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Abstract Pathway information is vital for successful quantita-
tive modeling of biological systems. The almost 170 online path-
way databases vary widely in coverage and representation of
biological processes, making their use extremely difficult. Future
pathway information systems for querying, visualization and
analysis must support standard exchange formats to successfully
integrate data on a large scale. Such integrated systems will
greatly facilitate the constructive cycle of computational model
building and experimental verification that lies at the heart of
systems biology.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

To understand biological processes, we must integrate new

observations with existing knowledge to create testable models

that can be iteratively refined. This will only be successful if the

vast amounts of data gathered by large-scale profiling of bio-

logical features, such as mRNA transcripts and proteins, can

be efficiently integrated with data from the literature and dat-

abases for visualization and analysis.

One major source for computable data about biological pro-

cesses are databases that capture information on the functional

interactions of molecular species [1]. These ‘‘pathway’’ dat-

abases facilitate a variety of analysis and simulation techniques

that can enrich our understanding of cellular systems.

While recent dramatic growth in the number of pathway

databases is a great boon to biologists, it also presents several

important challenges. Almost 170 ‘‘pathway’’ databases exist,

which differ widely in form and content. This multiplicity of

information sources can be daunting to researchers who simply

wish to find information about genes or pathways of interest.

The lack of uniform data models and data access methods

makes pathway data integration extremely difficult, both

mechanistically and semantically.

To address these issues, it is useful to review the current

landscape of pathway data and techniques for data integra-

tion, and then to extrapolate the shape of desirable pathway
E-mail address: pathways_febs@cbio.mskcc.org.

0014-5793/$30.00 � 2005 Federation of European Biochemical Societies. Pu

doi:10.1016/j.febslet.2005.02.005
information systems which flexibly and efficiently facilitate

the analysis and modeling of biological systems.
2. Surveying the pathway data landscape

One abstraction that biologists have found extremely useful

in their efforts to describe and understand the inner workings

of cellular biology is the notion of a biomolecular network, of-

ten called a pathway. A pathway is a set of interactions, or

functional relationships, between the physical and/or genetic

[2] components of the cell which operate in concert to carry

out a biological process. Despite tremendous variety in the cel-

lular processes described as pathways, several pathway repre-

sentation patterns are prevalent in current practice. In the

Pathway Resource List, a catalog of almost 170 pathway dat-

abases (see http://cbio.mskcc.org/prl), we use these patterns to

group pathway databases into four major, slightly overlapping

categories: metabolic, signaling, protein interaction, and gene

regulation. A description of the major features of these

categories provides an overview of the current pathway data

landscape.

Metabolic pathway databases generally contain detailed data

models that represent a pathway as a series of biochemical

reactions, focusing mainly on the chemical modifications made

to the small molecule substrates of enzymes (Fig. 1A). Many

metabolic pathways have been mapped to the molecular level

of detail since the 1950s or earlier and metabolic pathway dat-

abases are the earliest and perhaps the best-known. Metabolic

databases generally do not represent higher order cellular pro-

cesses, such as gene regulation.

Metabolic databases predominantly contain prokaryotic

pathways, about which rich datasets have been collected.

A few metabolic pathway databases, for example KEGG

[3], the BioCyc database family [4] and others [5], map path-

ways from well-studied organisms onto other organisms via

functional annotations, such as Enzyme Commission num-

bers [6], and orthology relationships, but these approaches

are imperfect and the resulting pathways often contain a

number of gaps, i.e., missing steps in a chain of biochemical

reactions. Gap-filling algorithms attempt to address this

problem [7].

Signaling pathways propagate information from one part or

sub-process of the cell to another, often via a series of protein

covalent modifications, such as protein phosphorylation. Dys-

regulation of biological processes by aberrant signaling path-

ways causes many common diseases, such as cancer and
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Common alternative representations of pathway data. (A) Section of the glycolysis 1 pathway diagram from EcoCyc [50], drawn in high detail
mode, showing a single biochemical reaction. Blue arrows depict biochemical conversion of substrates to products. The conversion arrows are labeled
with the catalyzing enzyme using gold text. (B) Section of a molecular interaction map from the eMIM resource [51] showing regulation of hypoxia-
responsive genes. Diagram shows phosphorylation events (blue arrows originating in blue letter P�s; phosphorylation sites, if known, are abbreviated
in superscript, e.g., S209 = serine 209), inhibitory relationships (red flat-headed arrows), enzymatic stimulation of events (green lines ending in open
circles), binding interactions (black double-headed arrows), and non-specific stimulation of events (green arrows). Proteins are shown in black ovals,
nodes (filled circles) placed on lines represent the products of processes; e.g., the node on the binding interaction arrow between eIF4E and eIF4G
represents the eIF4E:eIF4G complex. (C) Section of the WNT pathway diagram from HPRD [21]. Proteins identified as important components of
the pathway are shown as red boxes, other proteins are depicted as small yellow circles. Protein–protein interactions are drawn as edges between
proteins. (D) Section of the endomesoderm gene network in the BioTapestry network viewer (see http://www.biotapestry.org). Genes are shown as
short, thick horizontal lines. Gene products are represented as short vertical arrows originating at genes and ending in right angles. Activating and
inhibitory relationships are shown as normal and flat-headed arrows, respectively, drawn from gene products to regulated genes.
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diabetes [8,9]. Though not as well-established as metabolic

pathway databases, signaling pathway databases are being ac-

tively constructed by a number of groups.

As many signaling pathways are present only in multi-cellu-

lar organisms, signaling databases tend to focus on eukaryotes.

These organisms are much more complex and less well-studied

than some bacteria and their signaling pathways appear to be

more diverse than metabolic pathways. Accordingly, signaling

pathway databases tend to use higher level abstractions com-

pared to metabolic databases (Fig. 1B). For example, CSNDB

[10], TRANSPATH [11] and others [12,13], often forego de-

tailed description of the biochemical reactions involved in sig-

naling and instead use generic concepts of activation and

inhibition.
Protein interaction databases contain by far the largest num-

ber of interactions of any type of pathway database. Large

amounts of protein interactions (protein–protein, protein–

DNA, etc.) are generated by various large-scale experimental

methods, unlike metabolic and signaling pathway data, which

are generated primarily by traditional small-scale experimental

techniques [14]. A well-known problem with most high

throughput methods of detecting molecular interactions is

the high rate of false positive results they generate [15]. Protein

interactions detected by these methods should therefore be

treated with less confidence until they have been verified by re-

peated observations or orthogonal experiments [16], and stor-

ing experimental evidence for each interaction is important for

most protein interaction databases.
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Fig. 2. The iterative biological system modeling method. Biological
knowledge from a variety of sources, including molecular interaction
surveys and molecular and genetic profiles, pathway databases and
literature populate information systems that support data storage,
querying, visualization and analysis. These information systems
support the construction of computational models of cellular pro-
cesses, which are used to make testable predictions of cellular behavior.
Experimental results must be compared to these predictions and used
for model refinement.
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Of the various types of pathway databases, protein interac-

tion databases tend to be the least detailed (Fig. 1C), although

they often have broad organism coverage [17,18]. GRID [19],

for example, stores only the that fact that an interaction was

observed between two proteins in at least one experiment.

Some databases add additional detail, such as binding sites

or, if known, the functional consequences of an interaction

on the participants [20,21].

Gene regulation databases currently tend to focus on the

relationships between transcription factors and the genes they

regulate (Fig. 1D). These databases also have broad organism

coverage and share features with both signaling and protein

interaction databases, as they collect protein–DNA interac-

tions [22] and regulatory (activation and inhibition) events

[23]. Some genetic regulatory databases incorporate protein–

DNA binding data from high-throughput assays, such as chro-

matin immunoprecipitation followed by cDNA microarray

analysis (ChIP2) [24]. This transcription factor-DNA binding

information only indicates that the prerequisite of classical

gene regulation, transcription factor binding upstream of a

regulated gene, can occur – it does not provide information

on the functional consequences, if any, of a DNA–protein

binding interaction. Other aspects of gene regulation, such as

control of alternative splicing, post-transcriptional regulation

of protein expression and regulation of the degradation of gene

products, are currently rarely covered in gene regulation

databases.

Though the attributes �metabolic�, �signaling�, �protein inter-

action�, and �gene regulation� serve as useful distinctions for

discussing pathway data, these categories arise from experi-

mental capabilities, research trends and common abstractions

of biological relationships, and do not correspond closely to

physical or chemical features of cellular biology. Furthermore,

this classification scheme is not logically disjoint, universally

accepted, nor all inclusive. Some databases span multiple cat-

egories, such as Reactome [25], which we might classify as both

a metabolic and a signaling database. Others do not fit into

these categories, such as those that store genetic interactions

[26], and databases that store literature co-cited gene name

links [27] or more detailed literature extracted links [28]. While

these databases may not be universally considered pathway

databases, they contain valuable functional links between

genes, many of which are not available in other pathway dat-

abases. While integration of these diverse data sets is challeng-

ing, an inclusive definition of pathway data is necessary to

cover existing knowledge and to generate flexible and accurate

input for model building in systems biology.
3. Using pathway data to answer biological questions

The principal motivation for building pathway databases

and information systems (Fig. 2) is to facilitate qualitative

and quantitative modeling of biological systems, outside of

the direct capacity of the human brain, using software on pow-

erful computers. A wide range of techniques have been devel-

oped that use pathway data of varying detail to answer specific

biological questions.

Questions such as �What are the fundamental design pat-

terns in the system?�, �What are the key relationships between

system components?� and �What are the physiological effects
of system perturbation?� can be answered using quantitative

and qualitative modeling. Quantitative modeling, such as rep-

resenting a dynamic chemical process using a system of differ-

ential rate equations, requires highly detailed pathway

information, such as kinetic constants, initial concentrations

and clear connectivity of reactions. Some of this information

is available in metabolic pathway databases and the literature

[29].

Qualitative models are easier to build because they require

much less detailed knowledge of the system. Using only topog-

raphy information [30] and/or qualitative information about

reaction rates (e.g., fast or slow) [31], qualitative models can

discover system properties not apparent in static pathway

data.

Evolution-focused questions, such as �Which biological pro-

cesses are homologous?�, can be answered using techniques

that identify common functional motifs and design principles,

e.g., through species comparison. For example, PathBLAST

[32] can align protein–protein interaction networks and pro-

cess algebra techniques [33] can be used to formally define pro-

cess homology (bi-similarity).

Though many pathway databases only store interactions

between genes, proteins and other cellular components, there

is clear evidence for higher-order organization in these net-

works. Can we determine how networks are organized and

create abstractions that serve as more effective descriptions

of network features? A number of groups have tried to an-

swer this question using only the molecular interaction net-

work topology [34]. Molecular interaction networks have

been found to cluster into regions that represent complexes

[35] or processes [36]. Statistically over-represented motifs

have also been found [37] and some of these have been thor-

oughly analyzed [38].



1818 M.P. Cary et al. / FEBS Letters 579 (2005) 1815–1820
Basic questions, such as �What is the function of my gene?�
are still vitally important, since the majority of genes in most

genomes have no known function. Examining genes in the net-

work context can help answer this question. For example, a

protein of unknown function connected to a set of proteins in-

volved in the same biological process is likely to function in

that process as well [39,40].

Less-detailed pathway data, such as proteomics-based pro-

tein–protein interactions, can be used to answer questions like

�What network patterns allow prediction of new interactions?�
For example, statistically significant domain–domain correla-

tions in a protein interaction network have been used to

hypothesize that certain domains mediate binding interactions

and to predict new interactions [41,42]. Machine learning tech-

niques can also be used to predict protein–protein [43] or ge-

netic interactions [44].

Finally, questions such as �What biologically relevant pat-

terns in molecular and genetic profiling data relate to disease?�
are vitally important for clinical health research and require a

large amount of pathway data to answer effectively. For exam-

ple, transcriptionally active neighborhoods or regions in an

integrated pathway network that correlate with disease state

may indicate active pathway components that play a role in

disease progression and provide leads for further study [45,46].
4. Pathway data integration for systems biology

The power of many pathway analysis techniques is propor-

tional to the amount of input pathway data. For example,

the activity centers algorithm [46] relies on connections be-

tween genes in order to detect regions of the interaction net-

work that are up- or downregulated; missing connections

could cause an important active region to go unnoticed by

the algorithm. Thus, it is vital that as much pathway data as

possible is available for the organism being studied.

The diversity among pathway databases makes this chal-

lenging. Differences in data models, data access methods, file

formats and subtle semantic differences in shared terms create

numerous difficulties for those attempting to gather and ana-

lyze data from multiple sources. Creation of a new data model

is sometimes important for a particular group�s research, the

continued proliferation of new pathway databases, each with

their own format, aggravates the data integration problem.

One way to overcome this challenge is to develop a widely

supported pathway data standard. Data standards reduce the

total number of translation operations needed to exchange

data between multiple sources (from n2 � n to 2n, where n is

the total number of data suppliers and consumers). They also

distribute the reduced translation burden more evenly between

data consumers and data providers and facilitate collaboration

and accessibility of pathway data to newcomers, thus promot-

ing growth. Because of this, data standards are one of the

few scalable data integration strategies (see [47] for a recent

review).

Pathway data standards exist, but none cover all aspects of

pathway data (Fig. 3). CellML [48] and SBML [49] both are

designed to represent quantitative pathway simulation models

that can be exchanged between simulation software packages.

Since they do not contain data types for many concepts com-

monly represented in pathway databases, such as �transport� or
�RNA�, these formats are not well suited for data exchange be-

tween databases.

The Proteomics Standards Initiative�s Molecular Interaction

(PSI-MI) format [48], has been developed recently to exchange

molecular interaction data between major protein–protein

interaction databases. PSI-MI is developed in a practical lev-

eled approach, following the lead of SBML, in which each level

adds additional data representation capabilities. PSI-MI Level

1 is designed to represent proteomics protein–protein interac-

tion data, including experimental method description. PSI-

MI Level 2 expands this scope to include interactions involving

small molecules, DNA and RNA. Though it is relatively new,

a number of molecular interaction databases already support

data export in the PSI-MI format (e.g., BIND [20], DIP [16],

HPRD [21], IntAct [17], and MINT [18]).

To capture more of the pathway data that currently resides

in databases, BioPAX (http://www.biopax.org) is being devel-

oped by various pathway database groups, also using a leveled

approach. Because many less-detailed data types that exist in

the pathway data space are difficult to represent in a highly de-

tailed format, the BioPAX ontology allows representation of

multiple levels of data resolution using an abstraction hierar-

chy. This feature is essential for capturing data from the dispa-

rate sources of pathway data in a convenient manner. BioPAX

Level 1, released in mid-2004, is designed to represent meta-

bolic pathway data and Level 2, near release, adds support

for PSI-MI molecular interaction data. Future levels of the

format will expand scope to include signaling pathways and

genetic interactions.
5. Future directions

The ultimate aim of projects like PSI-MI and BioPAX is to

enable effortless collection of pathway data so that it may be

efficiently applied to answer biological questions. Ideally, biol-

ogists should never need to perform time-consuming data col-

lection tasks in order to perform a particular analysis. Instead,

they should be able to locate, retrieve and apply data of inter-

est without worrying about data models, exchange formats, or

integration methods.

To achieve this goal, data standards must become broadly

adopted by pathway databases. This would enable a variety

of large-scale data integration approaches, such as a central-

ized or distributed pathway data warehouse or a query engine

able to retrieve data from multiple standards-compliant pri-

mary databases. Importantly, pathway data analysis tools

must be built to interface with these integration systems to

make pathway data retrieval painless.

Widely accepted data standards and integration infrastruc-

ture can also streamline one limiting factor for pathway data-

base growth, namely pathway database curation through

manual scientific literature mining. A unified, but distributed

curation effort built on accepted curation and data validation

tools, involving many biologists, may finally provide a cost-

effective data entry solution that scales with exponential data

growth. Journals could support this effort by making public

pathway data deposition a precondition for publication, as

many have done with sequence and structure data.

With public data sharing infrastructure, we can build soft-

ware platforms that allow high-level and effective pathway

http://www.biopax.org


Fig. 3. Data coverage of pathway data formats. Pathway data space is represented two-dimensionally with physical entity classes vertically and
interaction types horizontally. Approximate coverage of this space by each pathway data format is represented with colored boxes; database
exchange formats are shown in blue, simulation model exchange formats are shown in green. Versions (e.g., level 1, 2, etc.) of a format that have
different scope are drawn in separate boxes; formats with similar scope are shown in the same box. The dashed border indicates planned versions not
yet available.
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data manipulation and analysis using natural biological

abstractions. When combined with the trend towards cheap,

high-throughput cellular profiling technology, we can imagine

a swift convergence on biological process understanding

through iterative systems biology modeling methods.
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