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Abstract

Background: Gene-set enrichment analysis is a useful technique to help functionally characterize large gene lists, such as
the results of gene expression experiments. This technique finds functionally coherent gene-sets, such as pathways, that are
statistically over-represented in a given gene list. Ideally, the number of resulting sets is smaller than the number of genes in
the list, thus simplifying interpretation. However, the increasing number and redundancy of gene-sets used by many current
enrichment analysis software works against this ideal.

Principal Findings: To overcome gene-set redundancy and help in the interpretation of large gene lists, we developed
‘‘Enrichment Map’’, a network-based visualization method for gene-set enrichment results. Gene-sets are organized in a
network, where each set is a node and edges represent gene overlap between sets. Automated network layout groups
related gene-sets into network clusters, enabling the user to quickly identify the major enriched functional themes and
more easily interpret the enrichment results.

Conclusions: Enrichment Map is a significant advance in the interpretation of enrichment analysis. Any research project that
generates a list of genes can take advantage of this visualization framework. Enrichment Map is implemented as a freely
available and user friendly plug-in for the Cytoscape network visualization software (http://baderlab.org/Software/
EnrichmentMap/).
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Introduction

High-throughput genomic experiments often lead to the

identification of large gene lists [1,2,3]. Gene lists are typically

defined using statistical methods appropriate to the experimental

design. For instance, a frequently applied method is to score genes

by their differential expression between two biological states (such

as healthy vs. diseased). Especially in more mature fields, like gene

expression microarrays, the statistical models used for gene scoring

are well established [1,4]. For instance, gene expression values are

ranked to identify the top-most list of expressed genes, based on an

arbitrary expression threshold, or a set of gene expression

experiments are clustered, each cluster defining a potentially large

gene list. However, these methods for finding interesting genes

often do not help the interpretation of the resulting gene lists and

the formulation of consistent biological hypotheses from these

results still poses a major challenge for experimentalists. Searching

for sets of predefined functionally related genes (e.g. pathways) that

are enriched in a gene list is a popular method designed to solve

this problem. However, as gene-set collections get larger and more

complex, users may experience longer lists of results and increased

redundancy between sets. We have developed a visualization

method for gene set enrichment results, called Enrichment Map,

which helps quickly find general functional themes in genomics

data. In the next sections, we introduce enrichment analysis, the

gene set redundancy problem and then explain how Enrichment

Map works using typical analysis scenarios.

Enrichment analysis
Early approaches to gene list interpretation relied on choosing a

handful of high scoring genes, and then building rather subjective,

anecdotal interpretations. Enrichment analysis is an automated

and statistically rigorous technique to analyze and interpret large

gene lists using a priori-knowledge [5]. Enrichment analysis assesses

the over- (or under-) representation of a known set of genes (e.g. a

biological pathway) within the input gene list [6,7,8]. If a

statistically significant number of genes from the known set are

present in the gene list, it may indicate that the biological pathway

plays a role in the biological condition under study. This analysis is

repeated for all available known gene-sets, which could number in

the thousands.

Over 60 enrichment analysis methods and tools have been

developed in the last few years [5,9,10]. They mainly differ in (a)

their database of known gene-sets and (b) the statistical method

PLoS ONE | www.plosone.org 1 November 2010 | Volume 5 | Issue 11 | e13984



used to assess enrichment. In the following paragraphs, we briefly

review existing approaches for enrichment analysis considering

these two facets.

Most enrichment tools derive gene-sets from Gene Ontology (GO)

annotations [11], because they are readily accessible for many

organisms and cover many genes, yet many other sources of gene-

sets exist and are used by some tools in addition to GO [7,12,13].

Gene-sets can be defined based on participation in a metabolic or

signaling pathway (e.g. KEGG [14], Reactome [15]), targeting by

gene expression regulators (e.g. microRNA, transcription factors),

protein features such as domains, chromosomal location and

association to specific diseases, stimuli, or genetic perturbations.

Gene-sets from multiple sources are collected in resources such as

MSigDB [13] or WhichGenes [16]. Not all organisms are well

covered by gene-sets and many tools only support specific organisms.

Statistical methods to determine enrichment are usually either

threshold-dependent or whole-distribution [9]. Threshold-depen-

dent techniques require the user to input a discrete list of top-

ranking genes, which may require setting a threshold on the gene

scoring statistic. The one-tail Fisher’s Exact Test [17], based on the

hypergeometric distribution, was the first method proposed to address

this problem [18], and continues to be one of the most used testing

methods of this type [19]. These methods are useful for naturally

discrete lists, but have major drawbacks when utilized with

continuous gene scores. Specifically, results may not be stable to

choice of threshold [20], and there is loss of information caused by

treating gene scores in a binary way (they either pass the threshold

or not). On the other hand, whole-distribution methods are

threshold-free, as they test gene-sets by comparing their score

distribution versus the background distribution. For this reason

they are often preferred over threshold-dependent methods for

gene lists associated with a continuous score. GSEA (Gene-Set

Enrichment Analysis) [13], which utilizes the gene rank derived

from differential expression or other statistics, is one of the most

popular techniques in this group, though other whole-distribution

testing models have been proposed [5,9].

The gene-set redundancy problem
The growing number of available gene-sets, due to the increased

availability of functional annotations, makes enrichment analysis a

powerful tool to help researchers gain interesting insights from

their high-throughput data. However, this comes at a cost: as

gene-set collections get larger and more complex, there may be

longer lists of results and increased redundancy between sets.

Redundancy is particularly problematic with gene-sets derived

from hierarchical functional annotation systems, like GO, as

children terms are partially redundant with their parents by

definition. Gene-set redundancy constitutes a major barrier for the

interpretability of enrichment results, limiting the full exploitation

of its analytic power.

This problem can be addressed by modifying either the

statistical test or the gene-sets to minimize the effect of redundancy

and produce more concise enrichment results. Existing methods

usually take advantage of the hierarchical structure of Gene

Ontology to reduce redundancy, a solution that is only effective for

GO or other hierarchically organized gene sets and not applicable

to many others, such as pathways, experimental signatures and

regulator targets. POSOC [21] exploits the GO hierarchy to

merge single sets into clusters, which can then be tested for

enrichment. Ontologizer [22] defines a modified Fisher’s Exact Test

for hierarchical vocabularies, termed the parent-child approach.

Enrichment of a given gene-set is calculated with respect to the

parent gene-set, instead of the list of genes in the experiment (the

experimental universe set), in order to downplay uninformative

child enrichment (i.e. enrichment merely ‘‘inherited’’ from the

parent set enrichment). GOstats [23] and elim [24] adopt a reverse

strategy: child terms (i.e. leaves in the hierarchy) are tested first,

then parent nodes are modified so as not to include the genes

present in their enriched children. Ontologizer tends to penalize

smaller gene-sets, whereas GOstats and elim tend to penalize

larger gene-sets. This problem is overcome by the weight

algorithm [24], which reweights genes based on how many

children gene sets they are part of, but this is however limited to

hierarchical vocabularies and requires using Fisher’s Exact Test.

If test and gene-set modification methods are not completely

satisfactory solutions to the gene-set redundancy problems, what

else is available? A different strategy relies on visualizing the

redundancy relations among gene-sets to help the user recognize

redundancy while they explore enrichment results. Tools such as

Onto-Express [25], the Cytoscape [26] plugin BiNGO [27] and

WebGestalt [28] display the hierarchical structure of enriched GO

terms. This helps identify parent-child relationships between

terms, but the applicability is again confined to hierarchical

vocabularies. Other tools are more flexible. They neglect any a-

priori gene-set structure and compute a similarity score among

gene-sets, capturing inter gene-set redundancy. DAVID

[12,29,30] utilizes fuzzy gene clusters, pre-computed on the basis

of annotation similarity among all genes, to sort enriched gene-sets

into different yet partially overlapping groups; results are then

displayed in a tabular format. Molecular Concept Maps (MCM)

software [31] and the ClueGO [32] Cytoscape plugin offer a

richer visualization solution than DAVID, displaying enriched

gene-sets as a network, where each gene-set is represented as a

node and edges connect similar gene-sets. MCM utilizes the

Fisher’s Exact Test p-value as a similarity score between gene-sets.

The MCM network includes the input gene list together with the

enriched gene-sets. Colors are used to differentiate the gene-set

sources. ClueGO determines gene-set similarity according to

Cohen’s kappa statistic. Gene-sets are then clustered using an

iterative merging approach; nodes, representing enriched gene-

sets, are colored according to cluster membership or alternatively

according to the proportion of up- and down-regulated genes;

node size represents enrichment significance. ClueGO and MCM

are useful, as they offer an expressive and intuitive organization of

gene-sets, applicable to any gene-set source. Unfortunately, all the

tools mentioned so far incorporate only one enrichment test (the

Fisher’s Exact Test) and are not designed to work with enrichments

computed using other methods, limiting their power and

flexibility. Many tools only use GO annotation as a source of

gene-sets, and do not take advantage of the many types of other

useful gene-sets that exist. The landscape of available solutions to

gene-set redundancy is summarized in Table 1.

To overcome the above limitations, we developed the

Enrichment Map visualization method, which organizes gene-sets

into a similarity network, where nodes represent gene-sets, links

represent the overlap of member genes, and node color encodes

the enrichment score. ClueGO and MCM create similar networks,

however, Enrichment Map uses a visual style that we find more

intuitive and offers improved functionality: two different enrich-

ment experiments can be comparatively analyzed by displaying

them in the same map; new query gene-sets (e.g. disease genes,

targets of regulators) can be compared to existing gene-sets post-

analysis; a heat-map can be used to explore the data underlying

the enrichment results (e.g. gene-expression patterns) for any gene-

set; finally, Enrichment Map is modular, enabling use with any

type of enrichment test or gene-set source. Enrichment Map is

implemented as a freely available and open-source plugin for the

Cytoscape network visualization and analysis software [26].

Enrichment Map
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We next describe how Enrichment Map works and how it can

be used to interpret enrichment analysis results using frequently

encountered experimental designs.

Results

To simplify the navigation and interpretation of enrichment

results, we have developed Enrichment Map, a network-based

gene-set enrichment result visualization method. Gene-sets are first

analyzed for enrichment significance using a method of choice,

e.g. GSEA [13], and then organized as a weighted similarity

network, where nodes represent gene-sets and weighted links (i.e.

edges) between the nodes represent an ‘‘overlap’’ score depending

on the number of genes two gene-sets share. Nodes are

automatically arranged so that highly similar gene-sets are placed

close together; these clusters can be easily identified manually and

related to biological functions. Gene-set enrichment results are

graphically mapped to the Enrichment Map: node size represents

the number of genes in the gene-set; edge thickness is proportional

to the overlap between gene-sets, calculated using the Jaccard or

overlap coefficients (see Methods). The enrichment score (specif-

ically, the enrichment p-value) is mapped to the node color as a

color gradient. In a typical enrichment test for a single set of genes

(one-class), node color ranges from white (no enrichment) to red

(high enrichment). In a two-class experiment design, node color

ranges from red (high enrichment in one class e.g. case) to white

(no enrichment) to blue (high enrichment in the second class e.g.

control). In the specific case of a gene expression experiment

where a condition of interest is compared to a baseline control, red

is interpreted as up-regulation and blue as down-regulation.

Figure 1 summarizes the information flow from gene scoring to

Enrichment Map analysis for a typical, two-class experiment.

In the next sections, we give examples of typical analysis

scenarios where Enrichment Map is used to analyze gene-

expression experiments. For simplicity, only Gene Ontology

derived gene-sets are used, although any gene-sets can be used

in practice. Use case 1 presents the most basic application of

Enrichment Map, the analysis of a two-class experiment. We

analyze a gene expression data set of MCF7 breast cancer cells, in

presence or absence of estrogen treatment at 24 hours of culture.

In Use case 2, we compare the estrogen response at two time-points,

12 and 24 hours, to evaluate changes over time. In Use case 3, we

analyze a gene expression study of colon cancer and use the query

set feature of Enrichment Map to investigate the relationship

between the gene expression signature and known genes associated

with colon cancer.

Use case 1: One enrichment (estrogen treatment of
breast cancer cells)

Here, we analyzed the changes in gene expression associated

with estrogen treatment of a breast cancer cell line (MCF7) at

24 hours of culture [33]. Enrichment results were generated after

scoring genes for differential expression using the t-test statistic,

comparing the estrogen-treated versus the untreated samples.

GSEA was then used to find enriched GO gene-sets in up- or

down-regulated genes. Only gene-sets passing conservative

significance thresholds (p-value,0.001, False Discovery Rate

(FDR),5%) were selected for display in the Enrichment Map,

resulting in 156 total gene-sets (out of 2378) significantly enriched

in treated (148 gene-sets) or untreated cells (8).

The output of GSEA, like many other enrichment methods,

consists of a table of gene-sets and their enrichment statistics. This

organization is not helpful for enrichment interpretation if too

many gene-sets pass the significance threshold, as is the case here.

Although the table can be ranked according to enrichment

significance (nominal p-value, FDR, or other scores, in the case of

GSEA), it is difficult to identify gene-sets belonging to a common

functional group, because they are typically scattered throughout

the table. To demonstrate this problem, multiple microtubule

cytoskeleton-related gene-sets are highlighted in the enrichment

table for estrogen-treated cells (Table S1, first tab).

A simple approach to this problem consists of visualizing

enriched GO gene-sets according to the hierarchical relations

defined in the ontology (Figure 2). The resulting network is

composed of several, disconnected sub-networks (i.e. clusters).

These are not interconnected because gene-sets failing the

Table 1. Different approaches to handle gene-set redundancy.

Tool
Gene-set redundancy
correction method

Type of visualization
support

Supports any
gene-set source

Supports any
enrichment test

Supports enrichment
comparison

POSOC [21] Modified gene-sets None

Ontologizer [22] Modified test None

GOStats [23] Modified gene-sets None

elim [23] Modified gene-sets None

weight [24] Modified test None

OntoExpress [25] None Hierarchical ¤

BiNGO [27] None Hierarchical

WebGestalt [28] None Hierarchical

DAVID [12,29,30] None Table ¤

MCM [31] None Network ¤

ClueGO [32] None Network

Enrichment Map None Network ¤ ¤ ¤

Gene-set redundancy correction methods typically utilize modified gene-sets (Modified gene-sets) or rely on a modified enrichment test (Modified test), but usually require
hierarchically structured gene-sets; consequently, they usually do not support gene-sets from resources other than Gene Ontology. Other methods offer different types
of visualization support, adopting a hierarchical, tabular or network organization of gene-sets. These methods usually allow a broader choice of gene-set sources and
enrichment tests. The table also indicates whether the method supports comparison of different enrichment results.
doi:10.1371/journal.pone.0013984.t001

Enrichment Map
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enrichment significance threshold were removed to limit the

network size, which otherwise would be too large for visualization

purposes. Clusters typically map to one or a few functional groups,

as displayed by the manually added annotation labels in Figure 2,

hence they can be successfully used to summarize enrichment

results. However, gene-sets relating to the same biological function

(e.g. Microtubule cytoskeleton) but defined in different GO partitions

(e.g. Cellular Component and Biological Process) are systematically split

into different clusters. In a few cases, this occurs even for

functionally related gene-sets from the same GO partition (e.g.

tRNA Processing from Molecular Function).

The Enrichment Map for the same data displayed in Figure 3

overcomes these problems. Gene-sets are organized according to

their mutual overlap. Minimal editing, such as minor repositioning

of nodes and removal of few exceedingly generic gene-sets (e.g.

Protein Complex Assembly, Biopolymer Catabolism), was done to optimize

the map layout. Clusters were manually circled and labeled to

highlight the prevalent biological functions among a set of related

gene-sets. Functionally related gene-sets are highly connected, to a

larger extent than in the purely hierarchical visualization, as

exemplified in the case of Microtubule cytoskeleton (Figure 4). Most

importantly, the overall functional ‘‘landscape’’ fits with the known

role of estrogen hormones as activators of cell proliferation [34]. In

fact, gene-sets enriched in estrogen-treated cells (in red) relate to

increased protein synthesis and RNA processing (left side of the

map) and to the execution and regulation of mitotic cell cycle

(right side of the map). Gene-sets found enriched in untreated cells

(blue) constitute a minor portion of the map and relate to

membrane and cell adhesion (namely, MHC-II receptors, tight

junctions and lipid transport). The down-regulation of these

functions may have a role in supporting proliferation or it may be

associated with relatively undifferentiated cellular states.

The approach described in this use-case can be applied to any

genomic experiment generating a ranked list of genes. For

example, genes can be ranked by their likelihood of being

regulated by a given transcription factor, according to ChIP-chip

or ChIP-seq experiments (Chromatin Immunoprecipitation of genomic

DNA followed by chip hybridization or sequencing) and then

GSEA, or any whole-distribution method, can be used to test

gene-set enrichment in top-ranking genes.

Use case 2: Two enrichments (estrogen treatment of
breast cancer cells)

Enrichment Map can be used to analyze experiments with more

complex designs than the basic two-class described above. In the

previous use case, gene expression was analyzed looking for

changes associated with estrogen treatment at 24 hours of culture.

Here we evaluate differences in the estrogen response kinetics by

additionally considering gene expression enrichment at 12 hours

of culture. Genes were scored for differential gene expression (t-test)

by comparing treated and untreated cells at matching culture

time-points (12 and 24 hours, respectively). GSEA was used to find

enriched GO gene-sets in up- or down-regulated genes, as in the

previous use case. Applying the same conservative significance

thresholds (p-value,0.001, FDR,5%), 188 total gene-sets (out of

2378) were found significantly enriched in treated (179) or

untreated cells (9). The enrichment map was generated by

mapping the 12 hour enrichment to the node center and the

24 hour enrichment to the node border (Figure 5). This two-

enrichment visualization is useful, as we can see gene-set groups

that have the same (all red or all blue) or different enrichment

across the two data sets. It is immediately apparent that the

agreement between the 12 and 24 hours estrogen response is very

high - most nodes are all one color and no nodes are both blue and

red, which would indicate a gene-set with opposite enrichment in

the two time points. In certain cases there are nodes that are

significantly enriched at one time-point, but not at the other.

Figure 1. From ranked gene lists to the enrichment map. High-throughput genomic experiments often output large gene lists, which are
typically ranked according to a statistic measuring difference in one experimental condition versus another. Ranked lists are analyzed for enrichment
in known sets of functionally related genes (e.g. pathways) from publicly accessible databases. An enrichment map is drawn, representing the
enrichment results as a network of gene-sets (nodes) related by their similarity (edges), with enrichment significance encoded by the node color
gradient, where color intensity represents significance and color hue (red / blue) represents the class (i.e. biological condition) of interest. Node size
represents the gene-set size and edge thickness represents the degree of overlap between two gene-sets.
doi:10.1371/journal.pone.0013984.g001

Enrichment Map
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Gene-sets with stronger enrichment at 24 compared to 12 hours

are present in most of the functional groups. These results suggest

that the transcriptional response to estrogen treatment is globally

stronger at 24 hours and that the functional groups induced or

repressed are essentially the same. Further, the four clusters

relating to DNA metabolism, Cell cycle, Microtubule cytoskeleton

and Ubiquitin-dependent protein degradation present an interest-

ing pattern: gene-sets relating to DNA synthesis (such as Replication

fork, DNA polymerase activity) are characterized by stronger

enrichment at 12 hours, whereas gene-sets relating to G2/M

phase components and processes (such as Chromosome condensation,

Spindle and Anaphase Promoting Complex (APC)-dependent protein

degradation) prevail at 24 hours. First, we investigated if differences

in enrichment significance at 12 and 24 hours are consistent with

differential gene expression patterns, utilizing heat-maps generated

by the Enrichment Map software. The APC-dependent protein

degradation (GO:0031145, full name: Anaphase-promoting com-

plex-dependent proteasomal ubiquitin-dependent protein catabol-

ic process) gene-set is characterized by a markedly stronger

induction after estrogen treatment at 24 compared to 12 hours

(Figure 6, left pane), which is consistent with enrichment results.

We next investigated a gene-set exhibiting the opposite enrich-

ment pattern, Replication Fork (GO:0005657) (Figure 6, right pane).

Gene expression in estrogen-treated cells is moderately higher at

24 than 12 hours, but there is a comparable increase in the

untreated cell expression levels. Since enrichments were computed

by comparing estrogen treated and untreated cells at the same

time-point, the different enrichment observed for DNA metabo-

Figure 2. Hierarchical visualization of enrichment results for estrogen treatment of breast cancer cells. Hierarchical organization of GO
gene-set enrichment results for estrogen-treated compared to untreated breast cancer cells at 24 hours of culture. Nodes represent gene-sets and
edges represent GO defined relations (Is-a, Part-of, Regulates). Gene-sets that did not pass the enrichment significance threshold are not shown.
Nodes are colored according to enrichment results: red represents enrichment in estrogen-treated cells (i.e. up-regulation after estrogen treatment),
whereas blue represents enrichment in untreated cells (i.e. down-regulation after estrogen treatment). Color intensity is proportional to enrichment
significance. Since conservative thresholds were used to select gene-sets, most of the node colors are intense (corresponding to highly significant
gene-sets). Subnetworks (i.e. clusters) are annotated according to the corresponding function. The acronym in brackets represents the specific GO
ontology the gene-sets belong to: Molecular Function (MF), Cellular Component (CC), Biological Process (BP). Microtubule cytoskeleton (purple
labels) and tRNA processing (green labels) were highlighted to show absence of connections between related gene-sets.
doi:10.1371/journal.pone.0013984.g002

Enrichment Map
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Figure 3. Enrichment map for estrogen treatment of breast cancer cells at 24 hours of culture. The map displays the enriched gene-sets in
estrogen-treated vs. untreated breast cancer cells at 24 hours of culture. As in Figure 2, red node color represents enrichment in estrogen-treated cells
(i.e. up-regulation after estrogen treatment), whereas blue represents enrichment in untreated cells (i.e. down-regulation after estrogen treatment); color
intensity is proportional to enrichment significance. Clusters of functionally related gene-sets were manually circled and assigned a label.
doi:10.1371/journal.pone.0013984.g003

Figure 4. Zoom in of the microtubule cytoskeleton cluster in the 24 hours estrogen treatment enrichment map. Cytoskeleton-related
gene-sets from different GO partitions, such as Spindle (CC) and Microtubule-based process (BP) have been grouped together, unlike in the purely
hierarchical visualization in Figure 2. As in the previous figures, red node color represents enrichment in estrogen-treated cells (i.e. up-regulation after
estrogen treatment), whereas blue represents enrichment in untreated cells (i.e. down-regulation after estrogen treatment); color intensity is
proportional to enrichment significance.
doi:10.1371/journal.pone.0013984.g004

Enrichment Map
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lism gene-sets is likely due to the estrogen-independent increase of

gene expression levels in untreated cells. This suggests that G2/M

phase execution could be more dependent on estrogen signaling

than G1 phase, at least for MCF7 breast cancer cells.

To evaluate the effect of alternative statistics for measuring

differential gene expression on enrichment results, we repeated the

analysis using the ratio of class means instead of the t-test statistic.

Although more gene-sets were found enriched, the enrichment

map clusters were globally the same, but characterized by noisier

patterns (Text S1). For this reason, the ratio of class means was not

used for the final analysis. This also demonstrates the utility of

Enrichment Map in guiding the choice of parameters and

statistical tests for enrichment analysis.

Use case 3: query set post-analysis (early onset colon
cancer)

Here, we analyze the gene expression profiles of early-onset colon

cancer mucosa versus control samples [35] to identify functional

groups that are enriched in differential gene expression. We then mine

these gene-sets for differentially expressed genes that have known

disease associations, or that may be new disease gene candidates, using

the query set post-analysis feature of the Enrichment Map software. Gene

expression data were scored for differentiality between cases and

controls using the t-test statistic; GSEA was used to generate

enrichment results, which were then visualized using Enrichment

Map, following the procedure described in Use case 1. Known colon

cancer genes were obtained from the DiseaseHub database (http://

zldev.ccbr.utoronto.ca/,ddong/diseaseHub/), which integrates data

from OMIM (Online Mendelian Inheritance in Man), GAD (Genetic

Association Database), HGMD (Human Gene Mutation Database),

PharmGKB (Pharmacogenomics Knowledge Base), CGP (Cancer

Genome Project) and GWAS (Genome Wide Association Studies).

Most of the disease genes in this database harbor rare mutations or

polymorphisms linked to colon cancer either by causation or by

statistical association. Overlap was scored using Fisher’s Exact Test p-

value. Nominal p-values (i.e. not adjusted) smaller than 1024 were

deemed significant, and visualized as pink edges with thickness

indicating significance level (proportional to 2log (p-value)) (Figure 7).

Overall, the enrichment map has a smaller number of up-

regulated than down-regulated gene-sets (125 and 234, respective-

ly). Many down-regulated gene-sets map to metabolic processes,

with clusters relating to functions such as phospholipid and steroid

biosynthesis, metabolic cofactors, amino acid metabolism and

oxidative metabolism (specifically, citric acid cycle, mitochondrion,

electron transport chain). This is not surprising, as it is well known

that cancer cells undergo major metabolic shifts, such as the Warburg

Effect, consisting of dramatically reduced oxidative metabolism and

mitochondrial activity [36]. Compared to up-regulated gene-sets,

however, only a few down-regulated sets significantly overlap with

Figure 5. Enrichment map for estrogen treatment of breast cancer cells at 12 and 24 hours of culture. The map displays the enriched
gene-sets in estrogen-treated vs. untreated breast cancer cells at 12 and 24 hours of culture. Enrichments were mapped to the inner node area and to
the node borders, respectively. As in the previous figures, red represents enrichment in estrogen-treated cells (i.e. up-regulation after estrogen
treatment), whereas blue represents enrichment in untreated cells (i.e. down-regulation after estrogen treatment); color intensity is proportional to
enrichment significance. Clusters of functionally related gene-sets were manually circled and assigned a label.
doi:10.1371/journal.pone.0013984.g005

Enrichment Map
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known disease genes. This is reasonable since the metabolic switch

observed in cancer is likely a downstream consequence of neoplastic

transformation, neither specific for colon cancer nor having a causal

role in its development. We decided to evaluate the gene expression

patterns of the three metabolic gene-sets with the most significant

connections to known disease genes: Iron ion binding (GO:0005506),

p-value 5.3610213, in the Metal ion cluster binding cluster, Alkyl/aryl

transferase activity (GO:0016765, full name: Transferase activity,

transferring alkyl or aryl (other than methyl) groups) p-value

8.2610211, in the Alkylation cluster, and Electron carrier activity

(GO:0009055), p-value 1.3610210, in the Metabolic cofactor cluster.

Disease genes from Iron ion binding and Electron carrier activity are

highly overlapping (union size: 31, intersection size: 20), hence they

were considered together. Most of these genes belong to the

cytochrome P450 family (Table S2), which is important for

xenobiotic metabolism. Mutations in this gene family have been

associated with cancer either because of the impaired capability to

neutralize toxic chemicals, or because of the acquired capability to

activate the toxicity of otherwise inert compounds [37]. However,

none of the cytochrome P450 genes is characterized by marked up-

regulation or down-regulation (Table S2). On the other hand,

NQO1 (NAD(P)H dehydrogenase, quinone 1; EntrezGene ID: 1728),

whose inactivating mutation has been associated with colon cancer

in animal models and in human population studies [38], is markedly

down-regulated in cancer samples (t-test nominal p-value =

2.461026, 66.5% average reduction compared to control). Al-

though this gene is likely important for cancer progression and

severity, it was not identified in the original published gene

expression analysis. Inspection of Alkyl/aryl transferase activity revealed

that more than 90% of the disease genes in this set are glutathione S-

transferases, involved in detoxification. Specifically, MGST1

(Microsomal glutathione S-transferase 1; EntrezGene ID: 4257) is

markedly down-regulated (t-test nominal p-value = 6.961025,

65.0% average reduction compared to control) and certain MGST1

polymorphisms have been associated with increased colon cancer

risk [39]. Like NQO1, this gene was not identified in the original

gene expression analysis. Similar results were also found for another

metabolic gene-set, Aromatic compound metabolic process (GO:0006725),

where the most down-regulated disease genes are glucuronosyltrans-

ferases. All in all, this type of analysis was useful to dissect the down-

regulation of specific detoxification enzymes from the broader signal

of down-regulation of oxidative metabolism (Warburg Effect). The

biological relevance of the genes identified was supported by two

independent sources, namely differential expression in the micro-

array experiment analyzed and known disease associations based on

genetic screening or mechanistic studies. Therefore these genes

likely play an important role in colon cancer, and should be

considered for further study.

The up-regulated gene-sets with the highest overlap with known

disease genes are related to adhesion, angiogenesis, cell motility

and immune response. Among these, we focused on the gene-sets

Cell Motility and Chemotaxis. Dysregulation of these processes is

Figure 6. Heat-maps displaying gene-set expression patterns in the estrogen treatment experiment. Two gene-sets displaying different
enrichment patterns at 12 and 24 hours of the estrogen treatment experiment were selected from the enrichment map in Figure 5 and their
expression patterns were explored using heat maps within the Enrichment Map software. For APC-dependent protein degradation (left), there is a
marked increase of gene expression in estrogen treated cells at 24 hours compared to 12 hours, whereas the gene levels for untreated cells are
substantially the same at the two time points; the pattern observed is consistent with the presence of significant enrichment only at 24 hours. On the
other hand, for Replication fork (right), gene expression in estrogen treated cells at 12 and 24 hours is globally at similar levels, whereas there is an
increase of gene levels in untreated cells. This suggests an explanation of why Replication fork is enriched only at 12 hours.
doi:10.1371/journal.pone.0013984.g006
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likely to be responsible for the tumor invasive growth, its

infiltration into the lymph nodes in more advanced stages and

eventually metastasis [40,41]. We first looked at the Cell Motility

gene-set (GO:0051270), which is characterized by a very sig-

nificant overlap with the disease gene-set (nominal p-value:

3.361028). However, the disease genes in this set are only weakly

or inconsistently up-regulated (most significant nominal p-value:

1.861023). On the other hand, the Chemotaxis gene-set

(GO:0006935) has several known disease genes that are also

significantly up-regulated, even if its overall overlap significance

(2.561025) is weaker than for Cell Motility. Most of these genes are

chemokine ligands (Table S2), among which the most up-regulated

is CXCL12 (Chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor

1), EntrezGene ID: 6387). CLXC12 is secreted by carcinoma-

associated fibroblasts, and is considered responsible for tumor

invasion [41]. Since this gene-set is likely important for colon

cancer, we also looked for differentially expressed genes that were

not in our disease gene-set. Interestingly, the top-ranking gene in

this group is CYR61 (Cysteine-rich, angiogenic inducer, 61; EntrezGene

ID: 3491), which was identified in the original study as one of the

seven genes with the most consistent differential expression

between colon cancer and control samples [35]. CYR61 could be

a good new candidate for disease association, as only two

publications relating CYR61 to colon cancer were found in

PubMed [35,42], one being the original publication of the

microarray data set used in this analysis. This shows how the

query set post-analysis feature of the Enrichment Map software can be

used to identify gene-sets associated with a biological condition

according to independent data sources (in this case, differential

gene expression and known disease genes), and then to mine these

sets for previously uncharacterized genes exhibiting interesting

patterns. The applicability of this feature is not restricted to disease

genes: it can also be used to identify the relations between the

targets of a known regulator (e.g. transcription factor, microRNA)

and the functional groups enriched in the condition(s) of interest.

Enrichment Map can be applied to any enrichment test
or gene set database

The previous use cases demonstrate the utility of Enrichment

Map to visualize GSEA enrichment results, using Gene Ontology

as gene-set source. However, Enrichment Map is compatible with

any type of enrichment test or gene-set source. In Text S2 we show

how it can be applied to a disease gene list, using Fisher’s Exact Test

to test a larger collection of gene-sets derived from Gene Ontology

Figure 7. Enrichment map for early-onset colon cancer and overlap with known disease genes. The map displays the enriched gene-sets
in early onset colon cancer patients vs. normal controls. The yellow triangle represents the set of known colon cancer genes from the DiseaseHub
database, which integrates disease gene lists from several genotype-phenotype association resources. Purple edges indicate overlap between the
disease signature and enriched gene-sets; thickness represents significance. Only edges with a Fisher’s Exact Test nominal p-value smaller than 1024

were visualized.
doi:10.1371/journal.pone.0013984.g007
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as well as pathway databases. We also compare Enrichment Map

visualization with other available tools that are strictly dependent

on Fisher’s Exact Test.

Limitations of Enrichment Map
Enrichment map works well when enrichment results contain

many related gene sets. If only a few gene-sets result from

enrichment analysis, Enrichment Map does not provide much

benefit for result interpretation, as it is relatively easy to scan a list

of a few gene-sets. Further, if the resulting gene-sets are not highly

related, as they may be when not using Gene Ontology derived or

similarly hierarchically organized gene-sets, Enrichment Map will

not show clusters and thus will provide little benefit over a table of

gene-sets presentation format. In Text S3 we evaluate the

performance of Enrichment Map for several gene-set sources,

including experimentally- or computationally-derived gene-sets,

showing that Enrichment Map can be productively used in many

cases, even when Gene Ontology is not the major gene-set source.

However, specific gene-set sources, such as curated signatures

from gene expression experiments in Text S3, may have sparser

overlaps resulting in poorly connected networks.

Discussion

We have described Enrichment Map, a method for gene-set

enrichment visualization. Enrichment Map organizes enriched gene-

sets in a network in a way that helps manage the large overlap

between gene-sets that often complicates interpretation of gene-set

enrichment results. Highly redundant or biologically related gene-

sets are placed close together, making enrichment results easier to

interpret. Gene-sets can be linked by various criteria, such as the

amount of co-expression of member genes, however the gene-set

overlap measure that we use has the advantage of being intuitive, as

biologically similar sets are clustered together, and general, as it does

not depend on the type of data being analyzed (e.g. gene expression

or genetic associations). We have demonstrated the utility of the

enrichment map visualization in analyzing two published microarray

gene expression experiments, profiling the estrogen response in

breast cancer cells and early onset colon cancer. We showed that

Enrichment Map provides a concise and biologically meaningful

view of the cellular processes and components characterized by

differential expression.

Gene-set enrichment is often used to analyze single experiments, or

single comparisons between two conditions within multi-condition

experiments, and meta-analysis of gene expression data are often

performed using Venn diagrams or heat-maps (for instance,

[33,43,44]), without exploiting the full potential of functional

annotations. Enrichment Map can be used for more informative

comparisons, identifying which functional groups differ between

experiments. A visualization framework is essential for this, as

traditional displays of enrichment require tedious and error prone

navigation of flat tables, often resulting in investigators choosing only

a handful of gene-sets for follow-up out of the thousands available to

them in a genomics experiment. The heat map view in Enrichment

Map enables the user to zoom in and explore an enriched gene-set in

more detail and the query set analysis facilitates exploration of

relations to known disease genes or regulatory modules.

Gene-set enrichment has been successfully applied to link

functional gene-sets to disease and other biological conditions in

hundreds of publications (according to ISI Web of Knowledge, October

2010, DAVID and GSEA were quoted by 159 and 1421 papers,

respectively). We have successfully applied Enrichment Map to

several research projects such as cardiac failure [45], thyroid cancer

signaling (Borrello MG, Degl’Innocenti D, Gariboldi M, Merico D,

Antoniotti M, Pierotti M, Unpublished work) and autism [46].

Virtually any research project in genomics can take advantage of

this visualization framework; in particular, the modular design of

the Enrichment Map Cytoscape plugin software makes it easy to

integrate within existing analysis workflows.

Future work will include incorporating molecular interaction

network and pathway information [47,48] into gene-set analysis

methods, as has successfully been done for gene expression analysis

[49,50,51,52,53]. We will also improve the visualization. For

instance, we are working on methods to automatically summarize

gene-set clusters using tag clouds (Oesper L, Merico D, Isserlin R,

Bader GD, Submitted work) and on better visualization methods

for multi-condition experiments (more than two enrichment

results). It will also be useful to develop gene set similarity

measures weighted to consider the most informative genes in the

gene set (such as the most differentially expressed).

Materials and Methods

Microarray data analysis
All microarray gene expression data were downloaded from the

NCBI GEO (Gene Expression Omnibus) database. The raw .CEL

files were processed with the rma statistical model for gene

expression signals, using the Bioconductor [54] affy package. The

data-sets were selected according to the following quality criteria:

reliable and high-coverage microarray platform (Affymetrix HGU-

133 plus 2.0), clear experimental design, sufficient number of

replicates ($3 for cell lines, $5 for patient samples), uniform cell

composition, Principal Component Analysis (PCA) results compatible

with the experimental design (i.e. clear separation of samples from

different classes). Enrichment analysis was performed after

conversion from Affymetrix to NCBI Entrez-Gene identifiers,

utilizing the Bioconductor hgu133plus2 package (downloaded March

2009).

Estrogen treatment of breast cancer cells. The

microarray data (GSE11352) were originally composed of 18

samples, with 3 replicates for every one of the 6 classes (3 time-

points for treated and untreated). The subset composed of the 12

and 24 hour time-points was analyzed using GSEA, t-test, 2000

gene-set permutations. The enrichment maps in use case 1 and 2

were generated using only the gene-sets satisfying these

enrichment thresholds: nominal p-value,0.001, FDR,5%. The

enrichment map overlap coefficient was set to 0.5.

Early Onset Colon Cancer. The microarray data

(GSE4107) are composed of 22 samples, with 10 normal and 12

colon cancer samples (colonic mucosa surgical samples). The data

set was analyzed using GSEA, t-test, 2000 gene-set permutations.

The enrichment map was generated using only the gene-sets

passing the following thresholds: nominal p-value,0.001,

FDR,5%. The overlap coefficient was set to 0.5.

Gene-set pre-processing
Human Gene Ontology (GO) [11] annotations were down-

loaded from Bioconductor, org.Hs.eg.db package (March 2009). In

order to maximize the coverage of GO annotations, no evidence

code based filter was applied. Terms annotating more than 500 or

less than 10 genes were discarded, resulting in 2378 GO terms

being used for the analysis. These thresholds are routinely used in

enrichment analysis as large gene-sets rarely convey much useful

biological meaning (e.g. regulation of physiological process), whereas

very small gene-sets are more susceptible to being falsely enriched

due to random fluctuations. Also, the reduced number of gene-sets

decreases the multiple testing correction burden, potentially

increasing the power of the analysis.

Enrichment Map
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Enrichment Map: overlap measures and network
visualization

Gene-set definition and enrichment table files are loaded in the

Enrichment Map Cytoscape plugin and filtered for significance,

according to the p-value and FDR thresholds set by the user. Overlap

between significant gene-sets is computed according to the Jaccard

coefficient or overlap coefficient, depending on the user’s choice.

Given sets A and B, and the cardinality operator | | where |X|

equals to the number of elements within set X, the Jaccard coefficient

(JC) is defined as:

JC~
DA\BD
DA|BD

Whereas the overlap coefficient (OC) is defined as:

OC~
DA\BD

Min(DAD, DBD)

The overlap coefficient is better when hierarchically-organized

gene-set collections (such as Gene Ontology) are included in the

analysis. Parent-child overlap produces the maximal score (1),

which means that all hierarchical relations will be present in the

network. On the other hand, the Jaccard coefficient tends to group

gene-sets with similar size, hence Gene Ontology parent-child

relations are often absent from the network. The gene-set network

is generated using only those interactions that pass a user-defined

threshold for the Overlap or Jaccard coefficient and it is arranged

using the Cytoscape force directed layout, weighted mode. The

Overlap or Jaccard coefficient defines the edge weights in this case.

Enrichment Map: implementation
Enriched Map was implemented as a Java plugin for the freely

available Cytoscape network visualization and analysis software

[26]. The plugin together with the source code is freely available at

http://baderlab.org/Software/EnrichmentMap under the GNU

LGPL license. The plugin reads two types of input formats, GSEA-

specific and generic. Heat-map visualization, as described in Use

case 2, is available for any selected gene-set. Any gene-set (or

collection of gene-sets) of user’s choice can be uploaded to perform

the query set post-analysis, as described in Use case 3.

Supporting Information

Table S1 GSEA enrichment results for estrogen treatment of

breast cancer cells; gene-sets relating to the microtubule

cytoskeleton are highlighted.

Found at: doi:10.1371/journal.pone.0013984.s001 (0.68 MB XLS)

Table S2 Gene expression and annotation tables for genes

analyzed in Use case 3 (post-analysis); genes discussed in the main

text are highlighted.

Found at: doi:10.1371/journal.pone.0013984.s002 (0.11 MB XLS)

Text S1 Enrichment Maps for estrogen treatment using different

statistics for differential expression; ratio-of-class-means generates

noisier results than the t-test.

Found at: doi:10.1371/journal.pone.0013984.s003 (1.72 MB

DOC)

Text S2 Enrichment Map for Alzheimer disease genes using

Fisher’s Exact Test and comparison to MCM.

Found at: doi:10.1371/journal.pone.0013984.s004 (1.98 MB

DOC)

Text S3 Enrichment Map analysis using additional gene-set

sources.

Found at: doi:10.1371/journal.pone.0013984.s005 (4.75 MB

DOC)
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