bioinformatics.c

Canadian Bioinformatics
Workshops

www.bioinformatics.ca

Creative Commons

This page is available in the foliowing
Afrikaans Gunrapcor Catala Dansk Deutsch EAMvica English English (CA) English (GB) English (US) Esperanio
Casteilano Castsliano (AR) Espafiol (CL) Castellano (CO) Espafiol (Ecuador) Casteliano (MX) Casiellano (PE)
Euskara Suomeksi frangais frangais (CA) Galego vy hrvalsid Magyar Itaiano 528§ 815} 0f Macedonian Melayu
Nederlands Norsk Sesotho sa Leboa polski Portugués romand siovensid jezik cpnc srpski (islinica) Sotho svenska
RSN (&) isiZul

You are free:

to Share — o

to Remix — to adapt e werk

Under the following conditions:

Attribution

® Fora
® Anyof tt ncitions ¢

® The suthee's moral rights are retained in tis licence

Learn how 1o distribute your work using this licence

Module 1
Introduction to R

Daniele Merico

e) Exploratory Data Analysis and Essential Statistics using R
bioinformatics.c. January 24-25, 2011

UNIVERSITY OF

¥ TORONTO

% Donnelly Centre
for r Research

Post-doctoral Fellow
Donnelly Centre
University of Toronto

http://baderlab.org/
DanieleMerico

What is R?

* Ris a programming language and software
environment for statistical computing and graphics
— Data handling (input, output)
— Matrix operations
— Statistical tests
— Graphics (e.g. exploratory statistics)
— Highly specialized data analysis (e.g. microarrays)

* Originally developed (1991-1996) by Robert Gentleman and Ross
Ihaka as the open-source version of the S programming language
by John Chambers (Bell Labs)

Introduction to R

R: Core and Packages

* Rcore
— Language interpreter (executes R code)
— User interface (GUI)
— Graphics terminal
— Suite of essential tools for statistics and graphics
* Contributed packages
— Specialized data analysis (e.g. microarrays) or graphics
— Any researcher can develop a package and submit it

— Bioconductor is a project for the development of genomic data
analysis packages (http://www.bioconductor.org/)

Introduction to R

R Programming Styles

* Two modes of use:
a. Write a short program (a script), just to analyze some data

b. Write a longer program, which will be used over and over by
you and/or other users

* In this course you will have enough exposure to R to
perform (a) but not (b)

Introduction to R

How to Use R

1. Write R code
using the built-in editor or any other text editor
— remember to save your code as a .R file!

2. Run R code
using the GUI (R-Console) or a UNIX-style terminal

— graphics will be generated by the graphics terminal as
additional windows

— you can save graphics as files using R code
— you can save data in text format using R code

— you can save data in the internal R representation by saving
your R workspace

Introduction to R

The Most Simple R Session

1. OpenR

2. Write the following R code using the built-in editor
print ("Hello World")
3. RuntheR code
— Built-in editor (Win): CTRL+F8
— Built-in editor (Mac): APPLE+RETURN
— Any platform/editor: copy and paste into the R-console

Introduction to R

R Console

Q
R version 2.12.9 (2010-19-15)
Copyright (C) 2018 The R Foundation for Statistical Computing oXeXe Untitled
ISBN 3-900851-07-0 X O
Platform: x86_64-apple-darwing.8.0/x86_64 (64-bit) J\:‘L =) | <functions> 4] (Q- Help search
R is free software and comes with ABSOLUTELY NO WARRANTY. 1 print ("Hello World™)

You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
"citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
[R.app GUI 1.35 (5632) x86_64-apple-darwin9.8.0]
[History restored from /Users/danielemerico/.Rhistory]
> print ("Hello World")
[1] "Hello World"

>

Introduction to R

How to Access the Help

* Exact-match help:
help ("keyword") help ("if")
?"keyword" ?Uif”

e Multiple-match help:

help.search ("keyword") help.search ("arithmetic")
??"keyword" ??"arithmetic”

Introduction to R

Objects

* In programming languages
there are named entities called objects
used to store values (i.e. numbers, text strings)

* Handling objects instead of mere values enables to build
programs that work with different values in input

(e.g. a program that computes the mean of a set of
measurements)

Introduction to R

Object Names

* Objects are identified by a textual label, the object
name
— Allowed characters: a-z a-z 0-9 _ .
— The first character of the name must be alphabetic
— The name is case sensitive

* The name should suggest what is the function and
content of the object

— | will usually stick to this principle in my examples, structuring
the name in two parts separated by “”, although this is not
required by R

data.df

Introduction to R

Object Assignment

The assignment operator <-
is used to assign a specific value to an object

x.n <- value x.n <-1

Other languages require to first define the type of an object
(e.g. numeric, character), and only then assign a value

R is more flexible: you assign the value without previous
definition, and the type is inferred automatically

Introduction to R

Object Class

* Each variable you create belongs to a class

class (object)

* The class indicates what type of value the object can assume
— Numeric

x.n<-1/5
— Character (i.e. string of text)
text.ch <- "Hello World"

— Logical (i.e. TRUE or FALSE)
— Factor

detailed explanation later on

Introduction to R

Arithmetic operators

* To manipulate numeric objects,
you can use the well-known arithmetic operators

addition
subtraction
multiplication
division
power

>N * I+

x.n <- 1+ 2
x.n <- 3 *~ 2

Introduction to R

Logical Values and Expressions

* You can write logical expression,

which will output a true or false value
— Comparison operators
— Evaluate object properties

* You can also assign the results of such expressions
to objects of type: logical

Introduction to R

Comparisons Operators

e Greater / smaller than

value or object < value or object
value or object <= value or object
value or object > value or object
value or object >= value or object

xl.n <- 2

x2.n <- 4

Xx.bn <- x1.n > x2.n

x.bn # FALSE

Introduction to R

Comparison Operators

* Equalto
value or object == value or object
xl.n <- 2
x2.n <- 2
x.bn <- x1.n == x2.n
x.bn # TRUE

— always remember to use ‘=="and not =" 111

Introduction to R

Other logical expressions

* (Class evaluation

is.numeric (object)
is.character (object)

* Special value evaluation

is.finite (object)
is.na (object)

Introduction to R

Logical Operators

* For single values have a double symbol
* For vectors have a single symbol (operate element by element)
— AND &s& &

— OR Il I

— NOT !

T && T #T

T && F $F

P&k F #E We will do some practice

T || T #T .
on data-set sub-setting

TIIF #T , . oy
using logical conditions

FALFE #E later on

‘o 4§ F ater o

'F # T

Introduction to R

Special Numerical Values: NA

* NA s a special value that is assigned when it is not
possible to have an actual value

— Example: when, in a vector, some element has not been
assigned a value (see next chapter for more details)

x.n <- NA
is.na (x.n) # TRUE

— Be aware of NA values, as they can “propagate” when you
compute operations, producing more NA values

Introduction to R

Special Numerical Values: Inf

* R can generate values that are not real numbers
such as positive and negative infinite
1/0 # Inf
-1/0 # - Inf

— These values are arithmetically operated with the
following results

Inf + 1 # Inf
Inf / 2 # Inf

Introduction to R

Workspace

* The workspace is the collection of all the objects you
have created in a specific R session

— To list all objects in your workspace
1s ()

— To remove object(s) from the workspace
rm (objects) rm (x.n, y.n)

— To remove all objects in the workspace
rm (list = 1s ())

Introduction to R

Save the Workspace

* You can save all objects in your workspace, for use in
another session, either using the GUI or using the
commands

save (objects, file = filename)

save (x.n, y.n, file = "ws_xn.RData")

save.image (file = filename)
save.image (file = "ws_all.RData")

save.image saves all objects

Introduction to R

Working directory

— Mind that the workspace will be saved to a file located in
the current working directory

— To change the working directory use the GUI or the
following command

setwd (path)
setwd ("C:\Users\Daniele\Documents\Data")

— To check what’s the current working directory

getwd ()

Introduction to R

Vectors

* Avector is an object composed of an ordered
collection of elements of the same type

x.nv <- ¢ (1943, 1940, 1942, 1940)
x.chv <- ¢ ("George", "John", "Paul", "Ringo")

class (x.nv) # numeric
class (x.chv) # character

— c () isthe concatenation command, that you
can use to generate an ordered collection of elements
¢ (value or object, value or object, ..)

— use length (vector) to countthe number of
vector elements

Introduction to R

Vector Indexes

— To access a subset of the vector, use indexes: the first
element is associated to index 1, etc...

x.chv <- ¢ ("George", "John", "Paul", "Ringo")

x.chv[1] # "George"
x.chv[3] # "Paul"

xl.chv <- x.chv[l: 3]
xl.chv <- x.chv[c (1, 4)]

i<-1

x.chv[i]

Introduction to R

Vector Indexes

— The attempt to extract an element that does not exist will
produce an error
x.chv <- ¢ ("George", "John", "Paul", "Ringo")

x.chv[5]

— However, you will be able to assign a value to a position
that does not exist yet

x.chv[5] <- "The Walrus"

* If, doing so, you skip positions that have no values assigned, NA
values will be generated
x.chv[7] <- "The Eggman"
x.chv[6] # NA

Introduction to R

Vector Indexes

* \ector elements can also be accessed
— Using textual labels associated to elements
— Using vectors of logical values

(only elements with a corresponding true value will be
extracted)

Introduction to R

Logical Indexes

* only elements with a corresponding true value will be extracted

xl.nv <- ¢ (1: 4)
x1l.nv[xl.nv > 2] # 3 4

x2.nv <- ¢ (1: 2, NA, 0, 0)
x2.nv['is.na (x2.nv)] #1200

* which () transforms logical vectors into numerical index vectors

which (!is.na (x2.nv)) #12 3 4

Introduction to R

Matrices

e Matrices and arrays can be regarded as the
2-dimensional extension of vectors

* Like for vectors,
— Their elements must all be of the same type

— They have names (matrices: column and row names)

Introduction to R

Initialize a matrix

matrix (values, ncol, nrow, byrow)

x.mx <-

matrix (¢ (1: 6), ncol = 2, nrow = 3, byrow =
[,11 [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

dim (x.mx) # 3, 2

class (x.mx) # matrix

T)

Introduction to R

Initialize a matrix

— Unlike for vectors, once a matrix has been initialized, it is not
possible to access elements outside the defined dimensions

X.mx <-
matrix (¢ (1: 6), ncol = 2, nrow = 3, byrow = T)

x.mx[3, 3] <- 7
Error in x.mx[3, 3] <- 7 : subscript out of bounds

— To add additional rows or columns to an initialized matrix,
check out the matrix concatenation operations

Introduction to R

Matrix Indexing

* In analogy to vectors, there are different ways to
access the matrix elements
— Numerical indexes
— Logical values
— Text labels (rownames, colnames)

Introduction to R

Matrix Indexes

— A matrix element is identified by a pair of indexes

Xx.mx <-
matrix (¢ (1: 6), ncol = 2, nrow = 3, byrow = T)

x.mx[1l, 1]
$#1

x.mx[1l: 2,]

[,11 [,2]
[1,] 1 2
[2,] 3 4

Introduction to R

Rownames and Colnames

x.mx <-
matrix (c (1: 6), ncol = 2, nrow = 3, byrow = T)

colnames (x.mx) <- ¢ ("ecl", "c2")
rownames (x.mx) <- ¢ ("rl", "r2", "r3")

x.mx["rl" ,]

rl r2 r3

#1 3 5

class (x.mx["rl",]) # integer
dim (x.mx["rl",]) # NULL

* Note that by subsetting the matrix to a single dimension the class
has changed to (integer) vector, a subtype of numeric vector

Introduction to R

Avoiding Matrix to Vector Conversion

 |If, after a subsetting operation, your matrix becomes a vector, be
aware that you will lose several features typical of matrices

— colnames () and rownames () will not be available, only names
() will be available

— dim () will be NULL, only 1length () will be available
* To avoid this, use the following option:

matrix object [i, j, drop = F]

x33.mx_<— x.mx [3, 3, drop = F]

class (x33.mx); dim (x33.mx)

Introduction to R

Arithmetic Operations

* Matrix and scalar:
— every element of the matrix is operated, using the scalar
— Addition, subtraction, multiplication, division, ...

* Matrix and vector:

— the vector is treated as a matrix with only one row or
column

— with recycling if required

* Matrix and matrix:
— Element by element (compatible dimensions required)
— Matrix product (similar to dot product)

Introduction to R

Matrix Concatenation

* Matrix concatenation enables to add a row or a column
to a pre-existing matrix

— rbind () is used to concatenate by row and cbind () is
used to concatenate by column

Xx.mx <-
matrix (c (1: 6), ncol = 3, nrow = 2, byrow = T)

cbind (x.mx, c (7, 8))

[,11 [,2] [,31 [,4]
[1,] 1 2 3 7
[2,] 4 5 6 8

Introduction to R

Data.frames

* A data frame is similar to a matrix
but every column can have a different type
(numeric, character, logical, factor)

 Statistical data are typically loaded from files as
data.frames

Introduction to R

Read.table

* Read.table is typically used to read tab-, comma- and space-
separated files into data.frames

x.df <- read.table (
filename,
sep = "\t",
header =T,
quote = "",
comment.char = "",
stringsAsFactors = F

)

 sep is the separator character; use "\t" for tab

» header controls the presence of a column titles in the first row

» quote is a character vector indicating which characters are used to wrap strings
that include the separator character

» stringsAsFactors controls automatic conversion of character vectors to
factors

« comment.char indicates which character will be interpreted as the beginning
of a comment (not read into the data.frame)

Introduction to R

Write.table

* write.table is the “companion” of read table, it is used to write
data.frames to tab/space/comma-separated text files

write.table (
x.df,
sep = "\t",
col.names = T, row.names = F,
quote = F,
filename)

* col.names row.names control whether to print the colnames and
rownames; mind that the column of rownames will not have column name

» quote controls whether character vectors will be printed with quote
characters (usually avoid this)

Introduction to R

x.df <- data.frame (

Data.frame: Initialization

cl=c¢ (1, 2, 3),

c2 - c ("a"’ Vlb"’ Vlc") ,

c3 = factor (¢ ("£f1", "f2", "f2")),
stringsAsFactors = F

)

Introduction to R

— Data.frames are internally represented as lists, with the
additional constraint that objects must be vectors or
factors with equal length

— Indexing follows the rules for lists

* $§ - access column and output vector

* [[11 —> access column and output vector
* [1 -2 access column and output data.frame
class (x.df) # [1] "data.frame"
class (x.df$cl) # [1] "numeric"
class (x.df$c2) # [1] "character"
class (x.df$c3) # [1] "factor"
class (x.df[, "cl"]) # [1] "data.frame"

Data.frame Indexing

Introduction to R

Subsetting Data.frames
Using Logical Conditions

* You will often have to subset to the rows of a data.frame
that meet given conditions: use subset

subset (data.frame, logical condition)

subset (x.df, cl > 2 | c2 == "b")
cl c2 c3
#2 2 Db £f2
#3 3 c f2

— In the logical condition you can refer to the data.frame columns just
by their name (e.g. c¢1)

Introduction to R

Factors

* Factors are best used when you have categorical data

i.e. when you have a collection of values that belong to a discrete
set, and the same value can appear multiple times

— Categorical variable: cigarette smoking status (“Status”)

— Categorical values (levels): “present”, “past”, “never”

smoke.df <- data.frame (
Individual = ¢ ("John", "Bob", "Jack", "Al"),
Status = factor (c ("present", rep ("past", 2),
"never")),
stringsAsFactors = F

)

levels (smoke.df$Status)

Introduction to R

Table

* To count how many times each level occurs in a factor
table (smoke.df$Status)

never: 1, past: 2, present: 1

* If two factors are present, you can also cross tabulate them
x.df <- data.frame (
A =c (rep ("al", 2), rep ("a2", 2)),
B =c (rep ("bl", 1), rep ("b2", 3))

B

A bl b2
al 1 1
a2 0 2

Introduction to R

Lists

* Lists are ordered collections of objects

— A list has a number of slots, which can be accessed by
names (i.e. character labels) or by numeric indexes

— The content of the slot can be of any class (single value,
numeric or character; vector; matrix; list; etc...)

LIST | g|ot |- OBJECT

- Slot - OBJECT

— Several R functions for statistics output a list

Introduction to R

List Example

x.ls <-
list (Name = "John", Surname = "Locke", Birth year =
1632)

$SName
[1] "John"

$Surname
[1] "Locke"

$Birth year
[1] 1632

= = I H I = I

Introduction to R

Accessing List Slots

* Aslot can be accessed
— By numerical or logical index
— By slot name value

-1s[[2]]

.1s$Surname

.1s[["Surname"]]

.ch <- "Surname"; x.ls[[s.ch]]

n X X X

"Locke"

Introduction to R

Lab Assignments

Read "Forbes 2004.txt" as a data.frame

Count the number of categorical values of 'category' column
Count the number of NA values of 'profits' column

Remove the rows with NA values

Write the subset data to a new table

List the object in the workspace

No s wDN R

Save the object 'Forbes_nna.df' as 'Forbes_nna.RData’
workspace

Solutions in the next slides, but try to figure it out yourself

Introduction to R

#1

set working directory...

Forbes.df <- read.table (
file = "Forbes_ 2004.txt",
sep = "\t", header =T,
stringsAsFactors = T)

2
table (Forbes.dfS$category)

3

notna.ix <- which ('is.na (Forbes.df$profits))
length (notna.ix) / nrow (Forbes.df)

0.9975

4

Forbes nna.df <- Forbes.df[notna.ix,]

Introduction to R

#5

write.table (
Forbes nna.df,
sep = "\t",
col.names = T, row.names = F,
quote = F,
file = "Forbes_ 2004 nna.txt"
)

6
1s ()

7
set working directory...
save (Forbes nna.df, file = "Forbes nna.RData")

Introduction to R

References

* R Tutorial
http://www.cyclismo.org/tutorial/R/
http://baderlab.org/PathwayAnalysisReadings#Lectures

* RProject Home
http://www.r-project.org/
* An Introduction to R
http://cran.r-project.org/doc/manuals/R-intro.pdf
The basic manual for R programming

* R Reference Card
http://cran.r-project.org/doc/contrib/Short-refcard.pdf

* Peter Dalgaard. Introductory Statistics with R. Springer
A guide to the use of R and fundamental statistical analysis

* More Books
http://www.r-project.org/doc/bib/R-jabref.html

Introduction to R

How to Install R on Your Own

* Windows Users

— Install R

* Download from
http://cran.r-project.org/bin/windows/base/
* Vista users: to avoid pain, install R in a subfolder of your user folder

or refer to this:

http://cran.r-project.org/bin/windows/base/rw-FAQ.html#Does-R-run-under-Windows-
Vista_003f

— Optional: install R code editor

* Download Notepad++
http://sourceforge.net/projects/notepad-plus/files/

» Download NppToR (interfaces Notepadd++ and R)
http://sourceforge.net/projects/npptor/

Introduction to R

How to Install R on Your Own

* Mac Users
— Install R
* http://cran.r-project.org/bin/macosx/
— R code editor:
* Just use the built-in one

Introduction to R

We are on a Coffee Break &
Networking Session

Introduction to R

