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What is R?

* Ris a programming language and software
environment for statistical computing and graphics
— Data handling (input, output)
— Matrix operations
— Statistical tests
— Graphics (e.g. exploratory statistics)
— Highly specialized data analysis (e.g. microarrays)

* Originally developed (1991-1996) by Robert Gentleman and Ross
Ihaka as the open-source version of the S programming language
by John Chambers (Bell Labs)
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R: Core and Packages

* Rcore
— Language interpreter (executes R code)
— User interface (GUI)
— Graphics terminal
— Suite of essential tools for statistics and graphics
* Contributed packages
— Specialized data analysis (e.g. microarrays) or graphics
— Any researcher can develop a package and submit it

— Bioconductor is a project for the development of genomic data
analysis packages (http://www.bioconductor.org/)
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R Programming Styles

* Two modes of use:
a. Write a short program (a script), just to analyze some data

b. Write a longer program, which will be used over and over by
you and/or other users

* In this course you will have enough exposure to R to
perform (a) but not (b)
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How to Use R

1. Write R code
using the built-in editor or any other text editor
— remember to save your code as a .R file!

2. Run R code
using the GUI (R-Console) or a UNIX-style terminal

— graphics will be generated by the graphics terminal as
additional windows

— you can save graphics as files using R code
— you can save data in text format using R code

— you can save data in the internal R representation by saving
your R workspace
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The Most Simple R Session

1. OpenR

2. Write the following R code using the built-in editor
print ("Hello World")
3. RuntheR code
— Built-in editor (Win): CTRL+F8
— Built-in editor (Mac): APPLE+RETURN
— Any platform/editor: copy and paste into the R-console
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R Console

Q
R version 2.12.9 (2010-19-15)
Copyright (C) 2018 The R Foundation for Statistical Computing oXeXe Untitled
ISBN 3-900851-07-0 X O
Platform: x86_64-apple-darwing.8.0/x86_64 (64-bit) J\:‘L =) | <functions> 4] (Q- Help search
R is free software and comes with ABSOLUTELY NO WARRANTY. 1 print ("Hello World™)

You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
"citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
[R.app GUI 1.35 (5632) x86_64-apple-darwin9.8.0]
[History restored from /Users/danielemerico/.Rhistory]
> print ("Hello World")
[1] "Hello World"

>
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How to Access the Help

* Exact-match help:
help ("keyword") help ("if")
?"keyword" ?Uif”

e Multiple-match help:

help.search ("keyword") help.search ("arithmetic")
??"keyword" ??"arithmetic”

Introduction to R




Objects

* In programming languages
there are named entities called objects
used to store values (i.e. numbers, text strings)

* Handling objects instead of mere values enables to build
programs that work with different values in input

(e.g. a program that computes the mean of a set of
measurements)
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Object Names

* Objects are identified by a textual label, the object
name
— Allowed characters: a-z a-z 0-9 _ .
— The first character of the name must be alphabetic
— The name is case sensitive

* The name should suggest what is the function and
content of the object

— | will usually stick to this principle in my examples, structuring
the name in two parts separated by “”, although this is not
required by R

data.df
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Object Assignment

The assignment operator <-
is used to assign a specific value to an object

x.n <- value x.n <-1

Other languages require to first define the type of an object
(e.g. numeric, character), and only then assign a value

R is more flexible: you assign the value without previous
definition, and the type is inferred automatically
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Object Class

* Each variable you create belongs to a class

class (object)

* The class indicates what type of value the object can assume
— Numeric

x.n<-1/5
— Character (i.e. string of text)
text.ch <- "Hello World"

— Logical (i.e. TRUE or FALSE)
— Factor

detailed explanation later on
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Arithmetic operators

* To manipulate numeric objects,
you can use the well-known arithmetic operators

addition
subtraction
multiplication
division
power

>N * I+

x.n <- 1+ 2
x.n <- 3 *~ 2
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Logical Values and Expressions

* You can write logical expression,

which will output a true or false value
— Comparison operators
— Evaluate object properties

* You can also assign the results of such expressions
to objects of type: logical
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Comparisons Operators

e Greater / smaller than

value or object < value or object
value or object <= value or object
value or object > value or object
value or object >= value or object

xl.n <- 2

x2.n <- 4

Xx.bn <- x1.n > x2.n

x.bn # FALSE
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Comparison Operators

* Equalto
value or object == value or object
xl.n <- 2
x2.n <- 2
x.bn <- x1.n == x2.n
x.bn # TRUE

— always remember to use ‘=="and not =" 111
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Other logical expressions

* (Class evaluation

is.numeric (object)
is.character (object)

* Special value evaluation

is.finite (object)
is.na (object)
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Logical Operators

* For single values have a double symbol
* For vectors have a single symbol (operate element by element)
— AND &s& &

— OR Il I

— NOT !

T && T #T

T && F $F

P&k F #E We will do some practice

T || T #T .
on data-set sub-setting

TIIF #T , . oy
using logical conditions

FALFE #E later on

‘o 4§ F ater o

'F # T
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Special Numerical Values: NA

* NA s a special value that is assigned when it is not
possible to have an actual value

— Example: when, in a vector, some element has not been
assigned a value (see next chapter for more details)

x.n <- NA
is.na (x.n) # TRUE

— Be aware of NA values, as they can “propagate” when you
compute operations, producing more NA values
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Special Numerical Values: Inf

* R can generate values that are not real numbers
such as positive and negative infinite
1/0 # Inf
-1/0 # - Inf

— These values are arithmetically operated with the
following results

Inf + 1 # Inf
Inf / 2 # Inf
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Workspace

* The workspace is the collection of all the objects you
have created in a specific R session

— To list all objects in your workspace
1s ()

— To remove object(s) from the workspace
rm (objects) rm (x.n, y.n)

— To remove all objects in the workspace
rm (list = 1s ())

Introduction to R

Save the Workspace

* You can save all objects in your workspace, for use in
another session, either using the GUI or using the
commands

save (objects, file = filename)

save (x.n, y.n, file = "ws_xn.RData")

save.image (file = filename)
save.image (file = "ws_all.RData")

save.image saves all objects
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Working directory

— Mind that the workspace will be saved to a file located in
the current working directory

— To change the working directory use the GUI or the
following command

setwd (path)
setwd ("C:\Users\Daniele\Documents\Data")

— To check what’s the current working directory

getwd ()

Introduction to R

Vectors

* Avector is an object composed of an ordered
collection of elements of the same type

x.nv <- ¢ (1943, 1940, 1942, 1940)
x.chv <- ¢ ("George", "John", "Paul", "Ringo")

class (x.nv) # numeric
class (x.chv) # character

— c () isthe concatenation command, that you
can use to generate an ordered collection of elements
¢ (value or object, value or object, ..)

— use length (vector) to countthe number of
vector elements
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Vector Indexes

— To access a subset of the vector, use indexes: the first
element is associated to index 1, etc...

x.chv <- ¢ ("George", "John", "Paul", "Ringo")

x.chv[1] # "George"
x.chv[3] # "Paul"

xl.chv <- x.chv[l: 3]
xl.chv <- x.chv[c (1, 4)]

i<-1

x.chv[i]

Introduction to R

Vector Indexes

— The attempt to extract an element that does not exist will
produce an error
x.chv <- ¢ ("George", "John", "Paul", "Ringo")

x.chv[5]

— However, you will be able to assign a value to a position
that does not exist yet

x.chv[5] <- "The Walrus"

* If, doing so, you skip positions that have no values assigned, NA
values will be generated
x.chv[7] <- "The Eggman"
x.chv[6] # NA

Introduction to R




Vector Indexes

* \ector elements can also be accessed
— Using textual labels associated to elements
— Using vectors of logical values

(only elements with a corresponding true value will be
extracted)

Introduction to R

Logical Indexes

* only elements with a corresponding true value will be extracted

xl.nv <- ¢ (1: 4)
x1l.nv[xl.nv > 2] # 3 4

x2.nv <- ¢ (1: 2, NA, 0, 0)
x2.nv['is.na (x2.nv)] #1200

* which () transforms logical vectors into numerical index vectors

which (!is.na (x2.nv)) #12 3 4
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Matrices

e Matrices and arrays can be regarded as the
2-dimensional extension of vectors

* Like for vectors,
— Their elements must all be of the same type

— They have names (matrices: column and row names)

Introduction to R

Initialize a matrix

matrix (values, ncol, nrow, byrow)

x.mx <-

matrix (¢ (1: 6), ncol = 2, nrow = 3, byrow =
# [,11 [,2]

# [1,] 1 2

# [2,] 3 4

# [3,] 5 6

dim (x.mx) # 3, 2

class (x.mx) # matrix

T)
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Initialize a matrix

— Unlike for vectors, once a matrix has been initialized, it is not
possible to access elements outside the defined dimensions

X.mx <-
matrix (¢ (1: 6), ncol = 2, nrow = 3, byrow = T)

x.mx[3, 3] <- 7
# Error in x.mx[3, 3] <- 7 : subscript out of bounds

— To add additional rows or columns to an initialized matrix,
check out the matrix concatenation operations

Introduction to R

Matrix Indexing

* In analogy to vectors, there are different ways to
access the matrix elements
— Numerical indexes
— Logical values
— Text labels (rownames, colnames)
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Matrix Indexes

— A matrix element is identified by a pair of indexes

Xx.mx <-
matrix (¢ (1: 6), ncol = 2, nrow = 3, byrow = T)

x.mx[1l, 1]
$#1

x.mx[1l: 2, ]

# [,11 [,2]
# [1,] 1 2
# [2,] 3 4

Introduction to R

Rownames and Colnames

x.mx <-
matrix (c (1: 6), ncol = 2, nrow = 3, byrow = T)

colnames (x.mx) <- ¢ ("ecl", "c2")
rownames (x.mx) <- ¢ ("rl", "r2", "r3")

x.mx["rl" , ]

# rl r2 r3

#1 3 5

class (x.mx["rl", ]) # integer
dim (x.mx["rl", ]) # NULL

* Note that by subsetting the matrix to a single dimension the class
has changed to (integer) vector, a subtype of numeric vector
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Avoiding Matrix to Vector Conversion

 |If, after a subsetting operation, your matrix becomes a vector, be
aware that you will lose several features typical of matrices

— colnames () and rownames () will not be available, only names
() will be available

— dim () will be NULL, only 1length () will be available
* To avoid this, use the following option:

matrix object [i, j, drop = F]

x33.mx_<— x.mx [3, 3, drop = F]

class (x33.mx); dim (x33.mx)
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Arithmetic Operations

* Matrix and scalar:
— every element of the matrix is operated, using the scalar
— Addition, subtraction, multiplication, division, ...

* Matrix and vector:

— the vector is treated as a matrix with only one row or
column

— with recycling if required

* Matrix and matrix:
— Element by element (compatible dimensions required)
— Matrix product (similar to dot product)
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Matrix Concatenation

* Matrix concatenation enables to add a row or a column
to a pre-existing matrix

— rbind () is used to concatenate by row and cbind () is
used to concatenate by column

Xx.mx <-
matrix (c (1: 6), ncol = 3, nrow = 2, byrow = T)

cbind (x.mx, c (7, 8))

# [,11 [,2] [,31 [,4]
# [1,] 1 2 3 7
# [2,] 4 5 6 8
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Data.frames

* A data frame is similar to a matrix
but every column can have a different type
(numeric, character, logical, factor)

 Statistical data are typically loaded from files as
data.frames
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Read.table

* Read.table is typically used to read tab-, comma- and space-
separated files into data.frames

x.df <- read.table (
filename,
sep = "\t",
header =T,
quote = "",
comment.char = "",
stringsAsFactors = F

)

 sep is the separator character; use "\t" for tab

» header controls the presence of a column titles in the first row

» quote is a character vector indicating which characters are used to wrap strings
that include the separator character

» stringsAsFactors controls automatic conversion of character vectors to
factors

« comment.char indicates which character will be interpreted as the beginning
of a comment (not read into the data.frame)

Introduction to R

Write.table

* write.table is the “companion” of read table, it is used to write
data.frames to tab/space/comma-separated text files

write.table (
x.df,
sep = "\t",
col.names = T, row.names = F,
quote = F,
filename)

* col.names row.names control whether to print the colnames and
rownames; mind that the column of rownames will not have column name

» quote controls whether character vectors will be printed with quote
characters (usually avoid this)
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x.df <- data.frame (

Data.frame: Initialization

cl=c¢ (1, 2, 3),

c2 - c ("a"’ Vlb"’ Vlc") ,

c3 = factor (¢ ("£f1", "f2", "f2")),
stringsAsFactors = F

)

Introduction to R

— Data.frames are internally represented as lists, with the
additional constraint that objects must be vectors or
factors with equal length

— Indexing follows the rules for lists

* $§ - access column and output vector

* [[11 —> access column and output vector
* [1 -2 access column and output data.frame
class (x.df) # [1] "data.frame"
class (x.df$cl) # [1] "numeric"
class (x.df$c2) # [1] "character"
class (x.df$c3) # [1] "factor"
class (x.df[, "cl"]) # [1] "data.frame"

Data.frame Indexing
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Subsetting Data.frames
Using Logical Conditions

* You will often have to subset to the rows of a data.frame
that meet given conditions: use subset

subset (data.frame, logical condition)

subset (x.df, cl > 2 | c2 == "b")
# cl c2 c3
#2 2 Db £f2
#3 3 c f2

— In the logical condition you can refer to the data.frame columns just
by their name (e.g. c¢1)

Introduction to R

Factors

* Factors are best used when you have categorical data

i.e. when you have a collection of values that belong to a discrete
set, and the same value can appear multiple times

— Categorical variable: cigarette smoking status (“Status”)

— Categorical values (levels): “present”, “past”, “never”

smoke.df <- data.frame (
Individual = ¢ ("John", "Bob", "Jack", "Al"),
Status = factor (c ("present", rep ("past", 2),
"never")),
stringsAsFactors = F

)

levels (smoke.df$Status)
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Table

* To count how many times each level occurs in a factor
table (smoke.df$Status)

# never: 1, past: 2, present: 1

* If two factors are present, you can also cross tabulate them
x.df <- data.frame (
A =c (rep ("al", 2), rep ("a2", 2)),
B =c (rep ("bl", 1), rep ("b2", 3))

# B

# A bl b2
# al 1 1
# a2 0 2
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Lists

* Lists are ordered collections of objects

— A list has a number of slots, which can be accessed by
names (i.e. character labels) or by numeric indexes

— The content of the slot can be of any class (single value,
numeric or character; vector; matrix; list; etc...)

LIST | g|ot |- OBJECT

- Slot - OBJECT

— Several R functions for statistics output a list
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List Example

x.ls <-
list (Name = "John", Surname = "Locke", Birth year =
1632)

$SName
[1] "John"

$Surname
[1] "Locke"

$Birth year
[1] 1632

= = I H I = I
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Accessing List Slots

* Aslot can be accessed
— By numerical or logical index
— By slot name value

-1s[[2]]

.1s$Surname

.1s[["Surname"]]

.ch <- "Surname"; x.ls[[s.ch]]

n X X X

# "Locke"
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Lab Assignments

Read "Forbes 2004.txt" as a data.frame

Count the number of categorical values of 'category' column
Count the number of NA values of 'profits' column

Remove the rows with NA values

Write the subset data to a new table

List the object in the workspace

No s wDN R

Save the object 'Forbes_nna.df' as 'Forbes_nna.RData’
workspace

Solutions in the next slides, but try to figure it out yourself

Introduction to R

#1

# set working directory...

Forbes.df <- read.table (
file = "Forbes_ 2004.txt",
sep = "\t", header =T,
stringsAsFactors = T)

# 2
table (Forbes.dfS$category)

# 3

notna.ix <- which ('is.na (Forbes.df$profits))
length (notna.ix) / nrow (Forbes.df)

# 0.9975

# 4

Forbes nna.df <- Forbes.df[notna.ix, ]
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#5

write.table (
Forbes nna.df,
sep = "\t",
col.names = T, row.names = F,
quote = F,
file = "Forbes_ 2004 nna.txt"
)

# 6
1s ()

# 7
# set working directory...
save (Forbes nna.df, file = "Forbes nna.RData")
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How to Install R on Your Own

* Windows Users

— Install R

* Download from
http://cran.r-project.org/bin/windows/base/
* Vista users: to avoid pain, install R in a subfolder of your user folder

or refer to this:

http://cran.r-project.org/bin/windows/base/rw-FAQ.html#Does-R-run-under-Windows-
Vista_003f

— Optional: install R code editor

* Download Notepad++
http://sourceforge.net/projects/notepad-plus/files/

» Download NppToR (interfaces Notepadd++ and R)
http://sourceforge.net/projects/npptor/
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How to Install R on Your Own

* Mac Users
— Install R
* http://cran.r-project.org/bin/macosx/
— R code editor:
* Just use the built-in one
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We are on a Coffee Break &
Networking Session
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