### (Supplementary material) An improved method for scoring protein-protein interactions using semantic similarity within the Gene Ontology

Shobhit Jain<sup>1,2</sup>, Gary D. Bader<sup>\*1,2</sup>

<sup>1</sup>Department of Computer Science, University of Toronto, 10 Kings College Road, Toronto, Ontario M5S 3G4, Canada

<sup>2</sup>Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, Ontario M5S 3E1, Canada

Email: Shobhit Jain - shobhit@cs.toronto.edu; Gary D. Bader\*- gary.bader@utoronto.ca;

\*Corresponding author

### Supplementary figure S1 - Mutually exclusive sub-graphs

(a) Transitive reduction - suppose a, b, c, and d are the nodes in graph G with directed edges as shown in figure (a). Let the number of genes annotated to each node is 1. Then the total annotation of node a in G (annotation of a and its descendants) is 4. Transitive reduction of G will result in G' without edge  $d \rightarrow a$  and with same total annotation of 4 as a can still be reached from d. (b) Replication - suppose term d is common to both the sub-graphs B and C then term d will be copied to both the sub-graphs.



### Supplementary figure S2 - ROC curves for S. cerevisiae PPI dataset (IEA-)

ROC evaluations of semantic similarity measures at different cutoffs based on the *S. cerevisiae* PPI dataset derived from DIP are shown. The evaluation was performed using cellular component, biological process, molecular function ontologies of GO. Best-match average (bma) approach for combining multiple annotations was used on dataset without (IEA–) electronic annotations. TCSS & Resnik show best ROC profiles for all three ontologies.



### Supplementary figure S3 - F-score curves for *S. cerevisiae* PPI dataset (IEA-)

 $F_1$  score (harmonic mean of precision and recall) evaluations of TCSS and Resnik semantic similarity measures at different cutoffs based on the *S. cerevisiae* PPI dataset derived from DIP are shown. The evaluation was performed using cellular component, biological process, molecular function ontology of GO. Best-match average (bma) approach for combining multiple annotations was used on dataset without (IEA–) electronic annotations.  $F_1$  score reaches its best value at 1 and worst at 0. TCSS does better than Resnik for semantic similarity cutoff scores in all three ontologies.



### Supplementary figure S4 - ROC curves for *S. cerevisiae* PPI dataset (IEA+)

ROC evaluations of semantic similarity measures at different cutoffs based on the *S. cerevisiae* PPI dataset derived from DIP are shown. The evaluation was performed using cellular component, biological process, molecular function ontology of GO. Bestmatch average (bma) and maximum (max) approaches for combining multiple annotations are used on dataset with (IEA+) electronic annotations. TCSS & Resnik show best ROC profiles for all three ontologies.



### Supplementary figure S5 - F-score curves for *S. cerevisiae* PPI dataset (IEA+)

 $F_1$  score (harmonic mean of precision and recall) evaluations of TCSS and Resnik semantic similarity measures at different cutoffs based on the *S. cerevisiae* PPI dataset derived from DIP are shown. The evaluation was performed using cellular component, biological process, molecular function ontology of GO. Best-match average (bma) and maximum (max) approaches for combining multiple annotations was used on dataset with (IEA+) electronic annotations.  $F_1$  score reaches its best value at 1 and worst at 0. TCSS does better than Resnik for semantic similarity cutoff scores in all three ontologies.



### Supplementary figure S6 - ROC curves for *H. sapiens* PPI dataset (IEA-)

ROC evaluations of semantic similarity measures at different cutoffs based on the *H. sapiens* PPI dataset derived from DIP are shown. The evaluation was performed using cellular component, biological process, molecular function ontology of GO. Best-match average (bma) and maximum (max) approaches for combining multiple annotations were used on dataset without (IEA-) electronic annotations. TCSS & Resnik show best ROC profiles for all three ontologies.



### Supplementary figure S7 - F-score curves for *H. sapiens* PPI dataset (IEA-)

 $F_1$  score (harmonic mean of precision and recall) evaluations of semantic similarity measures at different cutoffs based on the *H. sapiens* PPI dataset derived from DIP are shown. The evaluation was performed using cellular component, biological process, and molecular function ontologies of GO. Best-match average (bma) and maximum (max) approaches for combining multiple annotations were used on dataset without (IEA–) electronic annotations.  $F_1$  score reaches its best value at 1 and worst at 0. TCSS does better than Resnik for semantic similarity cutoff scores in all three ontologies.



### Supplementary figure S8 - ROC curves for *H. sapiens* PPI dataset (IEA+)

ROC evaluations of semantic similarity measures at different cutoffs based on the *H. sapiens* PPI dataset derived from DIP are shown. The evaluation was performed using cellular component, biological process, molecular function ontology of GO. Bestmatch average (bma) and maximum (max) approaches for combining multiple annotations were used on dataset with (IEA+) electronic annotations. TCSS & Resnik show best ROC profiles for all three ontologies.



### Supplementary figure S9 - F-score curves for *H. sapiens* PPI dataset (IEA+)

 $F_1$  score (harmonic mean of precision and recall) evaluations of semantic similarity measures at different cutoffs based on the *H. sapiens* PPI dataset derived from DIP are shown. The evaluation was performed using cellular component, biological process, and molecular function ontologies of GO. Best-match average (bma) and maximum (max) approaches for combining multiple annotations were used on dataset with (IEA+) electronic annotations.  $F_1$  score reaches its best value at 1 and worst at 0. TCSS does better than Resnik for semantic similarity cutoff scores in all three ontologies.



# Supplementary figure S10 - Effect of topology cutoff on (ROC) AUC and F-score for *S. cerevisiae* PPI dataset (IEA-)

Change in AUC (TPR/FPR ROC) values and average F-scores with respect to topology cutoff under different settings. BMA stands for best-match average approach of combining multiple annotations and MAX stands for maximum approach. Test was conducted separately for cellular component (CC), biological process (BP), and molecular function (MF) ontologies without IEA (IEA-) annotations.



# Supplementary figure S11 - Effect of topology cutoff on (ROC) AUC and F-score for *S. cerevisiae* PPI dataset (IEA+)

Change in AUC (TPR/FPR ROC) values and average F-scores with respect to topology cutoff under different settings. BMA stands for best-match average approach of combining multiple annotations and MAX stands for maximum approach. Test was conducted separately for cellular component (CC), biological process (BP), and molecular function (MF) ontologies with IEA (IEA+) annotations.



#### Supplementary figure S12 - Topology cutoff for S. cerevisiae PPI dataset

Topology cutoffs for cellular component (CC), biological process (BP), and molecular function (MF) ontologies were determined by evaluating AUC values and average F-scores at different cutoffs. The topology cutoff where both the AUC and average F-score maximized under different conditions is picked. Test was done with best-match average (bma) and maximum (max) approaches of combining multiple annotations on datasets with (IEA+) and without (IEA-) electronic annotations. Topology cutoff value chosen for CC is 2.4, BP is 3.6, and MF is 3.2 (marked by "×").



# Supplementary figure S13 - Effect of topology cutoff on (ROC) AUC and F-score for *H. sapiens* PPI dataset (IEA-)

Change in AUC (TPR/FPR ROC) values and average F-scores with respect to topology cutoff under different settings. BMA stands for best-match average approach of combining multiple annotations and MAX stands for maximum approach. Test was conducted separately for cellular component (CC), biological process (BP), and molecular function (MF) ontologies without IEA (IEA-) annotations.



# Supplementary figure S14 - Effect of topology cutoff on (ROC) AUC and F-score for *H. sapiens* PPI dataset (IEA+)

Change in AUC (TPR/FPR ROC) values and average F-scores with respect to topology cutoff under different settings. BMA stands for best-match average approach of combining multiple annotations and MAX stands for maximum approach. Test was conducted separately for cellular component (CC), biological process (BP), and molecular function (MF) ontologies with IEA (IEA+) annotations.



#### Supplementary figure S15 - Topology cutoff for H. sapiens PPI dataset

Topology cutoffs for cellular component (CC), biological process (BP), and molecular function (MF) ontologies were determined by evaluating AUC values and average F-scores at different cutoffs. The topology cutoff where both the AUC and average F-score maximized under different conditions is picked. Test was done with best-match average (bma) and maximum (max) approaches of combining multiple annotations on datasets with (IEA+) and without (IEA-) electronic annotations. Topology cutoff value chosen for CC is 3.0, BP is 4.0, and MF is 3.6 (marked by "×").



### Supplementary figure S16 - Correlation with gene expression

Pearson correlation between gene expression similarity and semantic similarity on *S. cerevisiae* dataset are shown. The evaluation was performed for cellular component, biological process, and molecular function ontologies of GO. Best-match average (bma) approach for combining multiple GO annotations was used. TCSS showed best correlation with gene expression in all three ontologies.



### Supplementary figure S17 - Correlation with CESSM dataset

Correlation between semantic similarity and sequence, enzyme commission (EC), protein family (Pfam) similarity using online CESSM tool. The evaluation was performed for cellular component (CC), biological process (BP), and molecular function ontologies (MF) of GO. Best-match average (bma) approach for combining multiple GO annotations was used on the dataset without (IEA–) electronic annotations. TCSS showed best correlation with EC & Pfam similarity for CC ontology and same as Resnik's for MF and BP ontologies.



### Supplementary table S1 - Area under ROC curves for *H. sapiens* PPI dataset

Area under ROC curves for *H. sapiens* PPI dataset. The tests were performed separately for cellular component (CC), biological process (BP), and molecular function (MF) ontologies. *Best-match average* and *maximum* approaches were used for datasets "with (IEA+) and without (IEA-)" electronic annotations.

|           |     | IEA- |      |      | IEA+ |      |      |
|-----------|-----|------|------|------|------|------|------|
|           |     | CC   | BP   | MF   | CC   | BP   | MF   |
| TCSS      | max | 0.80 | 0.89 | 0.80 | 0.82 | 0.92 | 0.85 |
|           | bma | 0.78 | 0.87 | 0.79 | 0.79 | 0.90 | 0.84 |
| Resnik    | max | 0.80 | 0.89 | 0.80 | 0.81 | 0.92 | 0.84 |
|           | bma | 0.77 | 0.87 | 0.79 | 0.79 | 0.90 | 0.84 |
| Lin       | max | 0.78 | 0.88 | 0.74 | 0.76 | 0.91 | 0.78 |
|           | bma | 0.76 | 0.86 | 0.73 | 0.75 | 0.88 | 0.78 |
| Jiang     | max | 0.76 | 0.86 | 0.70 | 0.71 | 0.88 | 0.70 |
|           | bma | 0.73 | 0.83 | 0.67 | 0.65 | 0.80 | 0.65 |
| Schlicker | max | 0.74 | 0.84 | 0.71 | 0.72 | 0.87 | 0.75 |
|           | bma | 0.72 | 0.83 | 0.70 | 0.70 | 0.85 | 0.74 |
| SimGIC    |     | 0.70 | 0.68 | 0.63 | 0.68 | 0.74 | 0.68 |

Supplementary table S2 - Gene expression datasets from GeneMANIA Gene Expression Omnibus (GEO) identifiers, series title, pubmed ids of gene expression datasets downloaded from GeneMANIA.

| GEO id   | Series title                                                                                   | Pubmed id                  |  |
|----------|------------------------------------------------------------------------------------------------|----------------------------|--|
| GSE1311  | YDRseries1, Yeast desiccation / rehydration time course                                        | 16332871                   |  |
| GSE1312  | YDRseries2, Yeast desiccation / rehydration time course                                        | 16332871                   |  |
| GSE1313  | YDRseries3, Yeast desiccation / rehydration time course                                        | 16332871                   |  |
| GSE1639  | Rpd3 and histone H3 and H4 deletions/mutations                                                 | 15456858                   |  |
| GSE1693  | A novel response to microtubule perturbation in meiosis                                        | 15899877                   |  |
| GSE1723  | Two-dimensional transcriptome analysis in chemostat cultures of S. cerevisiae                  | 15496405,17241460,12414795 |  |
| GSE1814  | Transcriptional effects of the TOR2-controlled signaling function                              | 15476558, 16959779         |  |
| GSE1938  | Phosphomannose isomerase gene (PMI40) deletion strain cultivated in varying initial            | 15520001                   |  |
|          | mannose concentrations                                                                         |                            |  |
| GSE1975  | Simultaneous genotyping, gene expression measurement, and detection of allele-specific         | 15687292                   |  |
|          | expression                                                                                     |                            |  |
| GSE2076  | leu3p dependent transcription                                                                  | 15949974                   |  |
| GSE2224  | Experimental condition                                                                         | 15878181                   |  |
| GSE2343  | TFIIH mutants treated with methyl methanesulfonate                                             | 15837426                   |  |
| GSE3076  | Impact of Nonsense-mediated mRNA Decay on the Global Expression Profile of Budding             | 17166056                   |  |
|          | Yeast                                                                                          |                            |  |
| GSE3431  | Logic of the yeast metabolic cycle                                                             | 16254148                   |  |
| GSE3806  | Histone H2B^3-32, H2B K->G, H2B^3-37, and H2B^30-37 mutations                                  | 16648479                   |  |
| GSE3821  | Short term perturbation                                                                        | 16969341                   |  |
| GSE4135  | Wild type yeast and H3del(1-28) and H4del(2-26) yeast grown in complete synthetic media        | 16461773                   |  |
| GSE4669  | Response of yeast to saponin treatment                                                         | 16870766                   |  |
| GSE5238  | SFP1 dependent transcription                                                                   | 18174152                   |  |
| GSE5301  | Expression data from yeast treated with enediynes compared to gamma radiation                  | 17163986                   |  |
| GSE6073  | Rap1 and Abf1 DNA-binding ts mutants and wild type after 1 hr at 37 C                          | 17158163                   |  |
| GSE6190  | Temperature-dependent transcriptional response under anaerobic C and N limitations in<br>Yeast | 17928405                   |  |
| GSE6405  | Transcriptional responses of yeast to preferred and non-preferred nitrogen sources in C-lim    | 17419774                   |  |
| GSE7660  | Sch9 Is a Major Target of TORC1 in Saccharomyces cerevisiae                                    | 17560372                   |  |
| GSE7820  | Transcript and Proteomic Analyses of Wild-Type and GPA2 Mutant Saccharomyces                   | 17700863                   |  |
| GSETCEC  | cerevisiae Strains                                                                             | 11100000                   |  |
| GSE8187  | Adaptation of S. cerevisiae to fermentative conditions                                         | 18304306                   |  |
| GSE8536  | The response of Saccharomyces cerevisiae to stress throughout a 15-day wine fermentation       | 18215224                   |  |
| GSE8761  | Transcriptional profiling of ribosomal protein knockouts                                       | 17981122                   |  |
| GSE8825  | Coordination of Growth Rate, Cell Cycle, Stress Response and Metabolic Activity in Yeast       | 17959824                   |  |
| GSE8895  | Role of Transcriptional Regulation in Controlling Fluxes in Central Carbon Metabolism of       | 14630934                   |  |
|          | Saccharomyces cerevisiae                                                                       |                            |  |
| GSE8900  | Genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide       | 15780657                   |  |
|          | concentrations                                                                                 |                            |  |
| GSE9217  | Transcriptomes for different level of glucose                                                  | 18679056                   |  |
| GSE9302  | A perturbation in the system leads to period doubling                                          | 17043222                   |  |
| GSE9423  | The Oxidative Stress Response of a Lager Brewing Yeast Strain during Industrial                | 18373683                   |  |
|          | Propagation and Fermentation                                                                   |                            |  |
| GSE9482  | GAL-NMD2                                                                                       | 18087042                   |  |
| GSE9590  | Saccharomyces cerevisiae TPP 2-oxo acid decarboxylases                                         | 18281432                   |  |
| GSE9644  | Glucose Pulse to sfp1delta continuous cultures                                                 | 18524923                   |  |
| GSE11452 | Saccharomyces cerevisiae chemostat steady state microarray compendium                          | 19173729                   |  |
| GSE12890 | Xylose metabolism in recombinant Saccharomyces cerevisiae                                      | 18533012                   |  |