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Supplementary Notes
1. Feature encoding
We used the same PDZ domain multiple sequence alignment as published by Chen et al. since we want to compare our method to Chen’s method using the same encoding (e.g. using the same 16 binding sites). This alignment represents the conserved part of the domain containing all conserved secondary structure elements and the canonical binding site. The original PDZ sequences were obtained from the SMART database. We used a 3D protein structure (PDB ID: 2PDZ) including the a1syn-PDZ domain and chose the position (position 22 according to the original alignment of the sequence from the SMART database) as the start of the first secondary structure element (first beta strand) of the PDZ domain as the beginning of the alignment. We choose amino acid (AA) position 139 as the final position of the alignment (resulting in an 118AA long alignment) because almost all the remaining C terminal positions of available domain sequences have >98% gaps per column, that is, only one or two PDZ domains have amino acid in those positions.

2. Position Weight Matrix-based Prediction

A position weight matrix (PWM), or position-specific scoring matrix (PSSM), is a matrix of scores modeling a sequence pattern that can be used to score a protein sequence of fixed length for a match to that pattern. Briefly, the element PWMi,j contains the percentage of amino acid residue j at position i in a set of aligned peptides. Conventionally, the values in a PWM can be computed as log-likelihood values log(PWMij/Pi), where Pi is the background probability of amino acid i. A pseudocount of √n, the square root of the total number of the training sequences, was chosen to provide non-zero estimates for all probabilities. Given a new peptide, the log-likelihood ratio can be calculated as the sum of the values of the log-odds matrix corresponding to each amino acid in each position on the peptide sequence.
3. Experimental Methods (In Solution Binding) 
Binding constants for the human Scribble PDZ domain were determined using a fluorescence polarization (FP) binding assay. Briefly, the third PDZ domain of human Scribble was expressed as GST fusion proteins using the pETM30 plasmid, purified by GSH affinity chromatography in Purification buffer (PB; 50 mM Bicine pH 8.25, 200 mM NaCl, 0.5 mM EDTA) and eluted with 10 mM GSH (Sigma). Proteins were further purified on an S75 gel filtration column using an AKTA FPLC then concentrated to approximately 60-100 mM using Centricon concentrators (Millipore). Proteins were subsequently serially diluted and 25 ml of each dilution was aliquoted in duplicate to a 384 black fluorescent plate (Corning). Fluorescein labeled human peptides were added to each of these wells at a dilution that provided a fluorescent intensity matching a known peptide. 57 separate peptide-PDZ domain experiments were performed. The fluorescence polarization signal was subsequently measured using an Envision Multi-Label Plate reader (Perkin-Elmer). Binding constants (KD) were calculated using non-linear regression with a one-site binding equation using Graph-Pad Prism software (v3.0).

4. Physicochemical Analysis
We have now analyzed the level at which different physicochemical factors modulate the binding strength. We use the “11-factor” amino acid encoding in (Liu, et al., 2006) to study the physicochemical factors modulating the binding strength of PDZ domain-peptide interactions. These 11 physicochemical factors are: steric parameter, number hydrogen bond donors, hydrophobicity scale, hydrophilicity scale, average accessible surface area, van der Waals parameter R0 (relating to amino acid volume), van der Waals parameter epsilon (relating to number of heavy atoms in a side chain), free energy of solution in water, average side chain orientation angle, polarity and isoelectric point.

To investigate the physicochemical factors that modulate the binding strength of PDZ domain-peptide interactions, we first assessed how well each of the 11 factors can be used individually for quantitative prediction of PDZ domain-peptide interactions using SemiSVR. PDZ domain-peptide interaction data was encoded with each physicochemical factor individually resulting in 11 versions of the same training data. We then constructed a SemiSVR model for each version, and assessed regression performance using leave-one-PDZ-domain-out cross-validation described in the main text. We found that isoelectric point, hydrophilicity scale, polarity, average accessible surface area, van der Waals parameter epsilon and steric parameter are most important in decreasing order, suggesting they are the physicochemical factors that may be modulating the binding strength of PDZ domain-peptide interactions (See Fig. S6). While this is quite interesting, the binding pocket of the PDZ domain is complex (composed of polar, hydrophobic and ionic regions and multiple hydrogen bonds) and we felt it is difficult to relate these properties defined over the entire site to specific structural features without additional structural modeling work. We are currently extending our PDZ interaction methods to consider structural information of the PDZ domain, which we will describe in a future publication.
However, to gain coarse-grained insight on how these physicochemical factors might relate with structural features of PDZ domain-peptide interaction, we analyzed the occurrence of these physicochemical factors among amino acid pairs at 38 interacting positions between PDZ and peptides defined in Chen’s work. We first divided the PDZ domain-peptide interaction data into 3 groups: Non-interacting PDZ domain-peptide pairs (negative), interacting PDZ domain-peptide pairs between 100 uM and 10 uM binding affinity (weak) and interacting PDZ domain-peptide pairs with less than 10 uM affinity (strong). For each pair of amino acids observed at the 38 interacting positions for each PDZ domain-peptide pairs, we convert it into the following 7 values (as they are the physicochemical factors that modulate the binding strength of PDZ domain-peptide interactions, see above analysis)  1) HydrophilicityPDZ+HydrophilicityLigangd, 2) Average ASAPDZ+Average ASALigand, 3) PolarityPDZ+PolarityLigand, 4) Steric parameterPDZ+Steric parameterLigangd, 5) Hydrogen bond donorsPDZ+Hydrogen bond donorsLigangd, 6) van der Waals parameter epsilonPDZ+van der Waals parameter epsilonLigangd and 7) |isoelectric pointPDZ - isoelectric pointLigand| . We then compared the distribution of these 7 values for each interacting positions among strong, weak and negative for PDZ domain-peptide pairs. Based on this analysis, we observed many statistical differences in the distribution of 7 values at multiple interacting positions between weak and negative PDZ domain-peptide pairs and it became challenging to pinpoint the main physico-chemical and structural factors that determine PDZ domain-peptide interactions. However, much fewer interacting positions have observed statistical differences in distribution of these 7 values at the different interacting positions between weak and strong interacting PDZ domain-peptide pairs. Interacting positions with an observed statistical difference, mostly involve positions 0 and -2 of the peptide which is in accordance with existing understanding from structures, which show that these positions interface with the main PDZ domain binding pocket (interacting with binding site amino acids), while positions -1 and -3 point outwards closer to solution, thus are more difficult to relate directly to PDZ domain amino acid positions (Nourry, et al., 2003). We are currently extending our PDZ interaction methods to consider structural information of the PDZ domain, which we will describe in a future publication. 

5. Binary Classification Performance on Blind testing data set

We applied the trained SemiSVR to predict the interaction status of a set of protein array negatives determined in (Chen, et al., 2008) that were not used in any previous training set. We have only used high quality fluorescence polarization experiment determined negatives for training, but 16,067 PDZ domain-peptide pairs were measured as array negatives without being subsequently measured by fluorescence polarization, providing an independent, albeit potentially noisy, negative test set. The SemiSVR method predicts that >92% of these interactions are negative (affinity >100μM) and 1173 are positive, indicating that the method performs well at predicting negatives. 

Supplemental Figures

[image: image1.png]250

200

100

50

Number of PDZ domain-peptide pairs

0 10 20 30 40 50 60 70 80 90 100
Affinity (Kp)

45 T T T T T T

Number of domains

0 5 10 15 20 2|5 30 35
Number of binding peptides per domain




Supplemental Figure 1. (A) Distribution of binding affinities for 560 PDZ domain-peptide interactions. (B) Distribution of the number of binding peptides per PDZ domain.
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Supplemental Figure 2. Pairwise Sequence Identity Between 82 PDZ Domain Sequences According to 118AAs After Sequence Multiple Alignment. Sequence multiple alignments were obtained from Chen’s paper.

(A) SemiSVR
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(B) SVR
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Supplemental Figure 3. Performance of SemiSVR (A) and SVR (B) on predicting relative binding affinity of 23 individual PDZ domains to their peptide ligands. Scaled actual (x-axis) and predicted (y-axis) binding affinities are plotted against each other. Plot titles indicate names of the 23 PDZ domains used. For both methods, polynomial kernels based on wholePDZ_118AAs PDZ domain encoding and 10AAs of peptides were used.
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Supplemental Figure 4. Decreasing the Sequence Similarity of the Training and Testing Datasets Decreases Predictor Performance. Identity threshold refers to the sequence identity between testing and training PDZ domains based on the whole 118AA PDZ sequence. All PDZ domains more similar to the test PDZ domain than the given identity threshold are removed from the training set. Error bars represent 95th percentile confidence intervals calculated across all 23 tested PDZ domains.
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Supplemental Figure 5.  SemiSVR Can Accurately Predict Positive or Negative Binding (Binary Classification). (A) Leave-one-PDZ-domain-out cross-validation Area Under the ROC Curve (AUC) for 23 PDZ domains. The average ROC AUC is very high, 0.88. (B) Bootstrap testing on extrapolated PDZ, Peptide, and PDZ-peptide pairs as in Chen et al. (Chen, et al., 2008).
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Supplemental Figure 6. Performance of the SemiSVR Based on Each of 11-factor Encoding Individually.  The 16 binding sites on PDZ domain, as defined in 38 contact pairs in Chen’s paper, and the 10 AAs of the entire peptide were used for representing PDZ domain-peptide pairs. Spearman and Pearson correlation coefficients were reported as the performance measurement. The isoelectric point, hydrophilicity scale, polarity, average accessible surface area, van der Waals parameter epsilon and steric parameter give decreasing positive result suggesting they are the physicochemical factors that mostly modulating the binding strength of PDZ domain-peptide interactions.
Supplemental Tables

Supplementary Table 1. Quantitative interaction matrix for mouse PDZ domains and training set peptides. The corresponding peptide sequence could be found at the second sheet in Table S1.
Supplementary Table 2. Comparison on different kernels and encodings used by our SemiSVR model. Structure-based 38 pairs, the whole PDZ sequence-118AA and 16 binding sites encoding were used to encode the PDZ domain as well as the Profeat, sparse20 encoding. 11factor, 5factor, zscale, sparse 20 encoding were used for encoding the peptides. The different kernels used are indicated in the table.

Supplemental Table 3.  Performance Comparison of SemiSVR with Different Parts of the PDZ Domain for 23 PDZ Domains with Associated Peptides. Each SemiSVR was trained with a polynomial kernel (with p=2) considering both the PDZ domain and the peptide sequence. Bold numbers indicate the best performance. BindingSite-16AA refers to 16 amino acid positions defined by a single PDZ-ligand 3D structure of a1-syntrophin PDZ (a1synPDZ). CoreBindingSite-10AA refers to 10 amino acid positions defined as the intersection of all binding sites in nine available PDZ domain structures co-complexed with peptides(Tonikian, et al., 2008). 

	Performance Measure
	Feature Encoding
	SemiSVR Performance

	Spearman
	WholePDZ-118AA
	0.605

	
	BindingSite-16AA
	0.594

	
	CoreBindingSite-10AA
	0.594

	Pearson
	WholePDZ-118AA
	0.653

	
	BindingSite-16AA
	0.636

	
	CoreBindingSite-10AA
	0.649


Supplemental Table 4. Quantitative interaction Prediction for Human Scribble PDZ domain-peptide pairs.

	Name
	ID
	C-terminus
	Kd (mM)  (actual)
	Predicted scaled affinity

	 
	 
	 
	PDZ3
	SD
	PDZ3

	ARD50
	BC024725.1
	SFNYKKETPL
	1.5
	0.1
	0.543

	MAPK12
	PV3654
	GARVSKETPL
	1.7
	0.1
	-0.052

	ARHGEF16
	NM_014448.2
	MERLRVETDV
	2.1
	0.1
	0.615

	MCC
	NM_002387.1
	SRPHTNETSL
	2.4
	0.1
	0.466

	ABR
	NM_001092.3
	RNTLYFSTDV
	2.9
	0.1
	0.899

	STK29
	BC024291.1
	KVATSYESSL
	3.2
	0.2
	0.705

	FAM105B
	NM_138348.3
	PVRVCEETSL
	3.4
	0.2
	0.446

	b-PIX
	NP_003890
	NDPAWDETNL
	4.9
	0.4
	0.628

	APC
	NP_000029
	HSGSYLVTSV
	6.7
	0.4
	0.521

	VANGL2
	NP_065068
	VMRLQSETSV
	8.8
	0.5
	0.553

	PRKCA
	P2227
	FVHPILQSAV
	9.8
	0.5
	0.710

	AHDC1
	BC002677.1
	PEDTFTVTSL
	10.4
	0.6
	0.814

	LPP
	NP_005569
	VLTAKASTDL
	11.3
	0.5
	0.960

	FOXl1
	NM_144769.1
	VLYPREGTEV
	11.7
	0.8
	0.930

	KCNJ10
	BC034036.1
	SALSVRISNV
	13.2
	1
	0.910

	TANK
	NM_133484.1
	VDIASAESSI
	13.6
	0.6
	0.920

	ZO2
	NP_004808
	QSARYRDTEL
	13.7
	0.6
	0.869

	ZNF654
	NM_018293.1
	SSAQPSETIL
	18.3
	1
	0.523

	KIRREL2
	BC007312.1
	PSHPRLQTHV
	21.3
	2.4
	0.650

	MCM7
	BC009398.1
	NASRTRITFV
	24.1
	2.4
	0.867

	RPS6KA2
	NM_001006932
	GMKRLTSTRL
	25.2
	2.1
	0.987

	C11orf52
	NM_080659.1
	RYDSKNGTLV
	26.5
	2.4
	0.952

	RPS6KA1
	NM_001006665
	RVRKLPSTTL
	27
	3.2
	1.061

	ANKS4B
	NM_145865.1
	QPGQLVDTSL
	28.2
	2
	0.926

	RASL11B
	NM_023940.1
	SAKVRTVTSV
	30
	3.5
	0.709

	SYNJ2BP
	BC007704.1
	WAFMRYRQQL
	32
	1.8
	1.443

	KCNA6
	NM_002235.2
	YAEKRMLTEV
	34.8
	3.6
	0.859

	EPHA8
	PV3844
	DPELEALHCL
	38.8
	6.3
	1.324

	FAM126B
	NM_173822.1
	SFNMQLISQV
	39.3
	5.1
	1.103

	DSC54
	NM_016644.1
	ILRKSTTTTV
	40.1
	5.2
	0.848

	EPHA5
	PV3840
	VQLVNGMVPL
	45.6
	8.7
	1.390

	SRC
	NM_005417.3
	EPQYQPGENL
	48.6
	4.4
	1.400

	PDGFRA
	NM_006206.3
	SSDLVEDSFL
	52
	7.1
	1.129

	STK16
	BC053998.1
	PAPGQHTTQI
	52.2
	5.6
	1.191

	TPM2
	NM_003289.3
	DNALNDITSL
	54.4
	11.1
	0.881

	GLO1
	BC001741.1
	LNPNKMATLM
	59.5
	6.6
	1.304

	ZADH2
	NM_175907.3
	ELPHSVNSKL
	100
	0
	1.108

	PDGFRB
	NM_002609
	PRAEAEDSFL
	100
	0
	1.037

	MPG
	BC014991.1
	DRVAEQDTQA
	100
	0
	1.335

	PRKCB1
	P2281
	YTNPEFVINV
	100
	0
	1.252

	TBK1
	PV3504
	DGGLRNVDCL
	100
	0
	1.356

	MTERFD1
	NM_015942.3
	QDFEKFLKTL
	100
	0
	1.322

	FLT1
	NM_002019.1
	NSVVLYSTPPI
	100
	0
	1.498

	PSMA8
	BC042820.1
	AEKKKSKKSV
	100
	0
	1.237

	EPHA7
	PV3689
	LHLHGTGIQV
	100
	0
	1.007

	EPHA2
	PV3688
	DQVNTVGIPI
	100
	0
	1.544

	DIRAS1
	NM_145173.1
	DRVKGKCTLM
	100
	0
	1.213

	BEGAIN
	NM_020836.2
	KAQLYGTLLN
	100
	0
	1.540

	MUSK
	PV3834
	CERAEGTVSV
	100
	0
	1.269

	EPHA3
	PV3359
	TQSKNGPVPV
	100
	0
	1.365

	TRIM21
	NM_003141.2
	NIGSQGSTDY
	100
	0
	1.252

	LIMD1
	NM_014240.1
	SSTALHQHHF
	100
	0
	1.518

	C19orf57
	BC012945.1
	IPRGDPPWREL
	100
	0
	1.298

	PTE1
	NM_005469.2
	VKPQVSESKL
	100
	0
	0.950

	UBXD1
	NM_025241.1
	PELLSAIEKLL
	100
	0
	0.914

	ACBD6
	NM_032360.1
	VLQRHTTGKA
	100
	0
	1.584

	PACAP
	BC021275.1
	SEKVSATREEL
	100
	0
	1.366


Supplementary Table 5. Blind testing on worm and fly PDZ domains. For each test PDZ domain, the closest mouse PDZ domain, as measured by percent sequence identity, are shown as sequence identity. Spearman and Pearson correlation coefficients are used as the performance measurement.
	FLY
	Binders
	Spearman
	Pearson
	1st Identity
	2nd Identity

	Dlg1 (1/3)
	4
	1
	0.870
	0.701
	0.690

	Dsh (1/1)
	4
	0.4
	0.892
	0.807
	0.807

	Lap4 (2/4)
	5
	0.6
	0.849
	0.544
	0.433

	Lap4 (3/4)
	9
	0.45
	0.377
	0.511
	0.424

	Magi (4/4)
	3
	0.5
	0.127
	0.544
	0.337

	Par-6 (1/1)
	2
	1
	1
	0.837
	0.301

	Patj (2/4)
	7
	-0.6071
	-0.372
	0.494
	0.442

	
	
	
	
	
	

	Worm
	Binders
	Spearman
	Pearson
	1st Identity
	2nd Identity

	Dlg-1(1/3)
	4
	-0.2
	-0.018
	0.517
	0.494

	Dlg-1 (3/3)
	7
	-0.143
	0.119
	0.604
	0.593

	Dsh-1 (1/1)
	11
	0.009
	-0.138
	0.693
	0.682

	Lin-7 (1/1)
	11
	0.437
	0.470
	0.829
	0.817

	Mpz-1 (6/10)
	18
	-0.067
	-0.052
	0.427
	0.375

	Nab-1 (1/1)
	0
	-
	-
	0.382
	0.375

	Stn-2 (1/1)
	8
	-0.476
	-0.268
	0.506
	0.506


Supplementary Table 6. Performance of SemiSVR based on different thresholds for separating positive and negative interactions.

A). Performance of SemiSVR based on a threshold of 20 micromolar separates positives and negatives.

	PDZname
	#Peptides
	Spearman
	Pearson

	CHAPSYN-110_2/3
	15
	0.932
	0.931

	CHAPSYN-110_3/3
	14
	0.516
	0.837

	MAGI-2_2/6
	13
	0.654
	0.791

	MAGI-3_1/5
	17
	0.775
	0.899

	OMP25_1/1
	30
	0.501
	0.531

	PDZK3_1/1
	11
	0.191
	0.447

	PDZ-RGS3_1/1
	12
	0.294
	-0.172

	PSD95_2/3
	11
	0.973
	0.935

	PSD95_3/3
	10
	0.661
	0.945

	SAP102_2/3
	13
	0.962
	0.914

	SAP97_1/3
	10
	0.200
	0.754

	SAP97_2/3
	10
	0.964
	0.971

	SHANK3_1/1
	10
	0.491
	0.607

	G1-SYNTROPHIN_1/1
	10
	0.042
	0.027

	ZO-1_1/3
	11
	0.636
	0.638


B). Performance of SemiSVR based on a threshold of 10 micromolar separates positives and negatives.

	PDZname
	#Peptides
	Spearman
	Pearson

	CHAPSYN-110_2/3
	11
	0.918
	0.902

	CHAPSYN-110_3/3
	10
	0.794
	0.746

	MAGI-3_1/5
	12
	0.699
	0.868

	OMP25_1/1
	21
	0.443
	0.437

	SAP102_2/3
	11
	0.936
	0.873


Supplementary Table 7. Predicted affinity score for putative Mouse PDZ domain-peptide pairs. The predicted affinity score and the SemiSVR score are found in two different worksheets (named “Predictedaffinity4MousePDZ” and “SemiSVRscore”).

Supplementary Table 8. Predicted affinity score for putative Human PDZ domain-peptide pairs. The predicted affinity score and the SemiSVR score are found in the first two worksheets (named “Predictedaffinity4HumanPDZ” and “SemiSVRscore”). The corresponding orthologous human peptide sequences are found in the third worksheet. Only 206 of the 217 mouse peptides could be mapped to their orthologous human peptide.
All the supplementary tables are available online as a Microsoft Excel file at http://baderlab.org/Data/PDZAffinity.

See additional tables in separate files for the detailed information.
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