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The many virtues of the tiny nematode C. elegans make it a 
promising model system for the discovery and characteriza-
tion of novel bioactive compounds. Because of the worm’s 

rapid life cycle, small size and hermaphroditism, libraries of small 
molecules can be screened for bioactivity in the context of the whole 
animal and over its entire life cycle in a high-throughput fashion1. 
Furthermore, the power of C. elegans genetic analysis has repeatedly 
uncovered the mechanism of action of both small-molecule tools2–5 
and novel anthelmintics6,7. The worm also shares extensive genetic 
conservation with more complex animals, and the growing list of 
human disease models in the worm further distinguish C. elegans as 
a unique tool for the discovery of novel therapeutics8.

Unfortunately, C. elegans is relatively resistant to perturbation 
by pharmacologically active molecules. For example, pharmaco-
logical agents must often be applied to the worm at concentrations 
that are orders of magnitude higher than those used in mammalian 
cell culture2,9–11. Moreover, we found that only 2% of pharmaco-
logically active compounds can induce a robust phenotype in the 
worm when screened at a concentration of 25 μM1,2. Screening 
compounds at a higher concentration may overwhelm the worm’s 
xenobiotic defenses, but doing so can be prohibitively costly and 
would likely result in molecules precipitating out of solution in the 
screening medium. Circumventing the resistance of C. elegans to 
bioactive compounds would increase its utility as a small-molecule 
screening tool.

C. elegans has extensive physical and enzymatic xenobiotic 
defenses that may render many pharmacological tools ineffective. 
The physical barriers include a four-layered cuticle that lines its 
exterior and oral and rectal cavities12, as well as an intestine through 
which solutes are rapidly pumped13. The worm’s genome is replete 
with predicted xenobiotic detoxification enzymes, including 86 
cytochrome P450s, and 60 ATP-binding cassette transporters, many 

of which likely function as xenobiotic efflux pumps14. Compounds 
that are ineffective when applied to whole animals can readily 
antagonize their targets if they are provided with direct access2,15,16.  
Hence, it is likely that C. elegans is generally resistant to exogenously 
applied pharmacologicals because they fail to accumulate to effective 
concentrations within its tissues. Modeling the properties of small 
molecules that promote accumulation in the worm would greatly 
facilitate the discovery of new biological probes and drug leads.

Typically, only a small fraction of the more than 13 million com-
mercially available small molecules17 is screened by any one aca-
demic laboratory. Many bioactive compounds therefore remain 
undiscovered within the unscreened fraction of purchasable chemi-
cal space. For instance, the largest C. elegans chemical screen to 
date used 88,000 compounds3, which covers less than 0.7% of avail-
able chemical space. Even this relatively large-scale screen leaves 
more than 99% of all possible bioactives undiscovered within the 
unscreened fraction of available chemical space. Hence, it is essen-
tial to maximize the number of bioactive compounds in the fraction 
of molecules that is screened. Given that bioavailability is a pre-
requisite to bioactivity, one way to increase the hit rate of a chemical 
screen is to develop a property-based computer model that predicts 
small-molecule accumulation within the screening system of choice. 
The model can then be used to select molecules with an increased 
likelihood of bioavailability from the purchasable chemical space 
and improve the chances of finding a hit.

Here, we describe a high-throughput HPLC-based technique to 
measure the bioaccumulation of exogenous compounds and their 
metabolites in C. elegans. We use this method to assay the accumula-
tion of more than 1,000 commercially available drug-like molecules 
in whole animals. We use these data to build a predictive model that 
distinguishes accumulating from non-accumulating compounds 
on the basis of their structural properties. When applied to two 
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naive chemical libraries, our predictive model of bioaccumulation 
enriches for compounds with diverse bioactivities in the worm.

reSUlTS
an hPlc-based small-molecule accumulation assay for worms
As a first step toward developing a predictive model of bioac-
cumulation in C. elegans, we surveyed over 1,000 commercially 
 available drug-like molecules for their ability to accumulate in worm  
tissue. To do this, we modified our previously described HPLC-based 
assay2 to a 96-well-plate format. Briefly, we incubated ~5,000 fourth-
larval-stage worms in 40 μM of compound for 6 h in filter plates. We 
then drained the incubation buffer from the wells, washed the worms,  
re-suspended them in fresh buffer, transferred them to new plates 
and then lysed the worms chemically. We used a reverse-phase HPLC 
system coupled with a diode array detector (HPLC-DAD) to sepa-
rate and visualize the components of the worm lysate (Fig. 1a). This 
method measures small-molecule bioaccumulation in C.  elegans, as 
opposed to bioavailability, because it detects compounds that are 
taken up by the worms during incubation and then remain in the 
worms after washing. Similar HPLC approaches have been devel-
oped to identify drugs and drug metabolites for clinical and  forensic 

purposes18,19. Though the use of a diode array detector limits our 
detection space to compounds with conjugated systems of pi bonds 
(for example, aromatics), we chose this approach over a mass spec-
trometry–based approach because of the cost effectiveness and rela-
tively high-throughput nature of the HPLC-DAD technique.

Here, we define an accumulating molecule as one that (i) is 
detectable by our HPLC protocol in at least two of three replicate 
lysates, (ii) is undetectable in the no-worm sham trials (to control 
for compounds that precipitate in the filter-plate wells) and (iii) 
remains detectable after the worms are washed with the highest 
concentration of sodium dodecyl sulfate (SDS) that does not result 
in any obvious physiological changes (to control for small-molecule 
association with the cuticle). Molecules that accumulate as puta-
tive metabolites (see below) are reprocessed using dead worms to 
ensure that the putative metabolites are dependent on living worms 
(to control for accumulated contaminants or spontaneous oxidation 
products of the parent molecule).

As a proof of principle, we used our high-throughput (HT) HPLC 
method to examine the accumulation of 21 members of the 1,4-di-
hydropyridine (DHP) family of L-type calcium channel antagonists 
after either a 0.5- or 6-h co-incubation with worms (Supplementary 
Fig. 1). Using a low-throughput approach, we previously examined 
the accumulation of 12 of these DHPs after a 2 h incubation period 
and found that four of the 12 DHPs accumulate, including the three 
bioactive molecules nemadipine-A, nemadipine-B and felodipine, 
and one inactive DHP called analog 7 (ref. 2). Using our HT-HPLC 
approach, all three bioactive DHPs were found to accumulate at 
both time points, as well as DHP analog 7 at the 0.5-h time point 
and DHP analog 1 at the 6-h time point. Hence, our HT-HPLC 
protocol can robustly detect the accumulation of exogenous small 
 molecules in the worm, and the results obtained using the HT 
method  correlate well with the low-throughput approach.

a survey of drug-like molecule accumulation in C. elegans
There are currently more than 13 million commercially available 
small molecules17, a quantity that greatly exceeds what could likely 
be sampled in any single C. elegans screen. Therefore, it is impor-
tant to carefully select the compounds that will be screened in order 
to maximize the number of bioactives obtained. Property-based 
modeling of small-molecule accumulation in worms could be used 
to prioritize purchasable chemical space so as to enrich for com-
pounds that have a greater likelihood of accessing a biologically 
relevant target. Even though the overwhelming majority of com-
mercially available compounds obey Lipinski’s rule-of-five and are 
considered “drug-like”17,20, the rate at which molecules are identi-
fied as bioactive against C. elegans remains relatively low1,2. To bet-
ter understand the molecular properties of commercially available 
drug-like molecules that facilitate their accumulation in C. elegans, 
we used our HT-HPLC assay to measure the accumulation of the 
Spectrum collection of 2,000 pharmacologically active compounds 
(MicroSource Inc.) in whole worms. We chose the Spectrum library 
because it is enriched for popular small bioactive compounds that 
include human drugs and pharmacological tools21, and more than 
90% of these compounds have drug-like properties (Supplementary 
Fig. 2). In addition, we have previously investigated this collection 
for bioactivity in wild-type worms1,2, which allowed us to compare 
bioaccumulation and bioactivity. Of these 2,000 Spectrum mole-
cules, 1,096 were detectible when we processed 7.5 nmol of each 
molecule using our HPLC-DAD system.

We next determined which of the 1,096 detectable Spectrum 
molecules accumulate in wild-type worms after a 6-h incubation. 
We found that 96 compounds (9.3%) accumulate out of a set of 1,027 
(69 molecules were eliminated from consideration because the sample 
was either lost during processing or considered a false  positive after 
control experiments). We call this dataset the  “complete Spectrum 
dataset” (Supplementary Fig. 3a). The  majority of  accumulating 
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Figure 1 | a survey of exogenous drug-like molecule accumulation in 
C. elegans. (a) Heat-mapped Hplc-dAd chromatograms. Retention 
time is shown on the x axis, and absorbance wavelength is shown on 
the y axis. the scale of absorbance intensity, in milli–absorbance units 
(mAu), is shown on the right. the dMSo peak (red arrow), peak of worm 
contents (green arrows) and small-molecule peak (yellow arrows) are 
indicated. (b) pie charts showing the fraction of accumulating structures 
for 387 compounds from the Spectrum library (Microsource) and for 23 
nematicides derived from a 10K diveRSet library (chembridge) and the  
1K HitsKit library (Maybridge).
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compounds (64%) are found in worms at concentrations that are less 
than the 40-μM assay concentration, with a median concentration of 
26 μM (Supplementary Fig. 4). We discovered a bias in our accumu-
lation dataset such that molecules with relatively low limits of detec-
tion are enriched for accumulating compounds, and molecules with 
relatively high detection limits are enriched for non-accumulating 
compounds (see Supplementary Methods for the approach taken to 
estimate the limits of detection for the compounds in the dataset and 
for our analysis of bias). We therefore applied a 19-μM detection-
limit cutoff to the complete Spectrum dataset to make an unbiased 
assessment of the fraction of small drug-like molecules that accu-
mulate in worms (see Supplementary Methods for the derivation 
and application of this cutoff). We found that only 26 (6.7%) of the 
387 molecules that passed the cutoff accumulate using this unbiased 
criterion (Fig. 1b). These data support the conclusion that worms 
are generally resistant to the accumulation of exogenous drug-like 
molecules and provide a foundation to investigate the properties that 
govern small-molecule accumulation in worms.

exogenous compounds can accumulate as metabolites
Of the molecules that we have found to accumulate in worms 
(Supplementary Fig. 3), 36% accumulate as metabolites. The 
majority of these metabolites have a similar spectral absorption 
profile as their respective parental compounds but typically elute 
from the reverse-phase HPLC column faster than the parental 
molecule. To verify that the metabolites are bona fide derivatives 
of the parental compounds, we examined 17 metabolites from 12 
parental compounds (1–12) by mass spectrometry and tandem 
MS (MS-MS; Table 1 and Supplementary Fig. 5). For 11 of the 
12 compounds, our analyses show that the metabolites are parent 
derived, indicating that the majority of the novel peaks observed on 
the HPLC chromatograms represent bona fide metabolites of the 
parental  compound. For one of the 12 compounds (compound 12 in 
Table 1), we could not identify abundant masses specific to the puri-
fied metabolite fractions relative to the DMSO control fractions.

We deduced the modification(s) made to several of the paren-
tal compounds on the basis of the mass of the metabolites and 
their fragmented derivatives in the MS-MS analysis (Table 1 and 
Supplementary Fig. 5). The modifications made to parental com-
pounds 4, 5 and 6 are consistent with drug metabolism in mam-
mals whereby phase I enzymes functionalize the drug through 
demethylation or reduction for subsequent metabolism by phase II 
conjugating enzymes22,23. The diol metabolite of compound 8 likely 
results from the activity of the phase I enzymes cytochrome P450 
and epoxide hydrolase. For compounds 1, 2, 3 and 7, only conju-
gated derivatives were found, including glucosidated and sulfated 
derivatives, suggesting that these compounds are modified directly 
by phase II–like enzymes. To verify the correctness of our proposed 
biotransformations, accurate mass determinations were performed 
for four representative metabolites (indicated in Table 1). For all 
four metabolites the measured masses are within 5 p.p.m. of the cal-
culated monoisotopic masses, indicating that the elemental compo-
sitions are correct (see Supplementary Table 1). This work provides 
the first in vivo survey of xenobiotic metabolism in C. elegans, to 
our knowledge, and reveals many similarities of drug metabolism 
between worms and mammals.

a predictive structure-based accumulation model (Sam)
The majority of the purchasable drug-like compounds we have so 
far tested fail to accumulate in worms (Supplementary Fig. 3). 
Given that most commercially available chemical libraries are 
designed to have similar drug-like properties as the molecules we 
have tested17, we sought to better understand the attributes of these 
compounds that influence their accumulation in worms and to 
develop a  generally applicable model that can predict bioavailability 
on the basis of these attributes.

To build a predictive small-molecule structure-based accumulation 
model (SAM) for worms, we consolidated all of the 1,132 molecules 
we have assayed for accumulation into one dataset (Supplementary 
Fig. 3). After applying the 19-μM detection limit cutoff and remov-
ing duplicate structures, 483 molecules remained in the SAM train-
ing set, of which 74 accumulate in worms (Fig. 2a). We used the 483 
compounds to train an ECFP_4-Naive Bayesian classifier to distin-
guish accumulating from non-accumulating molecules on the basis 
of their structural features (Fig. 2b). ECFP_4 is a two-dimensional 
circular fingerprint descriptor that represents each compound as a 
series of small fragments that are built by starting from each heavy 
atom in the compound and extending out up to four bond lengths. 
In total, 4,698 fragments were derived from the 483 compounds in 
the training set using the ECFP_4 fingerprint descriptor. The Naive 
Bayesian classifier identifies the fragments that are over-represented 
and under-represented in the accumulating subset of molecules24,25. 
Overrepresented fragments receive positive scores, and under-
represented fragments receive negative scores. The accumulation 
score of a molecule is then calculated by summing up the scores of its 
respective fragments. There was relatively little overlap in the scores 
of accumulating and non-accumulating subsets of the 483-molecule 
training set (Fig. 2c), indicating that there are fragments that distin-
guish accumulating from non-accumulating structures in worms.

The predictive power of the SAM was estimated by five inde-
pendent five-fold cross-validation experiments (Fig. 2d). On aver-
age, the SAM performs about three times better than random; the 
top scoring 5% and 10% of molecules are 3.5- and 2.9-fold enriched 
for accumulation compared to randomly selected compounds, 
respectively, indicating that the SAM can be successfully applied to 
independent datasets. When compared to three additional Naive 
Bayesian models, trained using distinct molecular descriptors 
(MDL PublicKeys26, physicochemical properties and Lipinski prop-
erties20), the SAM outperforms all three as determined by five-fold 
cross-validation (Supplementary Fig. 6).

To biologically validate the SAM and to assess its general applica-
bility, we used it to rank the 50,000 compounds of a 50K DIVERSet 
library (Chembridge Corp.) and experimentally tested its predic-
tions. First, we applied an in-house predictive model of UV-visible 
absorbance to the 50K DIVERSet library to increase the probabil-
ity that any chosen molecule could be detected by our diode array 
detector (see Supplementary Methods). Second, we excluded 
library molecules from consideration that were >85% similar to any 
molecule in the SAM training set. After applying these two filters, 
we applied our SAM to the remaining 4,993 DIVERSet molecules. 
We randomly selected 23 molecules from the top-scoring 5%, 29 
molecules from the bottom-scoring 5% and 28 molecules from the 
entire set (which we refer to as random-scoring molecules). We 
assayed the accumulation of these 80 molecules in worms using our 
HT-HPLC method. After controls, and after applying the 19-μM 
detection limit cutoff, 15 of the top-scoring, 25 of the bottom-
scoring and 18 of the random-scoring compounds remained in the 
test set. We found that only 1 out of 25 (4%) of the bottom-scoring 
molecules accumulate, representing a 2.8-fold under-enrichment 
relative to the random-scoring compounds (Fig. 2e). By contrast, 
we found that 9 out of 15 (60%) of the top-scoring molecules accu-
mulate, representing a 5.5-fold enrichment compared to the ran-
dom-scoring compounds and a 15-fold enrichment relative to the 
bottom-scoring molecules (Fig. 2e). These results indicate that our 
structure-accumulation model can be applied to diverse libraries 
and successfully predict the accumulation of exogenous drug-like 
compounds in worms on the basis of their structural features.

Structural features that influence accumulation
To identify which of the 4,698 ECFP_4 fragments most strongly 
influence the accumulation of exogenous compounds in worms 
we compiled the top-scoring and bottom-scoring five  structurally 
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non-redundant and non-overlapping fragments (Fig. 3 and 
Supplementary Fig. 7). Strikingly, the top five and bottom five 
fragments are present in ~50% of the accumulating and non-
 accumulating compounds, respectively (Fig. 3a,b).

To interpret how the top five features facilitate accumulation, we 
considered the structural scaffolds from which they were derived within 
our SAM training set. Four scaffold types enriched for  accu mulating 

molecules were identified: (i) the ‘unfused’ biaryl scaffold, (ii) 
the methyl piperazine scaffold, (iii) the 2- or 3-phenyl-chromen- 
4-one scaffolds and (iv) the ‘fused’ biaryl scaffold (Fig. 3c–f). Seventy-
two distinct compounds in the training set are composed of these four 
scaffolds, and they account for 41% of the accumulating compounds 
in the training set. Notably, 10 out of 12 accumulating ‘unfused’ biaryl 
structures accumulate as metabolites in the worm, and all but one 

Table 1 | characterization of C. elegans xenobiotic metabolites
parent (p) Metabolite 1 (M1) Metabolite 2 (M2)

Compound parent structure Molecular weight Mass enzymatic modification Mass enzymatic modification

1 O O OH 240 402 o-hexosidationa [p + 162]

2
O OH

O O

284 446 o-glucosidationb [p + 162]

3 OH O

HOO

244 406 o-hexosidation [p + 162]

4

O

O 238 386 demethylation; o-glucosidationa,b  
[p – 14 + 162]

5
O

O

N 225 211 demethylation [p – 14] 373 o-glucosidationb [M1 + 162]

6

O

O

O
O

282 284 Reductionc [p + 2] 446 o-glucosidationb,d [M1284 + 162]

282 268 demethylationc [p – 14] 430 o-glucosidationa,b,d [M1268 + 162]
7

N

H2N

NH2

N
N

213 455 n-glucosidation; n-sulfation  
[p + 162 + 80]

8
N

N+

O–

O

240 274 Aryl epoxidation; epoxide hydrolysisa 
(diol formation) [p + 16 + 18]

9
O

210 — —

10 O 196 — —

11 S S
O

208 — —

12
S

NHN

O

284 n/a n/a n/a n/a

Metabolite masses and corresponding biotransformations, inferred from MS and MS-MS analysis, are listed (see Supplementary Fig. 5 for supporting MS data). A dash indicates that the metabolite is 
likely a bona fide derivative of the parent molecule but the respective biotransformation could not be unambiguously determined. For the metabolites of compound 12, abundant masses specific to the 
metabolite fractions, compared to controls, could not be identified.
aAccurate mass was measured for metabolites 1_M1, 4_M1, 6_M2268 and 8_M1 (Supplementary Table 1). All four metabolites have measured accurate masses within 5 p.p.m. of their respective calculated 
monoisotopic masses. bthe metabolites of compounds 2, 4, 5 and 6 were confirmed to be o-linked β-glucosides by β-glucosidase digestions (Supplementary Fig. 10). cMetabolites M1284 and M1268 
derived from compound 6 had the same retention time, when processed using the Ht-Hplc method, and were co-purified. dMetabolites M2284 and M2268 derived from compound 6 had the same retention 
time, when using the Ht-Hplc method, and were co-purified.
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induce penetrant lethality at 25 μM, suggesting that this scaffold may 
be a useful building block for the development of novel nematicides.

Three of the bottom five fragments (B1, B2 and B4 in Fig. 3b) 
are derived from compounds that contain a carboxylic acid group, 
an aliphatic hydroxyl group or a sulfonyl group. It is not surprising 
that these fragments are over-represented in the non-accumulating 
subset of molecules, for a number of reasons. First, these features 
contain hydrogen and oxygen atoms that can make hydrogen bond 
contacts with water molecules, promoting solubility in aqueous 
buffer and preventing cell membrane permeability. Second, these 
functional groups are known to be sites of phase II conjugation 
reactions in mammals, such as glucuronidation, glycosylation and 
sulfation23. Thus, compounds with these features are more likely to 
be modified and excreted by the organism. In agreement with these 
data, an analysis of the Lipinski property distributions for the accu-
mulating and non-accumulating subsets of our training set shows 
that the accumulating compounds generally have fewer hydrogen 
bond donors and acceptors than the non-accumulating molecules 
and that accumulating structures typically have a greater LogP than 
non-accumulating structures (Supplementary Fig. 8). Despite 
these differences, the Lipinski properties perform the least well of all 
the approaches tested to predict accumulation (see Supplementary 
Fig. 6). It is presently unclear how the remaining two fragments (B3 
and B5 in Fig. 3b) might antagonize small-molecule accumulation 
in the worm.

We observed that compounds with scaffolds that facilitate accu-
mulation will generally accumulate in worms unless they have one or 
more of the bottom-scoring fragments B1–B5 (Fig. 3c–f). Hence, the 
features that antagonize small-molecule accumulation  generally act 
as the ‘master’ determinants of accumulation. An example of how the 
negative features influence bioaccumulation is  provided by our study 
of the biphenyl fenbufen, a nonsteroidal anti- inflammatory drug27, 
and three fenbufen analogs (Supplementary Fig. 9). Fenbufen and 
fenbufen analog 3 both contain carboxylic acid groups and fail to 
accumulate in worms. By contrast, fenbufen analogs 1 and 2 both 

lack carboxylic acid groups and accumulate as metabolites (com-
pounds 9 and 10 in Table 1). The fenbufen analogs that accumulate 
as metabolites also induce penetrant lethality at 25 uM, but the non-
accumulating analogs do not.

The Sam enriches for compounds with distinct bioactivities
We previously found that the only DHPs that show bioactivity are 
those that can accumulate in worm tissue (Supplementary Fig. 1), 
suggesting that bioaccumulation is generally required for bioactiv-
ity. Additional observations made here further support this idea. 
First, only those fenbufen analogs that accumulate are bioactive 
(Supplementary Fig. 9). Second, only two molecules from our 
unbiased Spectrum dataset are bioactive in the worm, and both 
accumulate (Supplementary Fig. 3a). Finally, 17 out of the 23 nem-
aticides that we previously described2 accumulate to concentrations 
greater than 19 μM in the worm (Fig. 1b).

Given that bioaccumulation is correlated with bioactivity, we 
anticipated that our SAM would also enrich for bioactive  molecules 
in C. elegans. To test whether our SAM can enrich for molecules that 
are bioactive in the worm, we used it to score the 10K DIVERSet 
library (Chembridge Inc.) that we previously screened for the induc-
tion of gross phenotypes in wild-type worms1,2. We then ranked the 
molecules that are structurally distinct from those in the SAM’s 
training set (n = 9,740) and determined whether the top-scoring 
molecules are enriched for phenotype. Thirty percent (14 out of 47) 
of the bioactive molecules in the library were present in the top-
scoring 5% of the compounds, representing a six-fold enrichment 
of bioactives (P < 3.5 × 10−8, Fig. 4a). To further test our SAM’s 
ability to enrich for compounds with distinct bioactivities, we used 
it to rank 1,040 compounds that were screened by the National 
Institute of Neurological Disorders and Stroke (NINDS) for the 
 correction of neuronal defects in a worm model of Huntington’s 
 disease (PubChem BioAssay, AID: 1599). The top 5% of molecules 
that are structurally distinct from the compounds in our SAM’s 
training set (n = 826) are 3.8-fold enriched for bioactive molecules 
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relative to random (P < 0.02, Fig. 4a). Hence, applying our SAM 
to naive libraries can greatly increase the efficiency by which novel 
bioactive molecules are identified, which validates the model and 
the HT-HPLC method used to generate it.

Diversity analysis of Sam-ranked structures
Applying structure-based filters to a chemical library will inevi-
tably narrow its structural diversity. We therefore investigated 
the impact of our SAM on structural diversity in three different 
ways using the Tanimoto molecular similarity scoring system 
with ECFP_4 fingerprints (see Methods). Pairwise Tanimoto 
co efficients range from 0, which indicates the absence of struc-
tural similarity, to 1, which indicates identical structures. In prac-
tice, Tanimoto scores ≤0.2 are so low that they do not represent 
any meaningful structural similarity28,29.

In our first approach to assessing the diversity of SAM-selected 
molecules, we calculated all pairwise Tanimoto coefficients for the 
top-scoring 5% and a random-scoring 5% of compounds from each 
of the 10K DIVERSet and NINDS libraries (the distributions are 
shown in Fig. 4b). The average pairwise similarity scores for the 
top-scoring compounds from the DIVERSet and NINDS libraries 
are 0.138 and 0.112, respectively, with 87% and 94% of the pair-
wise scores being ≤0.2, respectively. The average pairwise similar-
ity scores for the random-scoring compounds from the DIVERSet 
and NINDS libraries are 0.110 and 0.089, respectively, with 96% and 
97% of the pairwise scores being ≤0.2, respectively. Although the 
random-scoring molecules are expectedly more diverse, our SAM 
does not simply reduce the library to a small number of structurally 
similar compounds.

We next investigated the diversity of the core scaffolds present in 
the SAM-selected compounds. Murcko scaffolds30, which retain the 
ring systems and linkers of molecules but eliminate the side chains, 
were generated for the top-scoring 5% of molecules and three ran-
dom sets of an equivalent number of molecules from each of the 
10K DIVERSet and NINDS libraries. Similarity networks were cre-
ated for the top-scoring and the random-scoring sets of scaffolds, 
in which scaffolds are connected if they have a pairwise ECFP_4 or 
Tanimoto score ≥0.7 (the top-scoring scaffold similarity networks 
are shown in Fig. 4c). Scaffold networks generated in this way 
have been used to explore the scaffold composition of purchasable 
screening libraries31. We then counted the number of unique scaf-
fold clusters in each network, including unconnected singletons. 
The top-scoring DIVERSet scaffolds are comprised of 290 distinct 
scaffold clusters (Fig. 4c), and the random-scoring DIVERSet scaf-
folds are comprised of an average of 380 (±3.5) distinct scaffold clus-
ters. The top-scoring NINDS scaffolds are composed of 33 distinct 
scaffold clusters (Fig. 4c), and the random-scoring NINDS scaffolds 
are composed of an average of 30 (±5.0) distinct scaffold clusters. 
Hence, our analysis shows that although the application of our SAM 
can reduce the scaffold diversity of a given library, the top-scoring 
5% of molecules (~500 structures) from our analyses still represent 
hundreds of unique scaffolds.

Finally, we assessed the structural diversity of the bioactive mol-
ecules in the top-scoring 5% of molecules from the 10K DIVERSet 
and NINDS libraries. We built similarity networks for these bio active 
compounds by linking compounds with a Tanimoto  coefficient of 
0.3 or more, as a high degree of structure-phenotype concordance 
has been observed in cell-based assays for pairs of molecules that 
have a Tanimoto coefficient of 0.3 or greater32,33. Nine out of 14 
(64%) active compounds in the top-scoring DIVERSet subset are 
singletons in the network, and two out of four (50%) actives in the 
top-scoring NINDS subset are singletons in the network (Fig. 4d). 
Furthermore, the majority of the bioactive compounds retrieved in 
the top-scoring 5% of the 10K DIVERSet (11 out of 14) and NINDS 
(four out of four) libraries have distinct core scaffolds (Fig. 4c). 
Hence, our analyses of the structural diversity of the SAM-selected 
compounds suggest that the SAM enriches for both accumulating 
and bioactive molecules without dramatically limiting the  structural 
diversity of the compounds screened or the hits obtained.

For the benefit of the chemical biology community, we have 
ranked all of the >13 million purchasable molecules of the ZINC 
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Figure 3 | Prominent substructures that influence small-molecule 
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accumulation model (b1–b5). pie charts show the fraction of accumulating 
and non-accumulating compounds in the training set with each of the 
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database using our SAM. These data are available as a zipped 1.1-GB 
.tab file (tab separated text file) at http://142.150.52.140:10080/
ZINCSAM.zip. We have made the top-scoring 5% of the ZINC data-
base available as an Excel file (Supplementary Data 1).

DiScUSSiON
The general resistance of C. elegans to pharmacological perturbation 
has impeded its utility as a chemical-genetic model system. Our sys-
tematic analysis of drug-like compound accumulation has shown for 
the first time that poor bioavailability is a major contributing factor 
to this resistance. Through property-based modeling, we are able to 
identify molecules that have an increased likelihood of accumulating 
in worms and, by extension, have an increased likelihood of affect-
ing a biologically relevant target. Hence, by screening molecules that 
are more likely to accumulate, we are able to circumvent many of the 
xenobiotic defenses of the worm to identify new biological probes 
and potential drug leads. Our structure-based accumulation model 
now provides a tool by which commercially available molecules can 
be prioritized to increase the probability of identifying structurally 
distinct compounds with diverse bioactivities in worms, resulting in 
more efficient screens. The approach of generating computer-based 
models to identify molecules with a higher likelihood of bioactivity 
can be applied to other systems as well (such as planaria, Drosophila 
and zebrafish) and could serve as a new paradigm for the design of 
model organism chemical screens.

Given the resulting enrichment of bioactive molecules upon the 
application of our SAM, the resulting minimal loss in library diver-
sity is acceptable for our purposes. However, it is up to the individual 
screener to decide what constitutes an acceptable loss in diversity. 

Personalized diversity filters can be applied to SAM-selected com-
pounds to ensure adequate structural uniqueness.

There are additional important considerations when applying 
our model to novel compound sets in the future. First, the model 
will work best when applied to libraries with feature distribu-
tions that are similar to those of the training set used to generate 
the model. In the same vein, the structural fragments learned 
by our model do not represent an exhaustive list, and there are 
likely other structural features that influence small-molecule 
bioavailability in worms that were not sampled in our analysis.  
Sampling of more compounds from an increasingly diverse 
chemical space will undoubtedly improve the prediction cover-
age of our model. Finally, our enrichment-of-bioactives and 
diversity analyses were performed on only two libraries—the  
only two publicly accessible, large-scale screening datasets for  
C. elegans. When applying our model to new compound sets,  
the enrichment rates and structural diversities of top-scoring 
compounds will depend on the characteristics of the compound 
sets being ranked and the phenotypes assayed.

The structural scaffolds we have identified provide the first 
guidelines to better design new small-molecule libraries intended 
for chemical screens with C. elegans and perhaps other nematodes. 
Notably, the biaryl scaffold, the piperazine scaffold and the chrome-
none substructure in the 2- or 3-phenyl-chromen-4-one scaffolds 
have all been previously identified as privileged substructures34,35.  
A privileged substructure is defined as “a single molecular  framework 
able to provide ligands for diverse receptors”34,36. Specificity can be 
achieved by varying the substituents that decorate the privileged 
scaffold37–39. For example, the biphenyl scaffold, which accounts for 
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diversity of the compounds shown in (a). the distributions of all pairwise tanimoto similarity scores are shown for the top-scoring 5% of compounds, as 
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one-third of the accumulating ‘unfused’ biaryls in worms, is found 
in 4.3% of all known drugs, representing molecules from diverse 
therapeutic classes34,38. Indeed, statistical analysis of NMR-derived 
binding data for 10,080 compounds (represented by 104 sub-
structural fragments) and 11 protein targets identified the biphe-
nyl scaffold as a privileged substructure that preferentially binds 
 proteins38. These results are encouraging, as molecular scaffolds that 
promote bioavailability in C. elegans also promote physical inter-
actions with diverse protein targets.

Our analysis of nematicide accumulation in worms revealed that 
40% of these compounds accumulate as metabolites in the worm. 
This result suggests that compounds may be processed to their 
bioactive form by the worm, which is analogous to how prodrugs 
like heroin and levodopa are metabolized to their bioactive form 
in humans40,41. Hence, for a given bioactive compound discovered 
through an in vivo screen, it is not a certainty that the parent struc-
ture is the bioactive species. This insight is especially relevant to those 
who seek the target of a compound using biochemical approaches, 
which may not be fruitful if the bioactive agent is a metabolite of the 
 parental compound.

Here, we have established our high-throughput HPLC-based 
accumulation assay as a powerful approach to investigate the inter-
action of a whole animal with a constellation of chemical struc-
tures in its environment. Relative to the HPLC protocols used with 
other model systems42, the chromatographic output of our worm 
HT-HPLC assay yields a high signal-to-noise ratio because the 
majority of endogenous worm material elutes in the flowthrough. In 
combination with the wide spectral range of the diode array detec-
tor, the low background of our assay allows for the easy identifi-
cation and quantification of small molecules and their metabolites 
from worm lysates. As a result, we now have a better understanding 
of the property space occupied by drug-like molecules that accu-
mulate in C. elegans and have devised methods to circumvent its 
xenobiotic defenses.

meThODS
HPLC-based small-molecule accumulation assay. Late-stage fourth-larval-stage  
worms, grown from synchronized hatchlings at 25 °C for 45 h on NA22  
Escherichia coli, were used for the accumulation assay. The worms were harvested,  
washed at least twice and re-suspended in enough M9 buffer1 for a final concen-
tration of ~10 worms per μl. Five hundred microliters of this worm suspension  
was added to each well of Pall AcropPrep 96-well filter plates (0.45-μm GHP  
membrane, 1-ml well volume). Chemicals were added to each well to a final  
concentration of 40 μM (0.4% DMSO, v/v). Worms were incubated in the small-
molecule solutions at 20 °C for 6 h with aeration, after which the incubation buffer  
was drained from the wells by vacuum (6 h is the longest time allowed before the  
filter membranes weaken). The worms were then washed three times with 500 μl  
of M9 buffer. After washing, the worms were resuspended in 50 μl of M9 buffer,  
transferred to new 96-well solid-bottom plates and stored frozen at −20 °C.  
The samples were later lysed by adding 50 μl of a 2× lysis solution (100 mM KCl,  
20 mM Tris, pH 8.3, 0.4% SDS, 120 μg ml−1 proteinase K) to each well and  
incubating the plates at 60 °C for 1 h with agitation. After lysis, the plates were 
stored frozen at −80 °C for later processing by HPLC (see Supplementary Methods  
for the full HPLC methods).

Cheminformatics and machine learning. The cheminformatic package in Pipeline 
Pilot version 6.1 (Scitegic Inc. Accelrys) was used to standardize the representa-
tion of all compounds studied, including removing inorganic compounds, salts 
and duplicates. Pipeline Pilot was also used for all Naive Bayes statistical model 
building. The Naive Bayesian structure-based accumulation model (SAM) was 
built using the Extended Connectivity Fingerprints (ECFP_4) method25, in which 
the compounds are represented by overlapping fragments of a diameter of up to 
four bond lengths. The SAM was validated using a five-fold cross validation pro-
cedure, where four-fifths of the data are used to train the model and the remaining 
one-fifth are used to test the model. This procedure is run five times, and each 
compound appears in the test set once and the training set four times. The accu-
racy of the SAM was measured using the enrichment rate. The enrichment rate 
is calculated by ranking all compounds in the test set using the model, and then 
comparing the number of actives found in the top n% to the number of expected 
actives for n%. The final model was built using all of the compounds in the training 
set. When ranking other datasets with the SAM, compounds were filtered from the 
dataset before ranking if they had >85% structural similarity, using the Tanimoto 

score with ECFP_4 fingerprints (see below), to any compound in the training set 
used to build the model.

All similarity calculations were carried out using the Tanimoto coefficient with 
the ECFP_4 fingerprinting method. The Tanimoto coefficient is the number of 
fragments in common between two compounds, divided by the total number of 
fragments present in both compounds. Murcko scaffolds30 were generated using 
the ‘Generate Fragments’ protocol in Pipeline Pilot.

The SAM can be used directly by opening the script found in Supplementary 
Data 2 using Pipeline Pilot. Alternatively, the training set (Supplementary Data 3)  
can be used in conjunction with Open Source software (see Supplementary Data 4)  
to build a similar model.

Analysis of metabolites by LC-MS. Metabolites were HPLC-purified from 
worm lysates and dried using a Savant DNA120 SpeedVac (acid was not added 
to the HPLC solvents). Chromatographic separations of the purified metabo-
lites for LC-MS were performed using a nano-AQUITY Ultra Performance 
Liquid Chromatography (UPLC) system (Waters Corp.)—see Supplementary 
Methods for full methods. Mass spectrometry was performed using a Micromass 
Quadrupole-Time-of-Flight Premiere instrument (Waters Corp.). The data acqui-
sition software used was MassLynx NT, version 4.0. Mass spectra were acquired in 
positive ion mode using a nano-ESI with capillary voltage and sample cone voltage 
set to 3,000 V and 20 V, respectively. The MS acquisition rate was set to 1.0 s, with a 
0.1-s interscan delay. Ninety-eight percent argon gas was employed as the collision 
gas with collision energy varying from 13–46 V for the mass range of 100–1,000 
m/z. Ions selected for LC-MS-MS were identified after manual analysis of original 
LC-MS runs, and a corresponding inclusion list was generated for targeted data-
dependent acquisition experiments. 
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