bioinformatics.ca

Canadian Bioinformatics Workshops

www.bioinformatics.ca

Creative Commons

This page is available in the following languages:

Afrikaans Gunrapcar Catala Dansk Deutsch EAnvé English English (CA) English (GB) English (US) Esperanto
Castellano Castsliano (AR) Espafiol (CL) Castallano (CO) Espafiol (Ecuador) Casteliano (MX) Casieilano (PE)
Euskara Suomeksi frangais frangais (CA) Galego vy hrvalsid Magyar Itakano B 28§ 15} 0] Macedonian Melayu
Nederiands Norsk Sesotho sa Leboa poiski Portugués romand siovenski jezik cpociu srpeki (iasinica) Sotho svenska

RS () isiZuk

You are free:

to Share — to cop;

Under the following conditions:

\  Attribution
suther

Leam how 10 distribute your work using this licence




Module 3
Hypothesis Testing

Daniele Merico

° ) Exploratory Data Analysis and Essential Statistics using R
bioinformatics.» January 24-25, 2011

UNIVERSITY OF

el ¥/ TORONTO

PESTANDING rype | AN TYPE N RO @ D onne lly C € nt re
for

M| AM RIGHT  Ho: | AMWIONC + Biomolecular Research

| AN WRONG

L AM RIGKT

L WAS TESTED
WAS TESTED RIGHT
RIGHT (TYPE usnoll

Post-doctoral Fellow
Donnelly Centre
University of Toronto

1AM RIGHT
L

WAS TESTED

.. WRONG
{1YPE | Errom)
o

http://baderlab.org/DanieleMerico

Outline

Discrete and continuous variables

Analytical variable distributions

Populations and samples, sampling distribution of the mean
Confidence interval of the mean
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Inferential statistics: null hypothesis and alternative hypothesis,
p-value, type-l and type-ll errors

Power calculations
One-sample and two-sample t-test
Two-sample paired t-test
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. Permutation-based tests
10. Multiple testing correction
11. Applications to microarray data analysis
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Discrete and Continuous Variables

* Discrete
Values can be counted, i.e. associate an integer index

e.g. Number of petals on the daisies in the gardens of Ottawa
* Daisies (in the gardens of Ottawa): population units
* Number of petals: discrete variable (numerical)

Car brands in Sudbury
* Cars (in Sudbury): population units
* Car brand: discrete variable (categorical)
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Discrete and Continuous Variables

* Continuous
Any real value in a range (continuous)

e.g. Blood pressure of overweight Canadians
* Overweight Canadians: population units
* Blood pressure: continuous variable (numerical)

Liters of wastewater produced by each Toronto inhabitant in 2010
* Toronto inhabitants: population units
* Liters of wastewater (2010): continuous variable (numerical)
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Analytical Variable Distributions

e Empirical distributions
— We measure all the members of a population for some property
— We end up having a finite number of values

— Their distribution can be summarized using the techniques described
in the previous chapter (histogram, ...)

— The probability of observing a value in a given range is just the
empirically observed frequency

e Analytical Distributions
— What if we can define analytically the distribution?
— i.e. use a mathematical formula P (x) = f (x)
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Discrete Analytical Distributions

* Cast a (fair) 6-face dice, observe the number on the top face
— Population units: all the possible dice-casting events for that (fair) 6-face dice
— Discrete variable: number on the top face of the dice

* Probability distribution

P(x) =1/6, x€{1,2,3,4,5,6}

P(1)=1/6 P(4)=1/6
P(2)=1/6 P(3)=1/6
P(5)=1/6 P(6)=1/6

* This is a uniform discrete distribution
— It’s mathematically simple,
but not all discrete analytical distributions are as simple
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Continuous Analytical Distributions

* Since the variable can have any possible value in a range, the
probability of a single value in not finite

* We need calculus to correctly handle the probability distribution,
which is called density function

Introduction to R
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P(x,<x<x,)= Jj.f(x)dx

Xa
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Normal Distribution

 The Normal is a very important distribution

— Often found when measuring a physical property multiple times
(variability due to random instrumental errors)

— Often found for anthropometric indexes in human populations
— The sampling mean follows the normal distribution

_(x_M)Z Parameters:
262 - M = Mean (x)

f(x)=me - 0 = StDev (x)
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Normal Distribution in R:
Find P given x
P(x<a)=... P(x<b)=...

p

aI T T T T T T |b

pnorm (x = .., mean = .., sd = ..)
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Normal Distribution in R:

Find P given x
P(@a<x<b)=P(x<b)-P(x<a)

p

Assignment:
verify that for any mean and

standard deviation, the
probability of x falling within
U+ 2 0is about 95%

| o
T al T lb T

pnorm (x = xa.n, ..) — pnorm (x = xb.n, ..)
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Normal Distribution in R:
Find x given P
P(x<..)=P1
| Area=/P1
/
gnorm (p = .., mean = .., sd = ..)
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Normal Distribution:
The Effect of Symmetry
P(x<p-k)=P, P(x<p+k)=1-P,

p

P, \ P,
\ A

M-k M M p+k

Assignment: test this property using gqnorm ()
Introduction to R

The Standard Normal
and the z-score

* The Standard Normal distribution has u=0,0=1

* The z-score is used to transform normally distributed
variables into a standard normal

— Z follows the standard normal

X-u
0}

Z=

— The z-score is often interpreted as the number of standard
deviations from the mean

— The reverse formula is also important x=u+z-0

Introduction to R




Normal Distribution:
Find x given P using the Standard
P (x <x1)=P1 P(z<z1)=P1
P1 | P1
X1 o 210
x1=u+z1%0

Introduction to R

» Test this relation: x1 = p +z1*o

using the R commands you have learnt

# Normal

xl.n <- gnorm (p = .., mean = .., sd = .)
# Standard Normal

zl.n <- gnorm (p = ..)

Introduction to R



QQplot

* The ggplot of an observed distribution versus the normal

can be used to evaluate how close the observed distribution
is to the normal

— The point should be lying on a line

Introduction to R

# quasi-normal # not normal

x.nv <- ¢ (-1.8, -1, -0.75, x.nv <- 2 ~ (1: 12)
-0.5, -0.3, 0, 0.3, ggnorm (x.nv, pch = 19)
0.45, 0.8, 1.1, 1.6) ggqline (x.nv)

gqgnorm (x.nv, pch = 19)
gqline (x.nv)
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Population and Sample

* Population
set of entities (individuals, objects, events)

mean: K
stdev: o

* Sample
subset of a population
mean: m
stdev: S

Introduction to R

Correction for Sample Stdev

i=1
* Population \/ EM(X) x
N

1 Q 2
« Sample S=\/ﬁ;(M(x)_xi)

The R function sd () uses by default the second definition
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Populations, Samples, Inferences

* Measuring a property for all the units of a population is
often not practical

= Only the units in a sub-set (i.e. sample) are measured

* |f we can only measure sample,
can we make inferences that hold at the population level?

* This is the object of Statistical Inference

Introduction to R

Sampling Variable

* Generate many random samples of a population (sample size: N)
* For each sample, measure a property > variable

* For each sample, compute a statistic summarizing the variable
(e.g. mean)

- New variable (sampling variable)
— New population units: samples of the original population

* How is this useful..?!
— The statistic has only one value in the population (e.g. mean)

— Different random samples will have values which cluster around
the population statistic

- Useful to study this to guide statistical inference

Introduction to R
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Sampling Mean

* Sampling mean of a variable x:
mean of variable x for each random sample
(sample size: N)

— Mean of the sampling mean

— Stdev of the sampling mean

— What happens if sample size = population size?

Introduction to R
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As N increases, the sample means of the statistic become
closer to the population value of the statistic
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Sampling Mean Distribution
* If the distribution of x is normal,
the distribution of X is normal as well

* Even if the distribution of x is not normal,
when sample size N is sufficiently large
the distribution of X is normal

(Central Limit Theorem)

* For practical purposes, sufficiently large corresponds to N > 30

Introduction to R




Sampling Mean Distribution

e How is this useful?

* We have a model defining a quantitative relation
between the population and sample mean

* |s the sample mean probable or improbable under the
population sampling mean distribution?

Introduction to R

Confidence Interval of the Mean
. Sampling mean distribution:
Known * Normal o
— Population parameters: 4, o * Mean =y, Stdev = N
— i o> < |
Sample size (N): 2 30 31 % p
* Goal
— Determine the range of N °
possible sample mean values § N
for this population s °
* Strategy .
— Use the sampling mean /
distribution (normal) 34— & | N ‘
M
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Confidence Interval of the Mean

Sampling mean distribution:

e Solution « Normal

o
1. Set the probability a of X * Mean =y, Stdev =&

falling outside the interval 1% /7
(usually a = 0.05) \/P =1-a

04

0.3
I

This is the confidence associated to

the interval:

» The probability of x being outside
the interval is a

» The probability of x being within
the interval is 1 - a \

T T T T T

M
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probability density
0.2
|

1

0.1

0.0

Confidence Interval of the Mean

Sampling mean distribution:

e Solution « Normal

(0}
1. Set the probability & of X * Mean =, Stdev ="

falling outside the interval 51 ¥ /1
- P=1-a
(usually a = 0.05)
2. Find 2,1 P (2<2,) =1-a/2 _° \/

(standard normal)

probability density
0.2
1

We use the Standard Normal for
reasons that will be clearer later.
However in R we can use any

normal distribution to compute x P=aqa/2 P=aqa/2
given the probability

M
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e Solution

1. Set the probability a of x
falling outside the interval
(usually a =0.05)

2. F|nd ZQ/Z: P (Z < Z(X/Z) =1- a/z
(standard normal)

3. The Confidence Interval is:

o — o
M‘Za/zﬁ<x<ﬂ+za/2ﬁ

Since x = Mean + z * StDev
x2|P(x>x2)=1-a/2
X2 =+ 2,,*oAN

probability density

Confidence Interval of the Mean

Sampling mean distribution:

* Normal
* Mean =y, Stdev = TN
Y /]
X
P=1-a

_/

\

.

=

!
E
=19

uiz, o
al2 ’\/N
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Confidence Interval of the Mean

* This is just a way to express the
confidence interval in terms of
the population parameters and
Standard Normal quantile

(0] _ O
M_Za/zﬁ<x<ﬂ+za/2ﬁ

X, <X<X,
P(x<x)=0a/2
P(x<x,)=1-a/2

probability density

Sampling mean distribution:
* Normal o
* Mean = y, Stdev = Wi

Y /]
* P=1-a

\

P=a/2
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# In R,
# You can directly compute x1, x2

xl.n <- gnorm (p = 0.025, mean = .., sd = ..)

Il
o

x2.n <- gnorm (p .975, mean = .., sd = .))

# Or use z ),
z a2.n <- gnorm (p =1 - 0.025)

xl.n <- mu.n - z a2.n * sd.n / sqrt (N.n)
xl.n <- mu.n + z a2.n * sd.n / sqrt (N.n)

# Equivalent way to compute z,,, (symmetry)
z a2.n <- - gnorm (p = 0.025)

Introduction to R

Confidence Interval of the Mean
Unknown Population Parameters + Large Sample

* Known
— Sample mean: m
— Sample StDev: s
— Sample size (N): 230

S N
° Goal m_Za/2W<M<m+Za/2W

— Determine the population
mean confidence interval

* Strategy By extragt/ng sqmples
) and computing their m and s
— Swap x and pin the for W times,
standard normal formula M will fall in the confidence interval
— Assume s is a good point W * (1-a) times

estimate of o

Introduction to R




Confidence Interval of the Mean
Unknown Population Parameters + Small Sample

* For small samples (N < 30) derived from normally-
distributed populations, the sample stdev is not a good
estimate of the population stdev

* Instead of using the standard normal distribution, we
have to use the t-student distribution

* The t-student density function depends on the degree of
freedom = N —1; for N > 30 t-student is quasi-normal

—1(N - 1)a/2r<X<M+t(N l)a/zr

Introduction to R

# Confidence interval using the t-student

t a2.n<- gt (p=1 - 0.025, df = N.n - 1)
xl.n <-m.n - t a2.n * s.n / sqrt (N.n)
Xxl.n <-m.n + t a2.n * s.n / sqrt (N.n)

Introduction to R



Hypothesis Testing

e Given a sample (with known mean and stdev), we want
to test whether it may belong or not to a population
(with known mean)

* We can use the framework we have derived for
confidence interval, and reshape it as a test

— Application example:
Monsanto claims that a new crop variety has a higher yield

Compare the yield of a sample of Monsanto’s new variety
versus the historical yield average of the traditional variety and
test Monsanto’s claim

Introduction to R

Hypothesis Testing:
Null and Alternative Hypothesis

Monsanto claims that a new crop variety has a higher yield

Compare the yield of a sample of Monsanto’s new variety versus the
historical yield average of the traditional variety and test Monsanto’s
claim

Null Hypothesis (“status quo”):
the sample being tested could

* Test Statistic: Mean
have been drawn form the
— Distribution: t-student population being tested
Null Hypothesis Hy: i < g U mean yield of the
* Alternative Hypothesis Hy: u >y, new variety
U, mean yield of the
traditional variety
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Hypothesis Testing: p-value

* Set the confidence interval so that
s

’ VN ]

* p = probability of observing a
population sample as extreme or
more extreme than the one being
tested when drawing from the
population with mean p,

t-Student
m= U, + t(N -1)

T
©

— p >> 0: null hypothesis likely

— p ~ 0: null hypothesis not likely

How much do we have to “stretch” the confidence m
interval to “explain” the observed sample mean?

Introduction to R

Hypothesis Testing: p-value

* Null Hypothesis:
— statistical model where differences
are only due to random fluctuations (sampling)

* If we could always work on populations only,
we would not need inferential statistics

* P-value:
— Probability that the null hypothesis model
does not explain the data

- The differences observed are probably due
to some underlying phenomenon

Introduction to R




Hypothesis Testing: Error Types

* Depending on the p-value,
you can decide to reject or not the null hypothesis

H,: TRUE H,: FALSE
H, NOT REJECTED |OK Type-ll Error
(True Negative) |[(False Negative)
H, REJECTED Type-l Error OK
(False Positive) [ (True Positive)

— P-value threshold for rejection: @ (common values 0.05, 0.01)

— There has to be sufficient evidence to reject the null hypothesis
(in the criminal trial, the defendant is not guilty, unless proved guilty)

— Multiple testing issues

Introduction to R

Hypothesis Testing: Error Types

* Depending on the p-value,
you can decide to reject or not the null hypothesis

H,: TRUE H,: FALSE
H, NOT REJECTED | True Negative Type-ll Error
(P=1-a | H, TRUE) (P=8|H, FALSE)
H, REJECTED Type-l Error True Positive
(P=a|Hy TRUE) (P=1-8 | H, FALSE)

— Using the p-value for the decision
* P-value < a:reject H,
* P-value > a: do not reject H,

enables to control the Type-I| Error but not the Type-Il Error

Introduction to R




0.4

One-tail Test

* Null Hypothesis: p <,

0.3

probability density
0.2

* Alternative Hypothesis: p > p,

0.1

R: set input argument of the test

0.0

alternative = '"greater"

0.4

* Null Hypothesis: p >,

0.3

 Alternative Hypothesis: p <,

probability density
0.2

R: set input argument of the test

alternative = "less"

0.1

0.0

Mo=--- Mo  Ho*...
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Two-tail Test

0.4

* Null Hypothesis: u =y,
 Alternative Hypothesis: p # p,

0.3
1

R: set input argument of the test
alternative = "two.sided"

probability density
0.2
|

0.1

0.0
|
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Power Calculations

Power=1-f

* Assume H, is false

Set the tail of the test

Set a (the p-value decision threshold)

Set u (mean of the sample source population)

Set o for both distributions (or use the sample estimate s)
* Set N (sample size)

- The power is a function of all these factors
— It is common to plot the power as a function of p-p, or N

Introduction to R

Power Calculations
/:\ P =;1 -B
i
|

I

I

I

1 ere

| /

3. Calculate the area 5/
under the curve ; : I AT

(1-B) Ho H

1. Find the decision
value on x with
respect to p,,
given a

2. Find the
corresponding
value for n

probability density
1

S |

0.0

For small samples use t-Student Uy, + 2 u-2z o
0 a oo - T
instead of standard normal (z) \/N ¢ \/N
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Example with R calculations

* o (p-value threshold): 0.05

* Traditional crop variant, yield average: 2400

* Monsanto’s crop variant, projected population mean: 2425
* Standard deviation: 200

* Monsanto’s crop sample size: 50

# Input:
mu0.n <- 2400; mu.n <- 2450; s.n <- 200; N.n <- 50; a.n <- 0.05

# 1. find the value for p0

Xx a.n <- mu0.n + gnorm (1 - a.n) * s.n / sqrt (N.n)
# 2. find Zy

# X a.n =mu.n - z b.n * s.n / sqrt (N.n)

z b.n <- (mu.n - x_ a.n) * sqrt (N.n) / s.n

# 3. find power (= B-1)

# P (z<z(B)) =1-8
power.n <- pnorm (z_b.n) # 0.5489121

# for mu.n = 2500, power = 0.971

Introduction to R

Difference of the Mean:
Significance vs Absolute Magnitude

* As the absolute magnitude of the difference between
means increases, the power increases

* The power can also be increased by increasing the
sample size

* Be aware that the difference of the mean test we have
seen so far tests for significance of any difference, even
very small

- Don’t confuse significance with absolute magnitude!!!
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Difference of the Mean:
Significance vs Absolute Magnitude

* Example

— A new drug leads to a significant improvement in tumor size for
a cohort of 5000 patients

— But what’s the average tumor shrinkage? Is it clinically relevant?
— Statistically significant and clinically relevant are not the same

Introduction to R

One-sample t-Test (Mean Difference): R

* Goal: does the sample belong to a population with mean larger/
smaller/different than a reference population with mean p,?

* Input
— Reference population mean (i)

— Sample values
* Assumptions

— Independence
* The sample has been randomly drawn,
* There is no dependence between sample units
— Distribution
* Small samples (N < 30): population normally distributed
* Large samples (N > 30): none

Introduction to R




One-sample t-Test (Mean Difference): R

* Example (Monsanto’s new variety)

— Reference yield mean: 2400
— Sample yields: 2531, 2659, 2487, 2398, 2771
— Alternative: Monsanto larger than reference

t.test (x = ¢ (2531, 2659, 2487, 2398, 2771),
mu = 2400,
alternative = '"greater")

t = 2.5756, df = 4, p-value = 0.03081

95 percent confidence interval:
2429.151 Inf

output class: list, with slots:
.test (..)$p.value; t.test (..)$statistic

Introduction to R

t F*= = Ik

Two-sample t-Test (Mean Difference)

* Goal: do the samples belong to populations with mean larger/
smaller/different?

* Input
— Sample #1 values

— Sample #2 values
* Assumptions

— Independence
* The samples has been randomly drawn,
* There is no dependence between sample units
* There is no dependence between samples

— Distribution
* Small samples (N < 30): population normally distributed
* Large samples (N > 30): none

Introduction to R




Two-sample t-Test (Mean Difference): R

* Example: Monsanto compares two new varieties
— Variety #1: 2405, 2378, 2254, 2471, 2390
— Variety #2: 2531, 2659, 2487, 2398, 2771
— Alternative: #1 different than #2

t.test (x = ¢ (2405, 2378, 2254, 2471, 2390),
y = ¢ (2531, 2659, 2487, 2398, 2771),
alternative = "two.sided")

#$ t = -2.5428, df = 6.129, p-value = 0.04311
# 95 percent confidence interval:
# -371.123009 -8.076991

— The confidence interval refers to the difference of the means

Introduction to R

Two-sample Paired t-Test

* Use instead of the standard two-sample t-test whenever
sample units are highly correlated
— E.g. patients before and after treatment

t.test (x .y
vy = ..,
alternative = ..,
paired = T)

Introduction to R



Non-parametric Test (Mean Difference)

* When the sample is small and the normality distribution
assumption is not met,

Use the Wilcoxon test (a.k.a. Mann-Whitney test)
— one-sample
— Two-samples

wilcox.test (..)

— The test works on the ranks of the values
— The input and output is the same as the t-test

Introduction to R

Tests Based on Permutations

* In the previous tests we have always tested the
difference of means

— between populations,
but using limited knowledge from samples

* Thanks to the central limit theorem, we knew how the
sampling mean is supposed to be distributed
— normal or t-student, depending on sample size

* What if we are, but we don’t know how the sampling
distribution?

Introduction to R




Tests Based on Permutations

* A common approach consists of permuting the class
labels

e and computing the count ratio of

— how many times the difference observed for real data is
also observed for permuted data

— the number of permutations
* The resulting index is called empirical p-value

Introduction to R

Test Summary Tables

TEST AND DISTRIBUTION

Large Sample

Small Sample

Small Sample

(N = 30) Population Population not
normally distr. normally distr.
z-Test t-Test Wilcoxon test

(Standard Normal)

(t-Student, df = N-1)

ALTERNATIVE HYPOTHESIS

One-Tail One-Tail Two-tail
Greater Smaller
One-sample M > Ho M < Ho M # Ho
Two-samples M1 > M M1 <M My # My
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Test Summary Tables

TYPE OF TWO-SMAPLE TEST
(T-TEST OR WILCOXON TEST ALIKE)

Sample units: Sample units:
independent dependent
Not Paired Paired

Introduction to R

Other Tests

Proportion Test (Bernoullian Probability)

Fisher’s Exact Test (2x2 contingency tables)

X2 Test (2x2 or larger contingency tables)

Kolmogorov-Smirnov (distribution inequality)

Introduction to R



Multiple Testing

* Previously, we have always focused on single tests

* If we test many independent samples from the same
population, some of them will lead to the null hypothesis
rejection

* However, even if the null hypothesis is TRUE,
we do expect a rejection rate > 0:

M*a, where M is the number of tests performed

e How to account for this?

Introduction to R

Multiple Testing:
Bonferroni Correction

* The Bonferroni correction is very conservative:

after correction, the probability of finding at least one
false positive at p-value < a will be exactly a

* p’=MIN(p* M, 1)

* This correction is usually overly conservative for most
genomic applications (e.g. gene expression microarrays)

* |tis sometimes recommended for biomarkers and risk
factors

Introduction to R




Multiple Testing:
Benjamini-Hochberg’s FDR
* The Benjamini-Hochberg FDR transforms the p-value into
a g-value
* Let’s consider the g-value q,,

that is the false positive rate when considering all tests
with g < g,

* q;=MIN (p;*M/i, 1)

followed by monotonicity correction (i.e. values have to be
monotonically increasing)

Introduction to R

Multiple Testing:
Benjamini-Hochberg’s FDR

* For each p-value p,
— Expected number of false positives if the null hypothesis is true:
P; *M (a = pi)
— Observed number of positives:
i (Py) s Py < Q)
— Ratio between expected false positives and observed positives:
p,*M/i

Introduction to R



Multiple Testing in R

* Input: vector of p-values

# Bonferroni

p-.-adjust (pvalue.nv, method = "Bonferroni")

# Benjamini-Hochberg FDR
p-.-adjust (pvalue.nv, method = "BH")

Introduction to R

Application to Microarray Analysis

* For the typical two-class design
(e.g. disease vs. control, treated vs. untreated)
we can test every gene using a two-sample t-test
(not-paired or paired)
— Each biological replicate corresponds to a sample unit

* Since the number of replicates is typically small,
the stdev estimate is usually unreliable

Introduction to R



Application to Microarray Analysis

* To address the stdev estimation problem,
several moderated t statistics have been introduced
— Recommended: limma package

e P-values are usually corrected using
Benjamini-Hochberg FDR

Introduction to R

We are on a Coffee Break &
Networking Session
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