4384
Comment:
|
5126
|
Deletions are marked like this. | Additions are marked like this. |
Line 53: | Line 53: |
BRAIN takes a set of query proteins and their respective peptide ligands, builds a PSSM-based profile for each protein, searches a protein sequence database for similar profiles, and returns a ranked set of proteins that are predicted to interact with the query proteins. | BRAIN takes one or more query proteins and their respective peptide ligands, builds a PSSM-based profile for each protein, searches a protein sequence database for similar profiles, and returns a ranked set of proteins that are predicted to interact with the query proteins. |
Line 55: | Line 55: |
Each query proteins along with its experimentally determined peptide ligands should be represented as a [wiki:/PeptideFile peptide file]. | A query protein along and its experimentally determined peptide ligands are represented as a [wiki:/PeptideFile peptide file]. The plugin can open a single peptide file, or multiple peptide files that are grouped into a [wiki:/PeptideFile#Project Files project file]. |
Line 87: | Line 87: |
* '''ADD''' | (in order of priority) 1. Regular expression filtering of profile search results. 1. Expose auto-score threshold functionality in Profile Search panel (allow the user to specify automatic score threshold setting instead of having to specify a score threshold themselves). 1. Expose "regex" search features - new Pattern Search panel similar to Profile Search 1. New feature: consider aa groups in PWM searching 1. New feature: consider aa groups in correlation matrix 1. Design an improved scoring scheme (e.g. take into account surface accessibility) and drop down box to select different scores. |
BRAIN Project
The Biologically Relevant Analysis of Interaction Networks (BRAIN) is a set of algorithms for predicting and analyzing protein domain-peptide ligand interactions based on experimentally known binding evidence (e.g. from protein chip or phage display experiments).
BRAIN can be accessed as a Cytoscape plugin which reads peptide binding profiles and generates interactions displayed as a Cytoscape network.
BRAIN consists of a library or API, and of a Cytoscape plugin.
BRAIN Library
The BRAIN library holds the algorithms and methods for interaction prediction. This library is required to build the BRAIN plugin.
BRAIN Plugin
The BRAIN plugin is a way of running various BRAIN algorithms from the Cytoscape user interface. The plugin runs a prediction analysis and presents the results visually as an interactive Cytoscape network.
Downloads
Latest Build Release
BRAIN Plugin: Version 1.0.5 alpha (2007 May 23) BR Build: attachment:brainPlugin.jar BR Source: attachment:BRAIN-Plugin-1.0.5-src.tgz
BRAIN Library: Version 1.0.6 (2007 July 26) BR Build: attachment:brainlib-1.1.jar BR Source: attachment:BRAIN-Library-1.2-src.tgz
Dependencies: Additional JARs required by BRAIN - attachment:brainDeps.tar.gz
Installing the Plugin
System Requirements
- Java Runtime Environment (JRE) 1.5 or later is required to run BRAIN Plugin.
[http://www.cytoscape.org Cytoscape] 2.4.1 or later
Installation
Place brainPlugin.jar and brainlib_1.1.jar in the Cytoscape plugins directory (located in the Cytoscape program directory, e.g. /usr/local/bin/Cytoscape or C:\Program Files\Cytoscape_v2.4.1)
Extract and place all files from brainDeps.tar.gz into the Cytoscape lib directory (located in the Cytoscape program directory)
- Launch Cytoscape
Look in the Plugins menu for the BRAIN item. If you don't see it there, revisit the above steps to make sure all files are in the right place.
Running the Plugin
- Launch Cytoscape
Set analysis parameters from Plugins > BRAIN > Set Parameters
Start the BRAIN analysis from Plugins > BRAIN > Run BRAIN
Notes on Using BRAIN
BRAIN takes one or more query proteins and their respective peptide ligands, builds a PSSM-based profile for each protein, searches a protein sequence database for similar profiles, and returns a ranked set of proteins that are predicted to interact with the query proteins.
A query protein along and its experimentally determined peptide ligands are represented as a [wiki:/PeptideFile peptide file]. The plugin can open a single peptide file, or multiple peptide files that are grouped into a [wiki:/PeptideFile#Project Files project file].
Release Notes
BRAIN Library 1.1 (2007 July 26)
- Added PDZ symbol style for PDZ type residue colouring in sequence logo generation code (required by LoLA tool)
1.0.6 (2007 June 12)
brain.jar: Ability to retrieve additional database references from ProteinProfile object (previously was only able to retrieve the first ID in the Accession field of the peptide file).
1.0.5 (2007 May 23)
- Code reorganization: brainPlugin.jar now holds only those classes related to the Cytoscape plugin. All other code has been moved to a new Brain Library project.
1.0.4 (2007 May 15)
- Network node can represent a single domain or a protein containing multiple domain instances (via new Advanced Options tab)
- Lower scoring motif hits are now reported
New node attribute Domain Name to hold a semantic domain identifier (Gene Name + Domain Number, for now)
1.0.3 (2007 April 23)
- Support for new peptide file format version 1.1 (and back-compatible with format version 1.0)
New node attributes Sequence Start, Sequence Stop, Comment for profiles generated from new peptide file format
1.0.2 (2007 April 11)
- Report SNPs for entire protein sequence and for domain subsequence only.
- Option to specify codon bias file
- Option to load unique peptides only from peptide file(s)
1.0.1 (2007 February 21)
- Port to Cytoscape API 2.4 and Java SE 5.0
Future Developments
(in order of priority)
- Regular expression filtering of profile search results.
- Expose auto-score threshold functionality in Profile Search panel (allow the user to specify automatic score threshold setting instead of having to specify a score threshold themselves).
- Expose "regex" search features - new Pattern Search panel similar to Profile Search
- New feature: consider aa groups in PWM searching
- New feature: consider aa groups in correlation matrix
- Design an improved scoring scheme (e.g. take into account surface accessibility) and drop down box to select different scores.
Contact
If you have any questions or feedback, please email Moyez Dharsee at mdharsee@infochromics.com.