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Abstract 

Linear mixed models (LMMs) are the most-established model of the genotype to phenotype 

relationship in populations of individuals, but they do not scale to the level of hundreds of 

thousands of genotyped individuals in large human biobanks. We developed a scalable framework 

for fitting likelihood-based multi-component LMMs with full-rank covariance that scales to 

several million samples with high statistical accuracy, rivaling exact computation, without the high 

computational and memory demands of previous state-of-the-art methods. Our scalable LMM 

(SLMM) implementation can be distributed from one to many computers aiding fast and accurate 

large-scale analysis. We applied SLMM to examine ~300,000 individuals and estimate heritability, 

infer selection-related parameters, and incorporate prior knowledge of specific genome 

components, such as codons, gene promoters and terminators, as well as biological pathway gene 

sets to perform functional enrichment on several phenotypes from individual data in the UK 

Biobank.  



Main Text 

Human genetics seeks to answer three important questions based on information about how 

genotypes and phenotypes vary across populations of individuals: “How heritable is a trait?”, 

“What is the biological mechanism of heritability?” and “How does an individual’s genotype 

predict their phenotype?”. Genotype and phenotype information for over 20 million human 

individuals has been, or will be, collected by biobanks such as UK Biobank1, Our Future Health2, 

the Million Veteran Program3, All of Us4, CanPath5, FinnGen6, Biobank Japan7, Taiwan Biobank8 

and Shanghai Zhangjiang Biobank9, as well as by companies like 23andMe10. Analysis of human 

biobank information provides immense opportunities to explore human genetic variation along 

with its complex interaction structure, both internally and with the environment, and their impact 

on human health11. It also opens a new frontier for genetics, as analogous data have not been 

established for any other organism. 

Accurate and thorough human genetic analysis is challenging because the genotype to phenotype 

mapping is confounded by complex human population structure and other factors. Further, state-

of-the-art statistical genetics methods to handle these challenges do not scale to the large sizes of 

human biobanks. The linear mixed model (LMM) is a flexible statistical approach that combines 

fixed and random effects to analyze hierarchical or clustered data12 and is a prominent solution to 

this challenge. It can model the relationship between predictor variables and an outcome variable 

while accounting for both population-level effects (fixed effects) and group-specific or subject-

specific variations (random effects) with diverse application across wide variety of scientific 

fields13. In genetics, LMMs have been used extensively for estimating heritability of phenotypic 

variation14–17, inferring the role of selection18,19, variance partitioning20, rare and common variant 

association analysis21–26. Restricted maximum likelihood (REML) is the unbiased and statistically 

efficient method for fitting LMMs12,13. The major disadvantage of current REML 

implementations24,26,27 is that they do not scale well to large sample sizes (e.g. hundreds of 

thousands of individuals), preventing their use on large human biobanks, as they suffer from cubic 

complexity in sample size. Approximate LMM solutions have been developed to increase speed 

but do so by compromising on one or more of the following important statistical properties: 

statistical efficiency28, full-rank estimation22,23, likelihood evaluation21,28,29, or model design 

versatility. 



We developed scalable LMM (SLMM), an efficient and accurate approach for performing 

likelihood-based estimation of variance components that scales to several million samples. 

Inspired by recent advances in machine learning30–32, SLMM contributes key methodological 

improvements that enable it to quickly and accurately solve LMMs on extremely large datasets. 

We also developed a versatile software implementation of SLMM that can run on any computer 

from a laptop to a large distributed system, such as a cluster or cloud, and use small or large 

memory resources. SLMM enables accessible analysis of the largest human biobanks and will lead 

to more accurate and comprehensive mapping of the genotype to phenotype relationship. 

SLMM methodological novelties 

Solving LMMs is traditionally slow as it depends on intensive algebraic operations, including 

matrix inversion, trace, and log-determinant (see Methods). To perform these computations in a 

scalable manner, we combined several approaches and techniques from machine learning, 

statistics, numerical methods and software engineering:  

1. Complete avoidance of matrix inversion by using highly efficient state-of-the-art Krylov-based 

approaches to solve linear systems (Block Lanczos35 and Deflated Preconditioned Block Conjugate 

Gradient36). This transforms our problem into a series of matrix vector products, allowing matrix-

free operation, see Methods, Supplementary Figure 1. 

2. Application of Hutchinson's randomized trace estimation34 to convert trace calculation involving 

matrix inverse (needed for the gradient) into solving a set of linear systems, employing the 

aforementioned solvers. Variance reduction33 is then used to minimize the variance of this 

unbiased estimation procedure, approaching exact calculation. See Methods and supplementary 

Figures 2 & 3. 

3. Reuse of information from the solvers to enable accurate and unbiased estimates of the log 

determinant and, consequently, the likelihood, through the use of stochastic Lanczos 

quadrature35,37,38. 

4. Acceleration of the Hessian/information matrix calculation through information reuse from the 

gradient evaluation step (i.e., block Lanczos tridiagonal matrices) as a warmup strategy. Using 



second-order derivatives speeds fitting. We use trust region optimization39 to aid global 

convergence. 

5. To further expedite the fitting process, we implemented pretraining on a subset of data to derive 

a better starting point, thereby reducing computation on the full dataset. 

6. Given that the model fitting is transformed into a series of linear systems requiring only matrix 

vector products, we focused on optimizing multiplication with genotype data by implementing an 

efficient version of the Mailman method40,41 (see Methods). This enables matrix multiplication in 

sub-linear time complexity with genotype data consisting of limited possible values. We 

demonstrate that this multiplication routine is faster than the best general-purpose multiplication 

methods42 (e.g. Intel(R) oneAPI Math Kernel Library version 2022.1) (Supplementary Figure 4). 

7. Development of a versatile software implementation of SLMM capable of running on diverse 

computer types, from laptops to large distributed systems such as clusters or clouds, and using 

small or large memory resources (native support for in-core, out-of-core and distributed operation). 

See Figure 1 and Supplementary Figure 5). 

Together, these advances in mathematical formulation of the REML problem and algorithmic 

implementations combine to shift the computational complexity of accurate REML solving from 

cubic to close to linear for SLMM (Figure 1). Since statistical power of genetic analysis increases 

as the number of individuals analyzed grows, we anticipate that our advance applied to the genetic 

analysis of millions of individuals will lead to increased discovery of genotype to phenotype 

relationships and a reduction in false positive results. 

SLMM accuracy and runtime performance 

Genetics research relies on LMMs perhaps more than any other field43. A major reason for this is 

that LMMs can effectively control for population structure and other confounding factors, which 

is critical to genetic data interpretation. Statistical geneticists have developed some of the leading 

LMM solvers and applications, such as the GCTA27 software for exact REML fitting. To evaluate 

the accuracy of SLMM compared to the current state-of-the-art exact models in this context, we 

used GCTA software as a reference ‘exact solution’ approach and performed extensive simulations 



on genetic data. GCTA works efficiently with relatively small sample sizes and so we initially 

focussed analysis on 10,000 individuals derived from the UK Biobank (see Methods). 

SLMM provides highly accurate and unbiased estimates, comparable to the exact LMM model 

(Supplementary Figures 6 and 7) with little loss of statistical efficiency (Supplementary Figure 8). 

To evaluate the accuracy and convergence properties of SLMM on large data, we performed 

another round of simulation on a larger subset of 300,000 UK Biobank data (see Methods). Our 

findings show that SLMM can accurately compute the correct variance parameters and converge 

successfully across different scenarios (Supplementary Figure 9). 

To illustrate the scalability and speed of SLMM, we performed four complementary analyses. 

First, we compared the runtime of SLMM to that of GCTA as a state-of-the-art exact LMM solver 

and show that SLMM is an order of magnitude faster than GCTA (Figure 1a). Second, to 

investigate the speedup of running SLMM across more than one computer, we ran a representative 

large-scale analysis across an increasing number of computers and measured the relative speedup 

(Figure 1b) which shows that SLMM has near linear scalability with respect to an increase in the 

number of machines used. We also show that our approach is faster than BOLT-LMM, a 

representative scalable approach of the type that approximates the solution by trading off accuracy 

for increased speed (Supplementary Figure 10). BOLT-LMM does not compute likelihood, only 

supports genetic random effects with fixed variant-level weights, exhibits bias (Supplementary 

Figure 6) and is not parallelizable across computers. Third, we show that SLMM can operate out-

of-core with little memory requirement, while still maintaining scalability (Supplementary Figure 

5). Finally, as we did not have access to data larger than the UK Biobank, to illustrate the scalability 

of SLMM, we simulated genotypes of 5 million individuals (see Methods), each with 400 thousand 

variants and were able to fit a multi-component REML (two components, even and odd 

chromosomes) on such data in 6 hours using 5 compute nodes. To the best of our knowledge, this 

is the largest reported analysis using a REML-based LMM. 

Large-scale heritability analysis 

To test SLMM on a real analysis problem, we used it to estimate heritability of quantitative traits 

in the UK Biobank. We focused on implementing state-of-the-art heritability models (see 

Methods), such as GCTA's GREML (single component14, LDMS-I15 and LDMS-R44) and LDAK 



(LDAK17,18 and LDAK-thin45) that provide the most accurate trait heritability estimates, some of 

which support a variety of genetic architectures (e.g. minor allele frequency (MAF) and linkage 

disequilibrium (LD) dependent architectures)15,46. It has not previously been possible to evaluate 

how well these models fit biobank scale data to estimate trait heritability from individual-level 

data15,18,45 and how well their heritability estimates agree, because no LMM solver has existed to 

fit them to biobank data while providing accurate estimates along with likelihood for comparison. 

We analyzed several traits, including benchmark phenotypes such as height and BMI along with a 

number of blood biomarkers (Table 1, Supplementary Figures 11 to 14), on biobank-scale data 

using an average of about 330 thousand individuals and 5 million high-quality imputed SNPs (see 

Methods). We also fitted a more complex model based on the best overall model (GCTA LDMS-

I), but including 27 additional components representing various functional categories of genomic 

regions (e.g. promoters, coding regions). Our findings revealed a considerable difference in the 

heritability estimate of various models (Figure 2a and Supplementary Figures 11 and 12) along 

with their likelihood (Supplementary Figures 13 and 14) showing that even at such large sample 

sizes the estimates don’t converge to similar values and therefore the choice of heritability model 

is important. Our analysis confirms the finding of previous studies that the genetic architecture of 

traits is highly dependent on the MAF and LD of variants (Supplementary Figure 15), meaning 

that the distribution of variant effect sizes varies across the MAF and LD spectrum. Moreover, we 

find that incorporating functional annotation significantly improves the fit of the model according 

to all reported criteria which supports the use of more complex heritability models using diverse 

genomic annotation, as observed in small scale studies37. Finally, we find GREML-LDMS-I to be 

a superior choice compared to both LDAK and LDAK-thin according to all reported measures 

across all phenotypes, which is in contrast to that of recently reported analysis that performed a 

similar comparison using an approximate likelihood analysis based on summary statistics45. 

As summary statistic-based approaches have recently become popular for estimating heritability47, 

we estimated heritability using both summary statistics with LD score regression (LDSC)48 and 

individual level data using REML computed using SLMM, as a gold standard15,49–51. Our findings 

demonstrate that REML-based approaches are more accurate and confident than LDSC with large 

data sets (Supplementary Figure 16), which agrees with previous reports testing this with smaller 

data sets15,28,46,47. 



Negative selection of heritable human traits 

As a second application (Figure 2b), we used SLMM to find signatures of negative selection in 23 

quantitative human traits in the UK Biobank by inferring the relationship between SNP MAF and 

heritability by estimating the selection-related parameter, alpha, of the LDAK-thin model (see 

Methods, Supplementary Figure 17)18,19,45. Negative alpha estimates indicate less common trait-

related SNPs tend to have larger effect sizes and vice versa. We find that alpha is generally negative 

and shows a large degree of variation across all phenotypes, with blood LDL and cholesterol levels 

being under strongest negative selection. 

Genome annotation and heritability analysis  

We next used SLMM to perform functional heritability enrichment analysis, where the 

contribution of functional subsets of SNPs in explaining heritability variance is compared to 

variance explained by all the SNPs (see Methods). We included 27 functional SNP annotation 

groups (e.g. non-synonymous SNPs, SNPs in conserved regions) as additional components in the 

best heritability model (GREML-LDMS-I). The model includes 47 components (including 20 

standard LD and MAF related components) and 20 million SNP-to-component mappings (many 

SNPs map to multiple components) representing approximately 300 thousand rows (individuals) 

and 20 million columns (SNPs) (Figure 2c and Supplementary Figure 18). Overall, functional 

enrichments exhibit considerable differences across phenotypes. For example, while non-

synonymous SNPs are the most enriched category for height, it is not the top enrichment for BMI 

(a related phenotype) where variants that are conserved among primates show the highest 

enrichment. Cholesterol and LDL exhibit higher levels of enrichment for non-synonymous 

variants, which agrees with our negative selection analysis above, as non-synonymous variants are 

expected to be under strong negative selection. We also find that variants within core essential 

genes show statistically significant enrichment for a wide range of phenotypes with higher 

enrichments for blood glucose and triglycerides levels. Finally, the noticeable difference in 

enrichment patterns for two functional categories representing enhancers (Enhancer (Fantom5) vs. 

Enhancer (Hoffman)) shows how important the definition of functional modules and assignment 

of SNPs to each category is in understanding the role that a functional group plays in explaining 

phenotype heritability. 



Conclusion 

In conclusion, SLMM can accurately fit LMMs on large datasets comprising millions of rows and 

columns at a scale not previously possible. Through numerous simulations we show that SLMM 

provides an accurate estimate of variance components compared to the gold standard exact model. 

SLMM can be run in diverse computing contexts using a single or many computers, enabling 

analysis of extremely large datasets. SLMM is widely applicable, given the widespread use of 

LMMs in many genetic and genomic analysis methods, and is freely available as a Python library. 

In the future, we aim to implement improved versions of SLMM tailored towards quantitative and 

case/control GWAS, expand the model to support genetic and environmental interactions52,53 as 

well as non-linear components54,55. 
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Figure 1. Runtime of SLMM. (a) Runtime comparison versus GCTA (numerically exact REML 
solver) based on total elapsed time in hours on a single compute node to fit a REML model of 22 
components (representing each autosome in the human genome) on varying sample sizes on the 
UK Biobank data (“white British” samples). The total number of variants is approximately 415K 
SNPs. (b) Relative speedup with respect to increase in the number of compute nodes for running 
SLMM in a distributed manner. Each compute node (single and multi-node runs) contained 2 Intel 
Xeon Gold 6148 (2.40 GHz) CPUs (40 total physical cores). 
  



Table 1: Performance of heritability models 
 
  Average difference with the GCTA model  

across 23 phenotypes 

Heritability 
Model 

No. of 
Parameters 

Heritability 
Difference (%) Log-Likelihood BIC AIC 

LDAK 1 19.45 -945.93 1891.87 1891.87 

LDAK-Thin 1 14.52 526.32 -1052.65 -1052.65 

GREML LDMS-I 20 5.54 1359.87 -2478.13 -2681.73 

GREML LDMS-
R 

20 -0.06 1131.00 -2020.40 -2224.00 

Functional Model 47 9.26 3684.92 -6784.93 -7277.86 
 

Log-likelihood: Log of the REML likelihood function (larger is better). BIC: Bayesian 
Information Criterion (smaller is better). AIC: Akaike Information Criterion (smaller is better). 
Values are averages over 23 UKB phenotypes analyzed in this paper. Note: the values are 
differences with the GCTA model and for the LDAK and LDAK-thin models, since the number 
of parameters are the same. This reflects twice the change in likelihood only and will be the same 
for BIC and AIC. Functional Model: Extension of the best model (GCTA LDMS-I) to include 27 
additional components/kernels representing various functional SNP categories (See Methods, 
Supplementary Figures S11-14). 
 
 
 
  



 

Figure 2: SLMM application results. (a) Estimates (±2 × standard errors) of heritability 

estimates for 5 heritability models (GCTA, LDAK, LDAK-Thin, GREML LDMS-I, GREML 

LDMS-R) across 23 phenotypes from the UK Biobank. (b) Estimates (±2 × standard errors) of 

selection-related parameter 𝛼 using the LDAK-Thin model across the 23 phenotypes. More 

negative 𝛼 means less frequent variants have larger effect sizes. (c) Estimates (±2 × standard 

errors) of functional enrichment across 27 functional categories. The functional categories are 

mainly those of the Baseline LD model along with those in the Core Essential category (See 

Methods). 

 



Methods 

Linear Mixed Models 

Consider the linear mixed model (LMM) as expressed below1 

𝑦 = 	𝑋𝛽 +	𝑍!𝑏! +	⋯+	𝑍"𝑏" + 	𝜖 = 	𝑋𝛽 + 	𝑍𝑏	 + 	𝜖 (1) 

where 𝑦 is an 𝑛 × 1 vector of observations, 𝑋 is an 𝑛 × 𝑝 design matrix for fixed effects 𝛽, 

𝑍 = [𝑍1, … , 𝑍"] is an 𝑛 × 𝑞 design matrix for random effects 𝑏 = [𝑏1# , … , 𝑏"#]# , 𝑍$ is an 𝑛 × 𝑞$ matrix, and 

𝜖 is an 𝑛 × 1 vector of residual errors. Here 𝐾 is the number of random effects/components.  

The superscript 𝑇 means a transpose of a vector or matrix. We assume that the design matrix 𝑋 is of full 

rank, satisfying conditions of estimability for the parameters. The random vectors 𝑏$ and 𝜖 are mutually 

uncorrelated and have a normal distribution, 𝑏$ ∼ 𝑁:0, 𝜎$2𝐼%!= and 𝜖 ∼ 𝑁(0, 𝜎2𝐼&), where 𝐼& is an 𝑛 × 𝑛 

identity matrix. 

The unknown parameter 𝜎'2, 𝑘 = 1, … , 𝐾, and 𝜎2 are called variance components. Let 𝜎02 = 𝜎, 𝑍0 = 𝐼&, and 

𝑉$ = 𝑍$𝑍$# . Define 𝜃' =	𝜎'2 and 𝜃 = [𝜃0, 𝜃1, … , 𝜃']#. The log-likelihood function is given as 

𝑙(𝛽, 𝜃) = 𝑙𝑜𝑔 𝑓(𝑦|𝛽, 𝜃) = 	−
1
2
𝑛 𝑙𝑜𝑔 2𝜋 −

1
2
𝑙𝑜𝑔 𝑑𝑒𝑡(𝑉() −

1
2
(𝑦 − 𝑋𝛽)#𝑉(

)!(𝑦 − 𝑋𝛽) (2) 

where 𝑉( = 𝐶𝑜𝑣(𝑦) = 𝛴$*0" 𝜎$𝑉$ . Refer to the Supplementary Notes Section 1 for more information. 

Fitting LMM using REML: Patterson and Thompson2 proposed a modified maximum likelihood 

procedure which partitions the data into two mutually uncorrelated parts, one being free of the fixed effects 

used for estimating the variance components, called restricted/residual maximum likelihood (REML) 

estimators (Refer to Supplementary Notes Section 1.2 for detailed more information). Let M be an 

𝑛 × (𝑛 − 𝑝) full column rank matrix such that 𝑀#𝑋 = 0, and 𝐿 = 𝑉()1𝑋, an 𝑛 × 𝑝 full column rank matrix. 

Then the data y can be partitioned into two parts: 𝑧 = 𝑀#𝑦 and 𝑢 = 𝐿#𝑦. The data 𝑧 and 𝑢 are uncorrelated 

since 𝐶𝑜𝑣(𝑧, 𝑢) = 𝑀#𝑉(𝐿 = 𝑀#𝑋 = 0. The transformed data, 𝑧, which does not contain the fixed effects 

𝛽, has the log-likelihood function: 

𝑙+(𝜃) = −
1
2
(𝑛 − 𝑝)𝑙𝑜𝑔2𝜋 −

1
2
𝑙𝑜𝑔𝑑𝑒𝑡(𝑀#𝑉(𝑀) −

1
2
𝑦#𝑀(𝑀#𝑉(𝑀))!𝑀#𝑦. (3) 

The REML estimates of 𝜃 are obtained by 𝜃 = 𝑎𝑟𝑔	𝑙+(𝜃)		. Based on the second part of the data, 𝑢, the 

maximum likelihood estimation (MLE) of 𝛽 is given by  

𝛽W = :𝑋#𝑉(
)!𝑋=

)!𝑋#𝑉(
)!𝑦 (4) 

Under regularity conditions, the REML estimators are consistent and asymptotically normal with 

asymptotic covariance matrix equal to the inverse of Fisher information matrix, that is, asymptotically3 



√𝑛:𝜃Z − 𝜃= ∼ 𝑁(0, 𝐼(𝜃))!) (5)	 

where 𝐼(𝜃) = 	−𝐸 ^ ,2-"
,(!,(#

_ = `1
2
𝑡𝑟:𝑅(𝑉$𝑅(𝑉.=b

0/$,./"
 is the Fisher information matrix, and  

𝑅( = 𝑉(
)! − 𝑉(

)!𝑋:𝑋#𝑉(
)!𝑋=

)!𝑋#𝑉(
)! = 	𝑀(𝑀#𝑉(𝑀))!𝑀# . (6) 

Moreover, for a differentiable function 𝑔(𝜃), 𝑔:𝜃Z= is the MLE of 𝑔(𝜃), and asymptotically   

√𝑛 c𝑔:𝜃Z= − 𝑔(𝜃)d ∼ 𝑁(0, 𝛻𝑔#𝐼(𝜃))!𝛻𝑔) (7) 

where 𝛻𝑔 = ,1(()
,(

 is the first partial derivatives of 𝑔. Standard errors are calculated using the above 

formulation. Refer to Supplementary Notes Section 1.2 for more information. 

Bottlenecks in REML computations: With the variance components estimated, the fixed effects are given 

by (4). Finding the variance components is a difficult numerical problem. Maximizing the log likelihood 

function with respect to the variance components is a nonlinear optimization problem. Various iterative 

methods based on the log likelihood have been proposed to compute the REML, including gradient methods 

based on derivatives. The gradient methods are represented by the iteration equation1   

𝜃(45!) = 𝜃(4) + 𝑄:𝜃(4)=
𝜕𝑙:𝜃(4)=
𝜕𝜃

(8)	 

where 𝜕𝑙(𝜃)/𝜕𝜃 is the gradient of the log likelihood function, and 𝑄(𝜃) is a modifier matrix of the gradient 

direction. Let 𝐻(𝜃) and 𝐼(𝜃) be the Hessian matrix and information matrix of the log likelihood function 

with respect to 𝜃. Let 𝐼6(𝜃) = l𝐼(𝜃) + :−𝐻(𝜃)=m/2 be the average information matrix. The modifier 

matrix can be specified by 1. Newton–Raphson: 𝑄(𝜃) = −𝐻(𝜃))1; 2. Fisher scoring: 𝑄(𝜃) = 𝐼(𝜃))1; 3. 

Average information: 𝑄(𝜃) = 𝐼6(𝜃))1. The elements of the gradient, 𝐻(𝜃), 𝐼(𝜃) and 𝐼6(𝜃), respectively, 

given as follows: 
𝜕𝑙+
𝜕𝜃$

= −
1
2
[𝑡𝑟(𝑅(𝑉$) − 𝑦#𝑅(𝑉$𝑅(𝑦], 

𝐻$. =
𝜕7𝑙+
𝜕𝜃$𝜕𝜃.

=
1
2
𝑡𝑟:𝑅(𝑉$𝑅(𝑉.= − 𝑦#𝑅(𝑉$𝑅(𝑉.𝑅(𝑦, 

𝐼$. = −𝐸:𝐻$.= =
1
2
𝑡𝑟:𝑅(𝑉$𝑅(𝑉.=, 

𝐼6,$. =
1
2
:𝐼$. −𝐻$.= =

1
2
𝑦#𝑅(𝑉$𝑅(𝑉.𝑅(𝑦. 

The difficulties in REML computation arise from following factors: 

1. matrix inversion: 𝑉!"1 



2. matrix-matrix products in the traces: tr(𝑅!𝑉#) and tr%𝑅!𝑉#𝑅!𝑉$& 

3. matrix log-determinants: log|𝑉(| 

4. non-linear optimization (needs a good starting point, prone to divergence) 

5. Forming 𝑉! requires matrix multiplication as 𝑉( = Σ$*0
" 𝜎$𝑉$ =	 Σ$*0" 𝜎$𝑍$𝑍$#  

6. Steep memory requirement for large 𝑍# matrices. 

Scalable LMM (SLMM) 

We developed a scalable algorithm for LMM estimation using REML that addresses the difficulties listed 

above using several tools and techniques described below. Refer to Supplementary Notes Section 2 for 

detailed information on each topic. 

Trace estimation: we avoided matrix-matrix product by using stochastic trace estimation4 (Supplementary 

Notes Section 2.1). For the average information, fitting REML requires computing tr(𝑅(𝑉$) which can be 

estimated with stochastic trace estimation: 

𝑡𝑟(𝑅(𝑉$) ≈
1
𝐿
	o:𝑢-#𝑅(=(𝑉$𝑢-),
8

-*!

 

𝑅(𝑢- = 	𝑀(𝑀#𝑉(𝑀))1𝑀#𝑢-, 

where 𝑢-, 𝑙 = 1, … , 𝐿, are 𝐿 independent random vector (random probes) with mean zero and covariance 𝐼& 

from a probability distribution such as Rademacher. The trace estimates need to compute the inverse matrix-

vector products: (𝑀#𝑉(𝑀))1𝑣, where 𝑣- = 𝑀𝑢-. These trace estimates could suffer from large variance 

requiring large number of probes (𝐿).  

Variance reduction: The variance of trace estimate can be reduced by variance reduction techniques, such 

as control variates5 (Supplementary Notes Section 2.2) resulting in significant speedups (fewer probes) in 

computations as well as increase in estimation accuracy. Let 𝑓(𝑢) = 𝑢#𝐴𝑢. We define a control variate  

as the random variable 𝑔(𝑢) = 𝑢#𝐵𝑢 that has a known mean, 𝐸(𝑔) = 𝑡𝑟[𝐵𝐶𝑜𝑣(𝑢)] = 𝑡𝑟(𝐵). For any  

given 𝑏, 

𝑓9(𝑢) = 𝑓(𝑢) − 𝑏[𝑔(𝑢) − 𝐸(𝑔)] 

can be used for an estimate of the trace 𝑡𝑟(𝐴) since 𝐸(𝑓9) = 𝑡𝑟(𝐴). The variance is 

𝑉𝑎𝑟(𝑓9) = 𝑉𝑎𝑟(𝑓) − 2𝑏𝐶𝑜𝑣(𝑓, 𝑔) + 𝑏7𝑉𝑎𝑟(𝑔). 

The optimal coefficient 𝑏∗ is given by  



𝑏∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
9

𝑉𝑎𝑟(𝑓9) =
𝐶𝑜𝑣(𝑓, 𝑔)
𝑉𝑎𝑟(𝑔)

. 

Since 

𝑉𝑎𝑟(𝑓9∗) = 𝑉𝑎𝑟(𝑓)[1 −
𝐶𝑜𝑣7(𝑓, 𝑔)

𝑉𝑎𝑟(𝑓)𝑉𝑎𝑟(𝑔)
] = 𝑉𝑎𝑟(𝑓)[1 − 𝑐𝑜𝑟7(𝑓, 𝑔)], 

the variance of the trace estimate with a control variate is reduced.  

Linear systems and matrix inversion: We computed the inverse matrix-vector product above along with 

the one required for computing the quadratic form in both gradient and log-likelihood (i.e. 𝑦#𝑅(𝑦) without 

explicitly forming and inverting the matrix 𝑉( using efficient block Krylov solvers6 (Supplementary Notes 

Section 2.5) namely block Lanczos6–8 and deflated preconditioned block conjugate gradient9 which allow 

us to simultaneously compute the inverse matrix-vector products in an efficient manner:  

(𝑀#𝑉(𝑀))!𝐵 = (𝑀#𝑉(𝑀))![𝑀𝑦, 𝑈] 

where 𝑈 = [𝑀𝑢1, … ,𝑀𝑢8]. The block Lanczos algorithm can solve both indefinite and positive (semi)-

definite systems. For the latter, the block Lanczos algorithm gives the block conjugate gradient algorithm. 

Refer to supplementary information for more information. 

The log-likelihood function: Computing the log-likelihood function by (3) requires the computation of 

log-determinant, logdet	(𝑀#𝑉(𝑀)		, and inverse matrix-vector product, (𝑀#𝑉(𝑀))1𝑀#𝑦. The inverse 

matrix-vector can be computed using the efficient solvers mentioned above and is already calculated for 

the computation of trace terms. As for the log-determinant, we used an accurate and efficient method that 

estimates this quantity using a combination of stochastic trace estimation, Gaussian quadrature and the 

Lanczos algorithm6,10,11. Refer to Supplementary Notes Section 2.6 for more information. 

Matrix-free operations: The solutions mentioned above do not require explicit formation of matrix 𝑉(, 

therefore allowing us to avoid the expensive matrix-matrix products for forming the covariance matrix. 

Refer to Supplementary Notes Section 2.4 for more information.  

Optimization and pre-training: We used the trust-region algorithm12 to achieve global convergence and 

used a pre-training strategy to find a good starting point by pooling estimates from the subset of data. Refer 

to Supplementary Notes Sections 2.7 and 2.8 for more information. Using an optimization strategy for 

avoiding saddle points and achieving global convergence is essential otherwise the model may face many 

divergences12 as is the case with the GCTA software which we observed fails to converge in a variety of 

simulations. 



Mailman algorithm for efficient genotype-vector products: We used the mailman algorithm13,14 which 

is an efficient algorithm for sub-linear matrix-vectors involving matrices with limited number of possible 

values as is the case with the genotype data (values: 0,1,2) (Supplementary Notes Section 2.3).  

Computational complexity: Overall, the computational complexity of the SLMM estimation is 

𝑂 c 4&8√<%
4=>	((4),(&))		

d where 𝑚	is the number of variants (columns) in the genotype matrix (random effects), 

𝑛	is the number of samples (rows), 𝐿 is the number of random vectors (probes) for stochastic trace 

estimation and 𝜅8 = 𝜆&/𝜆8 where 𝜆& and 𝜆1 represent the largest and the smallest eigenvalues of the 

covariance matrix and 𝜆8 is the 𝐿-th smallest eigenvalue of the covariance matrix. 

Efficient in-core, out-of-core and distributed computation: SLMM is available as a versatile Python 

library that supports in-core, out-of-core, and distributed training of models in a high-performance 

computing (HPC) cluster or cloud. The implementation makes use of ahead-of-time (AOT) and just-in-time 

(JIT) compilation (through Pythran15 and Numba16 libraries respectively) for achieving high performance 

without sacrificing readability and ease of access and modification for the scientific community. As for the 

multi-machine implementation, SLMM includes a custom approach for efficient cross-compute node 

deployment and communication to efficiently set up a distributed system of worker nodes each handling a 

batch of genotype data, and a manager thread that handles deployment, efficient communications (function 

and argument transfer to worker nodes and gathering of results) and monitoring. From a user’s perspective, 

flexibility in the run scenario is available with minimal to no modifications of job parameters, meaning that 

switching between in-core and out-of-core operation is a simple Boolean parameter, and the difference 

between single-machine in-core run and a distributed one is if the user passes a list of host names (another 

parameter of the SLMM function call). We have simplified this even further for Slurm compute clusters 

(https://slurm.schedmd.com) such that no host list is needed and the same in-core script that runs on a 

consumer device if run on a multi-node job will automatically detect the nodes and run in a fully distributed 

manner. 

Dataset, Simulation and Benchmarking  

Dataset: Real genotype data used in this study was that of the UK Biobank accessed under application 

51573. For details related to phenotypes and fixed effects used in our analysis refer to the Supplementary 

Notes Sections 3.3 and 3.4.  

Preprocessing: For the real data analysis, we used the full imputed genotype data provided by the UK 

Biobank and downloaded sample indices from the UK Biobank GWAS repository of the Nealelab v3 

(https://github.com/Nealelab/UK_Biobank_GWAS). We then filtered the variants to keep those with  



MAF ≥ 0.01 and information score ≥ 0.99. This left us with a dataset of 357,600 samples and 4,996,895 

imputed variants which we converted to hard calls using standard procedures in Plink v2.0. 

Simulations: To compare the statistical accuracy and speed of SLMM with the state-of-the-art, we 

performed benchmarking and simulation using real genotypes where enough samples were available in the 

UK Biobank data (e.g., 10K and 300K simulations) and used a genotype simulation strategy to generate 

large datasets (e.g., 5M samples). 10K data: Real 10,000 random subset of the UK biobank white British 

samples with approximately 415,000 variants (genotyped SNPs). Analysis is repeated 1000 times unless 

stated otherwise. The number of components is set to 20 representing the first 20 autosomes unless stated 

otherwise. 300K Data: Real 300,000 random subset of the UK biobank white British samples with 

approximately 146,000 variants (genotyped SNPs) representing the first 5 autosomes. The number of 

components is set to 5, one for each chromosome.  5M Data: To evaluate the performance of SLMM on 

extremely large datasets involving millions of samples we used genotype simulation. Following established 

procedures17–19, we used haplotype resampling-based strategies to generate a dataset of 5 million individuals 

of varying degrees of relatedness. More specifically, we varied the number of ancestors for generating a 

simulated individual such that the dataset contains individuals with varying degrees of relatedness. At a 

high level, in the resampling-based approach one selects a number of individuals as ancestors and having 

defined haplotypes or naively splitting the genome to a number of blocks, a simulated genotype can be 

generated by randomly choosing each block (haplotype) from one of the ancestors. The parameters that 

affect the relatedness between individuals in the generated dataset are the number of ancestors and how 

many samples are generated from the same group of ancestors. For example, repeated sample generation 

from two ancestors would lead to generating family members (siblings) while a larger number, such as 

randomly selecting 10 individuals from the pool, and generating a sample would result in approximately 

unrelated individuals17. We used the genotyped SNPs in this simulation and after removing rare variants 

we ended up with a simulated genotype data of 5 million samples and 302,379 variants which was used in 

distributed runs. 

Runtime environment: All the runs and comparisons were performed using the Niagara cluster of the 

Scinet advanced research computing facility at the University of Toronto (https://www.scinethpc.ca/). Each 

node in the cluster contained 2 Intel Xeon Gold 6148 CPUs, each with 20 physical cores (40 cores in total) 

and 180 GiB of memory. Data was stored on SSD storage to achieve high read/write performance. 

Analysis 

Heritability and enrichment estimation: Consider the GCTA model with 𝐾 components described as 

follows:   



𝑦 = 𝑋𝛽 + 𝐺𝛾 + 𝜖 = 𝑋𝛽 + 𝐺!𝛾! +⋯+ 𝐺"𝛾" + 𝜖 (20) 

where 𝐺 = [𝐺1, … , 𝐺"], and 𝐺' = l𝑔'1, … , 𝑔',4&m is an 𝑛 ×𝑚' matrix of genotypes in the group 𝑘. 𝐾 is 

the number of groups. The vector of random effects, 𝛾 = [𝛾1# , … , 𝛾"#]#, follows a multivariate normal 

distribution with 𝐸(𝛾) = 0 and 𝐶𝑜𝑣(𝛾) = 𝑑𝑖𝑎𝑔:𝜎12𝐼41 , … , 𝜎"
2𝐼4'=. We obtain the heritabilities for all 

“causal” SNPs (ℎ@), a subset 𝑆 of causal SNPs (ℎA), and enrichment (𝑟A) of the subset in the GCTA model 

as follows:     

ℎ@ =
∑ 𝜎'7𝑤'"
'*!

𝜎7 +	∑ 𝜎'7𝑤'"
'*!

, (21) 

ℎA =
∑ 𝜎'7𝑢'"
'*!

𝜎7 +	∑ 𝜎'7𝑤'"
'*!

, (22) 

𝑟A =
𝑚	∑ 𝜎'7𝑢'"

'*!

𝑚A ∑ 𝜎'7𝑤'"
'*!

, (23) 

where 

𝑤' =o𝑣'.

4&

.*1

=
1

𝑛 − 1
o𝑔'.#
4&

.*1

𝑃&𝑔'. =
1

𝑛 − 1
𝑡𝑟:𝐺'#𝑃&𝐺'=, 

𝑢' = o 𝑣'.
SNP&#∈A

=
1

𝑛 − 1
o 𝑔'.#

SNP&#∈A

𝑃&𝑔'. . 

𝑣'. =
1

&	)1
	𝑔'.# 𝑃&𝑔'. is the sample variance of the genotypes 𝑔'., 𝑃& = 𝐼& −

1
&
𝟏&𝟏&# , and  

𝐸:𝑣'.= = 2𝑓'.:1− 𝑓'.=. Refer to Sections 4.1 to 4.3 in the Supplementary Notes for detailed information 

on the derivation of heritability and related quantities.  

Functional Standards: In functional enrichment analysis, we expanded the best model GREML LDMS-I 

to include 27 additional components each representing a group of variants assigned to the functional group; 

26 of these functional modules are those from the Baseline LD model provided in the S-LDSC software20. 

We defined the last component, referred to as core essential, to include variants that locate within core 

essential genes as defined in DepMap21.  

Selection related parameter: In the LDAK-thin22 model we have 𝛾 ∼ 𝑁(0, 𝜎2𝐷) where 𝐷	is an 𝑚 ×𝑚 

diagonal matrix with 𝐷$$ = 𝛿$𝑤$/𝑚 where 𝑤$ = [𝑓$(1− 𝑓$)]C , 𝑓$ is the MAF of the 𝑖th SNP and 𝛿$ specifies 

whether 𝑖th SNP remains in the model after the thinning process. Studies22–24 have shown that the 𝛼 

parameter specifies the relationship between MAF and heritability and has been used to measure selection 



(negative estimates indicate less common SNPs tend to have larger effect sizes and vice versa). We used 

SLMM to estimate 𝛼 using profile likelihood by choosing a set of possible values for 𝛼 and fitting the 

model using each selected value22. Profile likelihood is a standard procedure in statistical literature for 

inferring a parameter and its sampling distribution by profiling out the rest of the parameters (as nuisance 

parameters)25–27. The primary reason for doing this is that allowing 𝛼 to be a free parameter in the model 

would make the covariance non-linear, which is not currently supported in SLMM. 
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Supplementary Figure 1. Efficient solvers used in SLMM are faster and more convergent 

than the traditional conjugate gradient (CG) solver. Data for all analyses is the 300K subset of 

the UK biobank data (white British, see methods). The covariance matrix in the linear system is 

made up of a single linear kernel (the genetic relationship matrix, GRM) and the residual/noise 

component. Genetic variance component is set to 0.25. The solve is performed against a matrix 

containing 10 columns (10 linear systems). CG solves the systems independently, performing only 

the multiplications in block format (multiplying the GRM with all vectors together to increase 

efficiency, using BLAS level 3 matrix-matrix multiplication). Block solvers perform both the 

solves and multiplication in block format (the difference with CG is not in the BLAS call, but in 

the rest of the algorithm). (a) Number of iterations to solve linear systems to tolerance of 0.0005. 

(b) Percent decrease in number of iterations in the block solver versus CG without block solver. 

(c) Total time for solving the systems. (d) Example progress of solvers to achieve convergence 

(400K subset of the UK Biobank, approx. 415K array SNPs, parameters are the same as above). 

(e) Performance of solvers on indefinite systems (GRM made of 400K subset of the UK Biobank, 

approx. 415K array SNPs, genetic linear kernel parameter set to -0.05 and residual to 1.05).  



 

Supplementary Figure 2. Variance reduction increases the accuracy of gradient estimation 

Variance reduction increases accuracy by decreasing the required number of random probes 

needed for precise estimation of the gradient. Left plot shows the gradient estimation error for a 

model trained on real data (10,000-sample subset of the UK Biobank with approximately 400,000 

SNPs). Estimation is repeated 1,000 times by randomly sampling the desired number of probes 

and performing gradient evaluation with and without control variate. Right plot compares the 

relative variance of trace estimation (the variance of estimate with control variate divided by that 

of the estimate without control variate) across different random probe numbers. For example, it 

appears that trace estimation using control variate with 10 random probes is more accurate than 

with 100 probes and no control variate (variance of the former is approximately 40% of the latter). 



  
Supplementary Figure 3. Reducing the number of random probes in trace estimation with 

variance reduction on model parameter estimates with a large sample size does not greatly 

affect estimates, but decreases the runtime. Plots illustrate the difference between estimates on 

large scale simulations (N=300,000 genotype data from the UK Biobank) with 100 or 25 probes 

on a model with 5 components (kernels) and two phenotype simulation scenarios (0% and 20% 

variance explained by all components). The number of simulations is 100 per scenario. Black 

points represent the mean difference (±standard deviation). Red points are median. Labels 

(numbers in boxes above each distribution) on the plot show the true value of parameters used to 

simulate the phenotype/response. Reducing the number of probes from 100 to 25 improves 

performance of SLMM by four times. 

  



 

Supplementary Figure 4. Efficient implementation of the mailman algorithm achieves 

sublinear complexity and surpasses the performance of the highly efficient BLAS library 

(Intel’s MKL) by using the reduced alphabet of genotype data. Data is a 10K subset of the UK 

Biobank data, approx. 415K array SNPs. Timings are for multiplying the genotype matrix (10K 

by 415K) with a matrix of (415K by 10). (a) Total elapsed time (±𝟐 × standard deviations) (b) 

Relative increase in runtime with respect to increase in sample size (c) Relative speedup with 

respect to increase in number of threads (here, physical cores). 

  



 

Supplementary Figure 5. Runtime of out-of-core (memory-friendly) training of REML using 

SLMM. Runtimes are for fitting a model with two components (even and odd autosomes) with 

varying sample size from the UK Biobank data (white British) with approx. 415K variants. (a) 

Single machine runtime on nodes with varying amounts of total memory (green and orange) along 

with a runtime of in-memory training (model uses approx. 30GB memory on 300K samples). Max 

4 means only 4 cores used. 8GB or 64GB is the total system memory. (b) Memory footprint of the 

out-of-core runs through the model training. The high level of fluctuations in the run with less total 

memory (green line) is due to less cache usage by the OS which is likely the reason for slower 

runtime. 

  



 

Supplementary Figure 6. Simulation results on 10K subset (10,000 subset of the UK Biobank 

white British samples with approx. 415K variants) with varying total variance explained (i.e., 

total SNP heritability across all components). The number of components is set to 20 

representing the first 20 chromosomes. Points represent mean and bars represent one standard 

deviation from the mean. Numbers in boxes above bars indicate bar height. The number of 

simulations in each setting is 1,000. Note the bias of BOLT-LMM. To our understanding, this bias 

near zero is caused by constrained optimization (forcing positivity of estimates). This constraint-

induced bias could potentially shrink as the sample size grows i.e., 100s of thousands of samples, 

however, BOLT-LMM’s runtime performance scales poorly with such increase in sample size. 

Also note that SLMM can easily handle constraints for parameter estimates, meaning that one can 

set a lower bound for estimates, if needed, by adjusting the lower bound parameter in the fitting 

function call. 

  



 

Supplementary Figure 7. SLMM is accurate compared to the exact model, as shown by 

simulation results representing per component estimates on a 10K subset (10,000 subset of 

the UK Biobank white British samples with approx. 415K variants). The total number of 

simulations is 1000. Points represent mean and bars represent one standard deviation from the 

mean. 

  



 

Supplementary Figure 8. SLMM shows little loss of statistical efficiency compared to the 

GCTA method. Presented is the relative Root Mean Squared Error of SLMM compared to that of 

GCTA. RMSE is calculated from the extensive simulation results presented above by varying both 

the variance explained and the number of components. In an ideal scenario, SLMM’s RMSE would 

match that of GCTA (therefore the relative RMSE would be one), however, due to the use of 

randomized trace estimation (even with variance reduction), there is some loss of statistical 

efficiency in SLMM (increase in variance of the estimate, albeit small). Such a small increase in 

the variance of the estimate (approx. 1% increase in variance) could be thought of as the cost for 

significant decrease in the asymptotic complexity (faster runtime) of SLMM versus GCTA. 

  



 

Supplementary Figure 9 Biobank-scale (300K samples, 146K variants on first 5 

chromosomes) simulations illustrate the statistical accuracy of SLMM. The number of 

simulations is 100. Points represent the mean of estimate across all rounds of simulation. There 

are 5 components in total, one per chromosome. In the top plot, the total variance explained is set 

to 20% varying the components’ share of variance explained. Bottom plot represents a scenario 

with no variance explained by any of the components. Some differences between the mean and 

true value are expected due to the number of simulations and would be expected to be reduced 

with more simulations. 

  



 

Supplementary Figure 10. Runtime comparison of SLMM versus BOLT-LMM (REML) and 

GCTA. Top plot represents runtime for a model with 22 components (one per autosome) on a 

single machine with 40 CPUs. Bottom plot shows the relative decrease in runtime compared to 

that of BOLT-LMM (REML). BOLT does not compute likelihood and cannot handle non-GCTA 

models. It also does not scale to multiple machines for distributed computation.  



 

Supplementary Figure 11. Summary of heritability model comparison. Panels represent 

average (±standard deviation) difference between alternative heritability model and that of GCTA 

GREML on SNP heritability, log marginal likelihood, BIC and AIC. 
  



 

Supplementary Figure 12. Percent change in the SNP heritability estimates of the alternative 

heritability models across 23 phenotypes compared to the GCTA model. (Observed difference 

of alternative model’s estimate minus GCTA is presented as a percent of GCTA’s estimate). Panels 

represent differences per phenotype. Models include LDAK, LDAK-Thin, GCTA LDMS-I and 

GCTA LDMS-R and the Functional model which is the extension of the best model (GCTA 

LDMS-I) to include 27 additional components, one per SNP-to-annotation mapping.  
  



 

Supplementary Figure 13. Change in the likelihood (log marginal likelihood of fitted LMM) 

across the 23 phenotypes compared to the GCTA model. (Alternative models’ log marginal 

likelihood minus GCTA’s, larger is better). Panels represent differences per phenotype. Models 

include LDAK, LDAK-Thin, GCTA LDMS-I and GCTA LDMS-R and the Functional model 

which is the extension of the best model (GCTA LDMS-I) to include 27 additional components, 

one per SNP-to-annotation mapping. 
  



 

Supplementary Figure 14. Change in BIC (Bayesian Information Criterion) across the 23 

phenotypes compared to the GCTA model. Alternative models’ BIC minus GCTA’s, smaller is 

better. Panels represent differences per phenotype. Models include LDAK, LDAK-Thin, GCTA 

LDMS-I and GCTA LDMS-R and the Functional model which is the extension of the best model 

(GCTA LDMS-I) to include 27 additional components, one per SNP-to-annotation mapping. 
  



 

Supplementary Figure 15. LD and MAF dependent variation in variance estimates. Presented 

are the variance parameters of the GCTA LDMS-I heritability model (20 parameters) across all 23 

phenotypes. An LDMS-I model contains 20 components that split the genome into 4 LD quartiles 

(based on SNP LD scores, first quartile is the lowest) and further split each quartile to 5 groups 

based on MAF. In this figure, each panel represents an LD quartile and therefore there are five 

points (representing MAF bins within LD quartile) per phenotype. There are 23 phenotypes in 

total. Fitted lines are from robust regression, and an estimated model of the trend line is presented 

in each panel (y represents variance estimate in each category and x represents the MAF bins 

encoded as an ordinal value). 
  



 

Supplementary Figure 16. Comparison of heritability estimates from the best REML model 

to those from the baseline LD model (Stratified LDSC, S-LDSC). (a) Estimates (±𝟐 × standard 

errors) from REML versus S-LDSC model. Vertical orange lines represent standard error of the 

S-LDSC model and horizontal green lines (too small to be noticeable) represent standard error of 

the REML model. (b) The relative percentage difference in estimates between S-LDSC and the 

best REML model for a range of phenotypes. The estimates from S-LDSC are from a superset of 

variants than those used in this study (Info Score ≥ 0.9 and MAF ≥ 0.001 while we used Info 

Score ≥ 0.99 and MAF ≥ 0.01). We did not repeat the process on our subset of the data as we 

found their estimates from the larger set of variants are often smaller than ours and their estimates 

have extremely large standard errors. 
  



 

Supplementary Figure 17. Example profile likelihood plots for estimating the selection 

related parameter α. Black dots represent grid points over which the LDAK-Thin model is fitted 

for each phenotype. Blue lines represent the polynomial approximation of the profile likelihood 

surface. Red points represent the interpolated maximum of the given profile likelihood. The profile 

likelihood confidence intervals are calculated based on the red points and the interpolated surface. 
  



 

Supplementary Figure 18. Heatmap of functional heritability enrichment across 23 

phenotypes. The enrichments are estimated through a joint model by adding all the 27 functional 

categories to the best model (GCTA LDMS-I). The functional categories are derived from the 

Baseline LD model v2.2 with the addition of an extra category representing Core Essential genes 

(see Methods). Numbers in the cells represent statistically significant (Bonferroni corrected:	𝑷 ≤

𝟎. 𝟎𝟓/(𝟐𝟕 × 𝟐𝟑)	tests) enrichments. 


