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Global quantitative analysis of genetic interactions is a 
powerful approach for deciphering the roles of genes and 
mapping functional relationships among pathways. using 
colony size as a proxy for fitness, we developed a method for 
measuring fitness-based genetic interactions from high-density 
arrays of yeast double mutants generated by synthetic genetic 
array (sGA) analysis. We identified several experimental 
sources of systematic variation and developed normalization 
strategies to obtain accurate single- and double-mutant 
fitness measurements, which rival the accuracy of other high-
resolution studies. We applied the sGA score to examine the 
relationship between physical and genetic interaction networks, 
and we found that positive genetic interactions connect across 
functionally distinct protein complexes revealing a network of 
genetic suppression among loss-of-function alleles.

Synthetic genetic array (SGA) analysis is an automated form of 
yeast genetics that combines arrays of mutant strains with robotic 
manipulations for high-throughput double-mutant construction1. 
Genetic interactions are identified as unexpected phenotypes aris-
ing from the combination of two or more genetic variants and 
include two broad categories: ‘positive’ and ‘negative’2. Negative 
genetic interactions refer to a more severe fitness defect than 
expected, with an extreme case being synthetic lethality; posi-
tive genetic interactions refer to double mutants with a less severe 
fitness defect than expected. Quantitative assessment of fitness-
based genetic interactions requires measurements of single-mutant  
fitness, an estimate of the expected double-mutant fitness,  
which is typically modeled as a multiplicative combination of the 
single-mutant phenotypes, and measurement of the observed  
double-mutant fitness, such that the difference between the 
observed and expected double-mutant fitness can be calculated2.

Quantitative analysis of fitness and genetic 
interactions in yeast on a genome scale
Anastasia Baryshnikova1,2,10, Michael Costanzo1,10, Yungil Kim3,4, Huiming Ding1, Judice Koh1,  
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Genetic interactions previously have been quantified from 
SGA experiments of functionally biased subsets of a yeast dele-
tion mutant collection using an interaction score (S score)3. 
This approach relies on colony-size measurements obtained 
from digital images to determine a composite score derived 
from both the magnitude and reproducibility of genetic 
interactions3. The S score is an estimate of the confidence 
with which genetic interactions can be assigned but does not 
reflect single- or double-mutant fitness4, which are critical 
for detailed interpretation of interactions and the resultant 
network5,6. Furthermore, quantification of colony size meas-
urements using the S score is not as precise as that achieved by 
higher-accuracy, albeit lower-throughput, methods4. Finally, 
mapping genome-wide, fitness-based genetic interactions 
requires normalization of several parameters associated with 
colony-based interaction assays (Supplementary Table 1), 
as these can produce unreliable interactions when applied to 
whole-genome screens.

We developed the SGA score, which relates mutant col-
ony size to fitness and enables identification of quantitative 
genetic interactions from high-throughput, genome-scale 
SGA screens. To do so, we identified several systematic biases 
associated with genome-scale SGA analysis and developed 
normalization methods to remove these biases. This led to 
single- and double-mutant fitness measurements of compa-
rable precision to those obtained using other high-resolution 
methodologies. We applied the SGA score to a genome-
scale collection of SGA screens to quantify genetic interac-
tions among ~5.4 million gene pairs7. Here we describe the 
SGA score and accompanying normalization strategies, and 
report the results of a global comparative analysis between 
the genetic network deduced from this analysis and the yeast 
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physical interaction network. We found that positive genetic 
 interactions connected functionally distinct protein complexes 
more frequently than described previously.

results
Quantitative, fitness-based model for genetic interactions
The requirement for accurate phenotypic measurements has 
imposed constraints on the scale and functional scope of quantita-
tive genetic interaction studies4,5,8. Genome-scale surveys require 
experimental designs to optimize throughput and thus often sac-
rifice accuracy. We developed a strategy for deriving quantitative 
genetic interactions from arrays of double-mutant yeast colonies 
applicable to genome-scale SGA screens, such that all possible 
Saccharomyces cerevisiae digenic interactions could be examined 
in an accurate and unbiased manner.

SGA methodology enables rapid and systematic construction 
of yeast double mutants by mating a strain harboring a ‘query’ 
mutation of interest to input arrays of strains carrying different 
‘array’ mutations, which are composed either of nonessential dele-
tion mutants or conditional alleles of essential genes1,9 (Fig. 1a).  
After several robot-facilitated selection steps, the final output 
arrays consisting of haploid double-mutant colonies are imaged 
at a single time point1,9 (Fig. 1a). We developed a model for relat-
ing the area of a double-mutant colony image to the fitness of 
the constituent single mutants by assuming that, in the absence 
of genetic interactions, double-mutant fitness is a multiplicative 
combination of single-mutant fitness and experimental factors 
(Supplementary Note 1). Then we measured genetic interactions 
as deviations from the expected double-mutant fitness.

Similar to other high-throughput technologies (Supplementary 
Note 2), genetic-interaction screens using ordered mutant arrays 
are susceptible to experimental factors that introduce systematic 
variation in colony size (Fig. 1b and Supplementary Note 1). 
Contributing factors include subtle differences in growth condi-
tions, such as duration of incubation, from one array plate to 
the next3 (Fig. 1b and Supplementary Fig. 1a) as well as factors 
that influence local nutrient availability and affect growth of dif-
ferent subsets of colonies on the same plate. These include plate 

location, gradients in growth medium volume caused by uneven  
preparation surfaces and neighboring mutant-strain fitness  
(Fig. 1b and Supplementary Fig. 1b–d). Each factor had a 
noticeable impact on colony size (Fig. 1b,c and Supplementary  
Fig. 1f). For example, mutant strains located in the outermost 
rows and columns were on average 40% larger than centrally 
located mutants (Supplementary Fig. 1b). Strains next to less-fit 
mutants, including those showing negative genetic interactions, 
were also larger, suggesting that local competition for nutrients 
should be considered carefully, especially when measuring posi-
tive genetic interactions (Supplementary Fig. 1d).

The most problematic source of systematic variability was ‘batch 
effect’ (batch is defined as a set of screens conducted in series 
using the same robotic instrument; Fig. 1b and Supplementary 
Fig. 1e,f). Because screens conducted in a batch are influenced by 
common experimental factors, double mutants in a batch often 
exhibit similar trends in colony-size variation irrespective of the 
identity of the query strain (Supplementary Fig. 1e). Colony-size 
variation owing to batch effects was often similar in magnitude to 
the genetic interactions we aimed to measure; without account-
ing for the batch effect, the similarity of the interaction profile of  
functionally unrelated genes was often as strong as that between 
known complexed protein pairs (Supplementary Fig. 1e). Given 
the importance of correlation-based approaches for genetic-
 interaction analyses9, strategies for normalizing batch signatures 
are critical for harnessing the full potential of large-scale genetic-
interaction data.

We developed normalization procedures that estimate and 
remove systematic biases in colony size arising from experimen-
tal factors (Supplementary Note 1). We applied statistical tech-
niques including spatial smoothing, quantile normalization and 
linear discriminant analysis to substantially reduce colony size 
variability and improve correlation between independent colony 
size measurements obtained for the same mutant strain located in 
different array positions (Fig. 1c, Supplementary Figs. 1f and 2  
and Supplementary Note 1). After removal of experimental arti-
facts, we fit a model estimating fitness and genetic interactions 
for each double mutant to the normalized colony sizes (Fig. 1c 
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and Supplementary Note 1). The resulting 
measure, termed SGA score, captures 
 single- and double-mutant fitness measurements and provides a 
quantitative, genome-wide assessment of genetic interactions.

A high-resolution catalog of yeast fitness
We measured colony sizes for 4,635 viable deletion mutants and 
1,388 temperature-sensitive or hypomorphic alleles of essential 
genes after SGA analysis using a neutral (control) query mutation 
(Fig. 1, Supplementary Table 2 and Supplementary Note 1).  
Using image-analysis software, we obtained colony areas from 
images (Online Methods) and processed them using the SGA 
score to systematically analyze yeast single-mutant fitness based 
on colony size (Supplementary Data 1). Comparison to previ-
ously published fitness or relative growth rate studies revealed 
that, together with barcode-based fitness measurements of single-
deletion strains10, our colony size-based fitness measures had the 
highest average cross-study correlation (Fig. 2a), suggesting that 
large-scale colony size measurements capture fitness as well or 
better than available methodologies. The range of single-mutant 

growth defects detectable by our method substantially exceeded 
that of most other studies. For example, even though growth com-
petition assays assessed a similar number of strains4,10, they had 
not reported fitness for mutants with relative growth <50% that 
of a wild-type strain (Fig. 2b).

Our colony size–based measurements of double-mutant fitness 
were highly reproducible as determined by comparative analy-
sis of 211 genome-wide replicate screens (Fig. 2c). Therefore, 
the accuracy afforded by colony size–based single- and double-
mutant measurements should provide a basis for quantitative, 
fitness-based assessment of genetic interactions.

evaluating genetic-interaction measurements
We used multiple approaches to evaluate the quantitative nature 
of genetic interactions identified using the SGA score. First, 
genetic interactions measured from independent experiments 
performed in duplicate were highly reproducible (Fig. 3a). 
Second, we assessed the reproducibility of interactions identified  
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among reciprocal gene pairs (query mutant A and array mutant 
B versus query mutant B and array mutant A). Query mutants, 
which are mutants crossed into the deletion mutant array, and the 
corresponding array mutants are subject to different experimental 
conditions that affect their colony growth differently in the SGA 
assay. In particular, query mutants with larger fitness defects are 
allowed to grow longer, resulting in greater resolution for detecting 
genetic interactions (Supplementary Note 3). Despite these differ-
ences, we observed reasonable agreement among reciprocal genetic 
interaction pairs (Fig. 3b) and this correlation increased when we 
restricted comparisons to more confident interactions (Fig. 3b). 
Notably, agreement between reciprocal interactions improved 
~50–60% when we normalized experimental factors responsible 
for systematic colony-size variation (Supplementary Fig. 3).

Finally, we compared SGA scores for 239 genetic interactions7 
that overlapped with a smaller-scale, high-resolution liquid 
growth study5. We observed substantial quantitative agreement 
between genetic interactions identified in both studies (Fig. 3c). 
This was not simply attributable to extreme interactions because 
we also observed high correlation even for modest genetic inter-
actions (r = 0.73; SGA score absolute value, |ε| < 0.4). We also 
found high agreement when we compared our identified inter-
actions to a set of manually confirmed synthetic lethal or sick 
interactions9 (Supplementary Fig. 4) as well as to a larger set of 
binary genetic interactions in the Biological General Repository 
for Interaction Datasets (BioGRID)11 (Supplementary Note 4 
and Supplementary Table 3).

Functional impact of systematic effects
We scored ~1,700 genome-wide SGA screens1,7 (Supplementary 
Note 1) to determine the effects of systematic experimental vari-
ation on reliable identification of fitness-based genetic interac-
tions. We evaluated the functional utility of resultant positive 
and negative genetic interactions against common functional 
benchmarks: annotation to the same Gene Ontology (GO) bio-
logical process term or protein-protein interactions (Fig. 4a 
and Supplementary Fig. 5a). Although genetic interactions are 
not always expected to connect functionally related genes, they 
tend to be enriched among genes in the same biological proc-
ess, thus annotation to the same GO terms serves as an objective 

metric for quantifying the functional utility of a given dataset12. 
Both negative and positive SGA score interactions overlapped 
with co-annotated gene pairs more frequently than interactions 
derived from a version of the SGA score without the normali-
zation methods applied (Fig. 4a). At 30% precision, negative  
SGA scores recovered over fourfold more co-annotated gene pairs  
(Fig. 4a), suggesting that experimental variability contributes 
substantially to the false positive rate of large-scale SGA screens. 
The SGA score had similar improvement over genome-wide 
screens processed using the S score3, which does not account 
for many of the systematic effects we identified (Fig. 4a, 
Supplementary Fig. 5a and Online Methods). Despite capturing 
the most extreme genetic interactions, the S score appears to call 
false positives when applied to whole-genome screens because it  
does not account for batch effects (Supplementary Figs. 5c and 6  
and Supplementary Table 1).

Accounting for systematic error in genome-wide genetic-
 interaction profiles yielded several-fold more functionally 
informative profiles than those obtained from nonnormalized 
data (~3,000 functionally related gene pairs at 30% precision 
using SGA score–derived profiles versus <10 functionally related 
gene pairs using nonnormalized colony size measurements;  
Fig. 4b). As observed for individual interactions, the batch effect was  
the main contributor to improved genetic-interaction profiles 
(Fig. 4b and Supplementary Figs. 5c and 6).

relating genetic interactions to protein complexes
We reexamined the relationship between quantitative genetic 
 interactions identified using the SGA score and physical associa-
tion data for proteins. We focused on genetic interactions among 
161 annotated protein complexes (Supplementary Note 5) for which 
more than one protein pair had been screened for genetic interactions7 
and measured the frequency of positive and negative interactions in 
each complex (Fig. 5a, Supplementary Fig. 7 and Supplementary 
Data 2). Consistent with smaller-scale studies13, a large portion 
(92/161) of these complexes were significantly enriched for genetic 
interactions (P < 0.05, hypergeometric test). In the enriched com-
plexes, the majority of genes were linked to one another either by 
pure positive (46%) or pure negative (37%) genetic interactions  
(Fig. 5a), confirming previous theoretical observations14.
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Virtually all (94%) complexes characterized by negative genetic 
interactions had at least one essential gene (Fig. 5a), which is 
much higher than appreciated previously13. This observation 
suggests that essential complexes may contain internal redun-
dancy, allowing the cell to tolerate loss of a single nonessential 
component of the complex (most interactions in our dataset 
were between nonessential genes), whereas additional perturba-
tion often resulted in loss of complex function and impaired cell 
growth. In contrast, only a relatively small fraction of all protein 
complexes associated with only positively interacting gene pairs 
contained an essential gene (Fig. 5a). Complexes with mixed 
interactions (both positive and negative; 17.5%) also tended to be 
essential. For example, the highly organized conserved oligomeric 
Golgi (COG) complex, consisting of an essential and nonessen-
tial lobe15 had negative and positive intra-complex interactions,  
respectively. This demonstrates the resolution of the SGA score 
for capturing interactions that previously had been identified only 
by high-resolution competitive-growth assays4.

In addition to essentiality, the presence of a direct physical 
interaction identified in a yeast two-hybrid assay also influenced 
the type of genetic interaction observed in a protein complex. 
Proteins in a complex that physically interacted directly were 
nearly threefold more likely to have positive genetic interactions 
whereas complex members with no evidence of a direct physical 
interaction showed a modest preference toward negative genetic 
interactions (Supplementary Fig. 7d). The predominant type of 
genetic interaction we observed in a protein complex was predic-
tive of its frequency of interaction with genes in other complexes 
(Supplementary Note 5). Nonessential genes in complexes con-
nected by positive interactions had an average of twofold more 
genetic interactions compared to nonessential genes within com-
plexes connected by negative genetic interactions (Fig. 5b). The 
fewer genetic interactions for essential complexes may reflect the 
inherent redundancy within these complexes; a single perturbation  

is less likely to compromise complex activity, and thus, these 
nonessential genes exhibit fewer genetic interactions. Conversely, 
deletion of a nonessential gene in a positively connected complex 
may have a more severe impact on complex activity and, conse-
quently, exhibited relatively more genetic interactions with the 
rest of the genome.

defining positive interaction subclasses
Even though both positive and negative genetic interactions are 
enriched in physical complexes, the large majority of genetic 
interactions did not overlap with physical interactions from high-
throughput assays16–19. We found 1,182 pairs of protein complexes 
that showed a substantial enrichment for positive interactions 
connecting them (false discovery rate of 5%; Supplementary 
Note 5). The numerous positive genetic interactions that do not 
overlap with protein-protein interactions may reflect functional 
rather than physical relationships between complexes (Fig. 6a).

Single- and double-mutant phenotypes have been compared 
in small-scale studies to identify specific classes of positive inter-
actions, including genetic suppression5,8. We used the SGA score 
to examine the potential for genetic suppression between pro-
tein complexes on a global scale (Supplementary Note 6 and 
Supplementary Data 3). We observed a surprising number of 
suppression interactions across complex pairs, which suggest 
instances in which loss-of-function mutations in one complex 
rescue growth defects associated with loss-of-function mutations 
in a second complex. We constructed a network providing a glo-
bal view of suppression interactions between protein complexes 
(Fig. 6a).

In addition to a cross-complex suppression interaction identified 
previously in a high-resolution growth competition assay4, we vali-
dated several new suppression interactions in our network (Fig. 6a  
and Supplementary Fig. 8). We confirmed loss-of-function  
suppression interactions involving the Rim101 signaling path-
way genes RIM8, RIM9 or DFG16, multivesicular body sort-
ing proteins encoded by DID4 and VPS24, which comprise an 
ESCRT-III subcomplex, and the AAA-type ATPase gene, VPS4 
(Fig. 6a,b and Supplementary Fig. 9a,b). A functional relation-
ship between Rim101 signaling and multivesicular body sorting 
has been established previously20,21. RIM101 encodes a transcrip-
tion factor activated in response to alkaline growth conditions 
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via proteolytic cleavage at endosomal membranes (Fig. 6c). Our 
suppression network highlighted that deletion of genes encod-
ing upstream signaling components of the Rim101 pathway sup-
pressed fitness defects associated with deletion of DID4, VPS24 or 
VPS4; this may occur because a defect in upstream signaling pre-
vents constitutive activation caused by loss of function of down-
stream negative regulators. We confirmed that did4Δ, vps24Δ 
and vps4Δ mutants were sensitive to RIM101 overexpression, 
and this sensitivity was rescued by deletion of RIM8 (Fig. 6d),  
a putative upstream component of the Rim101 pathway21  
(Fig. 6c). Under conditions in which the Rim101 pathway is acti-
vated and required for viability, in the presence of lithium chloride 
(LiCl), suppression is observed in the opposite direction21. These 
observations highlight the importance of considering condition-
specificity when inferring pathway architecture based on genetic 
interactions6. In addition to characterized pathway components, 
our genetic interaction analysis placed DFG16, an uncharacter-
ized gene associated with Rim101 signaling22, upstream in the 
pathway along with RIM8 and RIM9. Another gene previously 
implicated in the Rim101 signaling, YGR122W23, likely functions 
further downstream and closer to the Rim13 protease (Fig. 6c and 
Supplementary Fig. 9a–c).

Disruption of the FAR complex, originally implicated in cell-
cycle control24, rescued growth defects associated with TORC2 
kinase complex mutant alleles, tor2-29 and tsc11-1 (Fig. 6a,e and 
Supplementary Fig. 10a,b). Moreover, FAR11 deletion suppressed 

actin polarization defects of a tsc11-1 mutant in a nonpermissive 
condition (37 °C; Supplementary Fig. 10c). These results suggest 
that the FAR complex may function downstream to negatively 
regulate TORC2 function in actin organization. Similar to TORC2, 
FAR complex members are conserved from yeast to humans, and 
mammalian Far protein orthologs belong to a multiprotein com-
plex that contains the PP2A phosphatase25. Suppression of TORC2 
growth and actin polarity defects was also achieved by loss of PPG1 
(Supplementary Fig. 10a–c), which encodes a PP2A-related phos-
phatase26. Thus, it is possible that the FAR complex mediates its 
function by working with Ppg1 to dephosphorylate and inactivate 
proteins that normally control actin-based cell polarity.

Genes involved in chromatin and secretory functions act as 
hubs in the global genetic interaction map7 and our suppression 
network exhibited a similar topology (Fig. 6a). Specifically, pro-
tein complexes involved in chromatin modification or secretion 
suppressed growth defects associated with disruption of several  
different pathways and/or complexes. One such interaction 
involved suppression of DNA polymerase delta (Polδ) mutants by 
COG complex disruption (Fig. 6a and Supplementary Fig. 11). 
Unlike Polδ, which functions in the nucleus, the COG complex 
is important for establishment and maintenance of Golgi appa-
ratus structure and function15. To explore this genetic relation-
ship, we investigated whether cogΔ deletion mutants also rescued 
the UV light–sensitivity of a strain lacking a nonessential Polδ 
gene, POL32 (Fig. 6f). The cog7Δpol32Δ and cog8Δpol32Δ double 
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mutants grew as well as cog7Δ and cog8Δ strains after UV-light 
exposure, confirming the COG-Polδ suppression interactions and 
the ability of positive interactions to capture broad connections 
between functionally diverse genes.

discussion
Several studies have highlighted the importance of quantitative 
fitness analysis for dissecting pathways and complexes4,5,8,27. 
Although our primary goal was to develop a scoring system for 
extracting accurate fitness estimates and genetic interactions 
from genome-scale screens in budding yeast, our methodology 
can be applied to map genetic interactions in other organisms, 
including different yeast species28,29 and bacteria30, for which 
colony-based assays for genetic interactions exist. Furthermore, 
our methodology can be extended beyond genetic interactions to 
different array-based interaction mapping technologies such as 
yeast two-hybrid16 or protein-fragment complementation assay17, 
which rely on colony growth to identify genes encoding physically 
interacting proteins.

Normalization of experimental factors affecting colony growth 
and experimental grouping of screens was key to extracting fitness- 
based genetic interactions. Because SGA experiments are mani-
pulated robotically, these experimental factors were surprisingly 
reproducible and, thus, amenable to estimation and normalization, 
which enhanced the measurement precision without sacrificing 
throughput. Not surprisingly, given its impact in other genome-
wide studies31, batch effect presented a major challenge. Proper 
experimental design, including randomization of query gene 
screening order, especially with respect to their functional roles, 
was critical to distinguish between biological and experimental 
factors unique to screens belonging to a common batch. Batch 
effect correction may present a greater challenge for smaller-scale 
and functionally biased studies in which true genetic interactions 
and colony variance owing to batch effects are not easily distin-
guished. Repeating screens independently or pairing them with 
control screens for detailed comparison may highlight batch-
 specific effects. Furthermore, randomizing positions of array 
strain replicates may also minimize other sources of experimental 
error associated with plate, spatial and competition effects.

Our global genetic interaction map7 revealed that, contrary to 
previous understanding, both negative and positive genetic inter-
actions tend to occur between, rather than within, complexes and 
pathways. Moreover, suppression interactions observed between 
complexes in distinct subcellular compartments highlighted the 
potential for genetic interactions to uncover important and unex-
pected functional relationships. Consistent with our findings,  
an in silico study found that negative interactions occur more  
frequently between genes with overlapping function whereas 
positive interactions are observed between functionally distinct 
metabolic pathways32. However, unlike our genome-wide survey  
indicating an increased prevalence of negative genetic inter-
actions7, this theoretical analysis suggests that positive interactions  
are surprisingly more abundant than negative interactions in  
S. cerevisiae and Escherichia coli metabolic networks32. Whether 
this is a specific characteristic of metabolic networks or a more 
global network property related to gene essentiality remains to 
be explored.

Genome-wide application of our method is an important step 
toward moving beyond abstract gene function predictions toward 

a specific, mechanistic wiring diagram of the cell. Continued 
quantitative analysis of SGA experiments should enable measure-
ment of all possible yeast double-mutant combinations, and our 
analysis suggests the resolution of SGA scored interactions may, in 
some cases, even be sufficient for inferring pathway architecture 
(Fig. 6b,d). Furthermore, strategies for normalizing experimental 
factors will become more critical as we expand genetic interaction 
maps to different conditions, organisms and complex relation-
ships involving more than two genes. This enormous interaction 
space emphasizes the need for highly scalable approaches and 
tools capable of high-resolution measurement of single and com-
bined mutant phenotypes.

methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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SGA genetic interaction score. The source code for normali-
zation procedures is available in Supplementary Software. The 
raw colony size data are available at http://csbio.cs.umn.edu/
SGAScore/. Details of the normalization methods and genetic 
interaction score are described in Supplementary Note 1.

Strains. All deletion mutant strains used for serial dilution, actin 
staining and RIM101 expression experiments were derivatives 
of BY4741 or Y7092, the construction which has been described 
previously1. Two different temperature-sensitive alleles were used 
in this study: TSQ658 (MATα tsc11-1<natMX can1Δ<STE2pr-
Sp_his5; lyp1Δ<STE3pr-LEU2; his3Δ1 leu2Δ0 ura3Δ0 LYS2) 
and TSQ838 (MATα tor2-29<natMX can1Δ<STE2pr-Sp_his5; 
lyp1Δ<STE3pr-LEU2; his3Δ1 leu2Δ0 ura3Δ0 LYS2). All double-
mutant strains were constructed by SGA.

SGA screens. We performed 1,712 genome-wide SGA screens 
using eight BioMatrix Colony Arrayer Robots (S&P Robotics). 
A single SGA screen takes approximately 3 weeks, and the entire 
dataset was collected over 2 years, as described previously1,7. 
Double-mutant SGA plates were digitally photographed, and 
colony areas were obtained from the images using the Colony 
software (S&P Robotics).

Spot dilutions: tsc11-1 suppression. Overnight cultures were 
serially diluted 20-fold and spotted onto agar medium as indi-
cated. Strains were grown for 2 d at 30 °C or 37 °C as indicated.

Actin staining. Cultures were grown at 30 °C to early log phase 
(OD600 nm of ~0.1–0.2) and then shifted to nonpermissive  

temperature (37 °C) for 6 h. Actin staining was done as described 
previously38 without added fluorescent brightener. Stained cells 
were imaged using a DMI 6000B fluorescence microscope (Leica 
Microsystems) equipped with a spinning-disk head, an argon 
laser (458 nm, 488 nm and 514 nm; Quorum Technologies) and 
ImagEM charge-coupled device camera (C9100-13; Hamamatsu). 
Cells were imaged in seven z stacks with 0.3-μm intervals, and all 
z stacks were collapsed into one extended focus.

UV-light sensitivity: pol32Δ suppression. UV-light sensitivity 
assay was performed as described previously39.

S score comparative analysis. Comparative analyses were  
conducted by processing raw colony size data, derived from 
SGA, using the S-score method that was reimplemented as 
described previously3.

Protein-protein interaction standard. Protein-protein interaction 
data were downloaded from BioGRID40 on 17 September 2009.

Comparison of single-mutant fitness measurements. Fitness 
or growth-rate data were downloaded from the supplementary  
websites of the respective publications and used directly for 
all studies except for reference 35, which was exponentially  
transformed to reflect mutant fitness.
38. Friesen, H. et al. Characterization of the yeast amphiphysins Rvs161p and 

Rvs167p reveals roles for the Rvs heterodimer in vivo. Mol. Biol. Cell ��, 
1306–1321 (2006).

39. Bellaoui, M. et al. Elg1 forms an alternative RFC complex important for 
DNA replication and genome integrity. EMBO J. ��, 4304–4313 (2003).

40. Stark, C. et al. BioGRID: a general repository for interaction datasets. 
Nucleic Acids Res. ��, D535–D539 (2006).
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