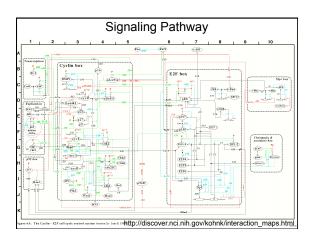
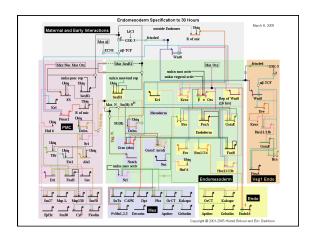
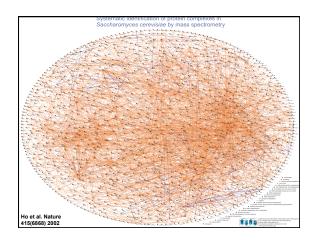
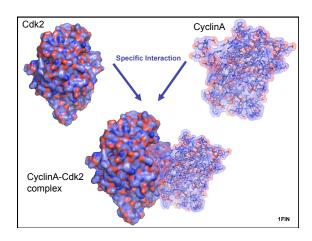
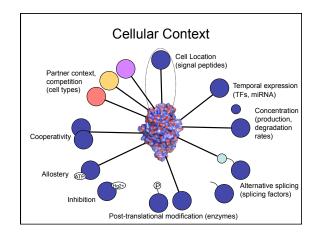

Integrative analysis of interaction networks Gary Bader http://www.baderlab.org JTB2010 - Nov.23.2009 Donnelly Centre For Cellular + Biomolecular Research TORONTO

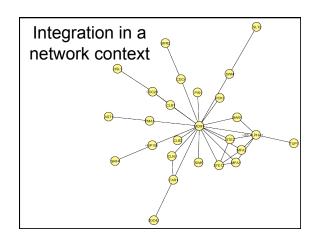

Outline

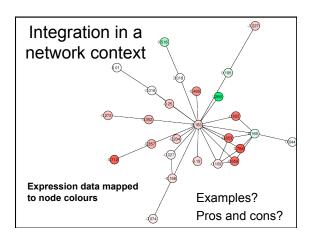

- · Data integration using networks
- · Network analysis
- · Network data
- · Network visualization and analysis
- Analyzing molecular profiles

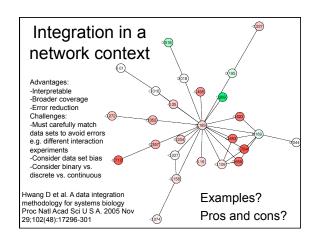

Data integration using networks

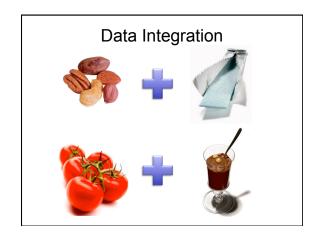












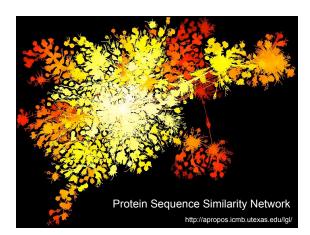
Network Analysis

Why Network Analysis?

Intuitive to Biologists

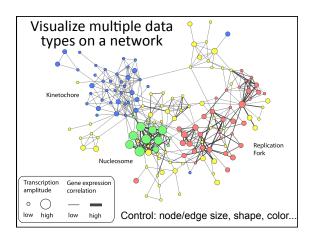
- Provide a biological context for results
- More efficient than searching databases gene-by-gene
- Intuitive display for sharing data

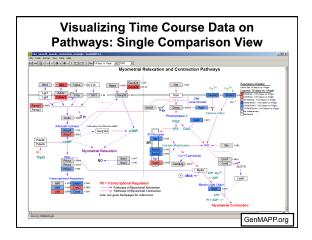
Computationally Query to Answer Specific Questions

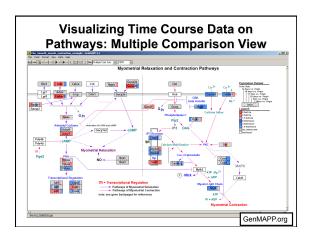

- Visualize multiple data types on a network
- Cluster, Find active pathways, Compare, Search

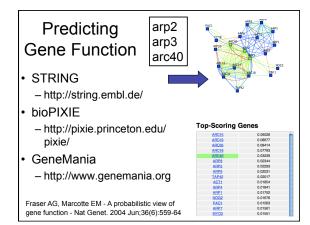
Graph Theory Directed Edge (Arc) We map molecular interaction networks to graphs

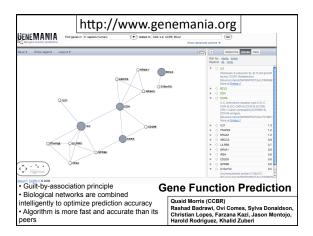
Mapping Biology to a Network

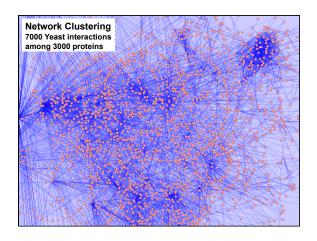

- · A simple mapping
 - one compound/node, one interaction/edge
- A more realistic mapping
 - Cell localization, cell cycle, cell type, taxonomy
 - Only represent physiologically relevant interaction networks
- · Edges can represent other relationships
- Critical: understand the mapping for network analysis

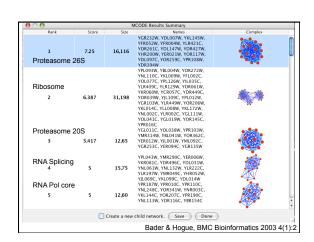



Six Degrees of Separation

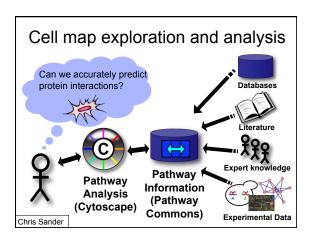

- Everyone in the world is connected by at most six links
- Which path should we take?
- · Shortest path by breadth first search
 - If two nodes are connected, will find the shortest path between them
- Are two proteins connected? If so, how?
- · Biologically relevant?

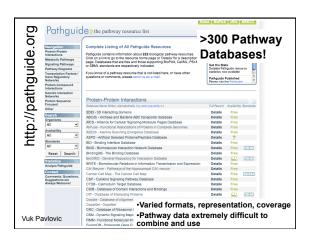

http://www.time.com/time/techtime/200406/community.h

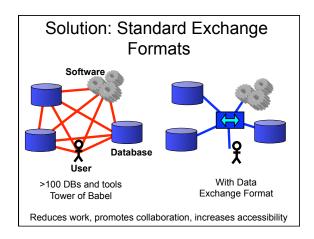




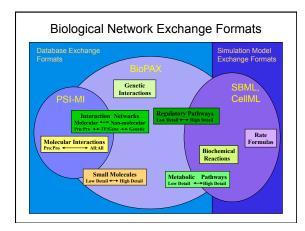
Graph Clustering - MCODE Plugin

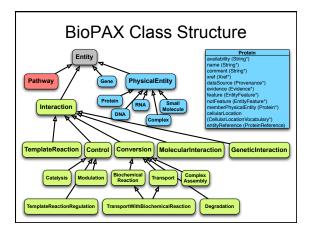

- Clusters in a protein-protein interaction network have been shown to represent protein complexes and parts of pathways
- Clusters in a protein similarity network represent protein families
- Network clustering is available through the MCODE Cytoscape plugin

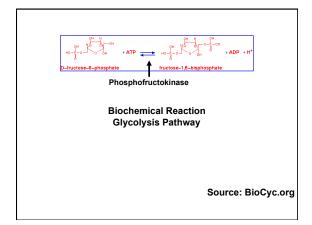


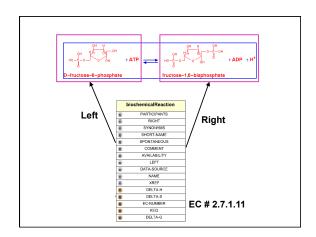

. ⊖ ⊝ ⊖		,	ACODE Results Summary	
Rank	Score	Size	Names	Complex
1	7.25	16,116	YGR232W, YDL007W, YKL145W, YFR052W, YFR004W, YLR421C, YOR261C, YDL147W, YDR427W, YHR200W, YER021W, YOR117W, YDL097C, YOR259C, YPR108W, YDR394W	
2	6.387	31,198	VPL093W, YBL004W, Y0R272W, VNL110C, YKL009W, VFL002C, VOL077C, VPL126W, VIL035C, VR490C, VRL129W, Y0R061W, YKR060W, YCR057C, VDR449C, Y0R039W, YJL109C, YPL012W, YKL014C, YLL005W, YKL172W, YNL002C, VR002C, VGL111W, Y0L041C, YGL019W, Y0R145C, YPR016C	**
3	5.417	12,65	YGL011C, YOL038W, YPR103W, YMR314W, YBL041W, YOR362C, YER012W, YJL001W, YML092C, YGR253C, YER094C, YGR135W	
4	5	15,75	YPL043W, YMR290C, YER006W, YKR081C, YDR496C, YDL031W, YNL061W, YNL132W, YLR222C, YLR197W, YMR049C, YHR052W, YJL069C, YKL099C, YDL014W	
5	5	12,60	YPR187W, YPR010C, YPR110C, YNL248C, YOR341W, YNR003C, YKL144C, YOR207C, YPR190C, YNL113W, YOR116C, YBR154C	
	0	Create a new	child network. Save Done	
			Bader & Hogue, BMC	Bioinformatics 2003 4(1):2

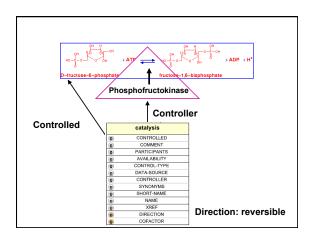
Network Data

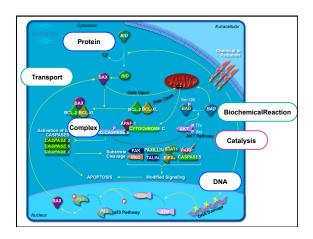


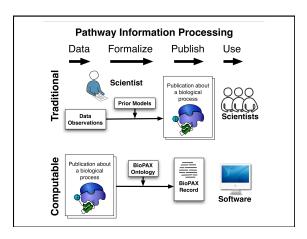

Interaction and Pathway Data Exchange Formats

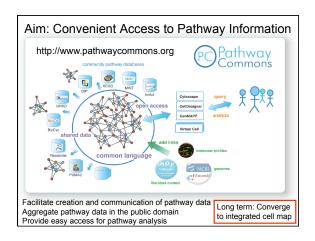

- PSI-MI http://psidev.sourceforge.net
 - Molecular interactions protein-protein interaction focus
 - Peer reviewed, HUPO community standard
- BioPAX http://www.biopax.org
 - Biological pathways
 - Community ontology in OWL, Protégé
- SBML http://www.sbml.org
 - Widely adopted for representing mathematical models of biological processes e.g. biochemical reaction networks
- CellML http://www.cellml.org
 - Math models of biological processes




BioPAX Pathway Language

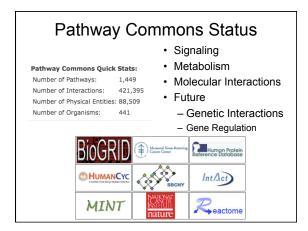

- Represent:
 - Metabolic pathways
 - Signaling pathways
 - Protein-protein, molecular interactions
 - Gene regulatory pathways
 - Genetic interactions
- Community effort: pathway databases distribute pathway information in standard format
 - Over 100 people, database groups, standard efforts

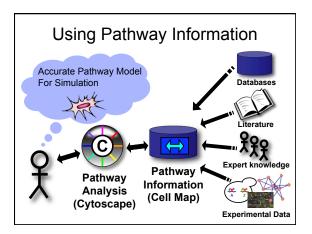


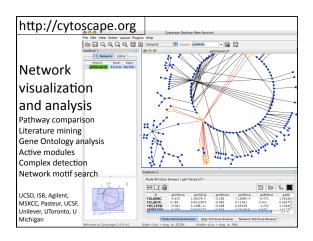


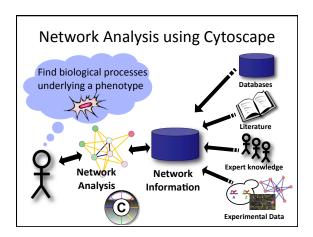
Controlled Vocabularies (CVs)

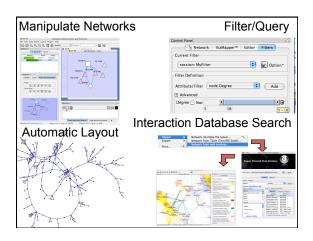
- BioPAX uses existing CVs where available via openControlledVocabulary instances
 - Cellular location: Gene Ontology (GO) component
 - PSI-MI CVs for:
 - Protein post-translational modifications
 - · Interaction detection experimental methods
 - · Experimental form
 - PATO phenotypic quality ontology
 - Some database providers use their own CVs
 - E.g. BioCyc evidence codes
- · More at the Ontology Lookup Service
 - http://www.ebi.ac.uk/ontology-lookup/

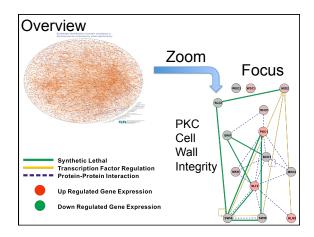

deptembers interesting in the process research of the physical and the process of the process of the physical and the physica

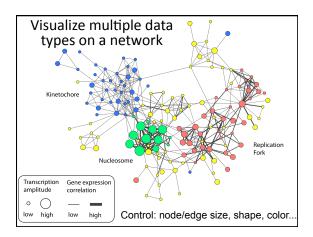



Towards an Integrated Cell Map • Semantic pathway integration is difficult Protein family Protein N-Ras family Protein In state Relationships Physical entities Determining equivalent entities is critical


Practical Semantic Integration • Minimize errors - Integrate only where possible with high accuracy - Detect and flag conflicts, errors for users, no revision - Promote best-practices to minimize future errors - Interaction confidence algorithms - Validation software - Allow users to filter and select trusted sources • Converge to standard representation - Community process Doable: hundreds of curators globally in >200 databases (GDP) - make it more efficient

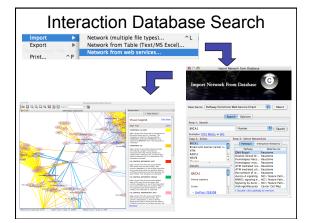

Network Visualization and Analysis



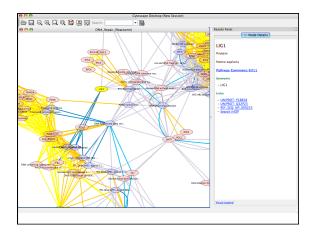


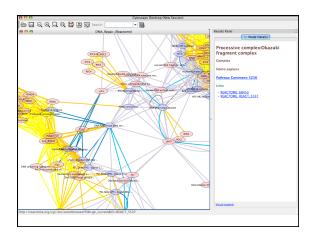
Active Community http://www.cytoscape.org

- Help
 - 8 tutorials, >10 case studies $\,$ Cline MS et al. Integration of
 - discussion biological
 - Mailing lists for discussion
 - Documentation, data sets
- biological networks and gene expression data using
- expression data using Cytoscape Nat Protoc. 2007;2(10):2366-82
- 10,000s users, 2500 downloads/month
- >40 Plugins Extend Functionality
 - Build your own, requires programming
 - e.g. Retina Workbench

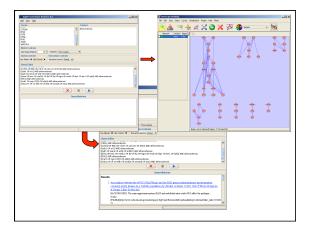

20

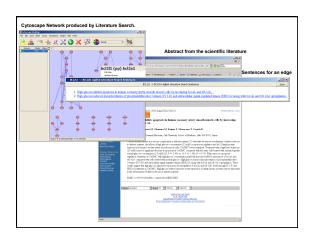
Analyzing Molecular Profiles


Analyzing gene expression data in a network context


- Input
 - Gene expression data
 - Network data
- Output
 Visual diagram of expression data on network
 Active network regions
- Outline
 - Where to find network data?
 - Interaction database (cPath)
 Literature associations via text mining

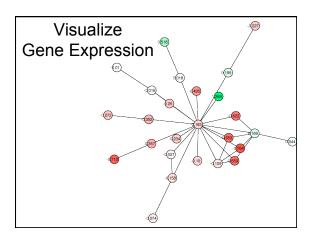
 - Load expression data
 - Identify active pathways


-					
•					
•					
•					
•					



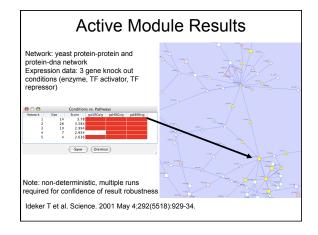
Text Mining

- Computationally extract gene relationships from text, usually PubMed abstracts
- Literature search tool, lots of network data
- BUT not perfect
 - Problems recognizing gene names
 - Natural language processing not perfect
- · Agilent Literature Search Cytoscape plugin
- · Others: E.g. iHOP
 - www.ihop-net.org/UniPub/iHOP/



Gene Expression/Network Integration

- Identifier (ID) mapping
 - Translation from network IDs to gene expression IDs e.g. Affymetrix probe IDs
 - Also: Unification, link out, query
 - Entrez gene IDs (genes), UniProt (proteins)
- Synergizer
 - llama.med.harvard.edu/cgi/synergizer/translate
- More ID mapping services available
 - http://baderlab.org/IdentifierMapping


Gene Expression/Network Integration THE SYNERGIZER The Synergizer database is a growing repository of gene and protein identifier synonym relationships. This tool facilitates the conversion of identifiers from one naming scheme (a.k.a "namespace") to another. Isoad sample imple Select species: Saccharomyess cerevisias Select species: Saccharomyess cerevisias

Find Active Subnetworks

- Active modules
 - Input: network + p-values for gene expression values e.g. from GCRMA
 - Output: significantly differentially expressed subgraphs
- Method
- Calculate z-score/node, $\rm Z_A$ score/subgraph, correct vs. random expression data sampling
- Score over multiple experimental conditions
- Simulated annealing used to find high scoring networks

Ideker T, Ozier O, Schwikowski B, Siegel AF Bioinformatics. 2002;18 Suppl 1:S233-40

Bonus Slides

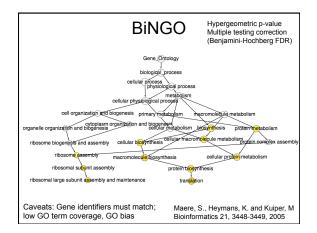
Gene and Protein Identifiers

- Identifiers (IDs) are names or numbers that help track database records
- E.g. Social Insurance Number, Entrez Gene ID 41232
- Gene and protein information stored in many databases
- → Genes have many IDs
- Records for: Gene, DNA, RNA, Protein
 - Important to use the correct record type
 - E.g. Entrez Gene records don't store sequence. They link to DNA regions, RNA transcripts and proteins.

Common Identifiers Species-specific HUGO HGNC BRCA2 MGI MGI:109337 Ensembl ENSG00000139618 Entrez Gene 675 RGD 2219 ZFIN ZDB-GENE-060510-3 Unigene Hs.34012 FlyBase CG9097 WormBase WBGene00002299 or ZK1067.1 SGD S000002187 or YDL029W RNA transcript GenBank BC026160.1 RefSeq NM_000059 Ensembl ENST00000380152 SGD S000002187 or YDL029V Annotations InterPro IPR015252 OMIM 600185 Pfam PF09104 Gene Ontology GO:0000724 SNPs rs28897757 Experimental Platform Protein Ensembl ENSP00000369497 RefSeq NP_000050.2 UniProt BRCA2_HUMAN or Affymetrix 208368_3p_s_at Agilent A_23_P99452 CodeLink GE60169 A1YBP1_HUMAN IPI IPI00412408.1 EMBL AF309413 Illumina GI_4502450-S PDB 1MIU

THE SYN	ERGIZER			* entrezgen YIL062C 854748
ynonym relationsh	abase is a growing repository of ips. This tool facilitates the conve k.a "namespace") to another.			YLR370C 851085 YKL013C 853856 YNR035C 855771 YBR234C 852536
Select species:	Saccharomyces cerevisiae	v		
Select authority:	ensembl	٠		• Synorgizor
Select "FROM" namespace:	_17/4	•	(NB: The strings in (brackets) are representative IDs in the	Synergizer http://llama.med.harvard.edu/c
Select "TO" namespace:	entrezgene	[854192]	corresponding namespaces.)	synergizer/translate
File containing IDs to translate:	Browse			Ensembl
IDs to translate:	YIL862C YIR370C YXL813C YXR833C YXR833C YXR834C			BioMart
Output as spreadsheet: Submit				http://www.ensembl.org PIR

ID Mapping Challenges


- · Gene name ambiguity
 - Not a good ID, but official gene symbol is ok e.g. HGNC/HUGO gene symbol
- · Excel error-introduction
 - OCT4 is changed to October-4
- Problems reaching 100% coverage
 - E.g. due to version issues
 - Use multiple sources to increase coverage

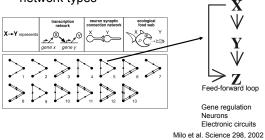
Zeeberg BR et al. Mistaken identifiers: gene name errors can be introduced inadvertently when using Excel in bioinformatics BMC Bioinformatics. 2004 Jun 23;5:80

Additional Plugins

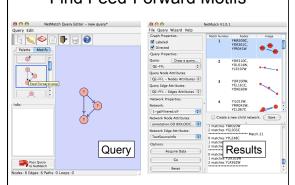
- · Bingo: over-representation analysis
- ClusterMaker: clusters networks, includes MCL
- NetworkAnalyzer: calculates statistics about a network
- (You may have to use an earlier version of Cytoscape to get some plugins to run)

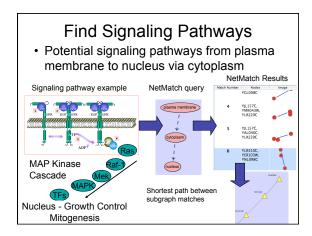
The Gene Ontology (GO) • Describes gene function 1. Agreed upon terms (controlled vocabulary) - Biological process - Cellular component - Molecular function 2. Genome annotation www.geneontology.org

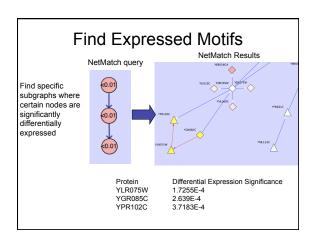
NetMatch

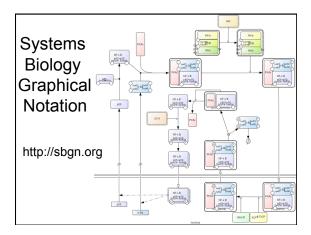

- · Query a network for topological matches
- Input: query and target networks, optional node/edge labels
- Output: Topological query matches as subgraphs of target network
- Supports: subgraph matching, node/edge labels, label wildcards, approximate paths
- http://alpha.dmi.unict.it/~ctnyu/netmatch.html

Ferro A, Giugno R, Pigola G, Pulvirenti A, Skripin D, Bader GD, Shasha D Bioinformatics 2007 Feb 3


Extends state space representation based search from Cordella et al. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26, 10, 1367–1372


Find Feed-Forward Motifs


 Graph motifs over-represented in many network types



Find Feed-Forward Motifs

