, node cengreyls For example,
‘neuron projection morphogenesis’, ‘regulation of cytokinesis’, and ‘@&nimatnune response
signalling’ themes contain terms only enriched in structure-bpsadictions, while ‘actin
movement’, ‘membrane fusion’ and ‘nuclear transport’ are enrichedinrdequence-based
predictions.

Figure 6 A functional map of PDZ domain biology.An enrichment analysis of the GO
biological process terms associated with the predicted gene interfacteesh of the

domains from structure-based and sequence-based human proteome scanning wasiperform
The results were visualized as a network where the nodes represent gembeseblour of

the node border represents the number of domains that the gene-set was seen enriched for
among the structure-based predictions. The colour of the node centre represents number of
domains that the gene-set was seen enriched for, among the sequence-basedqredic
Edges represent the overlap between two connected gene-sets with the thickness
corresponding to the number of genes overlapping. The complete enrichment map can b
downloaded for interactive viewing in Cytoscape from
http://www.baderlab.org/Data/StructurePDZProteomeScanning.

We also compared the themes from our predictions to those from 1248 RiaZ mediated
PPIs in the iRefIndex database[53]. Some themes were enricheth dmgwn interactions
(e.g. ‘'DNA damage checkpoint’, ‘negative regulation of angiogenedi®yyever many
known themes were covered by our predictors (e.g. ‘cell junctioemdmyg, ‘ion
homeostasis’, ‘neural development’). We identified the theme ‘xenobrattebolic process’
(enriched in both sequence-based and structure-based predictionshideebas it did not
correspond to any themes seen in the known interaction networdicamdt have any PDZ
interactions reported in the literature (based on a manual se&w@h)}his theme, both
predictors predicted PDZ domain interaction with enzymes thatgrertant for catalyzing
foreign compounds in the xenobiotic metabolism pathway. For exampgedguence-based
predictor predicted the domain DVL1L1-1 to interact with cytochrord50
(HGNC:CYP19A1) and dimethylaniline monooxygenase (HGNC:FMO1) [54F8MPD4-

1 to interact with various glutathione S-transferases (e.g. HGNTAL1, GSTA2, GSTA3),
MAST4-1 to interact with prostaglandin G/H synthase (HGNC:PTGShe domains
SDCBP-1, SDCBP2-1 were predicted by the structure-based fmedea interact with
bisphosphate nucleotidase (HGNC:BPNT1). The domains CAR14-1, CNKRS2KR &N

1, SNX27-1, WHRN2-1 and the domains DLG4-2, GRIP1-1, MAGI2-6, MPDZ-12-BIP
and TJP3-3 were predicted by the sequence-based and structur@ieasetors respectively
to interact with various sulfotransferases (e.g. HGNC:SULT1Q2A, T8Al1l, SULT1B1,
SULTI1E1L, SULT1A1, SULT1A2, SULT1A4) (Figure 7 and Additional file 2: Tables S9-10).

Figure 7 A network view of predicted novel PDZ interactions in xenobiotic metbolism.

PDZ domains are shown as blue nodes and labelled using their gene names. Protein
interactors are shown as pink nodes and labelled using their HGNC gene symboldgBtue e
represent structure-based only predicted interactions. Green edgesnepegsience-based
only predicted interactions. Only interactions involving proteins with GO annotatiens a
presented.




In some cases, although the themes were also enriched in flredé@emap, only limited
information about PDZ domain involvement in the associated procesdowad in the
literature. These themes represent opportunities for our preditdighed light on the role of
PDZ domains where little is currently known. One example is ‘wdweading’, where both
predictors predicted PDZ domains to interact with proteins involuedifferent stages of
wound healing. These included platelet activators and aggregatprdH@NC:CD9 [56],
P2RY12 [57]), growth factor receptors (e.g. HGNC:PDGFRA [58], BRFE [59], HGF
[60]), plasma membrane calcium-transporting ATPases (e.g. GI&NP2B1, ATP2B2,
ATP2B3, ATP2B4 [61]), calcium-activated potassium channels (e.g. HGECIKMAL,
KCNMB2 [62]), fibrinogen (HGNC:FGG) [63], coagulation factorsgleHGNC:F8, F11
[64]), immune system proteins such as chemokines (e.g. HGNC:CXCRIR2, CCL19
[65]), tumour necrosis factors (e.g. HGNC:TNFAIP6, TNF [66]) andbitor of nuclear
factor kappa kinase (HGNC:IKBKB) [66]) (Additional file 2: Tables S9-10).

Finally, our predictions also suggested additional interactions fibistuelied processes that
are known to involve PDZ domains. For ‘Wnt signalling’, both predictordigted known
interactions between the domain MAGI3-2 and frizzled-4 and 7 #sawe&lomains DLG4-
1,2 and frizzled-1,2,4 and 7 [67]. However, several other PDZ domains were also predicted to
interact with frizzled family members. Some examples inclA#NAK2-1, CAR14-1,
CNKSR2-1 (structure-based) and MPDZ-13, PDZRN4-1, SYNJ2BP-1 (seeimased)
which are all predicted to interact with one or more fridZEmily members (HGNC:FzZD1,
FzZD2, FzZD4, FZD7, FZD10). Interactions which may negatively reaguant signalling
were also predicted and involve F-box-like proteins (HGNC:TBL1X, IDBR1) [68] and
human colorectal mutant cancer protein (HGNC:MCC) [69] (Additidih@l2: Tables S9-
10).

Many functional themes we identify consist of multiple differentiched terms containing
multiple proteins, predicted to interact with several PDZ domdihese patterns involve
many proteins and are unlikely to occur by chance. Thus, our funcaoadjsis provides
additional validation of our prediction methods and highlights novel PDZartt@as
involved in a variety of biological processes.

Discussion

We have presented a structure-based predictor of PDZ domain-piapticdetions that can
be used to scan C-terminal proteomes to predict PDZ domain meBRtedOur predictor
utilizes domain structure features derived from the whole domain,ifgcas a core peptide-
binding site defined by ten highly conserved amino acid positions. Codnistie our use of

experimentally determined and computationally generated tran@ggtive interactions, our
predictor achieves high cross validation results and is expectedid¢catize well to unseen
interactions in practice. Compared to our previous sequence-basedqoydtietstructure-
based predictor is less dependent on training—testing domain seqneiterdys and predicts

many new validated interactions in human. As a result, thetstedbased predictor is
complementary to the sequence-based predictor and both should be ushtiiy i
candidates for further biological experiments and to expand our knowtéd@eZ domain

mediated PPIs.

An important technical result of our work is our use of computatiomgherated negatives
to supplement training and reduce over-prediction. We showed that theveegigractions



in current experimental data sets do not adequately cover theiveegatteome space
resulting in a predictor that returns many hits that arelikelse positives. While this
problem is more apparent for the structure-based predictor, iaffésts our sequence-based
predictor, as there are several domains where sequence-based pretaomag predicts
thousands of hits, and likely affects other sequence-based predictarSifidd additional
experimentally determined negatives for training are limitednguscomputationally
generated negatives is required. While PWMs can be used to cammaltgtgenerate such
negatives as previously shown [10], such methods do not model dependencies between ligand
positions and depend on a user or naively defined cutoff to discrimin&tedrepositives
and negatives. Here, we use a semi supervised learning appro&hguah SVM to
generate additional negatives, since SVMs can better addesksitations faced by PWMs.
As a result, the proteome scanning performance was improved byngdoe number of
false positive hits that would otherwise be returned. As this proldenot unique to the
structure-based predictor, training with additional negativedikely to benefit other
predictors as well.

Comparing proteome scanning hits to known PPIs, there is only a at@deerlap in hits
predicted by both the structure-based and sequence-based predicterthighsuggests that
the predictors are complementary and thus should both be used, thessemr@vhen using
either the structure-based or sequence-based predictor to fimdciote may be more
appropriate. For example, when the training—testing domain sequenkzising < 0.7, the
structure-based predictor may be more useful, since its penficenis less dependent on
sequence similarity at lower similarity levels. In fashen the sequence similarity is very
low the sequence-based predictor may fail to return any predick@nsother domains, a
reliable structure may not be obtained or modelled, or the recgtimacture features cannot
be successfully generated. In this case, the sequence-basedopredigt be the only
predictor that can be used. However, for the majority of cases, lemtitiors should be used
to find as many hits as possible for a given domain.

Although PDZ domains can recognize motifs internal to a protein, dadatis available for
domain-C-terminal binding, thus our predictors have been trained bssnggta and are best
suited for the prediction of such interactions. Although other simikethods exist that are
also available on the web, they can only predict that a protein smgiaa PDZ domain
interacts with another protein [70] or are best suited for ictieres between PDZ domains
and specific types of proteins (e.g. membrane proteins) [71]. Thugxpect our website
will be useful to biologists in helping to further map the margcesses mediated by PDZ
domains.

While the current structure-based predictor performs well, other idosticture related
features should be considered in the future. For example, it is knowhéhatructural
flexibility of the PDZ domain binding pocket can contribute to the domability to bind
specific ligands [15,52]. Recently, a model of PDZ domain backboxriifiy was used to
successfully predict domain binding specificity, but for a subsketiofan PDZ domains [19].
Thus, domain backbone flexibility features should be considered as tlydyetpao improve
predictor performance. Another structure related feature, which shtsalde considered, is
binding pocket geometry and shape. Although we explored the use o#1Bilk& descriptors
[72], we found that their use did not benefit our predictor. However, therether shape
descriptors such as real spherical harmonic coefficients thad beuinvestigated that may
improve predictor performance [73]. Although we have built an entisalycture-based
predictor, additional features including sequence features can beneahtbibuild a single



predictor that utilizes all available types of information. Finadince the predictor predicts
in vitro interactions, incorporating contextual information such as co-expneasd protein
location will help to build a more physiologically relevant mapP&iZ domain mediated
protein-protein interactions.

Conclusions

We have presented a structure-based predictor of PDZ domain-papéosEctions using
domain structure and peptide sequence information. Our predictor achiglesrbss
validation results and finds many interactions corresponding to knownnealiated PPIs
not previously found by our sequence-based predictor. Using both predictasfined a
functional map of PDZ domain biology and identified novel PDZ interadnvolved in a
variety of biological processes. As a result, our predictionsheip expand the coverage of
current PDZ mediated PPI networks and provide new insight into ¢hecatar mechanisms
underlying a variety of biological processes.
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Additional file 2 Table S1. Training domain structure information. In total, 83 PDZ

domains were used for training. Domain structures were obtained from the PDBajo¢gmpm
modelled through the Protein Model Portal. For NMR structures, only the first madel w
used. All homology models were generated by SWISS-MODEL and have greatéf%ha
sequence similarity to their template structure (average 90%). Modélgsi&stimated

using template sequence ID (percentage of residues between target antd teagpiances

that are identical) and QMEAN score (a scoring function that measureplengéometrical
aspects of protein structure, ranging from 0 to 1 with higher values indicatiregrefiable
models).Table S2. Blind test domain structure information.Blind testing was performed
using interaction data from mouse, worm and fly protein microarray experinretaal, 13
mouse orphan, 7 worm and 6 fly PDZ domains were used. Homology models were generated
by SWISS-MODEL. All models have at least 40% sequence identity to theifatem

structures. An NMR structure was available for one fly domain and the fidgIlnwvas used.

The average template sequence similarity was 0.92, 0.61 and 0.61 for mouse, worm and fly
domains, respectively. One mouse domain (CHAPSYN-110-1) was removed from tle¢ test s
because its performance was consistently poor for both predictors. Model pueditynated
using template sequence ID (percentage of residues between target antb te@gpiences

that are identical) and QMEAN score (a scoring function that measuraplengiometrical
aspects of protein structure, ranging from 0 to 1 with higher values indicatiregrefiable
models).Table S3. Human proteome scanning domain structure informationProteome
scanning was performed for 218 human PDZ domains, which have known interactions in
iReflndex. In total, 61 X-ray and nine NMR structures (only the first models usad)



obtained from the PDB and 148 homology models were created (template sequeacigysimil
minimum 22%, average 72%). Model quality is estimated using template segDence |
(percentage of residues between target and template sequences thatiaed) ided

QMEAN score (a scoring function that measures multiple geometrigat&sof protein
structure, ranging from 0 to 1 with higher values indicating more reliablelg)oTable S4.
Validation of structure-based predictions against known human PDZ domaipeptide
interactions. Proteome scanning predictions for 45 human PDZ domains were validated
against known PDZ domain-peptide interactions in PDZBase. Several statestecs
calculated including: # Positives, # TP (total number of true positives), # Predicietl®
(number of predictions predicted only by the structure-based predictor). # Preedigtesh&e
(number of predictions predicted only by the sequence-based predictor), # Predibted B
(number of predictions predicted by both), # TP Structure (number of true positivesgaredic
by the structure-based predictor only), # TP Sequence (number of true positiietegdriey

the sequence-based predictor only), # TP Both (number of true positives predicted by both).
Table S5. Validation of structure-based predictions against known negjve PDZ
domain-peptide interactions for human. a. Negatives involving peptides witRDZ

binding motifs. Proteome scanning predictions for 74 human PDZ domains were validated
against experimentally determined negative interactions involving peptide® 3 binding
motifs (found from the literature) for a total of 410 interactidms\Negatives involving

peptides with non binding PDZ motifs.Proteome scanning predictions for 24 human PDZ
domains were validated against known negative interactions involving mutatetepepitih
non-binding PDZ motifs (found from the literature) for a total of 126 interactikatde S6.
Validation of structure-based predictions against known experimentdy determined

PDZ domain-peptide interactions for worm Proteome scanning was performed for six
worm PDZ domains with interactions from protein microarray experimenigr&estatistics
were calculated including the ones from Table S4 as well as the followingyatives, # FP
Structure (number of false positives predicted by the structure-based @redig), # FP
Sequence (number of false positives predicted by the sequence-based predigtgrranly
Both (number of false positives predicted by bofl@ble S7. Validation of structure-based
predictions against known experimentally determined PDZ domain-pgide interactions

for fly . Proteome scanning was performed for seven fly PDZ domains with interactions f
protein microarray experiments. Several statistics were caldulste Table S6 caption).
Table S8. Validation of structure-based predictions against known ptein-protein
interactions. Proteome scanning results for 221 human PDZ domains with both structure-
based and sequence-based predictions were validated against known human PPIs in
iReflndex. A prediction is considered to be a true positive if the domain involved is found in
a known PPl where one of the proteins contains the domain. See Table S4 caption $or detalil
about the calculated statistidable S9. Structure-based predicted PDZ domain

interactors for according to functional theme.These tables contain domains, their
sequence-based predicted interactors and the enriched functional theme tges. iclike
Enrichment Map)Table S10. Sequence-based predicted PDZ domain interactors for
according to functional theme.These tables contain domains, their structure-based
predicted interactors and the enriched functional theme (i.e. clusters in itlentant Map).
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