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Abstract 

Background 

PDZ domains are structural protein domains that recognize simple linear amino acid motifs, 
often at protein C-termini, and mediate protein-protein interactions (PPIs) in important 
biological processes, such as ion channel regulation, cell polarity and neural development. 
PDZ domain-peptide interaction predictors have been developed based on domain and 
peptide sequence information. Since domain structure is known to influence binding 
specificity, we hypothesized that structural information could be used to predict new 
interactions compared to sequence-based predictors. 

Results 

We developed a novel computational predictor of PDZ domain and C-terminal peptide 
interactions using a support vector machine trained with PDZ domain structure and peptide 
sequence information. Performance was estimated using extensive cross validation testing. 
We used the structure-based predictor to scan the human proteome for ligands of 218 PDZ 
domains and show that the predictions correspond to known PDZ domain-peptide 
interactions and PPIs in curated databases. The structure-based predictor is complementary to 
the sequence-based predictor, finding unique known and novel PPIs, and is less dependent on 
training–testing domain sequence similarity. We used a functional enrichment analysis of our 
hits to create a predicted map of PDZ domain biology. This map highlights PDZ domain 
involvement in diverse biological processes, some only found by the structure-based 
predictor. Based on this analysis, we predict novel PDZ domain involvement in xenobiotic 
metabolism and suggest new interactions for other processes including wound healing and 
Wnt signalling. 



Conclusions 

We built a structure-based predictor of PDZ domain-peptide interactions, which can be used 
to scan C-terminal proteomes for PDZ interactions. We also show that the structure-based 
predictor finds many known PDZ mediated PPIs in human that were not found by our 
previous sequence-based predictor and is less dependent on training–testing domain sequence 
similarity. Using both predictors, we defined a functional map of human PDZ domain 
biology and predict novel PDZ domain function. Users may access our structure-based and 
previous sequence-based predictors at http://webservice.baderlab.org/domains/POW. 

Background 

PSD95/DlgA/Zo-1 (PDZ) domains are modular peptide recognition domains that are 
generally found in eukaryotic signalling pathways, often in scaffolding proteins that are 
responsible for regulating protein complex assembly and localization to specialized sites in 
the cell, especially at membranes [1]. Their importance in higher organisms is highlighted by 
their increasing abundance from yeast to human (with only 2 in yeast and over 250 encoded 
in the human genome) and association with diseases such as cystic fibrosis and 
schizophrenia, and pathogens, such as human papillomavirus [2-4]. PDZ domains fold into a 
globular structure consisting of six β strands and two α helices (Figure 1) and often bind their 
targets through the recognition of hydrophobic C-termini. Canonical interactions occur 
between the target peptide side chains and a hydrophobic binding pocket formed between 
domain β2 strand and α2 helix, though other binding modes are known. The binding 
specificity of PDZ domains has been categorized into two main classes, where class I 
domains prefer to bind C-terminal motifs X[S/T]XΦ and class II domains prefer to bind 
XΦXΦ (where X is any amino acid and Φ is a hydrophobe) [5]. More recent studies have 
found that the PDZ domain can be specific up to seven residues [6,7]. 

Figure 1 3D structure of a bound PDZ domain. The PDZ domain folds into a structure 
consisting of six β strands and two α helices. Canonical interactions occur through C-terminal 
target side chain interactions and the hydrophobic domain binding pocket formed between 
domain strand β2 and helix α2. The ten core domain binding sites are highlighted in blue and 
the bound peptide (RRETQV) is in orange. PDB:2OQS (NMR first model) [74]. 

Recent high throughput experiments have resulted in the availability of large data sets of PDZ 
domain-peptide interactions [7,8]. As a result, several computational methods have been 
developed to predict PDZ domain-peptide interactions using sequence-based information 
only [8-12]. Previously, we developed a sequence-based predictor to scan proteomes of 
multiple organisms for binders of PDZ domains [10]. Although this predictor is more 
accurate and precise at proteome scanning compared to previous sequence-based predictors, 
like others, it performs better on sequences similar to those in the training set. It is known that 
structure features within the domain binding pocket play important roles in determining 
binding specificity [13-15]. Since domain structure features capture different information 
about binding compared to sequence features, we hypothesized that training with such 
features would result in a predictor that is complementary to the sequence-based predictor. In 
particular, such a predictor would be less dependent on sequence similarity and would predict 
additional interactions not predicted by the sequence-based predictor. This would expand the 
coverage of PDZ domain C-terminal peptide interactions that can currently be predicted by 
sequence-based predictors alone. 



Structure-based predictors have been developed to more generally predict protein-protein 
interactions. For instance, Hue et al., used a support vector machine (SVM) to predict PPIs 
using a structure kernel [16]. Methods utilizing structure information to more specifically 
predict PPIs mediated by peptide recognition domains have also been developed. Sanchez et 
al., used an empirical force field to calculate structure-based energy functions for human SH2 
domain interactions [17]. Fernandez-Ballester et al., constructed position weight matrices of 
all possible SH3-ligand complexes in yeast using homology modelling [18]. Smith et al., used 
protein backbone sampling to predict binding specificity for 85 human PDZ domains [19]. 
Kaufmann et al., developed an optimized energy function to predict the binding specificity of 
PDZ domain-peptide interactions for 12 PDZ domains [20]. 

In this paper, we present a structure-based predictor for PDZ domain-peptide interactions that 
can be used for proteome scanning. Our predictor uses a variety of different structure features 
that are known to play roles in protein structure stability and facilitating PPIs. Through leave 
12% of domain out cross validation, we showed that the structure-based predictor depends 
less on training–testing domain sequence similarity compared to our previous sequence-based 
predictor. Based on human proteome scanning results, we also show that the structure-based 
predictions correspond to known experimentally determined PDZ domain-peptide 
interactions and known PPIs involving PDZ domain containing proteins. A substantial 
number of the structure-based predictions correspond to known PPIs not previously predicted 
by the sequence-based predictor (48% increase), confirming that the structure-based predictor 
finds different interactions than the sequence-based predictor. Using predictions from both 
methods, we created a functional map using all predicted human PDZ mediated PPIs and 
identify xenobiotic metabolism as a novel biological process enriched in PDZ interactors. 

Finally, we developed a website called POW! PDZ domain-peptide interaction prediction 
website (http://webservice.baderlab.org/domains/POW), which enables users to run our 
sequence-based and structure-based predictors online in human, mouse, fly and worm. 

Methods 

Domain binding site definition 

A number of positions in the PDZ domain that are in close contact with the peptide are 
important for binding [7,8]. Following previous work, we defined the binding site using ten 
domain positions (core positions) that are in close contact with the peptide ligand (< 4.5 
angstroms) across nine PDZ domain structures. In total, 218 out of 267 human PDZ domains 
could be used because they don’t have gaps in their binding sites based on a PDZ family 
multiple sequence alignment (8 structures), and we could obtain structures and compute 
features for them (41 structures). For mouse, fly and worm, respectively, 178 of 237, 85 of 
117 and 64 of 81 known PDZ domains are supported with 11, 14 and 7 of the remaining 
domains containing gaps. All PDZ domains were defined by HMMER 3.0 [21] against 
UniProt defined PDZ proteins as of Apr 2012. Overall, the structure-based predictor supports 
the majority of PDZ domains (i.e. 82%, 74%, 73% and 79% of known PDZ domains) for 
human, mouse, fly and worm, respectively. 

Although previous studies used a binding site definition of 16 domain positions (a superset of 
the ten we use), these positions were identified from only a single PDZ domain-peptide 
complex structure [9,10] and many domains contain gaps using this larger 16-position 



binding site definition (based on a multiple sequence alignment with other PDZ domains). A 
comparison of cross validation performance (see section on Predictor Performance 
Evaluation) using ten versus 16 binding site positions showed that the ten positions were 
adequate for achieving good predictor performance (see Additional file 1: Table S1). 

Domain structure data 

The initial set of PDZ domain structures consists of one NMR and 17 X-ray structures for 
human collected from the Protein Data Bank (PDB) [22] with corresponding interaction data 
from phage display or protein microarray experiments [7,8]. Five NMR structures were 
collected from the PDB for mouse. For NMR structures, only the first model was used. 
Homology models were used to increase the number of structures available for domain 
structure feature encoding. In total, 11 human and 54 mouse PDZ domain models were 
modelled by SWISS-MODEL [23] (downloaded Feb-Sep 2011) through the Protein Model 
Portal, which is a website providing access to structure models generated by different protein 
structure resources [24]. 

The quality of the homology models was estimated by computing the number of identical 
residues between the target and template sequence (i.e. template sequence identity). It has 
been shown that target-template sequence identity is positively correlated with model quality. 
In particular, state-of-the-art algorithms can always build high quality models (RMSD < 2 Å) 
if the target-template sequence identity is higher than 35-40%. Furthermore, there is no 
significant variation in model quality for targets with sequence similarity between 40-70%. If 
the similarity is 35%, there is no correlation [25,26]. All training models have greater than 
50% sequence similarity to their template structure (average 90%). At this threshold, models 
are expected to have the correct fold with most inaccuracies arising from structural variation 
in templates and incorrect reconstruction of loops [25,26]. We also computed the QMEAN 
score which is a scoring function measuring multiple geometrical aspects of protein structure 
including torsion angle potential, secondary structure-specific interaction potentials and 
solvation exposure potential [27]. This score ranges from zero to one with scores closer to 
one indicating more reliable models. The minimum QMEAN score for our training models is 
0.520 (average 0.836). Please see Additional file 2: Table S1 for details on all training 
domains. 

Domain-peptide interaction data 

PDZ domain-peptide interactions were collected from published high throughput phage 
display and protein microarray experiments for human and mouse, respectively [7,8]. Since 
the phage display data consisted of only positive interactions (of which many could be non-
genomic, meaning not similar to any genomic peptide), we used an established protocol to 
filter the interactions to enrich for genomic interactions and to generate artificial negative 
interactions [10]. Briefly, this protocol involves creating a position weight matrix for a given 
training domain using its experimentally determined binders (positives) and then using the 
matrix to scan a pool of C-terminal peptides (last 5 positions) for low scoring binders 
(negatives). We adopted a minor modification of this procedure to allow for the inclusion of 
additional class II type PDZ domains to increase coverage of the PDZ family – the minimum 
number of genomic peptides required for inclusion was relaxed from ten to four. Only 
domains with both positive and negative interaction data were used for predictor training. 



Domain structure feature encoding 

Structure features across the entire PDZ domain structure were computed and values 
corresponding to the ten core binding site positions were extracted from the larger list of 
features computed for all domain positions. Four types of structure features (detailed below) 
involved in protein folding and stability were computed to describe the PDZ domain structure 
(Figure 1). Three-dimensional geometric descriptors were investigated but were not included 
because they resulted in inferior cross validation performance (see Additional file 1: Figure 
S1). In total, the PDZ domain structure as defined by the core positions was represented by a 
vector of length 240 features. Each value in the feature vector was scaled to lie between zero 
and one. Details regarding software parameters used to compute the following structure 
features are available in Additional file 1, section A. 

Solvent accessibility, hydrogen bonding and positive phi angle properties 

The first feature type consists of five values describing protein structure and were computed 
using the JOY web server [28]. Solvent accessibility indicates whether the protein surface in 
the area at the given core residue position is available to interact with ligands. Therefore, the 
first value indicates whether a given residue is solvent accessible or inaccessible. Patterns of 
hydrogen bonding are important in forming protein secondary and tertiary structure and are 
known to be important for canonical C-terminal peptide binding to the PDZ domain. The next 
three values indicate if there is a residue side chain hydrogen bonded to a main chain amide, 
carbonyl or another side chain. Finally, since positive main chain phi angles may restrict what 
types of residues may be accommodated at a given position, the last value indicates if the 
residue has a positive phi angle. These binary features (i.e. absence is 0, presence is 1) were 
computed for each core residue position resulting in a binary vector of length 50 (5 features x 
10 core positions). 

Solvent accessible area 

The second feature type is a single value indicating how much surface (i.e. area) for a core 
residue is available for binding to a ligand residue. This feature was computed using the 
SURFV software [29] for each residue resulting in a numeric vector of length 10 (1 feature x 
10 core positions). 

Electrostatic potential and hydrophobicity 

Protein-protein interactions are facilitated by the electrostatic and hydrophobic 
complementarity of molecular surfaces. Therefore, the third and fourth feature types describe 
the electrostatic potential and hydrophobicity along the surface of the domain. At each core 
residue position, nine values were sampled from the surface resulting in a total of 90 
electrostatic and 90 hydrophobicity values (9 features x 10 core positions). These features 
were generated by the VASCo software [30]. 

Peptide sequence feature encoding 

Peptides were encoded using a sparse binary vector encoding, as described in previous work 
[10]. Briefly, each residue in a peptide of length five was represented using a binary vector of 



length 20 with each bit corresponding to an amino acid type. The vectors were concatenated 
to form the final feature vector of length 100. 

Support vector machine 

We used the support vector machine (SVM) binary machine learning method for our 
predictor [31,32]. Given interaction training data (x1,y1),…,(xm,ym) where m is the number of 
samples, xi is a feature vector for domain di and peptide pi and y is a class label such that yi = 
{−1, +1}[33], the SVM assigns a class label of +1 if a given interaction feature vector 
encodes a positive interaction or −1 otherwise. The decision function is evaluated to assign 
the binary label: 

( ) sgn(w x )f x b= +i  

where sgn(0) = +1, otherwise −1. The weight vector w and bias term b describe a maximum 
margin hyperplane (w,b) that separates positive and negative training examples. For such a 
hyperplane: 
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where K(xi,xj) can be thought of as describing the similarity between two feature vectors, and 
C is a cost parameter that penalizes training errors. We used the radial basis function (RBF) 
kernel, defined as: 
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A grid search was used to find locally optimal values for γ and C [34]. Instead of explicitly 
balancing the positive and negative training examples, weighted costs were used according to 
C+ = (n+/n-) C-, where n+ is the number of positive training interactions and n- is the number 
of negative training interactions. The LibSVM software library was used to build the SVM 
[35]. 

Semi supervised negative training set expansion 

An initial predictor was built using the data for 88 PDZ domains described above. A 
preliminary assessment of the predictor’s proteome scanning performance was performed by 
scanning the human proteome (defined by genome assembly Ensembl:37.64) for each domain 
in the training set. This initial predictor returned a large number of hits (1000 or more) for 
over half of the domains with an average number of predictions returned per domain of over 



2000 (see Additional file 1: Figure S2, left boxplot). Since previous phage display 
experiments detected fewer than a hundred binders per domain among billions of random 
peptides, the majority of these initial predictions are likely false positives. We surmised that 
the initial negative training data did not adequately cover the negative proteomic interaction 
space. Therefore, we used a semi supervised learning approach similar to a method 
previously used to expand negative training data sets when there are no negatives initially 
available [36]. This predictor was used to scan the human proteome for interactors of training 
domains as we did for the initial predictor. We found that adding negatives reduced the 
number of hits returned per domain. The final predictor was trained using a total of 942 
positive and 1843 negative interactions involving 83 PDZ domains and 872 peptides (Table 
1). When scanning the human proteome again, the final predictor predicted 1000 or more hits 
for only five out of 83 training domains (approximately 6% of training domains). The 
average number of predictions per domain returned by the final predictor was approximately 
400 (see Additional file 1: Figure S2, right boxplot). Please see Additional file 1, section E 
for more details. 

Table 1 Summary of the training data 
  Domain Interactions 

Organism Source # Pos # Neg # Pos # Neg 

Mouse Protein microarray 58 53 527 1026 

Mouse SVM Negatives - 24 - 210 

Human Phage Display 25 - 415 - 

Human PWM Negatives - 25 - 407 

Human SVM Negatives - 20 - 200 

 Totals 83 - 942 1843 

Predictor performance evaluation 

We carried out multiple cross validation strategies to provide an estimate of predictor 
performance. First we performed ten fold cross validation which involves partitioning the 
training data into ten randomly selected interaction sets, independently holding out each set 
for testing against a predictor trained using the remainder of the data, and computing average 
performance across all ten runs. Following previous prediction methods and to better 
compare our results with previous work, we held out 12% of the domains (to estimate 
performance dependence on specific sets of domains), 8% of the peptides (to estimate 
predictor performance dependence on specific sets of peptides) and both 12% of the domains 
and 8% of the peptides (to estimate predictor performance dependence on specific sets of 
domains and peptides) and tested on the rest, again repeating this ten times [9]. In general, the 
training domain features are more similar to each other (average 0.85 using normalized dot 
product similarity), compared to the peptide features (average 0.13). Thus, we also performed 
leave 12% of domains out cross validation with training set filtering based on domain 
sequence similarity and compared the performance of the structure-based predictor to our 
previously published sequence-based predictor. This involved holding out all data for 12% of 
domains for testing and training with only remaining domains and their interactions that had 
sequence similarity less than a given threshold to all testing domains. 

We computed the following statistics to measure predictor performance: 



• Sensitivity or Recall: TP/(TP + FN) 
• Specificity: TN/(TN + FP) 
• Precision: TP/(TP + FP) 

where TP is the number of true positives, FP is the number of false positives, TN is the 
number of true negatives, FP is the number of false positives. The overall performance was 
summarized by computing the area under the receiver operating characteristic (ROC) curves 
and Precision/Recall (PR) curves [37,38]. 

Functional enrichment analysis 

A gene function enrichment analysis was performed on the predicted sequence-based and 
structure-based gene targets using Gene Ontology (GO) biological process terms [39]. The 
BiNGO (Biological Network Gene Ontology tool) software library [40] was used to 
determine the enriched terms. The hypergeometric test was used to compute a p-value 
assessing the GO term enrichment for a given set of predicted genes. Multiple testing 
correction was performed using the Benjamini and Hochberg False Discovery Rate (FDR) 
correction. GO v1.2 (downloaded Dec 7, 2011) and human GO annotations (downloaded Dec 
7, 2011) were used. Only gene-sets with between five and 300 genes were used from the GO 
ontology (defined by the GMT file dated Dec 6, 2011 and available at 
http://www.baderlab.org/Data/StructurePDZProteomeScanning). A list of enriched terms (p-
value < 0.05 and FDR < 0.1) with more than one gene interactor and associated with more 
than two domains were retained. To better interpret the structure-based and sequence-based 
enrichment results, we created an enrichment map, a network-based visual representation of 
enriched terms that groups similar terms and eases identification of functional themes. We 
used the Enrichment Map Cytoscape plugin software to create the enrichment map [41,42], 
using the parameters p-value < 0.05, FDR Q value < 0.1 and “Jaccard + overlap similarity” 
cutoff = 0.517. 

Results 

The structure-based predictor achieves high cross validation results 

To estimate the generality of the predictor, we ran multiple cross validation tests and plotted 
the ROC and PR curves to summarize the performance. The predictor achieves high ROC 
and PR area under the curve (AUC) scores compared to random performance AUCs over all 
cross validation strategies. In particular the ten fold cross validation ROC and PR AUCs were 
0.96 and 0.936, respectively (random ROC AUC 0.5, PR AUC 0.253). The leave 8% of 
peptides out cross validation ROC and PR AUCs were 0.935 and 0.909 respectively (random 
ROC AUC 0.5, PR AUC 0.358). The leave 12% of domains and 8% of peptides out cross 
validation out ROC and PR AUCs were 0.927 and 0.886 respectively (random ROC AUC 
0.5, PR AUC 0.347). Finally, slightly lower AUCs were obtained for the leave 12% of 
domains out cross validations, which achieved 0.872 and 0.785 respectively (random ROC 
AUC 0.5, PR AUC 0.33) (Figure 2). Like our previously published sequence-based predictor, 
the cross validation results were lower for strategies that involved leaving sets of domains 
out. A one-tailed t-test showed that the mean AUC scores were significantly higher for the 
structure-based predictor compared to those of the sequence-based predictor (p-value < 
0.025) (Table 2). Blind testing results on a small number of genomic mouse, worm and fly 
interactions suggest that the predictor is able to correctly predict interactions in different 



organisms. However since these data sets are small, additional data is required to verify this. 
Please see Additional file 1, section H for blind testing results. 

Figure 2 Predictor performance estimation using cross validation. Predictor performance 
measured using ten fold (red), leave 12% of domains out (blue), leave 8% of peptides out 
(green), leave 12% of domains and 8% of peptides out (black) cross validation. 

Table 2 Structure-based predictor achieves better cross validation results than the 
sequence-based predictor (p-value < 0.025) 

 ROC PR   

 Structure Sequence Structure Sequence 

10 Fold 
95% CI 

0.96 0.939 0.936 0.896 

(0.957 ~ 0.962) (0.936 ~ 0.941) (0.932 ~ 0.940) (0.890 ~ 0.900) 
Domain 
95% CI 

0.872 0.851 0.785 0.764 

(0.860 ~0.882) (0.839 ~ 0.862) (0.765 ~ 0.805) (0.747 ~ 0.779) 
Peptide 
95% CI 

0.935 0.893 0.909 0.838 

(0.929 ~ 0.941) (0.883 ~ 0.902) (0.898 ~ 0.918) (0.825 ~ 0.850) 
Domain + Peptide 
95% CI 

0.927 0.87 0.886 0.794 

(0.919 ~ 0.934) (0.862 ~ 0.877) (0.875 ~ 0.896) (0.783 ~ 0.804) 

The structure-based predictor is less dependent on training–testing domain 
sequence similarity 

In previous work, we showed that the performance of the sequence-based predictor depends 
on how similar in binding site sequence a given testing domain is to its nearest training 
domain. In particular, as the domain binding site sequence similarity decreases so does the 
predictor’s average performance until it is comparable to that of a naïve nearest neighbour 
sequence predictor [10]. To more rigorously compare structure-based and sequence-based 
predictor performance as training–testing domain sequence similarity varies, we performed a 
leave 12% of domains out cross validation with domain sequence similarity-based training set 
filtering for each predictor. For each fold, 12% of domains and their interactions were held 
out, and of the remaining domains, only those and their corresponding interactions were 
retained for training if the domain sequence similarity was less than a given threshold for all 
testing domains. All training sets had no more than 500 interactions. Ten folds were executed 
and repeated ten times for a total of 100 runs. For each run, the ROC and PR AUCs were 
computed and plotted as box plots according to the similarity threshold (Figure 3). A one-
tailed t-test showed that the mean ROC and PR AUC scores were significantly higher for the 
structure-based predictor when training–testing domain sequence similarity is < 0.7 (p-value 
< 0.029). These results show that on average, the structure-based predictor is less dependent 
on training–testing domain sequence similarity compared to the sequence-based predictor at 
lower similarity thresholds. 

Figure 3 Predictor performance dependence on training–testing domain sequence 
similarity.  Leave 12% of domains out cross validation was performed with domains retained 
for training in each fold if their sequence similarity to all testing domains was less than a 
given threshold. This was performed for structure-based (blue) and sequence-based predictors 



(magenta). ROC and PR AUC scores were computed for each run and displayed in box plots 
according to training–testing domain sequence similarity threshold (top left and right). Based 
on significance testing using a one-tailed t-test, the mean structure-based predictor ROC and 
PR AUC scores are significantly higher than the sequence-based predictors scores when 
training–testing domain sequence similarity is < 0.7 (p-value < 0.029). The mean AUC scores 
for structure-based (blue) and sequence-based (magenta) predictors are plotted against 
sequence similarity threshold (bottom left and right). 

Structure-based predictions are validated by known PDZ domain-peptide 
interactions 

We used the predictor to scan the human C-terminal proteome (defined by genome assembly 
Ensembl:GRCh37.64) [43] for binders of 45 PDZ domains with known interactions in 
PDZBase that we could obtain structures and compute features for. For each domain, this 
involved scanning 43827 unique C-termini of length five (including splice variants). 
Structures for these domains were obtained from the PDB or were homology modelled and 
are at least 35% sequence similar (average over 80%) to their template structures. The 
minimum QMEAN score for these models is 0.36 (average 0.78). Please see Additional file 
2: Table S3 for more details. 

The structure-based predictor has a true positive rate (TPR) of 0.36 and precision of 0.0033 
and correctly predicted interactions for 22 of the 45 domains. For these domains 
approximately 73% of known PDZ domain-peptide interactions in PDZBase, an independent 
data source not used for training, were predicted (see Additional file 2: Table S4). The 
sequence-based predictor had a higher TPR of 0.46 and correctly predicted interactions for 28 
out of 45 domains. For these domains, 65% of known PDZ interactions were predicted and 
the precision was 0.0024. Although the sequence-based predictor has a higher TPR than the 
structure-based predictor, its precision and coverage of known PDZ domains is lower. This is 
likely because the sequence-based predictor predicts on average more interactions per 
domains than the structure-based predictor (average 426.89 and 239.71 per domain 
respectively). The low precision for both predictors is due to the few known interactions per 
domain that are available from PDZBase (average 2.2 interactions per domain). 

We also tested the false positive rate (FPR) of the predictor using two real negative data sets 
for human, which were used in a recent study [44] to benchmark a sequence-based predictor 
developed by Chen et al. [9]. The first data set consists of 466 experimentally validated 
negative interactions involving peptides that contain a PDZ binding motif found from the 
literature. The second data set consists of 133 negative literature-described interactions 
involving peptides with a non-binding PDZ motif caused by a mutation. The structure-based 
predictor made predictions for 410 negative interactions from the first data set and 126 
negative interactions from the second data set, which resulted in an FPR of 0.145 and 0.0, 
respectively. The sequence-based predictor had a FPR of 0.09 and 0.0, and made predictions 
for 421 and 128 negative interactions for the first and second data sets, respectively. 
Compared to our structure-based and sequence-based predictors, the Chen sequence-based 
predictor has a much higher FPR of 0.482 and 0.256 for the first and second data sets, 
respectively [44] (see Additional file 2: Table S5). 



Many structure-based predictions correspond to known PDZ domain 
containing protein-protein interactions 

To determine how many structure-based predicted interactions correspond to known PPIs, we 
scanned the human proteome to predict interactions for 218 human PDZ domains with known 
PPIs (that we could obtain structures and compute structure features for). Known PPIs were 
retrieved from iRefIndex [33], which is a database integrating interactions from different 
databases including BIND [45], BioGRID [46], CORUM [47], DIP [48], HPRD [49], IntAct 
[50] and MINT [51]. In total, 61 XRAY and nine NMR structures (only the first models used) 
were obtained from the PDB and 148 homology models were created. All models had a 
template sequence similarity of at least 22% (average 72%) and QMEAN score of at least 
0.36 (average 0.78) Please see Additional file 2: Table S3 for more details. 

In total, 88 domains had predicted interactions that corresponded to known PPIs, with an 
average of greater than 21% of known PPIs being correctly predicted per domain. The 
number of PPIs successfully predicted per domain was significant (p-value < 0.05, Fisher’s 
exact test) for all but ten domains. A caveat of this result is that PDZ domain containing 
proteins may contain multiple PDZ domains and other domains, so it is not possible to 
uniquely assign a PPI to a PDZ domain. This could result in erroneous false negative or true 
positive statistics for the above tests. However, the results still serve as an estimate of 
predictor performance and show that the predictor is able to predict many known human 
PPIs. 

The structure-based predictor is complementary to the sequence-based 
predictor 

We next compared the structure-based predictor’s proteome scanning predictions to the ones 
obtained using our previously published sequence-based predictor [10]. In total, the results 
for 221 domains where both predictors were able to make predictions were compared. A total 
of 172 out of 925 known PPIs were predicted by both methods, 116 were unique to the 
sequence predictor and 56 were unique to the structure-based predictor (Figure 4). Thus the 
sequence and structure-based predictors both predict unique known PPIs and are 
complementary. 

Figure 4 Summary of predictions for domains with hits validated by known PPIs. (A) 
Breakdown of the number of proteome scanning predictions per domain made by the 
structure-based predictor only (blue), sequence-based predictor only (pink), and both 
predictors (yellow). Only domains with hits matching known PPIs (physical and experimental 
interactions) in iRefIndex are shown. (B) Pie chart of the number of validated hits predicted 
by the structure-based predictor only (blue), sequence-based predictor only (pink), both 
predictors (yellow). 

To better understand how unique predictions are made, we compared the results in more 
detail. The unique structure based predictions arise for different reasons. Some domains (43 
domains) are more challenging for the sequence-based predictor, which returns a low number 
of hits per domain (ten or less) with none corresponding to known PPIs (see Additional file 2: 
Table S8) (e.g. APBA1-1, CNKSR2-1, IL16-1, IL16-3). The structure predictor fares better 
for nine of these domains (ARHGEF11-1, IL16-1, IL16-3, MPDZ-12, MPP6-1, PDZD2-3, 
PDZD2-5, RAPGEF6-1, SCRIB-3) and is able to predict many more hits per domain (on 



average approximately 510 hits) with on average approximately three known hits per domain. 
On the other hand, the structure-based predictor has difficulty predicting hits for 19 domains 
(e.g. DLG5-3, MPDZ-6, MPDZ-8), of which four are better predicted by the sequence-based 
predictor (MLLT4-1, MPDZ-8, MPP3-1, PDZD2-2; average 383 hits) with on average one 
known PPI hit per domain. In another scenario, two domains may have identical binding sites 
at the sequence level (e.g. DLG1-1 and DLG2-1), but be different at the structure level. The 
sequence-based predictor cannot distinguish between the two domains in this case, even 
though the domains may actually bind different proteins. While the structure-based predictor 
uses features corresponding to ten core positions, these features are computed by considering 
the entire domain structure. Therefore, even if two domains have the same binding site 
residues, the resulting features will be different if their whole domain structures are different. 
The structure-based predictor’s ability to distinguish between domains with highly similar 
binding site sequences helps explain why it is able to predict more unique interactions than 
the sequence-based predictor. Overall, these results demonstrate situations where the 
structure-based predictor can be used to make predictions for domains that otherwise could 
not be easily predicted by the sequence-based predictor and thus shows that both methods are 
complementary. 

Structure-based predicted binding specificities recapitulate experimental 
binding specificities 

Since validation data is limited, we more generally assessed the results of proteome scanning 
by comparing predicted binding specificities to those known from phage display. We 
constructed position weight matrices to summarize the domain’s amino acid binding 
preference at each position in the ligand, using all predicted interacting peptides from C-
terminal proteome scanning. Sequence logos were then used to visually represent the binding 
specificities. In total, 26 domains could be compared (i.e. they had less than four genomic 
peptides from phage display experiments), covering known PDZ domain binding classes I 
and II (see Additional file 1: Figure S3). For 14 domains, the structure-based predicted 
binding specificity is more similar to the phage display determined binding specificity than 
the sequence-based predicted binding specificity, and better recapitulates the preference of 
residues at specific positions. For example, the structure-based method better predicts the 
preference for acidic residues Glu or Asp at position −3 for ERBB2IP-1, for hydrophilic 
residues such as Gly or Thr at position −2 for DVL2-1 and for polar residues at position −4 
and a Thr or Ser at position −1 for TIAM2-1 (position numbering counted backwards from 
the zero C-terminal position) (Figure 5). Three domains, APBA3-1, TJP1-3 and TJP2-3, had 
both structure-based and sequence-based predicted binding specificity similarities much 
lower than the average (less than 0.5). This seems to be caused by poor representation of 
these domains in the training set (Figure 5). More validation data should be used to more 
reliably compare the binding specificities for these domains in the future. Furthermore, since 
phage display experiments select optimal binders and cellular interactions may not be optimal 
(e.g. to aid interaction regulation), we expect some differences between phage display and 
proteome scanning-based profiles. In general, the similarity between the structure-based 
predicted and experimentally determined binding specificities is high (0.636). 

Figure 5 Comparison of predicted and phage display determined binding specificities. A 
comparison of phage display determined and predicted PDZ domain binding specificities for 
the last five terminal binding positions visualized as sequence logos. The binding specificity 
similarity between two domains was computed using the normalized Euclidean distance 
between their corresponding position weight matrices (see Additional file 1, equation 1). 



Non-genomic phage display peptides were removed from the set of binders for each domain. 
Only domains with four or more peptides after this filter were used to create sequence logos 
describing the domain’s binding specificity. Based on a previously established protocol, a 
peptide was considered to be genomic if the last four residues could be found in a proteomic 
tail, otherwise it was considered to be non genomic [10]. Numbers in bold indicate which 
similarity (sequence or structure) is higher (i.e. which predicted logo is closer to the 
experimental logo). 

Predicted binding specificities are supported by known structural 
determinants of PDZ domain binding specificity 

As noted above, there are many cases where the structure-based predicted binding specificity 
is closer to the experimental binding specificity than the sequence-based predicted binding 
specificity. For some examples, the structure-based predicted binding specificity better 
predicts the experimental binding specificity at certain positions (e.g. MLLT4-1, TJP1-1 and 
DVL2-1). To examine if this is caused by specific structural features used by the structure-
based predictor, we searched the literature to find known structure determinants influencing 
these specific amino acid preferences and compared them to our results. For MLLT4-1, the 
structure-based predictions indicate a preference for a hydrophilic Thr residue at position −2. 
The preference for a hydrophilic Thr residue at position −2 is explained by the findings of 
Chen et al. [15]. Their work showed that the Thr preference at position −2 is due to its 
interaction with Gln at position α2-1 of the domain, which forms a hydrophilic binding site 
pocket at position −2. This preference is reflected in the structure-based predicted binding 
specificity, whereas a completely different preference for a hydrophobic Ile residue at this 
position is predicted by the sequence-based predictor (Figure 5). The domain TJP1-1 is 
another example where the predicted structure and sequence-based binding specificities are 
very different (Figure 5). Appleton et al., showed that this domain has a bi-specific 
preference for Trp or Tyr at position −1 [13]. The Trp preference is accommodated through 
main chain interactions with β2 and β3 strands, while the Tyr preference is accomplished 
through hydrogen bonding with Asp at position β3-5 of the domain. The bi-specific 
preference for a Trp or Tyr at position −1 is reflected in the structure-based binding 
specificity, while only a preference for Tyr is indicated in the sequence-based binding 
specificity. Finally, the predicted binding specificities for domain DVL2-1 are very different 
(Figure 5). Zhang et al. found that the −2 binding site of the domain actually accommodates a 
Gly-Tyr pair [52]. The preference for a Gly at position −2 is reflected in the predicted 
structure-based binding specificity whereas there is no obvious preference in the predicted 
sequence-based binding specificity. Since the binding specificities for these examples are 
determined by specific domain structure features, this helps explain why the structure-based 
predictor can better predict their binding preferences than the sequence-based predictor. 

A functional map of PDZ domain biology highlights PDZ involvement in a 
variety of biological processes 

To identify gene functions better predicted by sequence or structure-based methods, we 
performed GO-based gene function enrichment analysis on all predicted hits. The results 
were visualized using an enrichment map, which groups related gene function terms to ease 
identification of functional themes (Figure 6). Enrichment results from both sequence and 
structure-based predictions were plotted on the same map to ease identification of 
overlapping or unique themes, with sequence-based enrichment scores corresponding to node 



centre colour and structure-based scores corresponding to node border colour. For example, a 
number of themes are enriched in hits from both methods, such as ‘photoreceptor cell 
maintenance’, ‘hippo signalling’ and ‘cell junction assembly’ (i.e. node centre and border are 
red). Other themes are only enriched in sequence-based (i.e. border is grey, node centre is 
red) or structure-based predictions (i.e. border is red, node centre is grey). For example, 
‘neuron projection morphogenesis’, ‘regulation of cytokinesis’, and ‘innate immune response 
signalling’ themes contain terms only enriched in structure-based predictions, while ‘actin 
movement’, ‘membrane fusion’ and ‘nuclear transport’ are enriched only in sequence-based 
predictions. 

Figure 6 A functional map of PDZ domain biology. An enrichment analysis of the GO 
biological process terms associated with the predicted gene interactors for each of the 
domains from structure-based and sequence-based human proteome scanning was performed. 
The results were visualized as a network where the nodes represent gene-sets. The colour of 
the node border represents the number of domains that the gene-set was seen enriched for, 
among the structure-based predictions. The colour of the node centre represents number of 
domains that the gene-set was seen enriched for, among the sequence-based predictions. 
Edges represent the overlap between two connected gene-sets with the thickness 
corresponding to the number of genes overlapping. The complete enrichment map can be 
downloaded for interactive viewing in Cytoscape from 
http://www.baderlab.org/Data/StructurePDZProteomeScanning. 

We also compared the themes from our predictions to those from 1249 known PDZ mediated 
PPIs in the iRefIndex database[53]. Some themes were enriched only in known interactions 
(e.g. ‘DNA damage checkpoint’, ‘negative regulation of angiogenesis’), however many 
known themes were covered by our predictors (e.g. ‘cell junction assembly’, ‘ion 
homeostasis’, ‘neural development’). We identified the theme ‘xenobiotic metabolic process’ 
(enriched in both sequence-based and structure-based predictions) to be novel as it did not 
correspond to any themes seen in the known interaction network and did not have any PDZ 
interactions reported in the literature (based on a manual search). For this theme, both 
predictors predicted PDZ domain interaction with enzymes that are important for catalyzing 
foreign compounds in the xenobiotic metabolism pathway. For example the sequence-based 
predictor predicted the domain DVL1L1-1 to interact with cytochrome P450 
(HGNC:CYP19A1) and dimethylaniline monooxygenase (HGNC:FMO1) [54,55], FRMPD4-
1 to interact with various glutathione S-transferases (e.g. HGNC:GSTA1, GSTA2, GSTA3), 
MAST4-1 to interact with prostaglandin G/H synthase (HGNC:PTGS1). The domains 
SDCBP-1, SDCBP2-1 were predicted by the structure-based predictor to interact with 
bisphosphate nucleotidase (HGNC:BPNT1). The domains CAR14-1, CNKRS2-1, CNKRS3-
1, SNX27-1, WHRN2-1 and the domains DLG4-2, GRIP1-1, MAGI2-6, MPDZ-1, TJP2-3 
and TJP3-3 were predicted by the sequence-based and structure-based predictors respectively 
to interact with various sulfotransferases (e.g. HGNC:SULT1C2, SULT4A1, SULT1B1, 
SULT1E1, SULT1A1, SULT1A2, SULT1A4) (Figure 7 and Additional file 2: Tables S9-10). 

Figure 7 A network view of predicted novel PDZ interactions in xenobiotic metabolism. 
PDZ domains are shown as blue nodes and labelled using their gene names. Protein 
interactors are shown as pink nodes and labelled using their HGNC gene symbols. Blue edges 
represent structure-based only predicted interactions. Green edges represent sequence-based 
only predicted interactions. Only interactions involving proteins with GO annotations are 
presented. 



In some cases, although the themes were also enriched in the iRefIndex map, only limited 
information about PDZ domain involvement in the associated process was found in the 
literature. These themes represent opportunities for our predictions to shed light on the role of 
PDZ domains where little is currently known. One example is ‘wound healing’, where both 
predictors predicted PDZ domains to interact with proteins involved in different stages of 
wound healing. These included platelet activators and aggregators (e.g. HGNC:CD9 [56], 
P2RY12 [57]), growth factor receptors (e.g. HGNC:PDGFRA [58], TGFBR1 [59], HGF 
[60]), plasma membrane calcium-transporting ATPases (e.g. HGNC:ATP2B1, ATP2B2, 
ATP2B3, ATP2B4 [61]), calcium-activated potassium channels (e.g. HGNC:KCNMA1, 
KCNMB2 [62]), fibrinogen (HGNC:FGG) [63], coagulation factors (e.g. HGNC:F8, F11 
[64]), immune system proteins such as chemokines (e.g. HGNC:CXCR1, CXCR2, CCL19 
[65]), tumour necrosis factors (e.g. HGNC:TNFAIP6, TNF [66]) and inhibitor of nuclear 
factor kappa-β kinase (HGNC:IKBKB) [66]) (Additional file 2: Tables S9-10). 

Finally, our predictions also suggested additional interactions for well studied processes that 
are known to involve PDZ domains. For ‘Wnt signalling’, both predictors predicted known 
interactions between the domain MAGI3-2 and frizzled-4 and 7 as well as domains DLG4-
1,2 and frizzled-1,2,4 and 7 [67]. However, several other PDZ domains were also predicted to 
interact with frizzled family members. Some examples include AHNAK2-1, CAR14-1, 
CNKSR2-1 (structure-based) and MPDZ-13, PDZRN4-1, SYNJ2BP-1 (sequence-based) 
which are all predicted to interact with one or more frizzled family members (HGNC:FZD1, 
FZD2, FZD4, FZD7, FZD10). Interactions which may negatively regulate Wnt signalling 
were also predicted and involve F-box-like proteins (HGNC:TBL1X, TBL1XR1) [68] and 
human colorectal mutant cancer protein (HGNC:MCC) [69] (Additional file 2: Tables S9-
10). 

Many functional themes we identify consist of multiple different enriched terms containing 
multiple proteins, predicted to interact with several PDZ domains. These patterns involve 
many proteins and are unlikely to occur by chance. Thus, our functional analysis provides 
additional validation of our prediction methods and highlights novel PDZ interactors 
involved in a variety of biological processes. 

Discussion 

We have presented a structure-based predictor of PDZ domain-peptide interactions that can 
be used to scan C-terminal proteomes to predict PDZ domain mediated PPIs. Our predictor 
utilizes domain structure features derived from the whole domain, focusing on a core peptide-
binding site defined by ten highly conserved amino acid positions. Combined with our use of 
experimentally determined and computationally generated training negative interactions, our 
predictor achieves high cross validation results and is expected to generalize well to unseen 
interactions in practice. Compared to our previous sequence-based predictor, the structure-
based predictor is less dependent on training–testing domain sequence similarity and predicts 
many new validated interactions in human. As a result, the structure-based predictor is 
complementary to the sequence-based predictor and both should be used to identify 
candidates for further biological experiments and to expand our knowledge of PDZ domain 
mediated PPIs. 

An important technical result of our work is our use of computationally generated negatives 
to supplement training and reduce over-prediction. We showed that the negative interactions 



in current experimental data sets do not adequately cover the negative proteome space 
resulting in a predictor that returns many hits that are likely false positives. While this 
problem is more apparent for the structure-based predictor, it also affects our sequence-based 
predictor, as there are several domains where sequence-based proteome scanning predicts 
thousands of hits, and likely affects other sequence-based predictors [10]. Since additional 
experimentally determined negatives for training are limited, using computationally 
generated negatives is required. While PWMs can be used to computationally generate such 
negatives as previously shown [10], such methods do not model dependencies between ligand 
positions and depend on a user or naively defined cutoff to discriminate between positives 
and negatives. Here, we use a semi supervised learning approach utilizing an SVM to 
generate additional negatives, since SVMs can better address the limitations faced by PWMs. 
As a result, the proteome scanning performance was improved by reducing the number of 
false positive hits that would otherwise be returned. As this problem is not unique to the 
structure-based predictor, training with additional negatives is likely to benefit other 
predictors as well. 

Comparing proteome scanning hits to known PPIs, there is only a moderate overlap in hits 
predicted by both the structure-based and sequence-based predictor. While this suggests that 
the predictors are complementary and thus should both be used, there are cases when using 
either the structure-based or sequence-based predictor to find interactors may be more 
appropriate. For example, when the training–testing domain sequence similarity is < 0.7, the 
structure-based predictor may be more useful, since its performance is less dependent on 
sequence similarity at lower similarity levels. In fact, when the sequence similarity is very 
low the sequence-based predictor may fail to return any predictions. For other domains, a 
reliable structure may not be obtained or modelled, or the required structure features cannot 
be successfully generated. In this case, the sequence-based predictor may be the only 
predictor that can be used. However, for the majority of cases, both predictors should be used 
to find as many hits as possible for a given domain. 

Although PDZ domains can recognize motifs internal to a protein, most data is available for 
domain-C-terminal binding, thus our predictors have been trained using this data and are best 
suited for the prediction of such interactions. Although other similar methods exist that are 
also available on the web, they can only predict that a protein containing a PDZ domain 
interacts with another protein [70] or are best suited for interactions between PDZ domains 
and specific types of proteins (e.g. membrane proteins) [71]. Thus, we expect our website 
will be useful to biologists in helping to further map the many processes mediated by PDZ 
domains. 

While the current structure-based predictor performs well, other domain structure related 
features should be considered in the future. For example, it is known that the structural 
flexibility of the PDZ domain binding pocket can contribute to the domain’s ability to bind 
specific ligands [15,52]. Recently, a model of PDZ domain backbone flexibility was used to 
successfully predict domain binding specificity, but for a subset of human PDZ domains [19]. 
Thus, domain backbone flexibility features should be considered as they may help to improve 
predictor performance. Another structure related feature, which should also be considered, is 
binding pocket geometry and shape. Although we explored the use of 3D-Zernike descriptors 
[72], we found that their use did not benefit our predictor. However, there are other shape 
descriptors such as real spherical harmonic coefficients that could be investigated that may 
improve predictor performance [73]. Although we have built an entirely structure-based 
predictor, additional features including sequence features can be combined to build a single 



predictor that utilizes all available types of information. Finally, since the predictor predicts 
in vitro interactions, incorporating contextual information such as co-expression and protein 
location will help to build a more physiologically relevant map of PDZ domain mediated 
protein-protein interactions. 

Conclusions 

We have presented a structure-based predictor of PDZ domain-peptide interactions using 
domain structure and peptide sequence information. Our predictor achieves high cross 
validation results and finds many interactions corresponding to known PDZ mediated PPIs 
not previously found by our sequence-based predictor. Using both predictors we defined a 
functional map of PDZ domain biology and identified novel PDZ interactors involved in a 
variety of biological processes. As a result, our predictions will help expand the coverage of 
current PDZ mediated PPI networks and provide new insight into the molecular mechanisms 
underlying a variety of biological processes. 
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Additional file 2  Table S1. Training domain structure information. In total, 83 PDZ 
domains were used for training. Domain structures were obtained from the PDB or homology 
modelled through the Protein Model Portal. For NMR structures, only the first model was 
used. All homology models were generated by SWISS-MODEL and have greater than 50% 
sequence similarity to their template structure (average 90%). Model quality is estimated 
using template sequence ID (percentage of residues between target and template sequences 
that are identical) and QMEAN score (a scoring function that measures multiple geometrical 
aspects of protein structure, ranging from 0 to 1 with higher values indicating more reliable 
models). Table S2. Blind test domain structure information. Blind testing was performed 
using interaction data from mouse, worm and fly protein microarray experiments. In total, 13 
mouse orphan, 7 worm and 6 fly PDZ domains were used. Homology models were generated 
by SWISS-MODEL. All models have at least 40% sequence identity to their template 
structures. An NMR structure was available for one fly domain and the first model was used. 
The average template sequence similarity was 0.92, 0.61 and 0.61 for mouse, worm and fly 
domains, respectively. One mouse domain (CHAPSYN-110-1) was removed from the test set 
because its performance was consistently poor for both predictors. Model quality is estimated 
using template sequence ID (percentage of residues between target and template sequences 
that are identical) and QMEAN score (a scoring function that measures multiple geometrical 
aspects of protein structure, ranging from 0 to 1 with higher values indicating more reliable 
models). Table S3. Human proteome scanning domain structure information. Proteome 
scanning was performed for 218 human PDZ domains, which have known interactions in 
iRefIndex. In total, 61 X-ray and nine NMR structures (only the first models used) were 



obtained from the PDB and 148 homology models were created (template sequence similarity 
minimum 22%, average 72%). Model quality is estimated using template sequence ID 
(percentage of residues between target and template sequences that are identical) and 
QMEAN score (a scoring function that measures multiple geometrical aspects of protein 
structure, ranging from 0 to 1 with higher values indicating more reliable models). Table S4. 
Validation of structure-based predictions against known human PDZ domain-peptide 
interactions. Proteome scanning predictions for 45 human PDZ domains were validated 
against known PDZ domain-peptide interactions in PDZBase. Several statistics were 
calculated including: # Positives, # TP (total number of true positives), # Predicted Structure 
(number of predictions predicted only by the structure-based predictor). # Predicted Sequence 
(number of predictions predicted only by the sequence-based predictor), # Predicted Both 
(number of predictions predicted by both), # TP Structure (number of true positives predicted 
by the structure-based predictor only), # TP Sequence (number of true positives predicted by 
the sequence-based predictor only), # TP Both (number of true positives predicted by both). 
Table S5. Validation of structure-based predictions against known negative PDZ 
domain-peptide interactions for human. a. Negatives involving peptides with PDZ 
binding motifs. Proteome scanning predictions for 74 human PDZ domains were validated 
against experimentally determined negative interactions involving peptides with PDZ binding 
motifs (found from the literature) for a total of 410 interactions. b. Negatives involving 
peptides with non binding PDZ motifs. Proteome scanning predictions for 24 human PDZ 
domains were validated against known negative interactions involving mutated peptides with 
non-binding PDZ motifs (found from the literature) for a total of 126 interactions. Table S6. 
Validation of structure-based predictions against known experimentally determined 
PDZ domain-peptide interactions for worm. Proteome scanning was performed for six 
worm PDZ domains with interactions from protein microarray experiments. Several statistics 
were calculated including the ones from Table S4 as well as the following: # Negatives, # FP 
Structure (number of false positives predicted by the structure-based predictor only), # FP 
Sequence (number of false positives predicted by the sequence-based predictor only), # FP 
Both (number of false positives predicted by both). Table S7. Validation of structure-based 
predictions against known experimentally determined PDZ domain-peptide interactions 
for fly . Proteome scanning was performed for seven fly PDZ domains with interactions from 
protein microarray experiments. Several statistics were calculated (see Table S6 caption). 
Table S8. Validation of structure-based predictions against known protein-protein 
interactions. Proteome scanning results for 221 human PDZ domains with both structure-
based and sequence-based predictions were validated against known human PPIs in 
iRefIndex. A prediction is considered to be a true positive if the domain involved is found in 
a known PPI where one of the proteins contains the domain. See Table S4 caption for details 
about the calculated statistics. Table S9. Structure-based predicted PDZ domain 
interactors for according to functional theme. These tables contain domains, their 
sequence-based predicted interactors and the enriched functional theme (i.e. clusters in the 
Enrichment Map). Table S10. Sequence-based predicted PDZ domain interactors for 
according to functional theme. These tables contain domains, their structure-based 
predicted interactors and the enriched functional theme (i.e. clusters in the Enrichment Map). 



Figure 1



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ROC

FPR

T
P

R

0.96 10 Fold

0.872 Domain

0.935 Peptide

0.927 Domain+Peptide

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Precision Recall

RECALL

P
R

E
C

IS
IO

N
0.936 10 Fold

0.785 Domain

0.909 Peptide

0.886 Domain+PeptideFigure 2



0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

<=1.0 <0.9 <0.8 <0.7 <0.6 <0.5 <0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

<=1.0 <0.9 <0.8 <0.7 <0.6 <0.5 <0.4

0
.5

0
.7

0
.9

Mean ROC AUC

<=1.0 <0.9 <0.8 <0.7 <0.6 <0.5 <0.4
0

.3
0

.5
0

.7

Mean PR AUC

<=1.0 <0.9 <0.8 <0.7 <0.6 <0.5 <0.4

Training-Testing Domain Similarity Training-Testing Domain Similarity

Structure

Sequence

ROC AUC PR AUC

Figure 3



MAGI3-6
MAGI3-5
MAGI3-4
MAGI3-2
MAGI2-6
MAGI2-5
MAGI2-4
MAGI2-2
MAGI2-1
MAGI1-6
MAGI1-5
MAGI1-4
MAGI1-3
MAGI1-2
LRRC7-1
LIN7C-1
LIN7B-1
LIN7A-1

IL16-1
GRIP2-5
GRIP1-6
GRIP1-5
GIPC1-1

ERBB2IP-1
DLG4-3
DLG4-2
DLG4-1
DLG3-3
DLG3-2
DLG3-1
DLG2-3
DLG2-2
DLG2-1
DLG1-3
DLG1-2
DLG1-1
CASK-1

APBA3-2
APBA3-1

Combined number of predictions

0 500 1000 1500 2000 2500

TJP3-1
TJP2-3
TJP2-1
TJP1-3
TJP1-2
TJP1-1

SYNJ2BP-1
SNTG2-1
SNTB2-1
SNTB1-1
SNTA1-1

SLC9A3R2-2
SLC9A3R1-2
SLC9A3R1-1

SHANK2-1
SCRIB-4
SCRIB-2
SCRIB-1
RGS12-1
PTPN3-1
PDZK1-4
PDZK1-3
PDZK1-2
PDZK1-1
PDZD3-3
PDZD3-1
MPP6-1
MPP3-1
MPDZ-9
MPDZ-7
MPDZ-5
MPDZ-4
MPDZ-3
MPDZ-2

MPDZ-13
MPDZ-12
MPDZ-10

MPDZ-1
MAST2-1

Structure only

Sequence only

Both

Combined number of predictions

0 500 1000 1500 2000 2500

Number of Predictions for Domains with Validated Hits

Structure ( 56 )

Both ( 48 )

Sequence ( 68 )

Number of Known PPIs Predicted

( 172  out of  925 )

A 

B 

Figure 4



# Phage Display
Predicted Logo

(Sequence)
Predicted Logo

(Structure)
Sim

(Sequence)
Sim

(Structure)

1 0.4 0.5

2 0.561 0.584

3 0.619 0.692

4 0.604 0.523

5 0.47 0.736

6 0.516 0.569

7 0.537 0.454

8 0.421 0.378

Figure 5



Neural  

Development 

Social  

BehaviourLearning or 

Memory 

Sensory 

Perception 
Endothelium/ 

Epithelium 
Development 

Neuron Projection 

Morphogenesis White Blood Cell  

Differentiation 

Growth Factor  

Receptor  
Signalling

Regulation of 

GTPase Signalling

Regulation of  

GTPase Activity 
G-Protein  

Signalling Hippo Signalling

Cascade 
Wnt Signalling

Regulation of 

Kinase
Cascade 

Integrin-mediated 

Signalling
Pathway 

Glutamate 

Signalling
Pathway 

Seratonin

Receptor 
Signalling

Pathway 

Innate Immune  

Response Signalling

Regulation of 

Immune  
Response 

Cell Junction 

Assembly 
Cell  

Adhesion 

Nuclear 

Transport 

Ion 

Homeostasis 

Ion 

Transport Anion 

Transport 

Amino  

Acid 
Transport 

Ion 

Transport 
Regulation 

Protein  

Localization 
Regulation 

Deacetylation Phosphorylation

Xenobiotic

Metabolic Process 

Fatty Acid 

Biosynthesis Actin

Movement 

Regulation of 

Receptor Activity 

Nutrient  

Response 

Exocytosis Platelet  

Activation 

Regulation of 

Cytokinesis
Wound 

Healing 

Photoreceptor 

Cell 
Maintenance 

Reproductive  

Structure 
Development 

Vacuole  

Assembly 

cGMP

Metabolic  
Process 

Ion  

Response 

Membrane 

Fusion 
Cell Fate 

Determination 

Regulation of 

DNA Response 
 to Stress 

NODE 

EDGE 

Structure-based (outer) 

Sequence-based (inner) 

Number of domains with this term 

none high 

Amount of gene overlap 

low 

high 

small large 

Gene-set size Enriched functional term 

Figure 6



Xenobiotic  Metabolic Process

GSTA2

GSTA1 GSTA3

FRMPD4-1

FMO1

DVL1L1-1

GSTA5

CYP19A1

TJP3-3

CNKSR3-1

DLG4-2

SULT4A1

SULT1E1

SULT1B1

TJP2-3

CAR14-1

CNKSR2-1

GRIP1-1
MPDZ-1

SNX27-1

WHRN-2

SULT1C2

MAST4-1

BPNT1

MAGI2-6

SULT1A2

SULT1A4
SULT1A1

PTGS1

SDCBP2-1

SDCBP-1

Figure 7



Additional files provided with this submission:

Additional file 1: 4884989746793130_add1.pdf, 1791K
http://www.biomedcentral.com/imedia/7918445208995647/supp1.pdf
Additional file 2: 4884989746793130_add2.xls, 760K
http://www.biomedcentral.com/imedia/1236643944899564/supp2.xls

http://www.biomedcentral.com/imedia/1236643944899564/supp2.xls

	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Additional files

