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Abstract

Background: Semantic similarity measures are useful to assess the physiological relevance of protein-protein
interactions (PPIs). They quantify similarity between proteins based on their function using annotation systems like
the Gene Ontology (GO). Proteins that interact in the cell are likely to be in similar locations or involved in similar
biological processes compared to proteins that do not interact. Thus the more semantically similar the gene
function annotations are among the interacting proteins, more likely the interaction is physiologically relevant.
However, most semantic similarity measures used for PPl confidence assessment do not consider the unequal
depth of term hierarchies in different classes of cellular location, molecular function, and biological process
ontologies of GO and thus may over-or under-estimate similarity.

Results: We describe an improved algorithm, Topological Clustering Semantic Similarity (TCSS), to compute
semantic similarity between GO terms annotated to proteins in interaction datasets. Our algorithm, considers
unequal depth of biological knowledge representation in different branches of the GO graph. The central idea is to
divide the GO graph into sub-graphs and score PPIs higher if participating proteins belong to the same sub-graph
as compared to if they belong to different sub-graphs.

Conclusions: The TCSS algorithm performs better than other semantic similarity measurement techniques that we
evaluated in terms of their performance on distinguishing true from false protein interactions, and correlation with
gene expression and protein families. We show an average improvement of 4.6 times the F; score over Resnik, the
next best method, on our Saccharomyces cerevisiae PPl dataset and 2 times on our Homo sapiens PPl dataset using

cellular component, biological process and molecular function GO annotations.

Background

Gene Ontology (GO) [1] is a useful and popular taxon-
omy of controlled biological terms that can be used to
assess the functional relationship between different gene
products. GO organizes knowledge about gene function
in a directed acyclic graph (DAG) of terms and their rela-
tionships. It is organized in three orthogonal ontologies
capturing knowledge about cellular location, biological
process and molecular function [1]. Experts annotate GO
terms to genes in different organisms based on diverse
evidence sources. GO has become the most used ontol-
ogy and annotation system for assessing the confidence
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and biological relevance of high-throughput experiments
based on the notion that if two or more genes are related
by an experiment, they should also be related by known
gene function. For instance, GO is often used as a bench-
mark for protein-protein interaction (PPI) experimental
mapping and prediction [2-5], protein function predic-
tion [6-8], and pathway analysis [9]. In this paper, we are
specifically interested in the use of GO in a metric for
protein-protein interactions (PPIs).

The relationship between gene products annotated to
GO is quantified either simply from the annotated
terms (for instance, by finding a set of common GO
terms annotated to gene products) or more globally by
using semantic similarity measures that consider the
entire GO DAG. The GO DAG is a complex network of
over 31,000 terms and 46,900 relations (GO release
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March, 2010). The cellular component ontology of GO
describes gene product locations at the levels of sub-
cellular structure and macromolecular complexes
through over 2,650 terms and 5,000 relations. The mole-
cular function ontology of GO is described using over
8,650 terms and 10,150 relations. The complexity of bio-
logical process ontology is even greater with over 18,500
terms and 38,700 relations. The large number of terms
and relations describing the cellular knowledge covered
by GO makes it difficult to naively quantify relationships
between gene products. For example, Saccharomyces
cerevisiae proteins Rpl10p (annotated to GO cellular
component term ‘large ribosomal sub-unit’) and Sqtlp
(annotated to GO cellular component term ‘ribosome’)
physically interact with each other but do not share a
GO term. Often, a sub-set of GO terms or a reduced
version of GO, like GO slim [1], is used for relating
genes. This makes GO terms and annotations easier to
work with and compare, but valuable information is lost
in the simplification.

Semantic similarity is a technique used to measure the
likeness of concepts belonging to an ontology. Most
early semantic similarity measures [10-12] were devel-
oped for linguistic studies in natural language proces-
sing. Recently, semantic similarity measurement
methods have been applied to and further developed
and tailored for biological uses [13-16]. A semantic simi-
larity function returns a numerical value describing the
closeness between two (or sometimes more) concepts or
terms of a given ontology [17]. In the context of PPI
datasets, semantic similarity can be used as an indicator
for the plausibility of an interaction because proteins
that interact in the cell (in vivo) are expected to partici-
pate in similar cellular locations and processes. For
example, a high semantic similarity value between GO
cellular component terms annotated to a set of proteins
indicates that they are in close proximity and thus have
a higher probability of interaction compared to proteins
randomly selected from the proteome [2,4,18]. Thus,
semantic similarity measures are useful for scoring the
confidence of a predicted PPI using the full information
stored in the ontology.

Semantic similarity measures can be broadly classified
into two groups: edge based and node based. Edge
based methods [19-22] determine semantic similarity
based on the shared paths between two terms in a given
ontology, whereas node based methods [10-12] rely on
comparing the properties of the input terms (nodes),
their ancestors, or descendants. One commonly used
property is the specificity, or the information content
(entropy), of the common ancestors between a pair of
terms, which captures the notion of closeness in the
DAG - the more specific the common ancestors of the
terms, the closer the terms. The information content of
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a term ¢ can be defined as the negative log likelihood of
the term (eq. 1),

IC(c)=-Inp(c) 1

where p(c) is the probability of occurrence of the term
¢ in a specific corpus (e.g. GO annotations) [17]. While
calculating p(c) in GO, the descendants of term c are
also considered. For example, the probability of occur-
rence of the term ‘cytosol” in the cellular component
hierarchy of GO for S. cerevisiae defined by the number
of genes assigned to it is 0.104 and its information con-
tent is 0.98. Comparative studies to determine the best
semantic similarity measurement method have shown
that performance on a variety of tests varies greatly
depending upon the type of biological datasets used
[23-26]. For example, for function prediction Resnik’s
[10] and Graph Information Content (simGIC) [25]
work best and for cellular location prediction, the sup-
port vector machine (SVM) based method from Lei
et al. [23] is preferable. In 2006, Guo et al. [24] com-
pared a number of semantic similarity methods (Resnik
[10] (AVG), Lin [11], Jiang [12], and graph similarity-
based methods [27]) on a test to distinguish true from
false human PPIs. They used proteins within a complex,
or neighboring each other in Kyoto Encyclopedia of
Genes and Genomes (KEGQ) regulatory pathways, as a
positive PPI dataset, and randomly chosen protein pairs
as a negative interaction dataset. From receiver operat-
ing characteristic (ROC) curve performance analysis
they concluded that Resnik (AVG) is better than other
measures at distinguishing positive from negative PPIs.
In 2008, Xu et al. [26] compared the Resnik [10] (MAX,
AVG@G), Tao [15], Schlicker [13,28], and Wang [14]
semantic similarity measurement methods on the same
test with a S. cerevisiae PPI dataset from the Database
of Interacting Proteins (DIP). They used Schlicker’s
rfunSimAll method which considers all GO ontologies
together. From ROC analysis they found that the Resnik
(MAX) method is best for GO ontologies taken sepa-
rately or together. Thus, recent independent studies
[24,26] show Resnik’s method for calculating semantic
similarity is best for measuring the likelihood of true
PPIs.

Resnik’s method defines semantic similarity between
two ontology terms s and ¢ for a given set C of common
ancestors of s and ¢ as,

r(s, 1) = max|-In(p(c))] ®

where p(c) is the frequency of proteins annotated to
term ¢ and its descendants in the ontology. However, in
most cases, proteins are assigned to more than one term
in the same GO ontology. Suppose, proteins A and B
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are annotated to sets of GO terms S and T, respectively.
The semantic similarity between A and B is defined as
the maximum information content (Resnik (MAX)) of
the set S x T (3).

sim(A, B)= max_r(s; t;) (3)

sitj€S,T

or as the average information content (Resnik (AVG))
of the set S x T (4).

r(si,tj) W

nxm

siitjes, T

sim(A, B) =

where s; and ¢; are the GO terms in sets S and T,
respectively, r (s, t;) is the information content of the
lowest common ancestor of terms s; and ¢; , and # and
m are the set sizes. Resnik (MAX) has been found to be
a better measure of likelihood for PPIs than AVG. The
use of the MAX function with Resnik’s method to score
PPIs makes sense because proteins in a PPI only need
to be in close proximity (similar cellular component
terms) or in a similar biological process once, among all
possible combinations annotation terms, for the PPI to
be biologically relevant.

Resnik’s measure calculates semantic similarity based
only on the information content of a common ances-
tor. Therefore, it cannot differentiate between any two
term pairs with same common ancestor even if they
are in different parts of the GODAG. For example,
proteins A and B annotated to the same cellular com-
ponent term, e.g. ‘cytoplasm’, will have the same
semantic similarity value as proteins C and D anno-
tated to different terms, e.g. ‘nucleus’ and ‘mitochon-
dria’, which have ‘cytoplasm’ as a common ancestor.
Thus, Resnik’s measure does not consider some of the
information contained in the taxonomy by focusing
only on the information content of a single ancestor
term [29]. Lin’s and Jiang’s measures consider the
information content of two terms along with that of a
common ancestor but tend to overestimate similarity if
the terms are higher up in the ontology [29]. For
example, Lin’s method will assign a score of 1 if two
proteins are present in a same general compartment,
e.g. ‘cytoplasm’. Similar arguments also hold for mole-
cular function and biological process GO ontologies.
Further, the structure of GO is unbalanced with some
paths having more details (depth) than others. This
could be due to a particular path describing a more
complex biological structure or to a particular focus of
GO curators as they work to complete the ontology.
For example, the ‘intracellular’ term of GO component
has more depth than the ‘extracellular’ term (for S. cere-
visiae GO DAG ‘extracellular’ term has a depth of 0 and
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‘intracellular’ has a depth of 7), because there are many
more biological terms associated with cell internals ver-
sus immediate cell externals. The ideal solution to these
problems is to use a balanced GO DAG and annotation,
but this is difficult to construct automatically [30].
Alternatively, we can develop semantic similarity scor-
ing methods that consider the unbalanced natureof GO.
In this paper, we have used the successful idea of infor-
mation content from Resnik (MAX) and introduced
clustering of similar GO terms into sub-graphs to create
a new semantic similarity algorithm, Topological
Clustering Semantic Similarity (TCSS), which outper-
forms Resnik’s method for distinguishing positive from
negative protein interactions and in other performance
measurements.

Results

Algorithm

The goal of TCSS is to find subsets of GO terms
defining similar concepts (e.g. nucleus related terms vs.
mitochondrion related terms) and score gene products
belonging to a similar subset higher than if they belong
to different sets. In an effort to normalize the depth of
the GO DAG across the ontology, the algorithm first
defines mutually exclusive (non-overlapping) sub-graphs
(sets of connected GO terms) rooted at major nodes.
These sub-graphs are collapsed as single nodes to form
a meta-graph and a two-level semantic similarity calcu-
lation is per-formed, as described below.

Topology based clustering

To normalize the depth of terms across the GO DAG,
semantic similarity between terms, s and ¢, is calculated
within a sub-graph instead of the complete GO graph.
Sub-graphs consist of terms defining related concepts (e.
g. all terms relating to the ‘nucleus’) and are defined
based on a threshold on the information content of all
terms present in a given ontology. The topological infor-
mation content (ICT) of a term depends upon its specifi-
city in the graph and is defined as shown in equation (5)

ICT(1) = - ln(—| fc()? | } (5)

where £ is a term in the ontology O, |N(£)| is the number
of child terms of ¢, and |O| is the total number of terms in
O [31]. The terms which are more specific (i.e. terms
which are present in the lower levels, closer to the leaves
in the ontology graph) will have high information content
as compared to less specific ones (i.e. terms which are pre-
sent in the upper levels of the ontology graph closer to the
root). An ICT cutoff (referred to as the ‘topology cutoff)is
defined in a pre-calculation step (see Methods) and terms
below the cutoff are selected as sub-graph roots. If
two sub-graph roots have similar ICT values (in the range
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of + 20%) then their sub-graphs are merged. This is done
to increase the dissimilarity between sub-graphs.
A sub-graph contains all children of the selected sub-
graph root term.

GO terms often have multiple parents, which could
result in overlapping sub-graphs (a term is present in
two sub-graphs). Each GO term in the cellular compo-
nent ontology has on average 1.9 edges, whereas the
ratio is 2.1 for the biological process ontology, and 1.2
for the molecular function ontology. All relationship
types (or edges) are treated equally. Sub-graph overlap
is removed in two steps (see Additional file 1: Supp.
figure S1):

+ Edge removal by transitive reduction. The GO
DAG gives rise to partial orders < on its vertices,
where u < v when there exists a directed edge from
u to v. However, u and v could connect via many
different GO DAG paths. For example, the GO
graph with paths ¢ > b - ¢ and 4 — ¢ has the
same reachability as the GO graph with relation-
ships a - b — c. Thus, the transitive reduction of
GO graph G results in the smallest graph R(G)
such that, the transitive closure of G is same as the
transitive closure of R(G). This results in 14% and
6% fewer edges in cellular component and biologi-
cal process ontologies respectively, reducing the
likelihood of sub-graph overlap. There was no sig-
nificant reduction in the molecular function
ontology.

o Term duplication. After the reduction step, if a
term still belongs to more than one sub-graph then
it and its descendants are replicated in each sub-
graph. Such a situation arises with a term having
disjunctive ancestors (having independent paths
from the ancestors to the term) belonging to differ-
ent sub-graphs [32].

Finally, all sub-graphs are connected into a hierarchy
based upon the position of their root terms in original
graph to construct a meta-graph (Figure 1). Meta nodes
representing sub-graphs are labeled using the GO term
of their sub-graph root.

Normalized scoring

We developed a system to calculate a semantic similar-
ity score on the constructed meta-graph that results in
more balanced semantic similarity scores compared to
scoring the GO DAG directly. The system scores pro-
tein pairs in the same sub-graph higher than if they
belong to different sub-graphs. The annotation informa-
tion content (ICA) of all the terms present in an ontol-
ogy is calculated based on the frequency of gene
products annotated to a term and its children is shown
in equation (6).
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where ¢ is a term in the ontology O and P; is the set of
gene products annotated to t. N() is the set of child terms
of ¢ in the ontology. The annotation information content
values lie in the range [0, ) and are normalized to [0, 1]
by dividing with the maxi-mum information content in a

sub-graph or meta-graph. For a term ¢; belonging to the

i sub-graph G;, the sub-graph information content

(ICS) of ¢; is defined as shown in equation (8).

ICA(t])
max ICA(t;) 8)

sceS
t;eG;

ICS(t]) =

For a term tl-m in meta-graph G™, the information con-

tent (ICM) of ¢t; is calculated as shown in equation (9).

ICA(t]")
max ICA(t]") )

lee(?m

ICM (t") =

Gene products A and B may be annotated to more than
one GO term. Let, S and T be the sets of GO terms anno-
tated to gene products A and B respectively. Then the seman-
tic similarity between gene products A and B is defined by
the maximum approach, as shown in equation (10).

max
s tjes, T

ICM o (LCA(s; t))  if (a)
ICS e (LCA(s;, ) if ()

(@)s;e Giand tj e G;
(b)s;,t;e G}

(10)

where LCA(s;t)) is the lowest common ancestor (or
the common ancestor with maximum information con-
tent) of the terms s; and ¢; . If both the terms s; and
belong to the same sub-graph then their lowest com-
mon ancestor will be in that sub-graph, otherwise it will
belong to the meta-graph.

Testing
In the previous section, we presented a new algorithm,
Topological Clustering Semantic Similarity (TCSS), to
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Intracellular

Cytoplasm

on the common ancestor term ‘Intracellular’.

Figure 1 Graphical illustration of the algorithm. Nodes in the higher level graph and sub-graphs are shown by black and green circles,
respectively. Root nodes of sub-graphs are shown by solid green circles and are equivalent to the corresponding higher level node. Terms A
and B belong to the same sub-graph, therefore the semantic similarity score between them will be computed based on their common ancestor
term ‘Cytoplasm’ (solid green). Terms B and C belong to different sub-graphs, therefore their semantic similarity score will be computed based

Extracellular

compute semantic similarity between GO terms anno-
tated to proteins that normalizes GO DAG branch
depth. We compared the performance of TCSS with
other semantic similarity measures given by Resnik [10],
Lin [11], Wang et al. (Wang) [14], Schlicker et al. (sim-
Rel method) (Schlicker) [13], Jiang & Conrath (Jiang)
[12], Pesquita et al. (SimGIC) [16] on the problem of
scoring PPIs. Performance analysis of TCSS was done
using receiver operating characteristic (ROC) and F;
measures. ROC grades the performance of classifiers as
a trade-off between true positive rate (TPR) and false
positive rate (FPR). We also used the F; measure, which
is the harmonic mean of precision (the proportion of
retrieved information that is actually relevant) and recall
(the proportion of relevant information that is retrieved)
and indicates the classifier’s ability to retrieve relevant

information. The evaluation was done separately for
cellular component (CC), biological process (BP), and
molecular function (MF) ontologies.

Saccharomyces cerevisiae PPl test

S. cerevisiae positive and negative protein interaction
sets (see Methods) were used to evaluate the above
mentioned semantic similarity measures for their ability
to distinguish positives from negatives. TCSS, Resnik,
Lin, Jiang and Schlicker were tested using both the max-
imum (MAX) and best-match average (BMA) (see
Methods) approach of combining multiple GO gene
annotations and Wang was tested using only the BMA
approach, as only BMA was used in the original Wang
publication and is the only option available in the
author’s implementation. BMA averages scores when
multiple combinations of GO terms are possible (for
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gene products annotated with multiple terms). SimGIC
considers multiple GO annotations while calculating
semantic similarity scores, thus MAX and BMA
approaches are not relevant for it. We focused initial tests
on manually annotated GO annotations ("without” anno-
tations with IEA evidence codes (IEA-)), but also tested
with all annotations, including electronic annotations
("with” annotations with IEA evidence codes (IEA+)).
TCSS and Resnik consistently showed the best perfor-
mance for all three ontologies in ROC analysis under
different conditions (Table 1, Figure 2 (MAX, IEA-),
Additional file 1: Supp. Figure S2 (BMA, IEA-), S4
(MAX, BMA, IEA+)). Since it is not clear from ROC
analysis which of TCSS and Resnik performs better, we
compared their F; scores at different semantic similarity
cutoffs for all the three ontologies (Figure 3 (MAX,
IEA-), Additional file 1: Supp. Figure S3 (BMA, IEA+),
S5 (MAX, BMA, IEA+)). TCSS showed average
improvements of 6 times for CC, 5.9 times for BP, and
1.9 times for MF in retrieving relevant information over
Resnik (Table 2) mainly due to the faster increase in
true positive rate for TCSS at a given score threshold.
Homo sapiens PPI test
To test the generality of the method for PPI scoring, we
ran similar tests as above using a H. sapiens PPI data
set. H. sapiens positive and negative protein interaction
sets (see Methods) were used to evaluate TCSS, Resnik,
Lin, Jiang, Schlicker and SimGIC methods. The evalua-
tion was done using BMA and MAX approaches for
combining multiple GO annotations on IEA+/-datasets
(Additional file 1: Supp. figures S6-S9, Supp. table S1).
Table 3 shows the improvement in F; scores achieved

Table 1 Area under ROC curves for the S. cerevisiae PPI
dataset

IEA - IEA+
CcC BP MF CcC BP MF
TCSS max 083 089 073 083 089 075
bma 0.82 0.88 0.72 0.83 0.88 0.74

Resnik max 0.83 0.89 0.73 0.83 0.89 0.75
bma 0.81 0.87 0.72 0.83 0.88 0.74

Lin max 0.80 0.87 0.70 0.79 0.87 0.72
bma 0.79 0.85 0.68 0.80 0.86 0.72

Jiang max 0.75 0.85 0.72 0.73 0.85 0.73
bma 0.73 0.84 0.70 0.72 0.84 0.73

Schlicker max 0.70 0.81 0.65 0.70 0.81 067
bma 0.69 0.82 0.64 0.71 0.82 0.68

SimGIC 0.73 0.75 0.64 0.73 0.76 0.68
Wang 0.74 0.83 0.72 0.76 0.82 0.73

Tests were performed separately for cellular component (CC), biological
process (BP) and molecular function (MF) ontologies. Best-match average and
maximum approaches were used for datasets with (IEA+) and without (IEA-)
electronic annotations. The best ROC scores are in bold.
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by TCSS over Resnik. On average TCSS performed 2.2
times better than Resnik for CC, 1.5 times for BP, and
2.5 times for MF ontologies.

Correlation with gene expression

To test how our method performs in another applica-
tion scenario, we tested its correlation with gene expres-
sion data. Two gene products that have similar function
are more likely to have similar expression profiles and
be annotated to similar GO terms [29].Therefore, a
comparison of the similarity between gene expression of
two gene products with the semantic similarity scores
obtained by different measures can be used as a perfor-
mance test. Gene expression profiles of randomly
selected S. cerevisiae gene pairs (see Methods) were
evaluated against the above mentioned semantic similar-
ity methods. The evaluation was performed as above
using the BMA/MAX approaches of combining multiple
GO annotations on IEA+ dataset. TCSS showed the best
correlation between gene expression and semantic simi-
larity with all three GO ontologies (Figure 4(a), Addi-
tional file 1: Supp. Figure S16).

Correlation with EC, Pfam, and sequence similarity

The Collaborative Evaluation of GO-based Semantic
Similarity Measures (CESSM) website was developed by
Pesquita et al. [33] to evaluate semantic similarity mea-
sures on a standard set of data and benchmarks: correla-
tion of similarity measure with similarity of sequence,
Pfam domains and Enzyme Commission (EC) numbers
(see Methods). We compared TCSS against Resnik,
Schlicker, Jiang, Lin and SimGIC using CESSM for both
MAX and BMA approaches on IEA-dataset. TCSS
showed the best (or one of the best) correlation with EC
similarity for all three ontologies (Figure 4(b), Additional
file 1: Supp. Figure S17). For Pfam similarity using the
MAX approach, TCSS is best for CC and MF ontologies
and SimGIC is best for the BP ontology (Figure 4(c)).
SimGIC better correlates with sequence similarity than
other methods in all three ontologies (Figure 4(d), Addi-
tional file 1: Supp. Figure S17).

Discussion

We present a new algorithm (TCSS) for calculating
semantic similarity and tested its performance against
other methods. TCSS shows an average improvement of
4.6 times in F; scores over Resnik, the next best
method, on our S. cerevisiae PPI test and 2 times on
our H. sapiens PPI test. This clearly indicates the advan-
tage of using TCSS to retrieve positive protein interac-
tions and hold back negative interactions over Resnik’s
method. We compared TCSS using both the BMA and
MAX approaches for combining multiple GO annota-
tions, and found that MAX generally works best for PPI
datasets. The use of the MAX function to score PPIs,
instead of an ‘average’ function, makes sense because
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Figure 2 ROC curves for S. cerevisiae PPl dataset. ROC evaluations of semantic similarity measures at different cutoffs based on the S.
cerevisiae PP dataset derived from DIP are shown. The evaluation was performed using the cellular component, biological process and
molecular function ontologies of GO. The maximum (MAX) approach for combining multiple annotations was used on the dataset, without (IEA-)
electronic annotations. TCSS and Resnik show the best ROC profiles for all three ontologies.
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proteins in PPIs only need to be in close proximity
(similar cellular component terms) or in a similar biolo-
gical process once, among all possible combinations
annotation terms, to be biologically relevant. Therefore,
the MAX approach is unlikely to overestimate true PPIs.
However, there may be application scenarios (e.g to
compute a more general measure of functional similar-
ity) where the MAX approach could lead to over-esti-
mation and BMA would be a better choice. In these
cases, TCSS can be modified to use the BMA method
instead of MAX (see Methods). For example, TCSS
shows worse correlation with Pfam similarity than Sim-
GIC on the biological process ontology test, but
becomes better when using BMA (see Additional file 1:
Supp. Figure S17). Also, it is evident from the

correlation of semantic similarity with gene expression
similarity that TCSS is more likely to assign a higher
score to gene products if they also exhibit similar gene
expression. Tests using the CESSM benchmark dataset
were in favor of TCSS for EC number similarity and
Pfam similarity. SimGIC does better than TCSS in the
sequence similarity correlation test. One reason for this
could be that SimGIC scores gene products with shared
annotation terms and gene products annotated to same
term are more likely to be part of the same gene family
and thus have high sequence similarity.

Scatter plots of the semantic similarity scores obtained
by TCSS (MAX) and Resnik (MAX) methods clearly
indicate that a significant number of positive protein
interactions are under-scored by Resnik (Figure 5) in all
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Figure 3 F-score curves for S. cerevisiae PPl dataset. F; score (harmonic mean of precision and recall) evaluations of semantic similarity
measures at different cutoffs based on the S. cerevisiae PPI dataset derived from DIP are shown. The evaluation was performed using cellular
component, biological process, and molecular function ontologies of GO. Maximum (MAX) approach for combining multiple annotations was
used on a dataset with only manual annotations (no electronic annotations (IEA-)). F; score reaches its best value at 1 and worst at 0. TCSS does
better than Resnik for semantic similarity cutoff scores in all three ontologies.

0.6 08 1.0

three ontologies (p-values by Kolmogorov-Smirnov test:
Cellular component: 6.4e-59, Biological process: 3.4e-
163, Molecular function: 1.6e-15). Given below are some
biological examples selected from these scatter plots in
support of our claim:

Table 2 Improvement in F, score for the S. cerevisiae PPI
dataset

+ Cellular component: Rpll10p is a S. cerevisiae
protein responsible for joining of the 40 S and 60 S
ribosomal subunits [34]. It has been found to inter-
act [35-38] with Sqtlp, an essential protein involved
in a late step of 60 S ribosomal subunit assembly or

Table 3 Improvement in F, score for H. sapiens PPI
dataset

Best-match average Maximun

IEA- IEA+ IEA- IEA+

Best-match average Maximun
IEA- IEA+ IEA- IEA+

cC BP MF CC BP MF CC BP MF CC BP MF
736 666 136 30 60 266 853 554 153 574 551 183

cC BP MF CC BP MF CC BP MF CC BP MF
344 151 242 128 164 40 27 148 20 153 158 150

Average improvement in F; scores achieved by TCSS over Resnik for best-
match average and maximum approaches. TCSS does 6 times better than
Resnik for cellular component (CC), 5.9 times for biological process (BP), and
1.9 times for molecular function (MF) ontologies, on average.

Average improvement in F; scores achieved by TCSS over Resnik for best-
match average and maximum approaches. TCSS does 2.2 times better than
Resnik for cellular component (CC), 1.5 times for biological process (BP), and
2.5 times for molecular function (MF) ontologies on average.
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Figure 4 Correlation with gene expression and CESSM dataset. (a) Pearson correlation between gene expression similarity and semantic
similarity on a S. cerevisiae dataset containing 5,000 randomly selected protein pairs are shown. (b - d) Correlation between semantic similarity
and sequence, enzyme commission (EC), protein family (Pfam) similarity using the online CESSM tool. The evaluation was performed for cellular
component (CC), biological process (BP), and molecular function (MF) ontologies of GO using maximum (MAX) approach for combining multiple
GO annotations.

modification [34] using affinity capture-mass
spectrometry (MS), affinity capture-western and
two-hybrid experimental methods. Rpl10p is anno-
tated to the ‘cytosolic large ribosomal subunit’ term
and Sqtlp is annotated to the ‘cytosolic ribo-some’
term [1]. The score assigned by Resnik (MAX) to
the Rpl10p-Sqtlp interaction is 0.4 which is low
considering that both the proteins are in similar cel-
lular components and the ‘cytosolic large ribosomal
subunit’ term is the child term of ‘cytosolic ribo-
some’ in GO. The same interaction gets a score of
0.78 by TCSS (MAX), which categorizes it as a high
confidence interaction, due to the normalization step
on the ‘cytosolic ribosome’ sub-graph.

« Biological process: The Nthlp-Dcslp protein-
protein interaction was experimentally shown by
Uetz et al (2000) and Yu ez al (2008) [39,40] using
two-hybrid experiments. Both Nth1p and Dcslp pro-
teins share the ‘vacuolar protein catabolic process’
term in GO [1]. The score assigned by Resnik (MAX)
to the Nth1p-Dcslp interaction is 0.45 which is low
considering that both proteins are part of the same
biological process. The same interaction gets a score
of 1 by TCSS (MAX), due to the normalization on
‘vacuolar protein catabolic process’ sub-graph, thus
categorizing it as a high confidence interaction.

+ Molecular function: Mftlp and Hprlp are the
subunits of the nuclear THO complex, which is
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Figure 5 Comparison of our topological clustering method and Resnik (MAX) as scoring positive and negative PPIs. The scatter plot of
semantic similarity scores for positive (red) and negative (green) interactions. Semantic similarity scores range between 0.0 and 1.0 for both
methods, with 1.0 being the best. A significant number of positive interactions are under-scored by Resnik (MAX) in all three ontologies
compared to TCSS.

involved in transcription elongation, mitotic recom-
bination and telomere maintenance [34]. The Mftlp-
Hprlp interaction has been shown by affinity cap-
ture-MS and affinity capture-western experimental
techniques [35,41-43]. Both Mftlp and Hprlp are
an-notated to the ‘nucleic acid binding’ term of GO
[1]. This interaction is assigned a score of 0.2 by
Resnik (MAX) because the term nucleic acid binding
is fairly general. This score is low considering that
both the proteins are part of a same GO term. The
same interaction is assigned a score of 1 by TCSS
(MAX), due to the normalization step on the
‘nucleic acid binding’ sub-graph. ‘Nucleic acid bind-
ing’ is a general molecular function term with a shal-
low hierarchy.

Future directions for TCSS development include test-
ing if the GO graph edge type (e.g. is-a, part-of) can
provide additional information that will lead to
improved performance and also testing the method
more rigorously with other data sets.

Conclusions

We present a new semantic similarity algorithm, Topo-
logical Clustering Semantic Similarity, designed to use
the GO for PPI confidence assessment. It partitions the
GO DAG into non-overlapping sub-graphs, using a
topological clustering method, and computes semantic
similarity normalized within each sub-graph. We evalu-
ated TCSS against other methods for measuring seman-
tic similarity between GO terms annotated to proteins
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involved in protein-protein interactions from S. cerevisiae
and H. sapiens. We also tested the correlation between
multiple semantic similarity scoring methods with gene
expression, protein sequence, EC, and Pfam similarity.
Performance tests were generally in favor of TCSS in all
three GO ontologies: cellular component, biological
process and molecular function.

This new method will be useful as an evidence source
in PPI prediction or in confidence assessment of PPI
datasets.

Methods
Data acquisition and processing
« Ontology data: Ontology data was down-loaded
from the Gene Ontology database [1] (dated March
2010) containing 31,382 ontology terms subdivided
into 2,689 cellular component, 18,545 biological
process and 8,688 molecular function terms.
+ GO Annotation data: Gene annotations for GO
terms were downloaded from the Gene Ontology
database for S. cerevisiae (dated February 2010) [44]
and H. Sapiens (dated August 2010) [45]. Electroni-
cally inferred annotations (IEA) lack manual review
therefore, we de-signed two sets of tests, one with
IEA annotations and one without. In our implemen-
tation, we only consider the most specific GO gene
an-notations. For example, if gene A is annotated to
terms x and Y (and x is an ancestor of Y), then we
only consider annotation to Y. This is because in
ontologies a term is a aggregate of its descendants.
This pre-filtering of GO could impact the results of
some methods used in our analysis. For instance, in
CESSM tests, correlation between SimGIC semantic
similarity and EC similarity for the molecular func-
tion ontology increases by 25% and correlation with
sequence similarity decreases by 15% if all the anno-
tations are considered, however all other changes we
noticed were minor and didn’t change our results.
« Interaction dataset: To evaluate the performance
of TCSS against other semantic similarity measures
on the problem of scoring PPI confidence, we
created positive and negative interaction datasets for
S. cerevisiae and H. sapiens.
-S. cerevisiae: We retrieved 4,598 unique pairwise
S. cerevisiae PPIs from the core set of Database
of Interacting Proteins (DIP) (dated December
2009) [46]. The DIP core database records data
derived from both small-scale and large-scale
experiments that have been validated by the
occurrence of the interaction between paralogous
proteins in different species [47]. The positive
dataset for CC, BP, and MF ontologies comprised
interactions with both proteins annotated to
terms (other than root) in their respective
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Table 4 Distribution of positive and negative interactions

S. cerevisiae H. sapiens
IEA+ IEA- IEA+ IEA-
cc 4469 4425 1431 1054
BP 4385 4326 1435 1204
MF 3858 3583 1441 1288

Number of interactions in the positive dataset for cellular component (CC),
biological process (BP), and molecular function (MF) ontologies.

ontologies (see Table 4). The negative dataset
with the same number of PPIs as the positive set
was generated by randomly selecting proteins
from genes in the GO annotation files that are
not known to be positive in a set of all known
(45,448) yeast PPIs from iRefWeb (September
2010), a meta-database containing the ten largest
primary PPI databases [48].
-H. sapiens: We retrieved 2; 077 unique pairwise
PPIs (with three or more publications) for H.
sapiens from DIP (dated June 2010). The positive
dataset for CC, BP, and MF ontologies comprised
interactions with both proteins annotated to
terms (other than root) in their respective ontol-
ogies (see Table 4). The negative interaction
dataset contained an equal number of randomly
selected interactions from a pool of all possible
interactions in human minus all known (43,935)
iRefWeb [48] known PPIs.
+ Gene expression datasets: The gene expression
dataset for S. cerevisiae was down-loaded from Gen-
eMANIA [49] (dated August 2010) and contained
data from 39 different microarray experiments (see
Additional file 1: Supp. table S2). Test datasets were
prepared from 5; 000 S. cerevisiae gene pairs ran-
domly selected from a list of all possible pairs of
proteins in our gene expression data set, including
an equal number of random and known PPIs (PPIs
in the DIP core set have higher than average expres-
sion correlation). This was done independently for
CC, BP, and MF annotations of GO (including IEA
annotations).
+ CESSM dataset: Collaborative Evaluation of GO-
based Semantic Similarity Measures (CESSM) is an
online tool for the automated evaluation of GO-
based semantic similarity measures in terms of per-
formance against sequence, Pfam (protein family)
and EC (enzyme commission number) similarity
[33]. Protein pair (from multiple species), GO (dated
August 2010), and UniProt GO annotations (dated
August 2008) were downloaded from CESSM.

Algorithm implementation
The algorithm as described in the results section was
implemented using the Python programming language
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[50]. An important step in our algorithm is to determine
the size of sub-graphs. This is determined by threshold-
ing the topological information content (ICT) of terms
in a given ontology (see Results). The cutoff is chosen
to maximize performance (AUC and Fimeasures) on a
given benchmark/test. The relationship between AUC
and topology cutoff follows a U - shaped curve with a
global maximum for all three ontologies. Average
F-score shows a general upward trend with topology
cutoffs (see Additional file 1: Supp. figures S10, S11,
S13, S14). A topology cutoff must be computed for each
test before we compute semantic similarity scores,
which is a practical disadvantage of our method, though
we expect cutoffs to be useful generally for a type of
data and an organism, once computed. Topology cutoffs
for different datasets are as follows:

« S. cerevisiae PPI dataset: 2.4 for CC, 3.6 for BP, and
3.2 for MF (see Additional file 1: Supp. Figure S12)

+ H. sapiens PPI dataset: 3.0 for CC, 4.0 for BP, and
3.6 for MF (see Additional file 1: Supp.Figure S15)

+ Expression dataset: 2.4 for CC, 3.6 for BP, and 3.2
for MF

+ CESSM dataset: 3.4 for CC, 3.2 for BP, and 3.0 for
MF

Our results are resilient in the immediate cutoff range
of + 0.1 for all three ontologies.
Best-match average approach
Let, S and T be the sets of GO terms annotated to gene
products A and B respectively. Then semantic similarity
between gene products A and B based upon the best-
match average approach [14,51] is defined by the equa-
tion (11).

ZSim(s,-, T)+ 2 sim(t ;, S)

5;€S t;eN (11)
|S[+]T]|
where Sim (u;, V') is defined as (12),
ICMmaX(LCA(ui,Uj)) if (a)
I?-ev ICS 1 (LCA(u, Uj)) if (b)
| (12)

(@)u;€ Giandvj e G;
(buv;e G}

Algorithm analysis

Other methods

Semantic similarity measurement methods given by Resnik
[10], Lin [11], Schlicker et al. (simRel method) (Schlicker)
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[13], Jiang & Conrath (Jiang) [12], and Pesquita et al.
(SimGIC) [16] were implemented as described in their
respective publications. The GOSemSim [52] implementa-
tion in R was used for Wang et al. (Wang) [14].

ROC and F-measure

Different measures used for analyzing the performance
of our algorithm are as follows:

+ True positive rate (TPR), also known as Recall:

TP

TPR = ——
TP + FN

(13)

« False positive rate (FPR):

FP

FPR = ——
FP +TN

(14)

« Precision (P):

TP

p=—"" (15)
TP + FP

» F; measure (F):

F=2PXTPR (16)
P +TPR

+ Improvement in F; score is calculated as the aver-
age improvement at different semantic similarity
cutoffs.

« Area under curve (AUC) was calculated using the
trapezoidal rule.

where TP, FP, TN, FN are true positive, false positive,
true negative, and false negative, respectively.
Correlation with gene expression
Average gene expression Pearson correlation was calcu-
lated for the S. cerevisiae positive and negative interac-
tion dataset using Fisher’s z transformation [53].

1+
z,=1/2In Tn
1-71,

where r,, is the Pearson correlation between two genes
for the n™ experiment. Then, an appropriate estimate of
the true mean is calculated as,

N
zn=[\]_1 E Z;

i=1

(17)

(18)
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where N is the total number of experiments. Then, by
inversion, average correlation is calculated as,

eZZ" -1

_ (19)
e +1

T, =

CESSM evaluation

TCSS, Schlicker, Jiang, SimGIC and Resnik methods were
used to find the semantic similarity between protein pairs
provided by CESSM. Correlation between semantic simi-
larity scores and sequence, Pfam, EC similarity for these
methods was calculated using the CESSM online tool.
Wang was not used here due to the difficulty in modify-
ing the R implementation to use the datasets provided by
the CESSM website.

Availability and requirements
+ Project name: Topological Clustering Semantic
Similarity (TCSS)
+ Home page: http://baderlab.org/Software/TCSS
« Operating system(s): Unix/Linux (recommended)
« Programming language: Python
+ Other requirements: Python 2.6 or higher
« License: GNU LGPL
+ Any restrictions to use by non-academics: no

Additional material

Additional file 1: Supplementary figures and tables. The file contains
supplementary figures S1 - S17 and tables ST & S2.
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