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Abstract

If perturbing two genes together has a stronger or weaker effect than expected, they are said to genetically interact. Genetic
interactions are important because they help map gene function, and functionally related genes have similar genetic
interaction patterns. Mapping quantitative (positive and negative) genetic interactions on a global scale has recently
become possible. This data clearly shows groups of genes connected by predominantly positive or negative interactions,
termed monochromatic groups. These groups often correspond to functional modules, like biological processes or
complexes, or connections between modules. However it is not yet known how these patterns globally relate to known
functional modules. Here we systematically study the monochromatic nature of known biological processes using the
largest quantitative genetic interaction data set available, which includes fitness measurements for ,5.4 million gene pairs
in the yeast Saccharomyces cerevisiae. We find that only 10% of biological processes, as defined by Gene Ontology
annotations, and less than 1% of inter-process connections are monochromatic. Further, we show that protein complexes
are responsible for a surprisingly large fraction of these patterns. This suggests that complexes play a central role in shaping
the monochromatic landscape of biological processes. Altogether this work shows that both positive and negative
monochromatic patterns are found in known biological processes and in their connections and that protein complexes play
an important role in these patterns. The monochromatic processes, complexes and connections we find chart a hierarchical
and modular map of sensitive and redundant biological systems in the yeast cell that will be useful for gene function
prediction and comparison across phenotypes and organisms. Furthermore the analysis methods we develop are applicable
to other species for which genetic interactions will progressively become more available.
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Introduction

One of the major goals in biology is to understand how molecules

are organized within the cell, how they interact to mediate

biological processes and how process failure leads to disease.

Genetic perturbations, such as gene mutations, are often used to

better understand the function of a gene and to study the

relationship between genotype and phenotype [1]. In budding

yeast, most genes (,80%) are not essential for growth under

standard laboratory conditions [1], suggesting that their function is

not required under the conditions tested or is compensated by other

genes. Exploring mutant phenotypes in the presence of a chemical

or an environmental stress [2], along with combining multiple

mutations to map genetic interactions [3,4,5], have been successful

strategies to investigate genetic redundancy. In particular, genetic

interactions have proven useful to predict gene function [6] and

organize biological processes [7,8,9] and are complementary to

other functional interaction data such as protein-protein interac-

tions [10]. Here we systematically evaluate how genetic interaction

data relates to known biological processes. We next review previous

work in this area to place our work into context.

Genetic interactions are observed when the phenotype of a

double mutant is unexpected given the phenotypes of both single

mutants [11]. With respect to growth, a genetic interaction is

classified as either positive (or negative) when the fitness of the

double mutant is higher (or lower) than expected. Negative genetic

interactions often indicate functional redundancy between two

genes, with the extreme case being synthetic lethality (SL) when

simultaneous deletion of two otherwise non-essential genes leads to

cell death. A biochemical interpretation for this is that the two genes

participate in complementary or parallel pathways or complexes

[12,13]. As a result, two complementary pathways tend to be

connected by many negative genetic interactions. Positive interac-

tions may indicate a number of biochemical scenarios, but are

typically thought of as being within a pathway or complex, such as a

linear chain of reactions where the deletion of one gene affects

output, but deleting a second gene doesn’t further affect output [4].

While the precise relationship of a genetic interaction to its

underlying biochemistry is still not completely understood,

functionally related genes tend to have similar genetic interaction

profiles. Clustering the first large scale genetic interaction maps
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composed of SL and synthetic sick interactions resulted in clear

grouping of genes with correlated genetic interaction profiles

[4,5,6,7]. These genes tend to be physically linked as part of the

same biochemical pathway, multiprotein complex or physically

interacting protein pairs. Genes with correlated profiles tend to

encode physically interacting proteins and tend not to interact

synthetically with each other [4,6]. This supports a model where

parallel biochemical pathways are connected by a large number of

SL interactions [14,15,16].

Extending the parallel pathway model, Kelley et al. defined

biological modules as clusters of proteins enriched in genetic and

physical interactions (‘‘within-module’’) connected only by SL

genetic interactions (‘‘between-module’’) [17]. This approach was

further explored by defining modules more generally as a

connected graph in a protein interaction network [18] and

considering pairs of modules connected by negative interactions

[19]. Extending this idea to quantitative positive and negative

genetic interactions, Bandyopadhyay et al. and others devised

methods to learn protein complexes and their functional

relationships [20,21]. These approaches aim to define functional

modules (clusters of functionally related genes, such as pathways or

complexes) using large-scale genetic interactions.

By predicting positive and negative interactions on a large scale

from metabolic network simulations, Segre et al. discovered that

biological modules are often connected by purely positive or

negative genetic interactions, and described these as monochro-

matically pure connections [22]. Quantitative experimentally

determined genetic interactions [4,7] have been interpreted using

this concept and found to also contain monochromatic groups of

genes, where all genes are connected to each other by

predominantly positive or negative genetic interactions. Theoret-

ically, we can consider four monochromatic patterns: monochro-

matic positive or negative interactions within groups of genes

(‘‘within module’’) and monochromatic positive or negative

connections between groups of genes (‘‘between module’’). Only

some of these patterns have been related to the underlying

biochemical system or systematically explored. Monochromatic

positive within module patterns have been shown to correspond to

protein complexes or pathways [4,9,20,23,24]. Monochromatic

negative within module patterns have been observed to represent

complexes containing essential genes [20,25]. Also, complexes

enriched in genetic interactions tend to be monochromatic positive

or negative [25]. Monochromatic positive between module

connections have not been related to a biochemical model, but

have been observed to occur between functional modules in

simulations [22] and between complexes [25]. Monochromatic

negative between module connections have been observed in

simulations [22] and are expected from the observation that SL

interactions (negative) connect parallel pathways [9,14,15].

Overall, monochromatic patterns have been linked to various

physical modules, however none have been systematically studied

in terms of all known pathways and complexes.

Two approaches to systematically study monochromatic

patterns are possible. We can either search for monochromatic

patterns in the genetic interaction network and interpret the results

in terms of known physical and functional modules (such as

protein complexes or biological processes), or we can examine all

known modules for monochromatic patterns. The former

approach has been applied in a non-exhaustive fashion on focused

genetic interaction data sets [26,27], but an exhaustive approach is

computationally difficult, given the large size of recently published

genetic interaction networks [7], and requires the development of

new algorithms. The latter approach uses the knowledge we

currently have about functional modules to study monochromatic

patterns and this is what we adopt here.

We use current knowledge about biological processes from

Gene Ontology annotation [28] combined with the most

comprehensive quantitative genetic interaction data set currently

available, which includes measurements for 5.4 million gene pairs

in normal growth conditions and provides quantitative genetic

interaction profiles for ,75% of all genes in Saccharomyces cerevisiae

[7]. We first assess the monochromatic nature of biological

processes and their connections and find that only 10% of

biological processes and less than 1% of inter-process connections

are monochromatic. We next explore various features that may

explain these monochromatic patterns and show that protein

complexes are responsible for a surprisingly large fraction of them.

Significantly more genetic interactions than expected are attrib-

uted to complexes and genes encoding protein complex members

have more genetic interactions and are essential more often than

expected. This work shows the importance of protein complexes in

contributing to monochromatic patterns in quantitative genetic

interaction networks and generates a hierarchical and modular

map of sensitive and redundant biological systems in the yeast cell.

Results

,10% of biological processes are monochromatic
To study the monochromatic nature of known biological

processes, we used the most recent data set of quantitative genetic

interactions, generated by Synthetic Genetic Array (SGA) analysis

[7]. Known processes were defined by the Gene Ontology (GO)

biological process (BP) classification system as annotated to yeast

genes by the Saccharomyces Genome Database (SGD). GO

annotations in yeast are the most complete for any organism and

there is no other comparable database of biological processes for

yeast. Processes can represent canonical pathways, like fatty acid

biosynthesis, and also more general processes, like DNA repair.

Each process is described by a standard name and a set of genes

annotated to it. We considered all GO processes in yeast where

member genes were connected by at least one SGA interaction

(,1000 processes).

Author Summary

Genetic interactions indicate functional dependencies
between genes and are a powerful tool to predict gene
function. Functionally related genes tend to have similar
profiles of genetic interactions. Recently, global scale
mapping of quantitative (positive and negative) genetic
interactions has been performed. This data clearly shows
groups of genes connected by predominantly positive or
negative interactions, termed monochromatic groups.
These groups often correspond to functional modules,
such as biological processes or protein complexes, or
connections between modules, but it is not yet known
how these patterns globally relate to known functional
modules. Here we systematically evaluate the monochro-
matic nature of known biological processes and their
connections in the yeast Saccharomyces cerevisiae. We find
that 10% of biological processes and less than 1% of inter-
process connections are monochromatic. Further, we show
that protein complexes are responsible for a surprisingly
large fraction of these monochromatic groups. The
monochromatic processes, complexes and connections
we find chart a hierarchical and modular map of sensitive
and redundant biological systems in the yeast cell that will
be useful for gene function prediction and comparison
across phenotypes and organisms.

The Monochromatic Landscape of the Yeast Cell
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We defined the monochromatic score as the relative ratio of

positive to negative interactions occurring within a given process

(set of genes). To assess how likely these scores are to occur by

chance, we computed Z-scores using randomization that main-

tains the network topology (permutation of the gene names). We

can then identify unexpected monochromatic patterns by their

high Z-scores (Figure 1). Highly positive Z-scores characterize

monochromatic positive processes and highly negative Z-scores

characterize monochromatic negative processes (Methods).

Not all gene pairs are tested in the SGA data set, thus processes

have variable genetic interaction coverage. Because monochro-

matic patterns are more confident for processes that have an

increased coverage of genetic interactions, we selected high

coverage processes based on the number of corresponding genes

present and connected in the SGA genetic interaction network

(Methods). For a given coverage level, we computed the ratio of

monochromatic processes among all covered processes. We found

that this ratio ranges from 7 to 9% (Table 1). Thus, just under

10% of SGA covered biological processes are monochromatic.

Choosing a coverage cut-off of 0.6 that reasonably traded

higher coverage for a larger number of terms, we identified 50

monochromatic processes, including 5 positive and 45 negative

(Dataset S1). Thus, even though positive interactions are often

presumed to be acting within processes [4,9], there are actually

more processes that are monochromatic negative.

Monochromatic processes are functionally diverse, but also

biased. For instance, microautophagy and histone exchange are

monochromatic positive whereas protein import and small

GTPase mediated signal transduction are monochromatic nega-

tive (Figure 2). Globally, monochromatic processes are enriched in

specific functions, including chromosome segregation/microtubule

and protein degradation/proteasome (Figure 3). Further, positive

monochromatic processes are generally much smaller (, = 40

genes) than negative ones (,100 genes) and are more specific in

the GO hierarchy (Figure S1).

Monochromatic connections between biological
processes are rare

To investigate the monochromatic nature of connections

between biological processes, we defined an inter-process connec-

tion as the set of genetic interactions linking genes annotated to

two processes, excluding those annotated to both. The mono-

chromatic nature of an inter-process connection was assessed by

measuring enrichment for positive and/or negative interactions

relative to the background distribution in the entire genetic

interaction network (Methods). The resulting p-value was used as a

score to select the most monochromatic connections.

The coverage of a connection was assessed by the number of

genetic interactions tested in SGA compared to all possible

interactions between the two processes. Using a range of coverage

cut-offs, we found that only ,0.27% of covered connections are

monochromatic (Table 2). For instance, the pair of processes

‘glycosylation’ (49 genes) and ‘tRNA modification’ (51 genes) is

connected by 44 positive genetic interactions and 29 negative

interactions while we expect 20 positive and 36 negative

interactions by chance. This connection is thus highly enriched

in positive interactions. The process ‘tRNA modification’ is

connected to ‘cell wall organization’ (191 genes) by 80 positive

genetic interactions and 296 negative interactions while we expect

76 positive and 137 negative interactions by chance. This

predominantly negative connection indicates that many genes

from both processes buffer each other.

With a reasonable coverage cut-off of 0.6, we identified 1,387

monochromatic connections, including 614 positive (44%) and

773 negative connections (56%) (Dataset S2). Previous analyses

suggested that positive interactions often occur between genes

acting together in the same pathway or complex [4,9] and negative

genetic interactions tend to occur between genes implicated in

redundant processes [9], thus we expect connections to be

monochromatic negative. However, we observe an even distribu-

tion of negative to positive connections showing that between

process connections are not predominantly negative. In addition,

our results show that connections between GO-defined processes

are rarely monochromatic.

Protein complexes explain most monochromatic
processes

We noticed that the monochromatic processes identified above

often contain protein complexes or parts of complexes. In fact, all

Figure 1. Monochromatic analysis overview. We evaluate the
monochromatic nature of biological processes (Within) and of the
connections between processes (Between). Circles represent processes
and links between them represent the set of SGA genetic interactions
that connect genes within the processes. The color represents the
monochromatic nature of the processes and connections (green is
monochromatic positive, red is monochromatic negative, grey is non-
monochromatic). We first define the processes and their connections
and then evaluate their monochromatic nature. In the third step we
remove various features, such as genes whose products are part of a
complex and finally analyze the resulting change in monochromatic
nature of the processes and connections.
doi:10.1371/journal.pcbi.1001092.g001

Table 1. Monochromatic processes at various SGA coverage
levels.

Coverage Covered processes
Monochromatic
processes Ratio (%)

0 1031 68 6.6

0.2 1019 68 6.7

0.4 833 66 7.9

0.6 566 50 8.8

0.8 99 9 9.0

1 25 2 8.0

For each coverage cutoff, this table indicates the number of processes covered
and how many of them are monochromatic with the ratio it represents.
doi:10.1371/journal.pcbi.1001092.t001

The Monochromatic Landscape of the Yeast Cell
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monochromatic processes but six contain at least one gene

encoding a member of a complex. Since complexes enriched in

genetic interactions tend to be monochromatic [25], we evaluated

the contribution of all protein complexes to the monochromatic

patterns we observed. To do this, we removed genes or

interactions corresponding to protein complexes from the SGA

genetic interaction data set and repeated our monochromatic

analysis described above. When we removed all genes encoding

proteins that are part of a complex, most (82%) of the

monochromatic processes identified above were no longer

Figure 3. Monochromatic processes are enriched in specific high-level functional categories. The count of processes in each category is
normalized by the background distribution for all processes. For example, 35 processes among all 2,501 yeast processes are in the category ‘protein
degradation/proteasome’ in the background distribution whereas 3 among the 50 monochromatic processes are in that category, resulting in an
enrichment ratio of 3/50 * 2501/35 = 4.3.
doi:10.1371/journal.pcbi.1001092.g003

Figure 2. Examples of monochromatic biological processes. Circles represent genes and are labeled by the common gene name. Edges
represent SGA genetic interactions between the genes. The color indicates the sign of the SGA score (green is positive, red is negative) and the width
of the edge is proportional to the absolute value of the SGA score (epsilon) (the thicker the edge, the stronger the interaction). Biological processes
are represented as four different networks labeled by the process name: ‘microautophagy’ and ‘histone exchange’ are monochromatic green,
whereas ‘protein import’ and ‘small GTPase mediated signal transduction’ are monochromatic red. The networks were produced using Cytoscape
[43].
doi:10.1371/journal.pcbi.1001092.g002

The Monochromatic Landscape of the Yeast Cell
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monochromatic (Figure 4). Interestingly, a few new processes

became monochromatic after this, but these were either small

processes with positive interactions or very large processes with

negative interactions (Figure S1). When we removed interactions

occurring within complexes, a smaller number (28%) of the

monochromatic processes were explained. These results hold for

various coverage cut-offs (Table 1 in Text S1). As a control, we

showed that removing the same number of random genes

encoding proteins not in any complex did not have the same

effect (Kolmogorov-Smirnov (KS) test p,4 1024, Figure S2). We

confirmed our results using another curated set of yeast protein

complexes that combines predictions from high-throughput and

literature data to form a consensus set [29] (called Consensus). This

data set includes existing complexes defined previously by Pu et al.

and Hart et al. [30,31]. Again most monochromatic processes

(90%) were explained by genes encoding proteins in complexes

(Figure S3) and this result holds for various coverage cut-offs

(Table 3 in Text S1). This indicates that genes whose products are

part of a complex are the main contributors to the monochromatic

genetic interaction patterns we see in GO biological processes.

We also considered three other features that may contribute to

our monochromatic patterns: essential genes, low single mutant

fitness genes and duplicate genes. Essential genes (tested as

hypomorphic or conditional alleles in genetic screens) are known

to have many negative interactions [7], genes which have a strong

effect on yeast fitness, as measured by growth rate when deleted

(i.e. a low single mutant fitness) similarly tend to show many

negative interactions [7], and duplicate genes often buffer each

other and thus are typically connected by a strong negative

interaction [32]. We removed each of these gene sets in turn and

evaluated the effect on our observed monochromatic patterns. All

these features partly explain the monochromatic patterns previ-

ously identified but not as much as the genes encoding proteins in

complex (Figure S3). In addition, these features are highly

overlapping with the set of genes encoding proteins in complexes

(Figure S4). For example, 60% of essential genes are in a complex.

Thus, we presume that the effect of these features on monochro-

matic processes is minor and mainly due to their correlation with

protein complexes.

Protein complexes explain most monochromatic
connections

To measure to what extent the features presented above explain

the monochromatic nature of connections, we adopted the same

strategy of removing each feature in turn and analyzing the

resulting change in number of monochromatic connections.

Again, genes encoding proteins in complexes explained most

monochromatic connections (98%) whereas the other features only

partly explained the monochromatic connections (Figure 4, Figure

S3). This result holds for various coverage cut-offs (Table 2 in Text

S1) and was confirmed using Consensus, the alternative set of

protein complexes (Figure S3, Table 4 in Text S1). Removing the

same number of random genes not in a complex did not have the

same effect on the monochromatic pattern (KS p = 0, Figure S2).

An example of a monochromatic connection explained is the

positive connection between the ‘mitotic sister chromatid cohe-

Table 2. Monochromatic connections at various SGA
coverage levels.

Coverage
Covered
connections

Monochromatic
connections Ratio (%)

0 525727 1394 0.27

0.2 525710 1394 0.27

0.4 525380 1394 0.27

0.6 511671 1386 0.27

0.8 240680 609 0.25

For each coverage cutoff, this table indicates the number of connections
covered and how many of them are monochromatic with the ratio it represents.
doi:10.1371/journal.pcbi.1001092.t002

Figure 4. Protein complexes explain most monochromatic processes and connections. A) Some monochromatic processes are no longer
monochromatic when we remove the interactions occurring within complexes. Most monochromatic processes are no longer monochromatic when
we remove the genes encoding proteins in complex. B) Half of the monochromatic connections are no longer monochromatic when we remove the
interactions occurring within complexes. Most monochromatic connections are no longer monochromatic when we remove the genes encoding
proteins in complex.
doi:10.1371/journal.pcbi.1001092.g004

The Monochromatic Landscape of the Yeast Cell
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sion’ and the ‘regulation of glucose metabolic process’ processes

(Figure S5). This monochromatic positive connection is mainly

due to positive genetic interactions between genes encoding

proteins from the ‘GID complex’ and the ‘AMP-activated protein

kinase complex’ on one side, and the ‘replication fork protection

complex’ and the ‘Ctf18 RFC-like complex’ on the other side.

When we removed the genes encoding proteins in a complex,

these processes were no longer connected by a monochromatic

positive connection. These results suggest that genes encoding

proteins in a complex play a key role in the monochromatic

connections between yeast GO biological processes.

30% more SGA interactions than expected are attributed
to complexes

Since protein complexes are important in explaining mono-

chromatic GO processes in the genetic interaction network, we

examined their contribution at the genetic interaction level. We

defined a genetic interaction as involving a complex if at least one

gene in the interaction encodes a protein that is part of a complex.

It is expected that 49% (93,383) of all observed SGA interactions

(189,996) involve a protein complex gene since 49% (2,801,630) of

all tested gene pairs involve a protein complex gene. Surprisingly,

we found that 63% (119,871) of the observed SGA genetic

interactions involve complexes, or 28% more than expected. This

significant bias (Fisher p,1025) is present globally and for both

negative and positive interactions (Table 3). Since some genes

might be noisy and cause a false signal by virtue of having an

extreme number of interactions, we repeated the analysis with

progressively more stringent sets of genetic interactions, defined by

the SGA score [25]. At each increased stringency level, we found

the result to be stronger and more significant (Table 3 in Text S1).

In addition, the global degree distribution confirms that genes

encoding proteins in complexes are more likely to have more

interacting partners than genes encoding proteins not in any

complex (KS p,2 1024). Finally, to check the robustness of our

results to our definition of complexes, we confirmed them using

the Consensus data set used above [29] (Methods, Table 10 in Text

S1). These results indicate that genes encoding proteins in

complexes are more likely to genetically interact than genes

encoding proteins not in any complex.

As previously noted, most monochromatic negative complexes

contain essential genes [20,25]. More generally, we found that

essential genes are highly enriched within complexes, 225% more

than expected (Fisher p = 0)(Table 4 in Text S1) and this result also

holds when considering only genes present in the genetic

interaction network (Fisher p,10260, Table 5 in Text S1).

Furthermore, the number of essential genes per complex has a

broad distribution (Figure S6): many complexes are composed of

all essential genes, and a high proportion (57%) of protein

complexes are essential (contain at least one essential gene). This

bias was also present in the Consensus data set (Tables 6–9 in Text

S1). This result may be related to the increased number of genetic

interactions involving protein complexes observed above, as

essential genes are known to have more genetic interactions than

non-essential genes [7]. This observation may be influenced by

experimental preference for studying essential genes, but this can’t

fully explain the results, as many high-throughput methods have

been used to defined yeast complexes [29]. Altogether, the above

results show that protein complexes play an important role in the

monochromatic genetic landscape of biological processes and

more generally in yeast growth.

Discussion

Monochromatic patterns have been used to identify biological

processes and other functional modules [22,26,27]. In this work,

we ask to which extent known processes show these monochro-

matic patterns. To answer this question, we systematically studied

the monochromatic landscape in yeast using known biological

processes as defined by GO annotation and a large network of

genetic interactions. We found that approximately 10% of GO-

defined biological processes that are sufficiently covered by genetic

interactions are monochromatic and less than 1% of all pairs of

processes interact monochromatically. We observe that mono-

chromatic processes tend to be predominantly negative whereas

between process connections are evenly distributed between

positive and negative.

Interestingly, we found that protein complexes explain most of

the monochromatic signal present in GO processes and are

disproportionately important for yeast growth (are involved in

more genetic interactions and contain more essential genes

compared to non-complex genes). We hypothesize that protein

complexes are more sensitive to perturbation and more difficult to

buffer, either because it is more difficult to duplicate the

functionality of an entire complex or that complexes participate

in more processes compared to individual proteins (Figure S7).

Previous work observed that protein complexes are often

monochromatic [7,20] but we show for the first time that the

monochromatic patterns identified within and between biological

processes are mainly driven by protein complexes.

We chose GO as the representation of known biological

processes since it is the most comprehensive resource available.

KEGG and SGD YeastCyc also make available pathway

information, but these are limited mostly to metabolic pathways

and do not cover as many genes as GO, making a general analysis

difficult. In addition, GO organizes processes hierarchically, which

clarifies the relationships between processes and sub-processes.

However, this makes processes highly overlapping. The number of

monochromatic processes depends on this overlap. To assess the

effect of overlap, we applied our method on the reduced ontology

GO Slim, which contains fewer and less overlapping terms

compared to the full GO. We identified 11 monochromatic

processes among 26 covered processes (Dataset S3, Dataset S4).

Similarly to the full GO analysis, most (73%) of the monochro-

matic processes are no longer monochromatic when removing

genes encoding proteins complex members (Figure S8). In addition

we applied the analysis to the MIPS Comprehensive Yeast

Genome Database (CYGD) Functional Category (FunCat), an

alternative classification of biological processes [33]. This

classification is hierarchical but, unlike GO, every category has

only one root category. Since genes can be annotated to several

categories, there is some overlap between categories, but to a lesser

extent compared to GO. We found that 8% of the covered

processes were monochromatic (similar to GO)(Dataset S5,

Table 3. Number of interactions involving complexes.

Obs/Exp Complex (CI) Non complex (NCI) P-value

All 1.28 0.73 ,10216

Positive 1.31 0.70 ,10216

Negative 1.27 0.74 ,10216

For all (positive, negative) interactions, the p-value is computed by a Fisher’s
Exact test between the expected and observed number of interactions
involving complexes (CI) or not (NCI).
doi:10.1371/journal.pcbi.1001092.t003

The Monochromatic Landscape of the Yeast Cell
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Dataset S6) and protein complexes explained most (78%) of them

(Figure S8). This confirms that protein complexes play an

important role in the monochromatic nature of biological

processes, even when considering less overlapping process

definitions.

While we used the most comprehensive data for genetic

interactions and process annotations available, much data is still

missing which can impact our results. Some processes may appear

monochromatic because not all interactions are known, or some

processes may not be considered because they are lacking

interactions. To account for the lack of completeness of the

genetic interaction network, we only considered highly covered

processes. The results are presented for a reasonable level of

coverage and confirmed with multiple coverage thresholds. Also,

monochromatic processes likely exist that contain genes that are

not covered by our best efforts to collect the most comprehensive

annotation available (GO, FunCat, KEGG, YeastCyc). As

annotation improves, we expect the monochromatic map to

expand. Also, complementary unsupervised approaches, such as

clustering or motif detection, can be used to find monochromatic

patterns that we miss. It will be interesting to see how many

monochromatic modules found by these methods are not currently

captured in GO.

The monochromatic processes, complexes and connections we

find chart a hierarchical and modular map of sensitive and

redundant biological systems in the yeast cell (Dataset S1, Dataset

S2, Figure S9). Our results indicate that the genetic interaction

network is enriched in interactions involving protein complexes,

monochromatic connections between processes are rare and

protein complexes play an important role in defining monochro-

matic patterns within and between processes. These results are

illustrated on the example map presented in Figure S9.

Our map holds for genetic interactions measured in standard

laboratory growth conditions. It will be interesting to compare it

with other maps constructed based on genetic interactions defined

using phenotypic readouts other than yeast growth or not in

standard laboratory conditions [34,35] and from other species for

which genetic interactions will progressively become more

available, such as Caenorhabditis elegans [36,37], Drosophila melanoga-

ster [38] or mammalian cells.

Methods

Genetic interaction network
The genetic interaction data are from the most recent and

comprehensive study in yeast obtained by the Synthetic Genetic

Array technique (SGA) in normal growth conditions [7]. This data

set consists of 191,890 pair-wise interactions between 4,415 genes

derived from 1,712 full genome screens. Each interaction is

characterized by the epsilon score, a quantitative genetic

interaction measure, and a p-value, indicating confidence. This

score can be positive or negative, indicating a positive or a

negative interaction. When different measurements are available

for a single gene (i.e. from several screened alleles of essential

genes), we merge all interactions (this occurs for 35 genes). If two

screens give opposite scores, we remove both. If two screens give

scores of the same sign, we keep the one with the best p-value. The

resulting network contains 166,401 pair-wise interactions among

4,415 genes.

Biological processes
We downloaded the annotation of the yeast genome provided

by SGD [39] on September 7th, 2009. For the Biological Process

ontology, all genes annotated to one specific GO term are up-

propagated to all parents of that GO term. We don’t consider non-

manually reviewed annotations (IEA evidence code). We only

consider GO terms with more than one observed interaction

between its genes and with less than 200 genes in the genetic

interaction matrix, otherwise the random networks are not

different enough to assess the statistical significance of the

monochromatic scores. We are left with a set of 1,031 processes

in yeast with genetic interactions in SGA. In addition, we

downloaded the functional categories from FunCat [33] and

filtered out those not referring to biological processes (16: protein

with binding function or cofactor requirement; 70: subcellular

localization; 73: cell type localization; 75: tissue localization; 77:

organ localization, 18: regulation of metabolism and protein

function; 98: classification not yet clear-cut; 99: unclassified

proteins).

Assessing the coverage of a biological process (i.e. a GO
term)

For a given GO term, its genes can be present in the genetic

interaction network or not. If present, they contribute to the

monochromatic nature only if they are connected by an SGA

interaction within the GO term. We assess the coverage of the GO

term by the minimum value of the two following ratios: (i) the

number of genes in the GO term and in the SGA genetic

interaction network over the total number of genes in the GO

term; (ii) the number of connected genes in the GO term over the

total number of genes in the GO term and in the genetic

interaction network.

Assessing the monochromatic level of biological process
(e.g. a GO term)

We define the monochromatic score of a GO term as the

relative ratio of positive to negative interactions observed between

the genes in that GO term (equation 1).

S(t)~

P

i[I

score(i)

P

i[I

jscore(i)j ð1Þ

where I is the set of interactions occurring between two genes from

the GO term t. This score ranges from 21, meaning fully

monochromatic negative, to +1, meaning fully monochromatic

positive.

We then generate random networks by shuffling the labels of the

original genetic interaction network, which preserves the network

topology. For each GO term, we compute a series of monochro-

matic scores obtained with the random genetic interaction

networks and use this distribution of scores to compute a Z-score

(equation 2).

Z~
S{m

s
ð2Þ

where S is the monochromatic score to be standardized, m is the

mean of the random scores and s the standard deviation of the

random scores. GO terms with a Z-score larger than 1.6 in

absolute value are selected as monochromatic.

Assessing the monochromatic level of a connection
between two GO terms

A connection between two GO terms is formed by all

interactions between one gene belonging to one GO term and

another gene belonging to the other GO term. Genes belonging to
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both GO terms were not considered. The coverage is computed as

the ratio of the number of tested pairs over the number of possible

pairs. For a given number of tested interactions, we computed the

expected number of positive and negative interactions, following

the global ratio of observed interactions in the full network. We

considered the number of observed positive and negative

interactions and tested if these numbers significantly differed from

those expected using Fisher’s Exact Test. We then selected the

most monochromatic connections with p,0.01.

High-level functional categories
To group processes into high-level functional categories

depicted in Figure 3, we used the yeast gene annotations provided

in [7] where 4,414 genes are associated to 18 functional categories.

Each biological process is then associated to the functional

category that most of its genes are annotated to. To analyze the

set of monochromatic processes, we counted the number of

processes annotated in each of the high-level functional categories.

We then computed the enrichment compared to the background

distribution of all processes. The multi-functionality of a gene used

in Figure S7 was assessed by the number of processes this gene is

involved in, which was computed as the number of GO biological

process annotations for each gene restricted to the functionally

distinct set of GO terms described in [40].

Protein complexes
We used the cellular component part of the Gene Ontology to

define protein complexes in yeast. We considered all the children

of the GO term macromolecular complex (GO:0032991). Each

term defined a protein complex formed by the genes directly

annotated to that term (not considering IEA annotations). This

way, we defined 347 complexes encoded by 1,795 genes (Dataset

S7). We used this data set in the analysis, unless otherwise stated.

We also considered a recent curated consensus of protein

complexes in yeast [29]. This Consensus set is a combination of

predictions from high-throughput data and curated literature data

and consists of 409 complexes.

Feature selection
We used two ways to remove the effect of complexes: i) remove

all genes that encode proteins that are part of at least one complex;

ii) remove the interactions that occur between two genes encoding

proteins from the same complex, but leaving the genes in place (in

the former case all interactions involving these genes were

removed whereas in the latter case only interactions between

two genes encoding proteins of the same complex were removed).

Thus when attempting to explain monochromatic patterns, we

considered the following five features, removing either genes or

interactions:

N Essential genes: genes described as essential for normal yeast

growth by the Saccharomyces Genome Deletion Project [41]

(http://www-sequence.stanford.edu/group/yeast_deletion_project/

downloads.html)

N Low SMF genes: genes with low single mutant fitness [7] (10%

lowest)

N Complex genes: genes part of at least one complex (see the

definition of the complexes above)

N Complex interactions: interactions occurring between two

genes part of at least one complex (see the definition of the

complexes above)

N Intra-duplicate gene interactions: interactions occurring be-

tween two duplicate genes. The set of duplicate pairs is a

combination whole genome duplication (WGD) [42] and

smaller-scale duplicates (SSD) [32]. SSD are defined based on

sequence similarity with an alignment that covers more than

50% of the length of the longer protein and a BLAST e-

value,10210.

The overlap between the above features was computed using

the Jaccard coefficient.

Interaction bias
To examine the role of protein complexes at the interaction

level, we studied all possible gene pairs. A given pair was

considered as involved in a complex if at least one of the genes

encodes a protein that is part of a complex. In other words, we

partitioned the genes into two classes: 1) complex genes (CG):

genes that encode a protein that is part of at least one complex and

2) non-complex genes (NCG): genes that encode a protein that is

not part of any complex. We partitioned the interactions into two

classes: 1) complex interactions (CI): interactions involving at least

one gene of the class CG and 2) non-complex interactions (NCI):

interactions occurring between two genes of the class NCG.

Assuming that the complexes do not significantly affect the

structure of the genetic interaction network, we expect the

distribution of interaction number among the classes to be the

same as the background distribution of all tested pairs. For each

interaction class (CI/NCI) we computed the ratio of number of

observed/expected interactions.

Network visualization
The networks were produced using Cytoscape [43]. The

position of the monochromatic processes in the GO tree is

available as a Cytoscape file in Dataset S8.

Supporting Information

Dataset S1 The file contains the list of the monochromatic

processes (described by GO identifier and name), number of genes

associated with each process, number of genes in the SGA data,

number of genes connected by SGA interactions, number of

observed/positive/negative interactions, monochromatic score/Z-

score and coverage ratios.

Found at: doi:10.1371/journal.pcbi.1001092.s001 (0.03 MB XLS)

Dataset S2 The file contains the list of monochromatic

connections described by GO identifiers and names of both

processes, number of genes associated to both processes, number

of genes in common between the two processes, numbers of

tested/positive/negative interactions, coverage of the possible

interactions, numbers of expected positive/negative interactions

and monochromatic score.

Found at: doi:10.1371/journal.pcbi.1001092.s002 (0.30 MB XLS)

Dataset S3 The file contains the list of the monochromatic

processes restricted to GO slim processes (described by GO

identifier and name), number of genes associated to this process,

number of genes in the SGA data, number of genes connected by

SGA interactions, number of observed/positive/negative interac-

tions, monochromatic score/Z-score and coverage ratios.

Found at: doi:10.1371/journal.pcbi.1001092.s003 (0.02 MB XLS)

Dataset S4 The file contains the list of monochromatic

connections restricted to GO slim processes (described by GO

identifiers and names) of both processes, number of genes

associated to both processes, number of genes in common between

the two processes, numbers of tested/positive/negative interac-
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tions, coverage of the possible interactions, numbers of expected

positive/negative interactions and monochromatic score.

Found at: doi:10.1371/journal.pcbi.1001092.s004 (0.03 MB XLS)

Dataset S5 The file contains the list of the monochromatic

processes defined by FunCat (described by identifier and name),

number of genes associated to this process, number of genes in the

SGA data, number of genes connected by SGA interactions,

number of observed/positive/negative interactions, monochro-

matic score/Z-score and coverage ratios.

Found at: doi:10.1371/journal.pcbi.1001092.s005 (0.02 MB XLS)

Dataset S6 The file contains the list of monochromatic

connections between processes defined by FunCat, number of

genes associated to them, number of genes in common between

them, numbers of tested/positive/negative interactions, coverage

of the possible interactions, numbers of expected positive/negative

interactions and monochromatic score.

Found at: doi:10.1371/journal.pcbi.1001092.s006 (0.09 MB XLS)

Dataset S7 The file describes the complexes used in the study

(extracted from Component Cellular of Gene Ontology) and the

number of essential genes they contain.

Found at: doi:10.1371/journal.pcbi.1001092.s007 (0.06 MB XLS)

Dataset S8 The file enables to visualize the map of monochro-

matic processes using the Cytoscape software.

Found at: doi:10.1371/journal.pcbi.1001092.s008 (0.03 MB ZIP)

Figure S1 A) This network represents the monochromatic processes

and their parents in the GO hierarchy. Nodes are processes (GO

terms) and edges are parent/child relationships oriented from child to

parent. The size of the nodes represents the size of the processes

(number of genes associated with the process and present in the

genetic interaction network). The color of the node represents the

status of the process: monochromatic positive (green), monochromatic

negative (red), not monochromatic (grey). The network is provided in

Cytoscape format as a supplementary file. The next two plots show

the distributions of the process sizes for all/monochromatic positive/

monochromatic negative processes for B) the normal situation and C)

when we remove genes encoding proteins in complex.

Found at: doi:10.1371/journal.pcbi.1001092.s009 (1.72 MB EPS)

Figure S2 Remove random genes and assess monochromatic

nature of A) processes or B) connections. The effect is due to

complexes and not to the fact that we remove a large set of genes.

Found at: doi:10.1371/journal.pcbi.1001092.s010 (2.26 MB EPS)

Figure S3 The barplots show how many A) monochromatic

processes or B) monochromatic connections are explained by

various features (explained means they are no longer monochro-

matic when removing the given feature).

Found at: doi:10.1371/journal.pcbi.1001092.s011 (0.99 MB EPS)

Figure S4 Overlap between the monochromatic related features

in terms of genes, computed using the Jaccard coefficient.

Found at: doi:10.1371/journal.pcbi.1001092.s012 (0.86 MB EPS)

Figure S5 A node represents a gene (and the protein it encodes)

and green (or red) edges represent positive (or negative) genetic

interactions (the thicker the edge, the higher the interaction score).

Proteins in the same complex are grouped together in a purple

oval labeled by the name of the complex. At a higher level,

proteins which are in the same process are grouped together in a

grey rectangle labeled by the name of the process in bold.

Found at: doi:10.1371/journal.pcbi.1001092.s013 (2.21 MB EPS)

Figure S6 The number of genes compared to the number of

essential genes in each protein complex and the distribution of the

% of essential genes in complexes for A) all genes and B) genes

present in the genetic interaction network.

Found at: doi:10.1371/journal.pcbi.1001092.s014 (1.25 MB EPS)

Figure S7 The multifunctionality of a gene is assessed by the

number of processes this gene is involved in. The distributions of

these multifunctionality indexes show that genes encoding proteins

in complex are more likely to be multifunctional than genes

encoding proteins not in any complex.

Found at: doi:10.1371/journal.pcbi.1001092.s015 (0.93 MB EPS)

Figure S8 Application of our method to less overlapping

biological processes from GO Slim and FunCat. We removed

random genes and assessed the monochromatic nature of A)

processes and B) connections. The barplots show how many A)

monochromatic processes or B) monochromatic connections are

explained by various features (explained means they are no longer

monochromatic when removing the given feature).

Found at: doi:10.1371/journal.pcbi.1001092.s016 (0.45 MB EPS)

Figure S9 This schema illustrates the monochromatic map for

genetic interactions in yeast emphasizing the importance of

complexes and the distribution of monochromatic patterns within

and between processes. Blue circles represent genes and the proteins

they encode, purple ovals represent protein complexes and grey

boxes represent biological processes constituted by proteins and

complexes. Lines represent SGA genetic interactions between genes

(green is positive, red is negative). When the gene encodes a protein

in a complex, the line end is a square connected to the complex. The

schema indicates that many genetic interactions occur within

protein complexes (e.g. 1), but also between genes encoding proteins

in complexes and other genes (e.g. 2). Genetic interactions between

two genes encoding proteins not in any complex are much less

common (e.g. 3). Complexes play an important role in defining

monochromatic patterns within and between processes. Monochro-

matic connections between processes are rare (e.g. 4).

Found at: doi:10.1371/journal.pcbi.1001092.s017 (2.88 MB EPS)

Text S1 This supplementary information file contains various

tables for additional analyzes.

Found at: doi:10.1371/journal.pcbi.1001092.s018 (0.12 MB PDF)
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