
Decades of molecular genetic research have shown that 
cancer is a heterogeneous cellular disorder caused by the 
deregulation of many interacting cellular pathways that 
converge to generate tumour formation and growth. 
Functional genomic and proteomic methods, such as 
global-expression profiling and molecular-interaction 
screens, are increasingly being used to infer the 
molecular associations among the many gene products 
causally implicated in cancer cell growth, survival, 
progression, metastatic invasiveness and/or therapeutic 
resistance1–3. Although the use of a specific gene(s) for 
cancer diagnostics does not depend on a causative role 
in the cancer process4, the patterns detected from such 
large-scale genomic and proteomic datasets are already 
being used experimentally to stratify cancer subtypes 
and to predict patient survival and treatment response5. 
However, there remains a pressing need to derive even 
more clinically and biologically relevant information 
from these molecular associations, particularly with 
regard to determining the fundamental biological 
functions of previously uncharacterized genes newly 
implicated in neoplasia6,7. This improved knowledge 
of cancer-gene function will increase mechanistic 
understanding of the molecular basis of oncogenesis, 
and thereby facilitate the identification of new drug 
targets and the development of more effective molecular 
diagnostic and prognostic tests.

It has been postulated that a better way to syste-
matically uncover gene function and the higher-level 
organization of proteins into biological pathways is 
through the analysis of molecular-interaction networks8,9. 
Although large-scale functional prediction based 

on this strategy is rapidly gaining popularity among 
computational biologists for investigating gene action 
in model organisms such as yeast, worms and flies10–18, 
so far there have been only limited attempts to specifi-
cally infer the functions of known or candidate cancer 
genes by computational procedures based on association 
networks19, and even fewer cases in which these 
predictions have been rigorously benchmarked and 
experimentally validated.

In this Review, we introduce state-of-the-art compu-
tational procedures that enable the automated prediction 
of cancer-gene function on the basis of analyses of 
the patterns of functional associations of known or 
predicted cancer-gene products in the context of inter-
action networks. We discuss the value and limitations 
of current algorithms and publicly accessible molecular 
datasets for accurate computational function predic-
tion. Outstanding challenges that must be overcome 
to increase the relevance of such predictions to a clini-
cal setting are also summarized, making reference to 
well-established cancer genes20 to illustrate key 
concepts. Emphasis is placed on practical tools and 
resources that are readily accessible to, and useable by, 
cancer biologists.

Necessity of predicting cancer-gene function 
It has been suggested that 5–10% or more of the ~25,000 
putative genes encoded in the human genome probably 
contribute to oncogenesis21. But a recent exhaustive 
census based on an updated list provided by the Sanger 
Centre has compiled a list of only 354 experimentally 
validated genes that are causally implicated in neoplasia 
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Abstract | Most cancer genes remain functionally uncharacterized in the physiological 
context of disease development. High-throughput molecular profiling and interaction 
studies are increasingly being used to identify clusters of functionally linked gene 
products related to neoplastic cell processes. However, in vivo determination of cancer-
gene function is laborious and inefficient, so accurately predicting cancer-gene function 
is a significant challenge for oncologists and computational biologists alike. How can 
modern computational and statistical methods be used to reliably deduce the function(s) 
of poorly characterized cancer genes from the newly available genomic and proteomic 
datasets? We explore plausible solutions to this important challenge.
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Interaction network
A graphical description of a 
large ensemble of molecular 
associations, the nodes of 
which correspond to gene 
products, and the edges of 
which reflect direct links or 
connections between the gene 
products.

Hierarchical clustering
A statistical method for finding 
relatively homogeneous 
clusters of gene products 
based on some measure of 
similarity.

Functional module
A set of gene products that 
together function in a single 
process.

development, or only roughly 1% of all predicted 
human genes20. These cancer genes have historically 
been identified in a step-wise manner by the positional 
cloning of individual familial susceptibility loci22, 
the discovery of viral and mutated forms of cellular 
proto-oncogenes23, or by the association of specific 
chromosome anomalies with gain- or loss-of-function 
alleles of select genes24. This contrasts with the actual 
burden of disease, where solid tumours of unknown 
genetic aetiology account for most cancer cases — for 
instance, lung, colon, breast, prostate and pancreatic 
tumours lead to ~55% of all cancer mortality in the 
United States based on statistics from the American 
Cancer Society25, equating to 316,305 of 564,830 cancer 
deaths predicted for 2006.

The rapid accumulation of high-resolution cancer 
genetic and epigenetic molecular data now promises to 
enable far more comprehensive and unbiased inference of 
uncharacterized cancer genes linked to complex tumour 
traits such as metastasis and angiogenesis4.  However, 
despite the demand to uncover the mechanisms that 
underlie cancer emergence and progression, knowledge 
of the functions of even the currently accepted collec-
tion of well-established cancer genes remains incom-
plete and skewed (as discussed below). To compound 
matters, most in-depth mechanistic experimental stud-
ies are still typically focused on those few gene products 
in which rare mutations or polymorphisms have been 
linked to susceptibility to familial forms of cancer, 
such as the germ-line inactivation of select tumour-sup-
pressor genes26. This contrasts with the emerging sense 
that the biological processes that underlie stochastic 
cancer predisposition, initiation and progression are 
most commonly polygenic, and probably involve 
combinations of common alleles across many loci, most 
with weak effects, rather than a few rare alleles with 
large effects27.

Given the laborious and expensive nature of 
traditional experimental approaches, sophisticated 
computational procedures for systematically predict-
ing the functional roles and relationships of unchar-
acterized cancer-gene products are increasingly 
seen as useful for focusing the necessary biological 
validation28. The most convenient and well-known 

computational method for function prediction is 
based on the detection of significant sequence simi-
larity to gene products of known function, using such 
basic bioinformatic software tools as BLAST (basic 
local alignment search tool)29. The assumption is that 
proteins that are similar in sequence probably have 
similar biological properties. An important caveat 
with this simplistic approach is that only those func-
tions tied directly to sequence, such as enzymatic 
activity, can generally be predicted accurately.

An interesting alternate study28, typical of the increas-
ing use of more sophisticated computational procedures 
to deduce functional relatedness, used a hierarchical 
clustering method to group mRNA expression patterns 
derived from the microarray-based profiling of differ-
ent cancers to detect cancer-specific expression-based 
functional modules, or gene sets that are seemingly 
involved in one or more related biological processes 
because they are typically co-expressed in many 
tumour samples. The resulting groupings were found 
to be enriched not only for the ‘usual suspects’, such as 
genes linked to control of the cell cycle, DNA repair 
or transcription, but other functional categories 
like inflammation, immunity and the extracellular 
matrix, which are now increasingly recognized as 
important determinants of tumour progression30. 
In essence, the presence of genes with well-defined 
biological properties in these modules can be used to 
make reasonable guesses as to the roles of co-clustered 
genes of unknown function — a concept formalized in 
computational prediction procedures.

Cancer-gene functional annotation
Importantly, functions must be clearly defined to set 
the stage for computational prediction13. Cancer genes 
are often thought to be oncogenes, tumour suppressors, 
stability factors or cancer-progression genes4. But bio-
logical function has many facets, reflecting the diversity 
of cellular activities and biochemical properties, rang-
ing from the basic attributes of a protein product (such 
as an enzyme, like a protein kinase), to the nature of 
physical and regulatory interactions (such as protein–
protein interactions), to membership in a given pathway 
(such as a signalling cascade). Explicitly defining 
these functions in a concise manner is often difficult, 
particularly in the cancer setting, as the labels must 
reflect the complex networks of gene products that 
interact dynamically across a wide range of spatial 
and temporal scales, from subcellular compartments 
to entire tissues or a whole organism. Perturbation of 
these pathways, processes or networks, together with 
the genomic instability typically seen in cancer, adds 
an additional layer of complexity to functional defi-
nitions by changing the natural context of operation 
for cancer-gene products and even the gene products 
themselves, such as in chromosomal translocations 
that create the aberrant gene fusions involved in many 
haematological malignancies31.

Many annotation schemas for the representation 
of cancer-gene-product function have been devised, 
of which several prominent examples are listed in 

At a glance

• Many cancer genes remain functionally uncharacterized. Experimental methods to 
characterize their functions are inefficient, time consuming and expensive.

• The increasing availability of diverse molecular profiles and functional-interaction 
data make the prediction of cancer-gene functions possible.

• New computational prediction methods now enable the automated assessment of 
cancer-gene function.

• The main difficulties are how to simultaneously integrate different high-throughput 
data sources and dependably assign multiple functions to a cancer gene.

• Trustworthy gene annotations are crucial to achieving the best possible functional 
predictions for newly discovered or uncharacterized cancer genes.

• Rigorous evaluation of the accuracy of functional predictions generated by 
computational methods is vital for formulating biologically relevant hypotheses 
to direct further rounds of experimentation.
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TABLE 1. The most widely adopted system is the Gene 
Ontology (GO) database32, which uses a clearly defined 
and computationally friendly vocabulary for represent-
ing the cellular, biochemical and physiological roles 
of gene products in a systematic manner. From the 
perspective of functional computation, GO provides 
a standardized way to assess whether a set of genes 
have similar functions, which has led to its increasing 
popularity for the many function-prediction procedures 
used in model organism settings15,33,34. GO terms are 
organized in a tree-like structure, starting from more 
general (for example, cellular metabolism) at the root to 

the most specific at the leaves (for example, the regulation 
of DNA recombination) distributed across three main 
semantic domains — molecular function, biological 
process and cellular location. As GO terms might have 
more than one parent, they are technically structured 
as a network called a directed acyclic graph (FIG. 1). For 
instance, ‘B-cell apoptosis’ represents a sub-type of both 
the term ‘apoptosis’ and ‘B-cell homeostasis’. Therefore, 
the functional classes are not necessarily independent of 
one another, and the dependencies are explicitly defined. 
Additionally, GO enables a single cancer-gene product 
to be associated with more than one functional term 

Table 1 | Publicly available data sources to examine cancer-gene-product function 

Name Data type URL Source or reference

Gene Ontology (GO) Gold standard http://www.geneontology.org 32

MIPS (Munich Information 
Center for Protein Sequence)

Gold standard and interaction http://mips.gsf.de 77

Gene Map Annotator and 
Pathway Profiler (GenMAPP)

Gold standard and interaction http://www.genmapp.org 78

Kyoto Encyclopedia of Genes 
and Genomes (KEGG)

Gold standard and interaction http://www.genome.jp/kegg 79

BioCarta Gold standard and interaction http://www.biocarta.com N/A

Cancer Cell Map Gold standard and interaction http://cancer.cellmap.org/cellmap N/A

Module Map Gold standard http://ai.stanford.edu/~erans/cancer 28

SwissProt Gold standard and interaction http://www.expasy.org/uniprot/ 67

Biomolecular Interaction 
Network Database (BIND)

Interaction http://www.bind.ca/Action 80

IntAct Interaction http://www.ebi.ac.uk/intact/site/ 81

Human Protein Reference 
Database (HPRD)

Interaction http://www.hprd.org/ 82

Database of Interacting 
Proteins (DIP)

Interaction http://dip.doe-mbi.ucla.edu/ 83

Online Predicted Human 
Interaction Database (OPHID)

Interaction http://ophid.utoronto.ca/ophid 88

Molecular Interaction 
Network Database (MINT)

Interaction http://mint.bio.uniroma2.it/mint/ 84

Protein–protein interactions 
(PPI) of cancer proteins 

Interaction http://bmm.cancerresearchuk.org/~pip/
bioinformatics/

47

Cancer Gene Census Cancer genes http://www.sanger.ac.uk/genetics/CGP/Census Sanger Institute

Cancer Gene Data 
Curation Project

Cancer genes http://ncicb.nci.nih.gov/NCICB/projects/cgdcp US National
 Cancer Institute

Cancer Genes 
Resequencing Resource

Cancer genes http://cbio.mskcc.org/cancergenes Memorial Sloan-Kettering 
Cancer Center

The Tumor Gene 
Family Databases

Cancer genes http://condor.bcm.tmc.edu/ermb/tgdb/
tgdf.html

Baylor College
 of Medicine

Oncomine Cancer profiling http://www.oncomine.org/main/index.jsp University of Michigan

Cancer Program 
Data Sets

Cancer profiling http://www.broad.mit.edu/cgi-bin/cancer/
datasets.cgi

Broad Institute

Stanford Microarray 
Database (SMD)

Cancer profiling http://genome-www5.stanford.edu Stanford University

Gene Expression 
Omnibus (GEO)

Cancer profiling http://www.ncbi.nlm.nih.gov/geo National Center for 
Biotechnology Information, US 

National Institutes of Health

Cancer Gene Expression 
Database (CGED) 

Cancer profiling http://cged.hgc.jp/cgi-bin/input.cgi Osaka University 
School of Medicine

N/A, not applicable

Directed acyclic graph 
A network data structure used 
to represent a gene-function 
classification system in the 
Gene Ontology database, 
having ordered relationships 
between nodes (for example, 
parent and child terms, 
wherein the graph direction 
indicates which term is 
subsumed by the other), and 
no cycles (no path returns to 
the same node twice). Nested 
terms can have several parents.
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during the curation process, rather than being restricted 
to a single functional class. However, as discussed below, 
this flexibility for allowing multiple-label classifica-
tions has not yet been fully exploited by computational 
prediction methods.

As with the other annotation schemas, the GO can 
be used to describe many, but not all, of the specific bio-
logical properties of known cancer genes. For example, 
the Wilms tumour protein, which results in renal cancer 
when mutated, is listed in GO as a DNA-dependent 
regulator of transcription, located in the nucleus, and 
having transcription factor activity. This is a relatively 
informative description of its molecular role as a cancer 
gene. By contrast, the human homologue of patched (ptc), 
which is mutated in basal cell carcinomas of the skin and 
medulloblastomas35, is associated with less informative 
GO classifiers, such as dorsal-ventral pattern formation, 

embryonic limb morphogenesis and the regulation of 
smoothened (smo) activity, amongst others. Although 
these identifiers are correct, and do indicate relevant 
parts of the function of the gene, it is more difficult to 
infer the relationship of this gene to cancer from these 
terms. The question, then, is how exactly one links an 
uncharacterized gene to a cancer-specific process.

Analysis of the currently available GO annota-
tions indicates the often ambiguous assignments 
that are made in the cancer setting. For example, 
although roughly three-quarters of well-established 
cancer genes20 have at least one or more GO biological 
process terms and GO molecular function terms 
(TABLE 2), most of these genes are only sparsely anno-
tated with simple functional annotations, such as 
‘cell proliferation’, in the top, most generic levels of 
the GO classification system. Most of the GO terms 

Figure 1 | Cancer gene annotations. A graphical representation of a nested Gene Ontology (GO) classification showing 
the skewed functional annotations (GO terms) assigned to known cancer genes derived largely from familial syndromes or 
single-gene defect cancers20. The size of the terms (circles) is proportional to total gene membership, and the colour 
shading indicates the degree of statistical significance (darker tones denote decreasing P values). The GO provides a 
computationally accessible, organism-independent means for examining and reporting gene function15,33,34. Although 
expert curators often manually assign terms on the basis of published experimental evidence, most terms are 
electronically inferred on the basis of  sequence similarity to other well-studied gene products or other criteria32. Each 
annotation is assigned an evidence code (from the Gene Ontology website; not shown in the diagram) stating how the 
annotation is supported, which enables one to assess the reliability of an annotation. If the annotation is based on 
experimental evidence traceable to an author or publication, it is presumably more reliable than if it was simply inferred 
through sequence similarity. The GO has over 10 such evidence codes, which are not part of the core ontology. The figure 
was created using Bingo89. NER, nucleotide excision repair; MMR, mismatch repair; RTK, receptor tyrosine kinase.
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have been assigned with a highly skewed distribution, 
reflecting a marked enrichment to a few select functional 
categories (FIG. 1). These data indicate the need for more 
efficient, comprehensive and informative methods for 
the computational prediction of cancer-gene function, 
and hint at the challenges ahead (discussed below).

Functional associations
The typical workflow for computationally assigning 
functions to cancer-gene products in an automated 
fashion starts with the transfer of functional annotations 
from established genes to uncharacterized cancer loci 
on the basis of previous knowledge of different types 
of functional associations. These range from sequence 
similarity, to the co-occurrence of the protein products 
in the same macromolecular complex, to similarity in 
mRNA or protein-expression patterns36. The process is 
shown schematically in FIG. 2.

Importantly, these functional relationships or gene-
product interactions must be used appropriately to 
avoid erroneous inferences. For example, if the protein 
sequences of two genes encode protein kinase domains, 
they are likely to share the same molecular function 
(that is, they are both kinases), although they cannot 
then be assumed to participate in the same biological 
process or pathway. Conversely, if two proteins interact 
physically, there is no guarantee that the corresponding 
genes share the same molecular function, even though 
it is possible they participate together in the same 
physiological process.

The modular structure of most proteins, especially 
those that are involved in signalling, and their dynamic 
roles in many biological processes must also be taken 
into account37. For example, a protein with a kinase 
domain will immediately be labelled a kinase, but if it 
also has a SRC homology 3 (SH3) domain, it is likely to 
be involved in protein binding as an adaptor. Similarly, 
although the protein products of oncogenes are known 
to physically interact with dozens of other proteins, only 
some of these interactions might plausibly occur at any 
given time in a particular cell type.

Viewed collectively, the functional interactions 
among the molecular components of a cancer cell can 
be represented as a network of interacting component 
gene products. In the schematic representation of an 
interaction network shown in FIG. 3, nodes or points 
correspond to genes or proteins, and the edges or lines 
define functional links between the gene products. 
Such cancer maps often reflect protein–protein inter-
actions measured by high-throughput experimental 
platforms38–41, but can also be used to represent a rich 
source of other functional associations, such as correlated 
expression patterns deduced from genome-scale mRNA 
profiles generated for cancer cell lines and tumours 
contained in the Gene Expression Omnibus (GEO) and 
Oncomine databases, shared protein–DNA binding 
patterns42 and other shared phenotypes43. Large-scale 
proteomic studies44 are also increasingly informative 
about tissue and subcellular specificity.

The integration of these association networks can be 
helpful for examining the consequences of changes in 
mRNA levels or in transcriptional regulation. Human 
co-expression profiles and molecular-interaction net-
works can also be extended on the basis of the extensive 
evolutionary conservation of orthologues across more 
experimentally tractable model species, such as mouse, 
fly, worm or yeast45. Although there are limits to the 
relevance of model organisms to cancer biology, evolu-
tionary conservation indicates a strong selective advan-
tage, suggesting that these alternate data sources can 
potentially have analogous conserved functional rela-
tionships in human tumour cells46. Such an approach 
was used recently to derive a large probabilistic network 
involving over 100,000 putative functional interactions, 
including over 500 protein isoforms encoded by 346 
cancer genes, each with evidence-weighted edges47.

Many of these and other interactions that involve 
established cancer-gene products collected from the 
literature are summarized in public-domain databases48 
(TABLE 1). These databases can be readily downloaded 
and used to generate visually informative exploratory 
pathway maps (FIG. 3) or, as described below, used for 
more principled pattern discovery as applied to cancer-
gene functional predictions19. Surprisingly, however, a 
recent survey of the functional associations of known 
cancer genes20 in several of these databases showed that 
only 28% currently have extensive functional associa-
tions in the Kyoto Encyclopedia of Genes and Genomes 
(KEGG), while only 59%, 58%, 48% and 26% are listed in 
the IntAct, Biomolecular Interaction Network Database 
(BIND), Molecular Interaction Network (MINT), and 
Database of Interacting Proteins (DIP), respectively. 
This indicates that roughly half of all established cancer 
genes still lack functional-association information in the 
main public functional-association databases.

Gene-function prediction methods
Molecular associations defined by high-throughput 
experimental platforms serve as the starting point for 
predictive discovery using computational procedures. 
Integration of these association networks can also be 
helpful for elucidating the often complex relationships 

Table 2 | Current Gene Ontology (GO) annotations for cancer genes

Function Level in the GO classification system Unannotated 
at any level 3 4 5 6 7 8 9

Biological 
process

270* 
(39)

267 
(94)

263 
(136)

253 
(172)

239 
(171)

209 
(141)

84 
(88)

84

Molecular 
function

277 
(43)

254 
(79)

219 
(93)

156 
(67)

80 
(38)

41 
(18)

27 
(15)

77

Summary of the distribution of 354 known cancer genes and their putative functions 
(number of GO terms listed in brackets) on the basis of current annotations reported using 
the nine-level GO classification system. The functions are defined from the most general 
(lower levels) to the more specific (higher levels). All gene products assigned to lower levels 
are also subsumed in the higher level terms. For example, the 84 cancer genes annotated 
with GO terms at the highest resolution (ninth level of annotation) are also counted in 
levels one to eight. The data for levels one to two are not shown, as these terms are overly 
general. We also did not include the ‘cellular component’ branch of the GO schema, but 
rather only report ‘biological process’ and ‘molecular function’, as our focus is on cancer-
gene-function prediction and not gene-product localization. Cancer-gene information was 
obtained from REF. 20. *For example, 270 out of the 354 putative cancer genes were 
assigned to 39 functional GO terms in level 3 of the GO classification. This analysis is based 
on Babelomics90.
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Building function-association networks using one or more functional cancer data sources

(n1) Gene co-expression profiles (n2) Protein–protein interaction (nX) Phylogenetic profiles n1 n2 nX...

Obtain function annotation 
information (see Table 1)

Obtain list of known cancer 
genes (see Table 1)

Define functional classes 
(labels) of cancer genes 
(for example, GO-terms)

Evaluate prediction 
performance (for example, 
cross-validation)

Create annotated 
functional network

Create network-based 
function-prediction engine 
(see Box 1)

Predict the functions(s) 
of uncharacterized 
cancer gene(s) and 
assign confidence score(s)

Integrate gene/protein 
interaction networks 

Input cancer gene(s) 
of interest, such as SBDS

0.75

?SBDS

w1
w2 w3

w4 w5 w6
w7
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w2 w3

w4 w5 w6
w7

?SBDS

?S
BD

S

?S
BD

S

?S
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S

SBDS

...

...

a b

Supervised learning
A computational procedure to 
identify sets of gene products 
that are similar to a reference 
set of manually-defined 
examples using a principled-
prediction rule or criteria. Any 
genes of unknown function 
that are grouped with the set 
of pre-defined genes are 
deemed similar in function.

Unsupervised learning
A computational procedure to 
identify subsets of gene 
products that are more similar 
to each other than to others. 
The function of unknown genes 
can then be predicted based 
on the functions of other 
known genes within a given 
cluster.       

Functional label
The function terms, such as 
Gene Ontology terms, that are 
assigned to cancer genes.

between crucial components within core biological 
processes. Although network-based inferences are 
ultimately influenced by the reliability of the input 
functional associations, the predictive power of such 
network-wide inference procedures can be improved 
by assigning a confidence score or weight to each of the 
associations or edges of the interaction network accord-
ing to the reliability of the information obtained from 
each of the data sources or data types17,49.

There are two types of automatic function-prediction 
paradigms. One directly associates gene products 
with functional classes on the basis of pattern recog-
nition, which is often accomplished with supervised 
learning10,11,15,18 or unsupervised learning methods43. Here 
we focus on another automatic function-prediction 
paradigm, wherein cancer-gene functions are predicted 
by analysing the entire set of functional associations 
recorded between human-gene products in the context 
of a network (as in FIG. 2). The idea is to use the set of 
associations in the network to propagate the functional 
classes from well-characterized protein nodes onto those 
with limited or no annotation, such as newly discovered 
candidate oncoproteins of unknown function. Many 

functional-prediction studies that follow this paradigm 
are often focused first on sub-grouping or clustering the 
interaction networks into functional modules14,34,50–53 on 
the basis of the pattern or distribution of protein nodes 
and interaction links, which can be highly suggestive of 
shared functions9,54,55. These modules might be distinct 
or overlapping. Any unannotated gene products in a 
given module can be subsequently assigned the most 
common functional annotation(s) associated with its 
interacting partners or neighbours. This ‘unsupervised’ 
approach often works well if there is extensive coherent 
annotation available and relatively few uncharacterized 
proteins per cluster, but there can be difficulty if a mod-
ule contains many proteins without annotations or with 
diverse, seemingly unrelated functions.

Alternate computational methods (BOX 1) have been 
devised to automatically assign functional labels, such 
as GO terms, to the uncharacterized proteins present 
in an interaction network in a ‘supervised’ manner 
according to the annotations of the broader neigh-
bourhood of interacting gene products. Differentiating 
from the module-based methods cited above, these 
newer approaches often exploit both the global and 

Figure 2 | Schematic diagram of key steps for automated cancer-gene functional prediction. a | Cancer-related 
genomic data sources (for example, protein–protein interactions, gene co-expression, and so on) that correspond to 
distinct functional-association networks (labelled n1, n2 … nX) are obtained. b | These can be integrated into a single 
network, with the corresponding evidence weights (w1, w2 … wX) defined. Cancer genes with known functions, as 
indicated by different node colours (for example, red and green), are assigned all relevant public annotations, such as 
Gene Ontology (GO)-terms or pathway information. An uncharacterized cancer gene of interest (for example, 
Shwachman–Bodian–Diamond syndrome (SBDS)) is then processed and functionally interpreted using an automated 
function-prediction engine that exploits the functions of its interaction partners or neighbourhood. Overall prediction 
performance is determined by cross-validation and a confidence score assigned (shown in bold).
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Functional-association 
network
An interaction network in 
which gene products are linked 
if they have experimentally 
measured or predicted 
functional associations.

local properties of network graphs. For example, the 
algorithm Function Flow17 can predict functional classes 
for uncharacterized proteins that not only have direct 
functional associations (that is, immediate neighbours 
with annotations) but also indirect links (through the 
functional labels that are available for indirect part-
ners that, in turn, are associated with any immediate 
neighbours that lack annotation). The trade off is that 
additional error or uncertainty can be introduced by 
assuming functional similarity among more loosely 
connected gene products that are more than one step 
apart in an interaction network.

In principle, computational methods potentially 
enable any type of molecular association to be examined. 
The inclusion of many categories of functional interac-
tions increases the probability of genuine functional 
assignments56. Several publicly accessible bioinformatics 
tools that can be used to examine and integrate various 

genomic and proteomic data sources in order to generate 
an integrated functional association network are listed 
in TABLE 3. However, biological interpretation of such 
network-based functional inferences is often highly 
sensitive to the quality of the input association data, the 
clustering procedure used to derive the modules2,3,57 and, 
as seen below, the validation procedure used to evaluate 
the quality of the predictions.

How does one evaluate the predictions?
Effective computational inference relies on the avail-
ability of relevant, reliable and verifiable (that is, trace-
able) functional annotations and molecular associations 
derived from the literature. False predictions arise when 
physiologically irrelevant associations are made between 
functionally unrelated genes. Usually these stem from 
artefacts in the input datasets, which can arise even after 
extensive pre-filtering to increase data quality. Therefore, 

Figure 3 | Cancer interaction networks. A graphical representation of an association network of diverse experimentally 
derived molecular interactions that involve a subset of cancer-related human proteins. The zoom-in (dashed box) shows 
three different types of functional associations, where known. The network was visualized using Cytoscape; the data are 
from the Cancer Cell Map web site, using annotations from the Gene Ontology website. CY, cytoplasm; NU, nucleus; PM, 
plasma membrane.
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Gold standard 
A reference gene set used for 
labelling learning data, both 
for building prediction models 
and for creating test data to 
evaluate classifier 
performance.

one needs to carefully benchmark the predictions and 
the datasets on which they were based.

One successful evaluation strategy is to rely on 
external, independent data sets to function as refer-
ence gold standards for assessing both the primary 
data quality and the effectiveness or performance 
of the computational procedure used58,59. Although 
many different annotation resources are suitable for 

use as gold standards, the GO and KEGG stand out 
because of their extensive systematic curation of gene 
products. Although the GO and KEGG curators pursue 
meticulous categorization, the annotation process is often 
incomplete and, for diverse reasons, potentially biased and 
error-prone59,60. For example, although many cancer genes 
are pleiotropic, it is probable that not all of their  discrete 
functions are equally well-defined, experimentally recog-
nized or even cancer-relevant, resulting in incomplete or 
misleading labels for functional prediction.

Although potentially more accurate information 
regarding biological relationships might be available, such 
as high-resolution protein structures (for example, from 
X-ray crystallography), computational approaches for 
predicting cancer-gene function can still produce errors. 
The suitability of a gold-standard gene set for stringently 
assessing functional predictions is determined by three 
factors: first, the projected coverage or overlap relative 
to the target gene set under consideration, which should 
ideally be large enough to offer a statistically reliable eval-
uation using the available interaction data; second, the 
informativeness of the reference sets, which should have 
few irrelevant examples in a gold-standard reference set; 
and third, the resolution or specificity of the annotations, 
which must be consistent with the functional categories 
or resolution that one wishes to draw. For example, the 
fact that two proteins co-localize to the inner mitochon-
drial membrane supports the possibility of a functional 
interaction, but the association is too general to draw a 
detailed functional inference.

Different methods have been developed to evaluate 
the performance of computational predictors58,59,61. 
The standard procedure is cross-validation. A com-
mon concern with cross-validation is the dreaded 
over-fitting problem, which can be mitigated by careful 
study design62. Receiver operating characteristic (ROC) 
curves are usually drawn by plotting sensitivity versus 
specificity, or precision (or positive predictive value) ver-
sus recall, to evaluate the performance of computational 
methods in the cross-validation procedure. Such values 
are computed and plotted over a range of thresholds 
of discriminant values. Each threshold gives one pair of 
sensitivity and specificity values and, therefore, one 
point on the curve. Such analyses can be summarized 
with a single statistic — the area under the curve (AUC) 
— which provides a quantitative indication of how well 
a particular functional classifier performs.

Function prediction in practice
To show the potential informativeness of compu-
tational inferences, we applied the computational 
methods shown in BOX 1 to assign tentative functions 
to two uncharacterized cancer genes: Shwachman–
Bodian–Diamond syndrome (SBDS) and MLLT2 (also 
known as AFF1).

The SBDS gene is mutated in one of the most com-
mon forms of Shwachman–Diamond syndrome63. 
Patients with Shwachman–Diamond syndrome have 
exocrine pancreatic insufficiency, poor food absorption 
(malabsorption), low white blood cell counts (neutro-
paenia) and frequently develop leukaemia. This gene is 

Figure 4 | Example interaction networks and functional predictions for 
uncharacterized cancer genes. a | Shows a network of functional associations with 
medium–high confidence (≥40%) obtained from the Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING) database for a small cluster of gene products 
associated with the functionally uncharacterized cancer-gene product SBDS. The 
biological process (BP) and molecular function (MF) of RRP42 and SKI6 have been 
defined using Gene Ontology (GO) terms, whereas the annotation for OIP2 was 
obtained from the UniProt Knowledgebase. The logical computational inference 
(majority voting) is that SBDS is probably a ribosomal RNA (rRNA)-processing factor (BP) 
with 3′-5′-exoribonuclease activity (MF). Predictive performance was not evaluated as 
the network is too small for class validation. b and c | Shows two closely related sub-
networks of functional associations centred on the cancer gene MLLT2, one based on 
real data, on the left, and the other one slightly modified to assume that GNA11 has no 
GO functional annotations (see text for details). Different GO functions are indicated 
with distinct node colours (transcription (pink), G-protein coupled receptor (GPCR; 
blue), unknown (white) and other functions (green and yellow). The prediction 
confidence scores for the GPCR function assigned to MLLT2 in each analysis is shown in 
bold. The performance of the automated functional predictions  of GPCR activity by 
label propagation for the two networks, as assessed by 10-fold cross-validation, is also 
shown in the accompanying receiver operating characteristic (ROC) plots. AUC, area 
under the curve.
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Cross-validation
A statistical method for 
evaluating a classifier model. 
The input-association data is 
randomly partitioned into at 
least two or more subsets such 
that the analysis is initially 
performed on a single subset 
(learning set), whereas the 
other subset(s) (test set) is 
retained for subsequent use in 
testing and validating the 
initial analysis. This splitting 
can be done many times 
independently to better assess 
the accuracy of the classifier.

detectably expressed in nearly all tissues, but its molecu-
lar and biological functions are currently unknown64. 
The SBDS protein lacks homology to functionally 
characterized proteins65, and there are no annotations 
listed in either the GO, KEGG or the Cancer Cell Map 
databases. Moreover, there are no reported interactions 
of SBDS with any other protein in an extensive human 
protein–protein interaction network constructed by 
computational methods47. Therefore, at first glance, this 
seems an intractable problem for automated functional 
prediction.

Yet one can infer some reasonable functional 
associations for SBDS using publicly accessible auto-
mated computational tools (TABLE 3). For instance, the 
Search Tool for the Retrieval of Interacting Genes/
Proteins66 (STRING) database predicts a conserved 
genomic association of SBDS with three other genes 
(SKI6, RRP42 and OIP2) on the basis of the similarity of 
their respective genomic contexts (FIG. 4a). These associa-
tions can be assigned a confidence score, which in this 
case corresponds to the probability of finding the linked 
gene products within the same biological pathway. This 
confidence score is derived by benchmarking the per-
formance of the STRING prediction engine against a 
common reference set of trusted functional associations, 
in this case as defined by the KEGG database.

The SBDS-interacting gene products RRP42 and 
SKI6 share GO terms linking them to ribosomal RNA 
(rRNA) processing. Although OIP2 is currently not 
annotated in GO, it is listed as an rRNA-processing 
factor in the UniProt Knowledgebase67. Using the simple 
computational procedure known as majority voting 
(BOX 1), one can readily predict that SBDS is probably a 
rRNA processing factor. Indirect experimental evidence 
is consistent with this prediction. For example, Wu et al.43 
identified a potential defect in rRNA processing in a 
yeast mutant strain that lacked the putative SBDS ortho-
logue YLR022C. Savchenko et al.68 further studied the 
SBDS sequence homologue YLR022C in Saccharomyces 
cerevisiae, and found a physical association with over 20 
proteins involved in ribosome biosynthesis. In addition, 
Austin et al.65 have reported that the SBDS protein is 
particularly concentrated within the human nucleolus, 
the site of ribosome biogenesis.

Although the relationship of defective non-coding 
RNA processing to the emergence of cancer is not 
apparent, and indeed is not pre-eminent among 
known cancer genes (FIG. 1), it should be noted that 
gene functions predicted by computation often fall into 
this broad functional category15. This might, in turn, 
reflect the preponderance of RNA-processing factors 
encoded by the human genome, underappreciated 
biases in functional genomic databases59, or an overall 
higher coherence of the molecular signatures shown by 
members of this functional class69.

As a second example, MLLT2  has a pivotal role 
in leukaemogenesis in infancy70. Although this gene 
product has no biological process annotations listed in 
GO, we were able to derive a sub-network of functional 
associations centred around MLLT2 (FIG. 4b) using pub-
licly available information47 as follows: first we obtained 
the physical interaction partners of all gene products 
directly connected to MLLT2 (shown in the inner cir-
cle), which included GNA11, GNAI3 and NACA. Next, 
we obtained the interaction partners of these gene 
products, which are therefore only indirectly linked 
to MLLT2 (shown in the outer circle). This broader 
sub-network included a total of 2,314 gene products. 
Strikingly, 104 of these factors, including the imme-
diate MLLT2 neighbours GNA11 and GNAI3, have 
previously been linked to G-protein coupled receptor 
(GPCR) signalling (over representation).

Using the procedure of majority voting, one can 
readily assign MLLT2 as a cancer-related GPCR given 
the predominant function of two out of three of its 
immediate neighbours. However, as the other inter-
acting gene product, NACA, has only been linked to 
transcription, it might be better to examine the broader 
neighbourhood of MLLT2 interactions. Therefore, 
we built a function-prediction engine based on label 
propagation71 (BOX 1), which surveys the entire inter-
action network for functional coherence. Prediction 
performance was then assessed by 10-fold cross vali-
dation. Reassuringly, MLLT2 was again connected to 
G-protein signalling with high confidence (FIG. 4b).

As a final stringent test, we re-examined the useful-
ness of the label propagation method by considering 

Box 1 | Network-based functional prediction methods 

Several of the network-based computational methods suitable for the automated 
computational prediction of cancer-gene function that have been introduced include:

Majority voting55  
The annotated functions of all direct neighbours (interacting partners) of a given gene 
or protein in a network are ordered in a list, from the most to least frequent. The 
function of an associated uncharacterized gene product(s) is then predicted to be the 
top k (a value defined by the user) or fewer functions in this list. This method is simple 
and fast, but takes only limited advantage of the overall network topology or any 
relationship among annotations.

Markov random fields61,75 
Probability analysis methods that integrate many functional-association networks and 
compute a single probability value that a given gene product has a certain function 
given the functions of all other interacting proteins in the different networks. Although 
the approach provides a unified framework, current versions cannot solve the 
pleiotropy problem directly.

Label propagation17,71

Evaluates every node or gene product in an association or interaction network, not just 
the adjoining nearest direct neighbours, as a relevant source of function labels for 
functional annotation. There are different variants of this approach. One is to 
propagate or ‘flow’ a function through all the paths that connect the gene products17. A 
score is assigned that corresponds to the amount of flow to each node for a given 
function; another is based on Gaussian random field theory71, a type of nearest-
neighbour approach, in which the nearest labelled genes are computed in terms of a 
random walk on the network. The advantage of this method is that it takes into account 
both the global and local topology of the network; however, current incarnations of 
this approach are unable to assign multiple functions to a cancer gene simultaneously.

GenMultCut73,76 
Investigates the global topological structure of an interaction network and assigns 
functions to proteins by minimizing the number of times different annotations are 
associated with neighbouring proteins. Although this approach can integrate many 
networks, it does not always use the local proximity of interacting gene products in the 
network efficiently for functional prediction, and is limited to assigning one function 
(one label) to a node at a time.
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Over-fitting
The phenomenon in which a 
model has too many free 
parameters relative to the 
amount of data, which results 
in the learning of not only the 
true functional associations, 
but also noise and other 
spurious correlations. A model 
which has been over-fitted will 
not make good predictions on 
fresh (previously unseen) data 
— that is, the classifier will not 
generalize well.

Receiver operating 
characteristic
ROC curves are usually drawn 
by plotting sensitivity versus 
specificity or positive 
predictive value versus recall 
to evaluate the performance of 
computational methods in the 
cross-validation procedure.

Sensitivity
Also called recall. A measure 
of the ability of a classifier to 
assign all appropriate genes 
present in the test dataset the 
correct relevant functional 
label. Sensitivity is the 
proportion of all known 
members of a functional 
category for which there is a 
positive assignment, as 
determined by the number of 
true positives divided by the 
sum of true positives and false 
negatives. (Contrast with 
specificity.)

Specificity
An operating characteristic of 
a functional-prediction 
procedure that measures the 
ability of a classifier to exclude 
the presence of a label when it 
is truly not warranted. 
Specificity is defined as the 
number of true negatives 
divided by the sum of true 
negatives and false positives. 
(Contrast with sensitivity and 
recall.)

Precision 
Also called ‘positive predictive 
value’. The proportion of gene 
products with a predicted 
function that truly have the 
assigned biological attributes, 
as determined by the number 
of true positives divided by the 
sum of true positives and false 
positives.

an assumed case wherein the interaction partner 
GNA11 is deemed to have no functional annotations 
in GO (FIG. 4c) although all other information is pre-
served. Conceptually, in this scenario, majority voting 
would arbitrarily link MLLT2 to either transcription 
or GPCR terms with equal probability. However, the 
label propagation method was able to assign MLLT2 
to G-protein signalling (FIG.  4c). Therefore, one can 
achieve a robust convergence to the most likely 
function of the cancer gene product even with incom-
plete data. Consistent with this prediction, a recent study 
of cancer-gene-expression patterns28 has implicated a 
GPCR-related functional module in the emergence of 
acute leukaemia.

What are the roadblocks to doing it better?
In a sense, our current level of understanding of 
cancer in molecular terms dictates the effectiveness 
of the discovery process. If nothing is known about 
a specific class of gene function, computational 
approaches will be essentially useless at filling in the 
gap. If a little is known, computation might be helpful 
for refining hypotheses, but will frequently be inac-
curate to the point of being deceptive much of the 
time. However, when a fair amount of relevant infor-
mation is available, computation can be very good 
at assigning outstanding pertinent functions, or at 
least deriving testable ideas about the organization of 
cancer genes across many functional layers. Presently, 
in cancer biology, we are somewhere between ‘too 
little’ and ‘a lot’ in terms of comprehension; therefore, 
there is considerable opportunity, and risk, from a 
computational standpoint.

Two other troublesome practical issues still make 
it difficult to apply computational methods to anno-
tate cancer genes in as effective and comprehensive 
a manner as might be desired. The first relates to the 
choice of gold standards. A shortcoming of the natural 
language-based representations, like the GO, is that it 
is difficult to finely tune annotation terms for genes 
to reflect the true complexity of biological functions 
and relationships, such as regulatory relationships in 
signalling cascades. An example of this shortcoming 
is apparent in TABLE 2, which indicates that most of the 
existing GO annotations for known cancer genes have 
been made using very general, high-level terms, which 
limits their value. Moreover, there is a significant 
functional bias in the current GO database, as certain 
biological processes have been studied experimentally 

in far greater depth than others. Genes associated with 
these processes are much more likely to be correctly 
detected by computational prediction procedures59.

The second issue is a computational problem that 
relates, in turn, to the fact that cancers emerge in a 
multi-step process. Tumours form from pre-malig-
nant cells that harbour lesions in multiple interacting 
pathways72, with progressive alterations ultimately 
resulting in the uncontrolled proliferation of a single 
clone. As individual cancer genes can be pleiotropic 
across the various stages of disease progression, 
instances of cancer genes in the training sets must 
each be associated with a specific set of gold-standard 
annotations. To compound matters, it is unlikely that 
all of the relevant functions and pleiotropic overlaps 
have been equally well explored by researchers, even 
for well-studied oncogenes and tumour suppressors. 
Previous studies that predicted gene function on a 
genome-wide basis17,61,73 did not directly consider this 
multi-function prediction problem. Most computational 
procedures only support one functional assignment 
per uncharacterized gene at a time, and fail to exploit 
the correlation structure that connects functional classes 
during the prediction process. It has been shown that 
the prediction accuracy of supervised classification 
methods, such as support vector machines, can be 
greatly improved by taking into account the hierar-
chical structure of annotations like those in the GO 
database18. Therefore, it will be interesting to explore 
more general computational approaches in which the 
relationships defined by the hierarchical structure 
of functional classification schemas, such as the GO 
database, and functional association networks can be 
considered directly.

Outlook for the cancer biologist
Although most confirmed cancer genes20 have been 
deduced from knowledge about familial syndromes 
or single-gene defects, an emerging paradigm shift 
is changing the way biologists approach the study of 
cancer. It is now generally understood that to more 
fully grasp the mechanistic basis of the cancer pheno-
type, the community needs to elucidate the molecular 
properties and inter-relationships of all cancer-gene 
products, including those involved in metastasis and 
the development of therapeutic resistance72. In this 
sense, cancer is the ultimate systems biology prob-
lem74. Most solid tumours and their progression result 
from many molecular changes, all of which contribute 

Table 3 | User-friendly freeware computational tools for network integration and function analysis

Tool name  URL Reference

STRING http://string.embl.de 66

GRIFn http://avis.princeton.edu/GRIFn 59

DAVID http://niaid.abcc.ncifcrf.gov/ 85

AVID http://wbe.mit.edu/biology/keating/AVID 86

PLEX http://bioinformatics.icmb.utexas.edu/plex 87

AVID, Annotation Via Integration of Data; DAVID, Database for Annotation, Visualization, and Integrated Discovery; PLEX, Protein 
Link Explorer ; STRING, Search Tool for the Retrieval of Interacting Genes/Proteins.
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Discriminant value 
A relative measure of 
confidence that the cancer 
gene is in the functional 
category in question.

Genomic context
Similarity among the 
evolutionary attributes of gene 
products, such as the 
propensity of functionally 
linked gene products to 
co-occur across the genomes 
of several species, to be 
involved in gene-fusion events, 
or to be conserved in close 
chromosomal proximity.

Multi-function prediction
A computational procedure 
wherein a cancer gene product 
is assigned to at least two or 
more functional classes.

Correlation structure
A statistical measure of the 
relationships observed 
between all pair-wise 
functional classes examined.

Support vector machine
A popular learning algorithm 
that performs binary or multi-
class supervised classification 
tasks.

to disease development. Different cells, pathways and 
even host immune responses all have decisive roles. 
Therefore, the natural context of an oncoprotein must 
be taken into account to correctly predict cancer-gene 
function. By the same token, one must also consider 
the function of entire pathways and networks so that 
we can build the modular architecture of a functional-
association network and decode its role in the evolu-
tionary process.

In this Review, we have discussed the opportuni-
ties and challenges for cancer-gene annotation and 
classification currently faced by cancer biologists who 
wish to apply computational approaches to assess 
cancer-gene function. An important argument for 
network-based computation is that no one person can 
envision all the inputs into the molecular equation that 
leads to tumour formation, bringing modelling to the 
forefront as a key tool in the future of cancer biology. 
Although the mathematics behind many of the pre-
diction algorithms is often complicated, computation 
is not black magic. Many of the computational tools 
being introduced today are increasingly easy to use 
by non-computational scientists, and are therefore 
more accessible on a pragmatic level. Because the 
interested oncologist needs to make a sizeable invest-
ment to become practically familiar with the emerging 
technology, collaborative interactions with experts in 
computation will probably remain the norm for the 
next few years. However, it remains equally crucial for 

the cancer community to be vigilant about the quality 
of basic cancer data resources, such as gene-expres-
sion profiles and protein–protein interaction datasets, 
with the aim of generating more reliable quantitative 
measurements of cancer-gene products in a systematic 
genome-wide manner.

The emerging systems biology of cancer involves 
dealing with the complex nature of the disease in an 
integrative analytical framework that incorporates 
data and outputs testable hypotheses that extend and 
refine our understanding of the architecture of cancer 
pathways and the identity of uncharacterized genes 
with causal roles in either the initiation, maintenance 
or spreading of the disease. Although the road map of 
how we get there is still uncertain, promising new com-
putational frameworks are now on the horizon12,17,58,61,73, 
which will potentially permit the evaluation of even 
broader sources of cancer-related information, such 
as genetic linkage and/or association information, 
single nucleotide polymorphisms (SNPs) and gene 
copy numbers, thereby facilitating an even deeper 
understanding of the complex genomic–genetic–phe-
notypic networks that ultimately dictate the altered 
behaviour of malignant cells. Realizing the power of 
computational prediction to delve more deeply into 
the fundamental biology of cancers should improve 
pharmaceutical drug development and create a more 
rational and predictive approach to the application of 
therapeutic strategies.
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