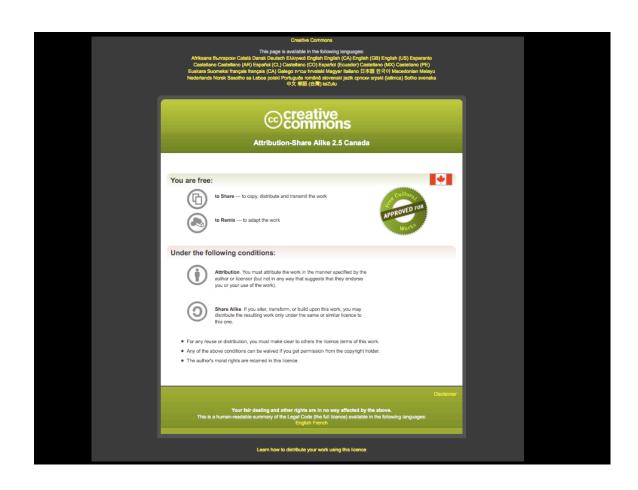
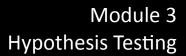


Canadian Bioinformatics Workshops

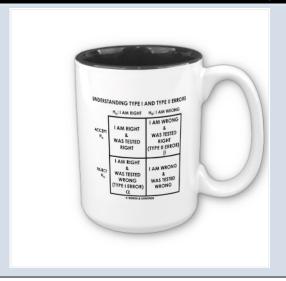
www.bioinformatics.ca





Daniele Merico

Exploratory Data Analysis and Essential Statistics using R January 24-25, 2011



Post-doctoral Fellow Donnelly Centre University of Toronto

http://baderlab.org/DanieleMerico

Outline

- 1. Discrete and continuous variables
- 2. Analytical variable distributions
- 3. Populations and samples, sampling distribution of the mean
- 4. Confidence interval of the mean
- 5. Inferential statistics: null hypothesis and alternative hypothesis, p-value, type-I and type-II errors
- 6. Power calculations
- 7. One-sample and two-sample t-test
- 8. Two-sample paired t-test
- 9. Permutation-based tests
- 10. Multiple testing correction
- 11. Applications to microarray data analysis

Discrete and Continuous Variables

Discrete

Values can be counted, i.e. associate an integer index

- e.g. Number of petals on the daisies in the gardens of Ottawa
 - Daisies (in the gardens of Ottawa): population units
 - Number of petals: discrete variable (numerical)

Car brands in Sudbury

- · Cars (in Sudbury): population units
- Car brand: discrete variable (categorical)

Introduction to R bioinformatics.a

Discrete and Continuous Variables

Continuous

Any real value in a range (continuous)

- e.g. Blood pressure of overweight Canadians
 - Overweight Canadians: population units
 - Blood pressure: continuous variable (numerical)

Liters of wastewater produced by each Toronto inhabitant in 2010

- · Toronto inhabitants: population units
- Liters of wastewater (2010): continuous variable (numerical)

Analytical Variable Distributions

• Empirical distributions

- We measure all the members of a *population* for some property
- We end up having a finite number of values
- Their distribution can be summarized using the techniques described in the previous chapter (histogram, ...)
- The probability of observing a value in a given range is just the empirically observed frequency

Analytical Distributions

- What if we can define analytically the distribution?
- i.e. use a mathematical formula P (x) = f (x)

Introduction to R bioinformatics.a

Discrete Analytical Distributions

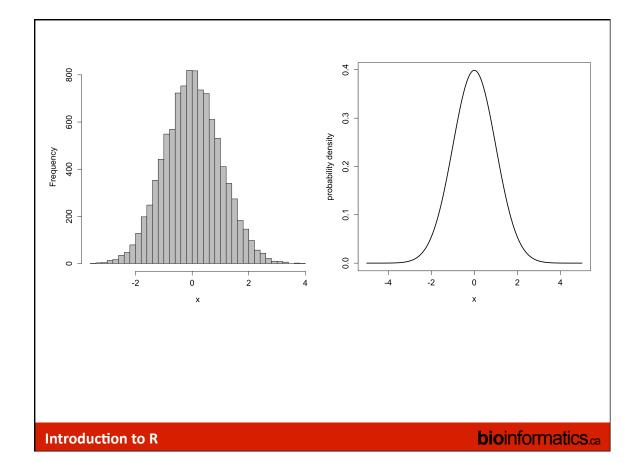
- Cast a (fair) 6-face dice, observe the number on the top face
 - Population units: all the possible dice-casting events for that (fair) 6-face dice
 - Discrete variable: number on the top face of the dice
- Probability distribution

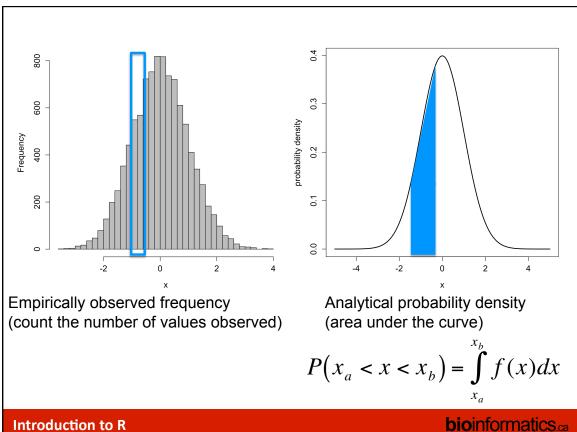
$$P(x) = 1/6$$
, $x \in \{1, 2, 3, 4, 5, 6\}$
 $P(1) = 1/6$ $P(4) = 1/6$
 $P(2) = 1/6$ $P(3) = 1/6$
 $P(6) = 1/6$

- This is a uniform discrete distribution
 - It's mathematically simple,
 but not all discrete analytical distributions are as simple

Continuous Analytical Distributions

- Since the variable can have any possible value in a range, the probability of a single value in not finite
- We need calculus to correctly handle the probability distribution, which is called density function





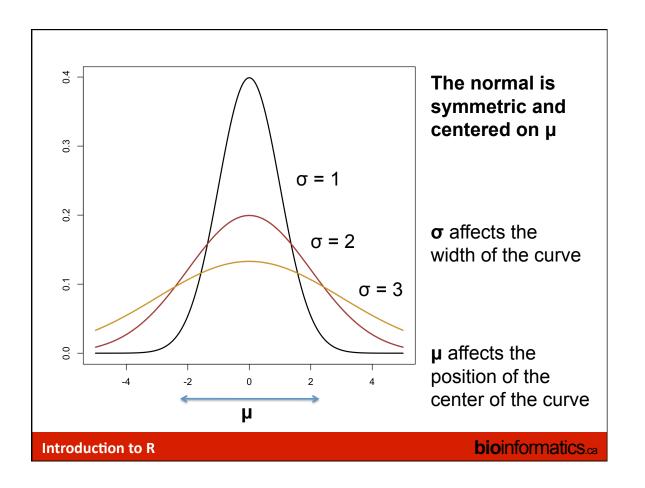
Introduction to R

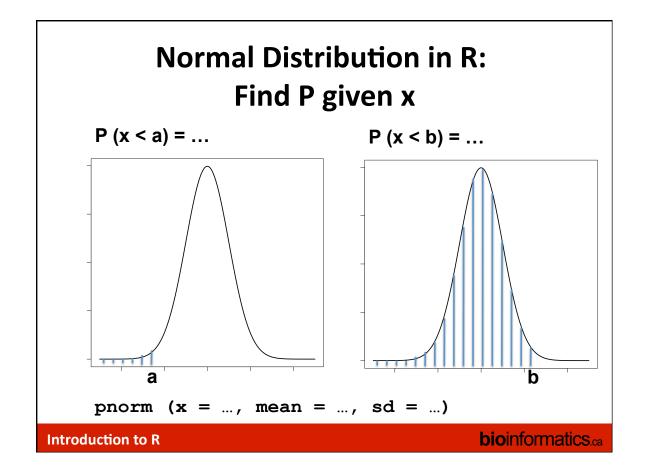
Normal Distribution

- The Normal is a very important distribution
 - Often found when measuring a physical property multiple times (variability due to random instrumental errors)
 - Often found for anthropometric indexes in human populations
 - The sampling mean follows the normal distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 Parameters:
- μ = Mean (x)
- σ = StDev (x)

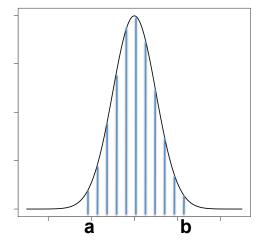
bioinformatics.ca Introduction to R





Normal Distribution in R: Find P given x

$$P (a < x < b) = P (x < b) - P (x < a)$$



Assignment: verify that for any mean and standard deviation, the probability of x falling within $\mu \pm 2 \sigma$ is about 95%

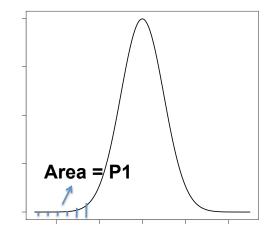
pnorm (x = xa.n, ...) - pnorm (x = xb.n, ...)

Introduction to R

bioinformatics.ca

Normal Distribution in R: Find x given P

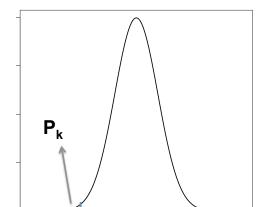
$$P(x < ...) = P1$$



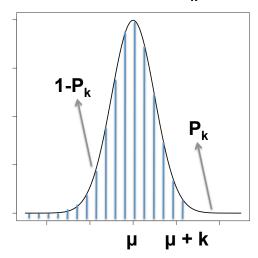
qnorm (p = ..., mean = ..., sd = ...)

Normal Distribution: The Effect of Symmetry

$$P(x < \mu - k) = P_k$$



$$P(x < \mu + k) = 1 - P_k$$



Assignment: test this property using qnorm ()

Introduction to R

μ - k

bioinformatics.ca

The Standard Normal and the z-score

- The Standard Normal distribution has $\mu = 0$, $\sigma = 1$
- The z-score is used to transform normally distributed variables into a standard normal
 - Z follows the standard normal

$$z = \frac{x - \mu}{\sigma}$$

- The z-score is often interpreted as the number of standard deviations from the mean
- The reverse formula is also important $x = \mu + z \cdot \sigma$

Normal Distribution: Find x given P using the Standard

P (x < x1) = P1

P1

P1

P1

x1
$$\mu$$

x1 = μ + z1* σ

bioinformatics.ca

• Test this relation: $\mathbf{x1} = \mathbf{\mu} + \mathbf{z1}^* \boldsymbol{\sigma}$ using the R commands you have learnt

Introduction to R

```
# Normal
x1.n <- qnorm (p = ..., mean = ..., sd = ...)
# Standard Normal
z1.n <- qnorm (p = ...)</pre>
```

QQplot

- The qqplot of an observed distribution versus the normal can be used to evaluate how close the observed distribution is to the normal
 - The point should be lying on a line

```
# quasi-normal
                                                      # not normal
    x.nv \leftarrow c (-1.8, -1, -0.75,
                                                      x.nv <- 2 ^ (1: 12)
              -0.5, -0.3, 0, 0.3,
                                                      qqnorm (x.nv, pch = 19)
              0.45, 0.8, 1.1, 1.6)
                                                      qqline (x.nv)
     qqnorm (x.nv, pch = 19)
    qqline (x.nv)
  1.0
  0.5
                                                 Sample Quantiles
 0.0
 -0.5
            -1.0
                  -0.5
                        0.0
                                   1.0
                                         1.5
                                                         -1.5
                                                               -1.0
                                                                          0.0
                                                                                     1.0
                   Theoretical Quantiles
                                                                     Theoretical Quantiles
                                                                            bioinformatics.ca
Introduction to R
```

Population and Sample

Population

set of entities (individuals, objects, events)

mean: μ stdev: σ

Sample

subset of a population

mean: **m** stdev: **s**

Introduction to R

bioinformatics.ca

Correction for Sample Stdev

• Population
$$\sigma = \sqrt{\frac{1}{N} \sum_{N}^{i=1} (M(x) - x_i)^2}$$

• Sample
$$s = \sqrt{\frac{1}{N-1} \sum_{N=1}^{i-1} (M(x) - x_i)^2}$$

The R function sd () uses by default the second definition

Populations, Samples, Inferences

- Measuring a property for all the units of a population is often not practical
- → Only the units in a sub-set (i.e. sample) are measured
- If we can only measure sample,
 can we make inferences that hold at the population level?
- This is the object of Statistical Inference

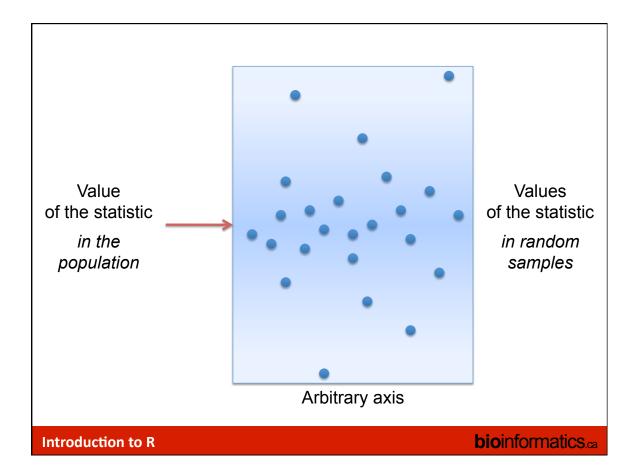
Introduction to R bioinformatics.a

Sampling Variable

- Generate many random samples of a population (sample size: N)
- For each sample, measure a property → variable
- For each sample, compute a statistic summarizing the variable (e.g. mean)
- → New variable (sampling variable)
 - New population units: samples of the original population
- How is this useful..?!
 - The statistic has only one value in the population (e.g. mean)
 - Different random samples will have values which cluster around the population statistic
 - → Useful to study this to guide statistical inference

Introduction to R bioinformatics.

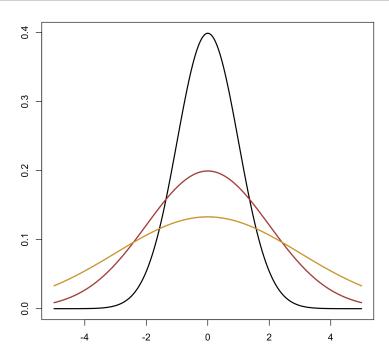
□ bioinformatics.
□



Sampling Mean

- **Sampling mean** of a variable x: \overline{x} mean of variable x for each random sample (sample size: N)
 - Mean of the sampling mean
 - $\mu(\bar{x}) = \mu(x)$ $\sigma(\bar{x}) = \frac{\sigma(x)}{\sqrt{N}}$ - Stdev of the sampling mean
 - What happens if sample size ≈ population size?

Introduction to R



As N increases, the sample means of the statistic become closer to the population value of the statistic

Introduction to R

Introduction to R

bioinformatics.ca

Sampling Mean Distribution

- If the distribution of x is normal, the distribution of \overline{x} is normal as well
- Even if the distribution of x is not normal, when sample size N is sufficiently large the distribution of x̄ is normal
 (Central Limit Theorem)
- For practical purposes, sufficiently large corresponds to N > 30

Sampling Mean Distribution

- How is this useful?
- We have a model defining a quantitative relation between the population and sample mean
- Is the sample mean probable or improbable under the population sampling mean distribution?

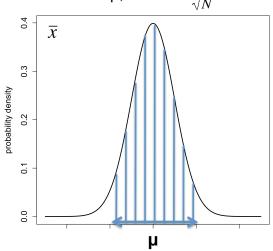
Introduction to R bioinformatics.a

Confidence Interval of the Mean

- Known
 - Population parameters: μ , σ
 - Sample size (N): ≥ 30
- Goal
 - Determine the range of possible sample mean values for this population
- Strategy
 - Use the sampling mean distribution (normal)

Sampling mean distribution:

- Normal
- Mean = μ , Stdev = $\frac{\sigma}{\sqrt{N}}$



Introduction to R

Confidence Interval of the Mean

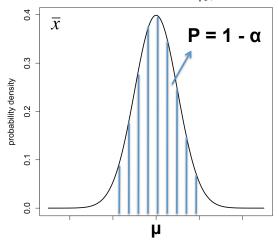
- Solution
 - 1. Set the probability α of \overline{x} falling *outside* the interval (usually $\alpha = 0.05$)

This is the confidence associated to the interval:

- The probability of x being outside the interval is α
- The probability of x being within the interval is 1 - α

Sampling mean distribution:

- Normal
- Mean = μ , Stdev = $\frac{\sigma}{\sqrt{N}}$



Introduction to R

bioinformatics.ca

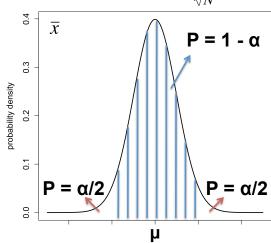
Confidence Interval of the Mean

- Solution
 - 1. Set the probability α of \bar{x} falling *outside* the interval (usually $\alpha = 0.05$)
 - 2. Find $z_{\alpha/2}$: P (z < $z_{\alpha/2}$) = 1 $\alpha/2$ (standard normal)

We use the Standard Normal for reasons that will be clearer later. However in R we can use any normal distribution to compute x given the probability

Sampling mean distribution:

- Normal
- Mean = μ , Stdev = $\frac{\sigma}{\sqrt{N}}$



Introduction to R

Confidence Interval of the Mean

- Solution
 - 1. Set the probability α of \overline{x} falling *outside* the interval (usually $\alpha = 0.05$)
 - 2. Find $z_{\alpha/2}$: P (z < $z_{\alpha/2}$) = 1 $\alpha/2$ (standard normal)
 - 3. The Confidence Interval is:

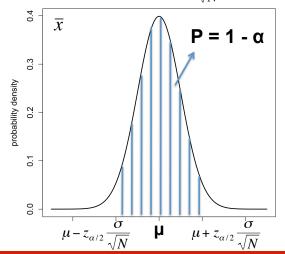
$$\mu - z_{\alpha/2} \frac{\sigma}{\sqrt{N}} < \overline{x} < \mu + z_{\alpha/2} \frac{\sigma}{\sqrt{N}}$$

Since
$$x = Mean + z * StDev$$

 $x2 \mid P(x > x2) = 1 - \alpha/2$
 $x2 = \mu + z_{\alpha/2} * \sigma / \sqrt{N}$

Sampling mean distribution:

- Normal
- Mean = μ , Stdev = $\frac{\sigma}{\sqrt{N}}$



Introduction to R

bioinformatics.ca

Confidence Interval of the Mean

 This is just a way to express the confidence interval in terms of the population parameters and Standard Normal quantile

$$\mu - z_{\alpha/2} \frac{\sigma}{\sqrt{N}} < \overline{x} < \mu + z_{\alpha/2} \frac{\sigma}{\sqrt{N}}$$

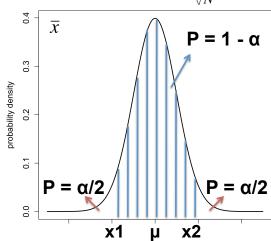
$$\overline{x}_1 < \overline{x} < \overline{x}_2$$

$$P(\overline{x} < \overline{x}_1) = \alpha/2$$

$$P(\overline{x} < \overline{x}_2) = 1 - \alpha/2$$

Sampling mean distribution:

- Normal
- Mean = μ , Stdev = $\frac{\sigma}{\sqrt{N}}$



```
# In R,
# You can directly compute x1, x2

x1.n <- qnorm (p = 0.025, mean = ..., sd = ...)
x2.n <- qnorm (p = 0.975, mean = ..., sd = ...)

# Or use z<sub>\alpha/2</sub>

z_a2.n <- qnorm (p = 1 - 0.025)
x1.n <- mu.n - z_a2.n * sd.n / sqrt (N.n)
x1.n <- mu.n + z_a2.n * sd.n / sqrt (N.n)
# Equivalent way to compute z<sub>\alpha/2</sub> (symmetry)
z_a2.n <- - qnorm (p = 0.025)</pre>
```

Introduction to R bioinformatics.a

Confidence Interval of the Mean Unknown Population Parameters + Large Sample

- Known
 - Sample mean: m
 - Sample StDev: s
 - Sample size (N): ≥ 30
- Goal
 - Determine the population mean confidence interval
- Strategy
 - Swap x and μ in the standard normal formula
 - Assume s is a good point estimate of σ

$$m - z_{\alpha/2} \frac{s}{\sqrt{N}} < \mu < m + z_{\alpha/2} \frac{s}{\sqrt{N}}$$

By extracting samples and computing their m and s for W times,
M will fall in the confidence interval W * (1-α) times

Confidence Interval of the Mean Unknown Population Parameters + Small Sample

- For small samples (N < 30) derived from normallydistributed populations, the sample stdev is not a good estimate of the population stdev
- Instead of using the standard normal distribution, we have to use the t-student distribution
- The t-student density function depends on the degree of freedom = N - 1; for N > 30 t-student is quasi-normal

$$\mu - t(N-1)_{\alpha/2} \frac{s}{\sqrt{N}} < \overline{x} < \mu + t(N-1)_{\alpha/2} \frac{s}{\sqrt{N}}$$

Introduction to R bioinformatics.a

Confidence interval using the t-student

Hypothesis Testing

- Given a sample (with known mean and stdev), we want to test whether it may belong or not to a population (with known mean)
- We can use the framework we have derived for confidence interval, and reshape it as a *test*
 - Application example:
 Monsanto claims that a new crop variety has a higher yield
 Compare the yield of a sample of Monsanto's new variety
 versus the historical yield average of the traditional variety and test Monsanto's claim

Introduction to R bioinformatics.a

Hypothesis Testing: Null and Alternative Hypothesis

Monsanto claims that a new crop variety has a higher yield Compare the yield of a sample of Monsanto's new variety versus the historical yield average of the traditional variety and test Monsanto's claim

Test Statistic: Mean

Distribution: t-student

• Null Hypothesis H_0 : $\mu \le \mu_0$

• Alternative Hypothesis H_1 : $\mu > \mu_0$

Null Hypothesis ("status quo"): the sample being tested could have been drawn form the population being tested

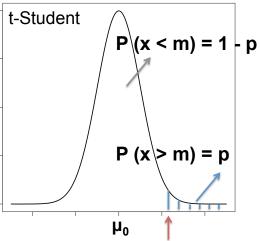
> μ: mean yield of the new variety
> μ₀: mean yield of the traditional variety

Hypothesis Testing: p-value

Set the confidence interval so that.

$$m = \mu_0 + t(N-1)_p \frac{s}{\sqrt{N}}$$

- p = probability of observing a population sample as extreme or more extreme than the one being tested when drawing from the population with mean μ₀
 - p >> 0: null hypothesis likely
 - p \sim 0: null hypothesis not likely



How much do we have to "stretch" the confidence interval to "explain" the observed sample mean?

Introduction to R

bioinformatics.ca

Hypothesis Testing: p-value

- Null Hypothesis:
 - statistical model where differences are only due to random fluctuations (sampling)
 - If we could always work on populations only, we would not need inferential statistics
- P-value:
 - Probability that the null hypothesis model does not explain the data
 - → The differences observed are probably due to some underlying phenomenon

Hypothesis Testing: Error Types

 Depending on the p-value, you can decide to reject or not the null hypothesis

	H₀: TRUE	H ₀ : FALSE
H ₀ NOT REJECTED	OK (True Negative)	Type-II Error (False Negative)
H₀ REJECTED	Type-I Error (False Positive)	OK (True Positive)

- P-value threshold for rejection: α (common values 0.05, 0.01)
- There has to be sufficient evidence to reject the null hypothesis (in the criminal trial, the defendant is not guilty, unless proved guilty)
- Multiple testing issues

Introduction to R bioinformatics.

Hypothesis Testing: Error Types

 Depending on the p-value, you can decide to reject or not the null hypothesis

	H ₀ : TRUE	H ₀ : FALSE
	True Negative $(P = 1-\alpha \mid H_0 \text{ TRUE})$	Type-II Error (P = β H ₀ FALSE)
H₀ REJECTED	Type-I Error (P = α H ₀ TRUE)	True Positive (P = $1-\beta$ H_0 FALSE)

- Using the p-value for the decision
 - P-value < α: reject H₀
 - P-value $\geq \alpha$: do not reject H₀

enables to control the Type-I Error but not the Type-II Error

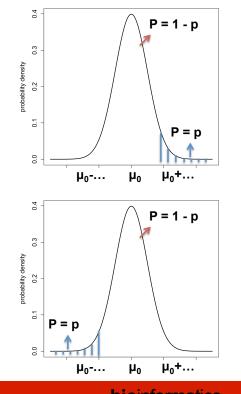
One-tail Test

- Null Hypothesis: μ ≤ μ₀
- Alternative Hypothesis: $\mu > \mu_0$

R: set input argument of the test alternative = "greater"

- Null Hypothesis: $\mu \ge \mu_0$
- Alternative Hypothesis: $\mu < \mu_0$

R: set input argument of the test alternative = "less"



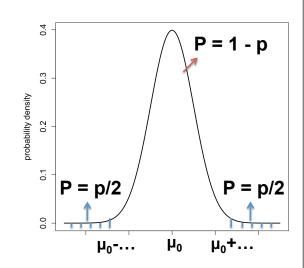
Introduction to R

bioinformatics.ca

Two-tail Test

- Null Hypothesis: $\mu = \mu_0$
- Alternative Hypothesis: $\mu \neq \mu_0$

R: set input argument of the test alternative = "two.sided"



Power Calculations

Power = $1 - \beta$

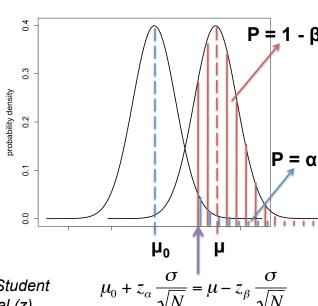
- Assume H₀ is false
- Set the tail of the test
- Set α (the p-value decision threshold)
- Set μ (mean of the sample source population)
- Set σ for both distributions (or use the sample estimate s)
- Set N (sample size)
- → The power is a function of all these factors
 - It is common to plot the power as a function of μ - μ_0 or N

Introduction to R bioinformatics.a

Power Calculations

- 1. Find the decision value on x with respect to μ_0 , given α
- Find the corresponding value for μ
- Calculate the area under the curve (1-β)

For small samples use t-Student instead of standard normal (z)



```
Example with R calculations
```

- α (p-value threshold): 0.05
- Traditional crop variant, yield average: 2400
- Monsanto's crop variant, projected population mean: 2425
- Standard deviation: 200
- Monsanto's crop sample size: 50

```
# Input:
mu0.n <- 2400; mu.n <- 2450; s.n <- 200; N.n <- 50; a.n <- 0.05
# 1. find the value for μ0
x_a.n <- mu0.n + qnorm (1 - a.n) * s.n / sqrt (N.n)
# 2. find z<sub>β</sub>
# x_a.n = mu.n - z_b.n * s.n / sqrt (N.n)
z_b.n <- (mu.n - x_a.n) * sqrt (N.n) / s.n
# 3. find power (= β-1)
# P (z < z(β)) = 1 - β
power.n <- pnorm (z_b.n) # 0.5489121
# for mu.n = 2500, power = 0.971</pre>
```

Introduction to R

bioinformatics.ca

Difference of the Mean: Significance vs Absolute Magnitude

- As the absolute magnitude of the difference between means increases, the power increases
- The power can also be increased by increasing the sample size
- Be aware that the difference of the mean test we have seen so far tests for significance of any difference, even very small
- → Don't confuse significance with absolute magnitude!!!

Difference of the Mean: Significance vs Absolute Magnitude

- Example
 - A new drug leads to a significant improvement in tumor size for a cohort of 5000 patients
 - But what's the average tumor shrinkage? Is it clinically relevant?
 - Statistically significant and clinically relevant are not the same

Introduction to R bioinformatics.a

One-sample t-Test (Mean Difference): R

- <u>Goal</u>: does the sample belong to a population with mean larger/smaller/different than a reference population with mean μ_0 ?
- Input
 - $-\,$ Reference population mean ($\mu_0)$
 - Sample values
- Assumptions
 - Independence
 - The sample has been randomly drawn,
 - There is no dependence between sample units
 - Distribution
 - Small samples (N < 30): population normally distributed
 - Large samples (N ≥ 30): none

One-sample t-Test (Mean Difference): R

- Example (Monsanto's new variety)
 - Reference yield mean: 2400
 - Sample yields: 2531, 2659, 2487, 2398, 2771
 - Alternative: Monsanto larger than reference

Introduction to R

bioinformatics.ca

Two-sample t-Test (Mean Difference)

- Goal: do the samples belong to populations with mean larger/ smaller/different?
- Input
 - Sample #1 values
 - Sample #2 values
- Assumptions
 - Independence
 - The samples has been randomly drawn,
 - There is no dependence between sample units
 - There is no dependence between samples
 - Distribution
 - Small samples (N < 30): population normally distributed
 - Large samples (N ≥ 30): none

Two-sample t-Test (Mean Difference): R

- Example: Monsanto compares two new varieties
 - Variety #1: 2405, 2378, 2254, 2471, 2390
 - Variety #2: 2531, 2659, 2487, 2398, 2771
 - Alternative: #1 different than #2

The confidence interval refers to the difference of the means

Introduction to R

bioinformatics.ca

Two-sample Paired t-Test

- Use instead of the standard two-sample t-test whenever sample units are highly correlated
 - E.g. patients before and after treatment

```
t.test (x = ...,
    y = ...,
    alternative = ...,
    paired = T)
```

Non-parametric Test (Mean Difference)

• When the sample is small and the normality distribution assumption is not met,

Use the Wilcoxon test (a.k.a. Mann-Whitney test)

- one-sample
- Two-samples

wilcox.test (...)

- The test works on the *ranks* of the values
- The input and output is the same as the t-test

Introduction to R

bioinformatics.ca

Tests Based on Permutations

- In the previous tests we have always tested the difference of means
 - between populations,
 but using limited knowledge from samples
- Thanks to the central limit theorem, we knew how the sampling mean is supposed to be distributed
 - normal or t-student, depending on sample size
- What if we are, but we don't know how the sampling distribution?

Tests Based on Permutations

- A common approach consists of permuting the class labels
- and computing the count ratio of
 - how many times the difference observed for real data is also observed for permuted data
 - the number of permutations
- The resulting index is called **empirical p-value**

Introduction to R bioinformatics.ca

Test Summary Tables

TEST AND DISTRIBUTION

Large Sample (N ≥ 30)	Small Sample Population normally distr.	Small Sample Population not normally distr.	
z-Test (Standard Normal)	t-Test (t-Student, df = N-1)	Wilcoxon test	

ALTERNATIVE HYPOTHESIS

	One-Tail Greater	One-Tail Smaller	Two-tail
One-sample	$\mu > \mu_0$	μ < μ ₀	$\mu \neq \mu_0$
Two-samples	$\mu_1 > \mu_2$	$\mu_1 < \mu_2$	$\mu_1 \neq \mu_2$

Test Summary Tables

TYPE OF TWO-SMAPLE TEST

(T-TEST OR WILCOXON TEST ALIKE)

Sample units:	Sample units:
independent	dependent
Not Paired	Paired

Introduction to R bioinformatics.ca

Other Tests

- Proportion Test (Bernoullian Probability)
- Fisher's Exact Test (2x2 contingency tables)
- X² Test (2x2 or larger contingency tables)
- Kolmogorov-Smirnov (distribution inequality)

• ..

Multiple Testing

- Previously, we have always focused on single tests
- If we test many independent samples from the same population, some of them will lead to the null hypothesis rejection
- However, even if the null hypothesis is TRUE, we do expect a rejection rate > 0:
 M*α, where M is the number of tests performed
- How to account for this?

Introduction to R bioinformatics.a

Multiple Testing: Bonferroni Correction

- The Bonferroni correction is very conservative:
 after correction, the probability of finding at least one
 false positive at p-value ≤ α will be exactly α
- p' = MIN (p * M, 1)
- This correction is usually overly conservative for most genomic applications (e.g. gene expression microarrays)
- It is sometimes recommended for biomarkers and risk factors

Multiple Testing: Benjamini-Hochberg's FDR

- The Benjamini-Hochberg FDR transforms the p-value into a q-value
- Let's consider the q-value q_i , that is the false positive rate when considering all tests with $q \le q_i$
- q_i = MIN (p_i * M / i, 1)
 followed by monotonicity correction (i.e. values have to be monotonically increasing)

Introduction to R bioinformatics.a

Multiple Testing: Benjamini-Hochberg's FDR

- For each p-value p_i
 - Expected number of false positives if the null hypothesis is true: $p_i * M \quad (\alpha = p_i)$
 - Observed number of positives:

i
$$(p_1, ..., p_i \le \alpha)$$

– Ratio between expected false positives and observed positives: $p_i * M / i$

Multiple Testing in R

Input: vector of p-values

```
# Bonferroni
p.adjust (pvalue.nv, method = "Bonferroni")
# Benjamini-Hochberg FDR
p.adjust (pvalue.nv, method = "BH")
```

Introduction to R bioinformatics.

□ bioinformatics.
□

Application to Microarray Analysis

- For the typical two-class design
 (e.g. disease vs. control, treated vs. untreated)
 we can test every gene using a two-sample t-test
 (not-paired or paired)
 - Each biological replicate corresponds to a sample unit
- Since the number of replicates is typically small, the stdev estimate is usually unreliable

Application to Microarray Analysis

- To address the stdev estimation problem, several moderated t statistics have been introduced
 - Recommended: *limma* package
- P-values are usually corrected using Benjamini-Hochberg FDR

Introduction to R bioinformatics.

□ bioinformatics □ bi

We are on a Coffee Break & Networking Session

Introduction to R bioinformatics.

□ bioinformatics.
□