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SUMMARY

Lifelong blood cell production is governed through
the poorly understood integration of cell-intrinsic
and -extrinsic control of hematopoietic stem cell
(HSC) quiescence and activation. MicroRNAs
(miRNAs) coordinately regulate multiple targets
within signaling networks, making them attractive
candidate HSC regulators. We report that miR-126,
a miRNA expressed in HSC and early progenitors,
plays a pivotal role in restraining cell-cycle progres-
sion of HSC in vitro and in vivo. miR-126 knockdown
by using lentiviral sponges increased HSC prolifera-
tion without inducing exhaustion, resulting in expan-
sion of mouse and human long-term repopulating
HSC. Conversely, enforced miR-126 expression
impaired cell-cycle entry, leading to progressively
reduced hematopoietic contribution. In HSC/early
progenitors, miR-126 regulates multiple targets
within the PI3K/AKT/GSK3b pathway, attenuating
signal transduction in response to extrinsic signals.
These data establish that miR-126 sets a threshold
for HSC activation and thus governs HSC pool size,
demonstrating the importance of miRNA in the
control of HSC function.

INTRODUCTION

Blood cell production is sustained for life by the continuous

differentiation of multipotent hematopoietic stem cells (HSC)

into at least ten distinct lineages of mature blood cells (Doulatov

et al., 2010). This is achieved by balancing self-renewal and

differentiation among proliferating HSC. Additionally, some

HSC are maintained in a quiescent state to protect against pro-

liferative exhaustion, yet remain poised for activation (Wilson
et al., 2008). This homeostatic balance between quiescence,

proliferation, and differentiation is tightly controlled by inte-

grating intrinsic and extrinsic mechanisms that govern the HSC

state. Little is known about posttranscriptional programs that

aid in establishing and maintaining the quiescence-activation

equilibrium in HSC.

MicroRNAs (miRNA) are now recognized as fundamental

effectors of posttranscriptional gene expression control. miRNA

regulate gene expression by binding to complementary

sequences within multiple target messenger RNAs (mRNAs),

inducing mRNA destabilization and translational inhibition

(Wilson et al., 2008; Bartel, 2009).

Several studies have shown important roles for miRNA in

lineage commitment at the level of restricted hematopoietic

progenitors (Havelange and Garzon, 2010). Genetic ablation of

Dicer or Ars2, both principal factors for miRNA biogenesis,

induces bone marrow failure, suggesting that normal HSC are

dependent on miRNA function (Gruber et al., 2009; Guo et al.,

2010). Recently, two miRNAs have been investigated in murine

HSC. Enforced expression of miR-29a induced aberrant self-

renewal in downstream progenitors, resulting in a low penetrant

acutemyeloid leukemia (AML)disease (Hanet al., 2010).Enforced

expression of miR-125b induced an initial myeloproliferative

disorder, leading to frank AML or an increase in lymphoid-biased

HSC, depending upon the ectopic expression levels (O’Connell

et al., 2010; Ooi et al., 2010). Guo et al. (2010) showed that

enforced expression of miR-125a could also augment HSC

activity in vitro and expand the HSC pool in vivo. Although these

studies indicate that miRNAs may be important regulators of

hematopoiesis, miRNA loss-of-function studies are needed to

ascertain whether miR-125 is required for normal HSC func-

tion. Moreover, these studies were performed in murine models

while the relevance to human HSC remains unsubstantiated.

Previously, we demonstrated that miR-126 is both highly ex-

pressed and functionally active within the murine and human

HSC compartments, with progressive downregulation during

early steps of hematopoietic commitment. Using only miR-126

bioactivity as a marker, we prospectively isolated human HSC
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Figure 1. High miR-126 Expression in Hematopoietic Progenitor Cells Modulates In Vitro Expansion

(A) Sorting scheme to separate human HSC, MPP, and progenitor cell subsets from lin� CB cells.

(B) miR-126 expression levels were probed by quantitative PCR (qPCR) in seven lin� CB fractions sorted according to the scheme in (A). Data were normalized

to RNU48 control. Each fraction is compared to HSC for statistical analysis. Results are shown as mean +SEM of n = 3 independent experiments of pooled

human lin� CB.

(C) Lentiviral (LV) constructs for miR-126 overexpression (126/OE, upper scheme) or miR-126 knockdown (126/KD, lower scheme). 126OE-transduced cells were

marked by mOrange2 (orange fluorescent protein, OFP), whereas 126KD was marked by green fluorescent protein (GFP).

(D) PIK3R2 mRNA levels were measured in a CD34+ CB sample 3 days after transduction with 126/KD (red), 126/OE (blue), or CTRL (white) LV. PIK3R2 mRNA

levels (normalized to CTRL) are shown as mean +SEM of n = 3 technical replicates. ***p < 0.001.

(E) Long-term expansion of CD34+CD38� lin� CB cells upon miR-126 modulation. Cells were transduced and expanded in suspension culture for 48 days.

Fold expansion (normalized to CTRL) is shown as mean +SEM of n = 3 (126/OE) or n = 4 (126/KD) independent experiments. *p < 0.05.
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that have xenograft repopulating potential (Gentner et al., 2010).

These data prompted us to investigate the biological function

of miR-126 in HSC. Here, by using enforced expression and

knockdown strategies, we report that miR-126 has a conserved

role in mouse and human HSC to help maintain quiescence by

restricting cell-cycle progression in response to extrinsic stimuli

that activate the PI3K/AKT/GSK3b signaling axis.

RESULTS

miR-126 Levels Peak in Human HSC
Within the human hematopoietic hierarchy, we previously

demonstrated peak miR-126 expression and bioactivity within

the CD34+CD38�CD90+ primitive compartment (Gentner et al.,

2010). However, the human progenitor hierarchy model was

recently fractionated into more precise subpopulations (Fig-

ure 1A) (Doulatov et al., 2010; Notta et al., 2011). We sorted

seven functionally characterized populations from human

lineage-depleted cord blood hematopoietic stem and progenitor

cells (lin� CB HSPC) to obtain a detailed expression profile of

miR-126. The highest expression levels of miR-126 were

restricted to the HSC-enriched CD34+CD38�CD45RA�CD49f+

fraction (Figure 1B). miR-126 levels remained high in CD34+

CD38�CD45RA�CD90�CD49f� multipotent progenitors (MPPs)

and became significantly downregulated in multilymphoid

progenitors (MLPs) and committed CD34+CD38+ fractions.

These data demonstrated a strong correlation between the

HSPC hierarchy and miR-126 expression level, suggesting a

role for miR-126 in regulating stem cell function.
2 Cell Stem Cell 11, 1–13, December 7, 2012 ª2012 Elsevier Inc.
miR-126 Attenuates Proliferation of Early Progenitors
To interrogate the function of miR-126 in primitive human blood

cells, we performed miR-126 overexpression (OE) and knock-

down (KD) in primary CB HSPC by using lentiviral vectors

(Figure 1C). The design and validation of these vector tools

is described in Supplemental Results and Figure S1 (available

online). The degree of miR-126 up- or downmodulation that we

obtained was functionally relevant as the expression levels of

the previously validatedmiR-126 target PIK3R2were specifically

and significantly decreased upon OE and increased upon KD,

respectively (Figure 1D). We then assessed whether modulating

miR-126 could influence the proliferation and differentiation of

HSPC in vitro. Cytokine-driven serum-free long-term culture of

CD34+CD38� cells revealed a trend toward decreased total

cell output upon 126/OE and a significantly increased expansion

upon 126/KD without disturbance of myeloid differentiation into

CD15+ granulocytes and CD14+ monocytes (Figure 1E and data

not shown). To examine whether this response was associated

with a specific CB subpopulation, we generated growth curves

from CD34+ subpopulations that were transduced with the

126/KD or a scrambled control vector (Figure 2A). Interestingly,

the growth of primitive CD34+CD38�CD133+ cells was signifi-

cantly enhanced upon 126/KD, in contrast to the more

committed CD34+CD38+CD133+ subset. Moreover, the growth

advantage was most pronounced in the first 5 days of culture

when the cells are the least differentiated, suggesting that the

126/KD phenotype may specifically affect stem and early pro-

genitor cells, reflecting the physiological expression pattern of

miR-126. To assess whether the cycling status of HSPC was



Figure 2. miR-126 Modulation Alters Proliferation of Primitive Hematopoietic Progenitor Cells

(A) CD34+ CB cells were fractionated according to CD133 and CD38 expression as shown in the representative plot (left) and transducedwith CTRL or 126KD LV.

On day 3, fractions were plated in suspension culture (TSF6), and cell numbers were monitored. Shown is the fold increase in population doublings of 126KD (red)

over CTRL-transduced cells (n = 5 biological replicates, mean ±SEM).

(B) Cell-cycle analysis was performed on CTRL or 126KD LV-transducedCD34+ CB cells on days 3 to 4 of culture by Ki67/Hoechst staining. Representative FACS

plots are shown for highly (GFP+) and poorly (GFP�) transduced cell populations. The graph on the right shows the fraction of cells in the S/G2/M phase of the cell

cycle. Results are shown as mean ±SEM and points represent eight replicates.

(C–E) Clonogenic progenitor assays of 126KD or 126OE CB cells. (C) CD34+ or (D and E) CD34+CD38� lin� CB cells were transduced with (C and D) 126KD and

CTRL or (E) 126OE and CTRL LV. After (C) 7 or (D, E) 14 days of liquid culture, equal cell numbers were plated in clonogenic assays. Counts of colony types are

shown as mean +SEM of n = 4 (C) or 3 (D and E) independent experiments. *p < 0.05, **p < 0.01, and ***p < 0.001.
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altered upon 126/KD, cell-cycle analysis was performed 3 to

4 days after transduction. 126/KD induced a 1.7-fold increase

in the proportion of cells in the S/G2/M phases of the cell cycle

as compared to nontransduced or CTRL vector-transduced cells

(Figure 2B). Taken together, these data indicate that 126/KD

increases the proliferation of primitive HSPC.

We then investigated whether 126/KD affected the prolifera-

tion and/or differentiation of functionally defined myeloid and

erythroid progenitors in clonogenic assays. When CD34+ CB

cells were plated 1 day after transduction, no quantitative differ-

ences in colony number or type were observed between 126/KD

or control groups (Figure S2A). However, when the cells were

cultured for 7 days before performing the clonogenic assay,

126/KD CD34+ CB yielded significantly more myeloid colonies

than control vector-transduced cells (Figure 2C). When 126/KD
CB were further enriched for primitive HSPC and expanded for

1 to 2weeks, therewasa significant increase in erythroid colonies

upon 126/KD and a trend toward increased myeloid colonies,

whereas the less primitive CD38lo/+ fractions only yielded more

myeloid colonies as seen with total CD34+ cells (Figures 2D and

S2B). Overall, these results indicate that in the CD38� compart-

ment, 126/KD expands erythroid and myeloid clonogenic

progenitors, whereas in the less primitive CD38+/lo compartment,

only myeloid progenitor output is increased. The role of miR-126

in modulating primitive HSPC is reinforced by the finding that

126/OE in CD34+CD38� HSPC yielded a 1.23-fold decrease in

total colony numbers (p = 0.017) involving both myeloid and

erythroid colonies (Figure 2E and data not shown). Moreover,

megakaryocyte/erythroid specification was altered by modu-

lating miR-126 (Figures S2C–S2H and Supplemental Results).
Cell Stem Cell 11, 1–13, December 7, 2012 ª2012 Elsevier Inc. 3



Figure 3. miR-126 Knockdown Expands HSC In Vivo

(A) Effect of 126/KD on CB engraftment levels. Sorted CD34+CD38� lin� CB cells were transduced with 126/KD or scrambled CTRL LV. Transduction efficiency

was 92% for CTRL and 72%–75% for 126/KD. BM of xenografted mice was analyzed for human CD45+GFP+ engraftment 9 weeks after transplantation of equal

cell numbers. Results are shown as mean +SEM of n = 10 CTRL and n = 10 126/KD mice per experiment.

(B and C) Phenotypic and cell-cycle analysis of the human stem cell compartment in xenografted BM. Lin� human cells were isolated from BM frommice shown

in (A). The frequency of HSC-enriched CD34+CD38�CD45RA�CD90+ cells within human CD45+GFP+ cells was assessed as well as the cell-cycle status of

CD34+CD38�CD90+ cells. (B) Left and middle show representative plots of n = 3 independent experiments. Right shows cell-cycle analysis of n = 1 experiment.

(C) Phenotypic HSC frequency upon 126/KD normalized to CTRL; results are shown as mean +SEM of n = 3 independent experiments.

(D) Limiting dilution analysis (LDA) of CB cells with 126/KD. Sorted CD34+CD38� lin� CB cells were transduced with 126/KD or CTRL LV. CD45+GFP+ cells were

sorted from the mouse BM and injected in limiting doses into secondary recipients 20 weeks after transplantation. After 10 weeks, BM of secondary mice was

assessed for CD45+GFP+ engraftment. Results are summarized as the percentage of secondary mice with >0.5% engraftment.
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The regulatory function of miR-126 was conserved across

species with very similar effects seen in murine HSPC subpopu-

lations (Figures S2I–S2K).

Together, our data suggest that miR-126 constrains prolife-

ration of primitive hematopoietic progenitors, consequently

reducing the overall output of mature erythroid and myeloid cells

upon in vitro culture.

miR-126 Knockdown Expands HSC In Vivo
without Exhaustion
Although our in vitro results suggest a functional role for miR-126

in primitive HSPC, in vivo repopulation studies, where HSC

reside in a physiological niche, remain the gold standard to

prove that HSC self-renewal and differentiation are affected.

To determine how reduced miR-126 expression would affect

human HSC function, we xenotransplanted CD34+CD38� lin�
CB HSPC transduced with 126/KD and CTRL vector to similar

levels as assayed in vitro. Nine weeks after transplantation,

126/KD resulted in an increase in hematopoietic output as

measured by human CD45+GFP+ engraftment of immune-

deficient mice (Figure 3A). Both CD33+ myeloid and CD19+

lymphoid lineages were similarly affected, suggesting that an

upstream progenitor cell is expanded by 126/KD. Phenotypic

analysis of the most primitive human HSPC compartment was

undertaken 9 weeks after transplantation. The frequency of

CD34+CD38�CD90+CD45RA� cells within the lineage-depleted

CD45+GFP+ graft was increased upon 126/KD (Figures 3B

and 3C). Assessment of cycling characteristics of the CD34+

CD38�CD90+ HSC-enriched fraction showed a 2.8-fold increase

in the fraction of cells in S/G2/M upon 126/KD (Figure 3B), indi-

cating that the observed expansion coincides with increased

cell-cycle progression. Although increased cycling typically

induces progressive exhaustion of HSCs, 126/KD HSPC still

showed increased contribution to hematopoiesis at 20 weeks

after transplantation (data not shown). To determine whether

the observed increase in phenotypic HSC correlated with

an increase in HSC function, human CD45+GFP+ CTRL and

126/KD cells from primary recipient mice were sorted and trans-

planted into secondary mouse recipients in a limiting dilution

analysis (LDA). After 10 weeks, encompassing an overall total

30 weeks repopulation, there was a 3-fold increase in functional

HSC within 126/KD mice (p = 0.01; Figure 3D)—results that

strongly correlate with the phenotypic analysis.

It is possible that the expansion of phenotypic human HSC

within xenografts following 126/KD could be influenced artifi-
(E) Congenic Ptprca and Ptprcb murine Lin� BM cells were transduced with the 12

were pooled and competitively transplanted into heterozygous CD45.1/CD45.2 r

LV) to peripheral blood granulocytes (top) and B cells (bottom) is shown at the

transplant into CD45.1/CD45.2 recipients was performed. Results are shown as

(F) Contribution of the GFP+CD45.2+ (126/KD vector-expressing) cells (red bars

CD45.2+ or CD45.1+). HSCwere defined as Lin�Sca+Kit+ (LSK) CD150+CD48� cel

myeloid cells (Myelo) were defined as CD48lo/�SSChi granulocytes, whereas lymp

of n = 9 mice (primary mice, top, analyzed 8 months after transplant) and n = 8 m

(G) Cell-cycle distribution of CTRL and 126/KD cells in the LSK (left) or Lin�Sca�Ki
mean +SEM of n = 8 mice.

(H) Representative cell-cycle distribution of CTRL and 126/KD cells in the LSK (le

Top, gating scheme on Lin� BM. Bottom, Ki67/Hoechst marking within the gate

(I) LDA of CD45.2+ CTRL or 126/KD BM total nucleated cells injected into CD45.1 r

engraftment (0.1% cutoff) and estimated HSC frequency. *p < 0.05 and **p < 0.0
cially due to the species mismatched physiological niche. There-

fore, competitive transplantation assays were performed in the

Ptprc congenic mouse model, transducing Ptprcb (CD45.2) or

Ptprca (CD45.1) lin� BM HSPC, respectively, with either the

126/KD or CTRL vector. Complete blood counts (CBC) of repo-

pulated mice were normal, even though 126/KD vector-trans-

duced cells tended to contribute less to active hematopoiesis,

particularly within the B and T lymphoid lineages (Figures 3E

and S3). Steady-state bone marrow (BM) chimerism analyzed

5–8 months after transplantation showed much higher chime-

rism within lin�Sca+Kit+ (LSK) Cd150+Cd48� phenotypic HSC-

enriched compartments of the 126/KD group (Figures 3F and

S3). In contrast, 126/KD cell chimerism was reduced in

Lin�Sca+Kit� lymphoid precursors (Harman et al., 2008) and

lymphocyte compartments. These data suggest that 126/KD

expanded the murine HSC compartment and reduced lympho-

poiesis in vivo. To substantiate this hypothesis, we performed

serial BM transplantation into secondary recipients. The contri-

bution of 126/KD cells increased in myeloid and lymphoid line-

ages and surpassed the CTRL in the myeloid compartment

(Figures 3E and S3), confirming that the relative increase in

phenotypically defined 126/KD HSC detected in the primary

BM translates into increased multilineage contribution to hema-

topoiesis in the secondary hosts. BM analysis of the secondary

hosts mirrored the differences in chimerism observed in corre-

sponding populations within the primary BM but shifted toward

higher contribution from 126/KD cells (Figure 3F). Switching con-

genic strains between 126/KD and CTRL groups yielded similar

results, confirming the role of 126/KD on HSC function (Fig-

ure S3B). We also measured the cell cycle of freshly isolated

LSK cells from the BM of transplanted mice and found a sig-

nificantly increased proportion of 126/KD LSK cells in S/G2/M

as compared to CTRL vector-transduced cells, whereas there

was no significant difference in cell-cycle distribution of the

committed Lin�Sca�Kit+ progenitors (Figure 3G). Furthermore,

we confirmed the increased S/G2/M fraction in 126/KD cells

highly enriched for HSC (LSK CD150+; Figure 3H). These data

indicate that 126/KD increased HSC proliferation within an

in vivo physiological niche.

The gold standard proof of HSC expansion requires frequency

analysis using transplantation at limiting doses (LDA). Ptprca

mice were reconstituted with BM cells from Ptprcb mice trans-

duced with either the 126/KD or CTRL vectors. Sixteen weeks

after transplantation, mice selected on the basis of similar levels

of peripheral blood chimerism (Figure S3D) showed expansion
6/KD (CD45.2) or CTRL LV (CD45.1). Equal numbers of 126/KD and CTRL cells

ecipients. The contribution of CD45.2 cells (>90% transduced with the 126/KD

indicated time points posttransplant. The arrow indicates when a serial BM

mean ±SEM, n = 9 mice.

) to the indicated BM populations relative to the sum of all GFP+ cells (either

ls.Within the Lin+ compartment (B220+ or CD3+ or GR1+ or CD11b+ or Ter119+),

hocytes (Lympho) were CD48+SSCloFSClo. Results are shown as mean ±SEM

ice (secondary mice, bottom, analyzed after an additional 6 months).

t+ (right) compartment of secondary transplant recipients. Results are shown as

ft) or LSK CD150+ HSC (right) compartment from primary transplant recipients.

d subpopulations.

ecipients is summarized, with the proportion of mice with multilineage CD45.2+

1.
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Figure 4. miR-126 Overexpression Results in Progressively Reduced Hematopoietic Output In Vivo

(A) Bone marrow xenograft kinetics of lin� CB cells upon 126/OE. CD34+CD38� lin� CB cells were transduced with 126/OE or CTRL LV and were transplanted.

Mice were analyzed every 4 weeks for total human CD45+OFP+ BM engraftment. Results are shown asmean +SEMof n = 4 CTRL and n = 4 126/OEmice per time

point. Week 16 results are representative of two experiments.

(B and C) Gating strategy for cell-cycle analysis of 126/OE lin� CB. CTRL or 126/OE-transduced human lin� CB cells were isolated from xenografted BM

4–12 weeks after transplantation. The frequency and cell-cycle status of HSC-enriched CD34+CD38�CD90+ cells was assessed, as well as the cell-cycle status

of committed CD34+CD38+ progenitors. (B) Representative plots showing the lin� CB cell phenotype and cell-cycle analysis at 4 weeks after transplantation.

(C) Percentage of CD34+CD38�CD90+ cells over time is shown (left) and normalized to CTRL for statistical analysis (right).
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of phenotypically defined HSC in 126/KD mice (Figure S3E). We

then set up an LDA from 126/KD and CTRL BM cells. Recipient

mice were scored as engrafted if they displayed >0.1% Ptcrpb

cells in multiple lineages. HSC frequency was 3.9-fold higher in

126/KD versus CTRL BM (Figure 3I).

Collectively, our results establish that stable knockdown of

miR-126 expanded mouse and human long-term repopulating

HSC, assessed by using the most stringent phenotypic and

functional assays available. Although increased cycling of

HSCs is frequently associated with their exhaustion, despite

1.5 years of follow up, no HSC exhaustion or malignancy was

observed in our studies, pointing to the unique regulatory prop-

erties of miR-126 in HSC.

Enforced miR-126 Expression Progressively Reduces
Hematopoietic Output In Vivo
Because 126/KD induced an expansion of the phenotypic HSC

compartment through increased cycling, we predicted that

forced expression of miR-126 may provoke the opposite

response in vivo. Following xenotransplantation of lin� CD34+

CD38� CB HSPC, the progeny of cells that were transduced

with the 126/OE vector transiently engrafted mice but were

progressively lost between 12 and 16 weeks (Figure 4A). No

significant alteration of themyeloid/lymphoid ratio was detected;

however, at 16 weeks, the mice injected with 126/OE-trans-

duced cells displayed an 11-fold lower percentage of GlyA+

erythroid cells compared to the control group, which was

consistent with our in vitro observations (Figure S2H). We

focused on the remaining HSC compartment and were able to

carry out detailed analysis by pooling BM from four to five recip-

ient mice per time point. Evaluation of primitive cell marker

expression in the human lin� compartment revealed that the

loss of human 126/OE cells in transplanted mice was not due

to a decrease in the CD34+CD38�CD90+ stem cell compartment

size (Figure 4B). On the contrary, we observed, on average,

a 2.5-fold increase in the phenotypic CD34+CD38�CD90+ stem

cell compartment for 12 weeks posttransplant, after which

marked primitive cells were no longer recoverable (Figure 4C).

In addition, cell-cycle analysis of HSC-enriched Lin�CD34+

CD38�CD90+ cells with 126/OE in the xenografted BM over
(D) Cell-cycle analysis of lin� CB primitive cell populations upon 126/OE. Using t

(right) human cells in the xenografted BMwere analyzed for cell-cycle stage at 4, 8

point. Data were normalized to CTRL, and time points were combined for statist

4 weeks; for 8 and 12 weeks, results represent n = 1 experiment.

(E) Congenic Ptprca and Ptprcb murine Lin� BM cells were transduced with CTR

competitively transplanted. The contribution of OFP-expressing 126/OE cells to p

times posttransplant. Hematopoietic stress was induced by 5-fluorouracil (5-FU)

mean ±SEM of n = 9 mice (Exp1) and n = 6 mice (Exp2).

(F) Top bar graph shows a representation of murine BM HSPC subsets 3 weeks

LV-transduced cells. Results are shown as mean +SEM of n = 24 mice for 126/O

between 126/OE and both control LVs are shown, as assessed by one-way AN

incorporation after two EdU pulses (24 hr and 12 hr before sacrifice) in the Lin�

Results are shown as mean +SEM of five pools of two to three mice for the 126/OE

pools of CTRL LV and three pools of 223OE LV).

(G) BM chimerism 100 days after competitive transplantation of CTRL and 126

126/OE vector-transduced cells in relation to all other BM cells (untransduced an

cells were defined as in Figure 3F. Results are shown as mean +SEM of n = 4 m

(H) Cell-cycle distribution of the cells shown in (G) as determined by Ki67/Hoechs

mice). *p < 0.05, **p < 0.01, and ***p < 0.001. ns, not significant.
time showed a consistently higher percentage of cells in G0

(Ki67�; Figures 4B and 4D). These data indicate that miR-126

negatively regulates the cell-cycle progression of HSC, which

is consistent with our in vitro experiments and is contrary to

the 126/KD results. Surprisingly, no change in the numbers of

quiescent cells in the more heterogeneous CD34+CD38+

progenitor-enriched compartment was observed; instead,

a significant increase in the fraction of cells in S/G2/M phase

was noted (Figures 4B and 4D). Thus, the effects of 126/OE ap-

peared to be context dependent and distinct between stem cell

and progenitor-enriched fractions.

To examine the effect of 126/OE on the fate of murine HSC

in vivo, we performed competitive transplantation experiments.

Lin� BM cells from congenic mice (Ptprca and Ptprcb, respec-

tively) were transduced with a 126/OE or CTRL vector and in-

jected in a 1:1 ratio into myeloablated recipients (Figure 4E). In

the first month after transplantation, myeloid (Cd11b+) and B

cell (Cd19+) output from 126/OE cells was increased relative to

the output of control vector-transduced cells. Following this

initial burst of differentiated cells, 126/OE cells declined and

became progressively lost from the peripheral blood upon hema-

topoietic stress induced by 5-Fluorouracil administration or

serial transplantation into secondary recipient mice (Figure 4E).

A similar phenotype was observed when ectopically expressing

miR-126 from a weaker promoter (see Supplemental Results

and Figure S4).

Next, we assessed the impact of 126/OE on the early engraft-

ment phase in a noncompetitive transplantation setting. A sig-

nificant advantage of early blood reconstitution by 126/OE cells

was seen for platelets and leukocytes, whereas neutropenia and

thrombocytopenia were shortened (see Supplemental Results).

BM analysis conducted at 3 weeks posttransplantation showed

that, whereas the Lin+ compartment was reconstituted to

similar levels in all groups, absolute numbers of Lin� cells

were significantly increased in 126/OE BM, primarily in the

Sca+Kit� and Sca�Kit� compartments (Figure 3F, top). In vivo

nucleoside incorporation assays revealed increased labeling

in LSK, Lin�Sca+Kit�, and Lin�Sca�Kit� cells, but not in Lin�

Sca�Kit+ or Lin+ cells (Figure 3F, bottom). Analysis of the BM of

engrafted mice 3 months after transplantation revealed a
he gating strategy depicted in (B), CD34+CD38�CD90+ (left) and CD34+CD38+

, and 12 weeks posttransplant. BM of four to five mice was pooled at each time

ical analysis. Results are shown as mean of n = 2 independent experiments at

L or 126/OE LV. Equal numbers of CTRL and 126/OE cells were pooled and

eripheral blood granulocytes (top) and B cells (bottom) is shown at the indicated

administration (Exp1) or serial BM transplantation (Exp2). Results are shown as

after transplantation of 126/OE or 223OE LV-transduced cells relative to CTRL

E, n = 13 mice for 223OE, and n = 13 mice for CTRL. Significant differences

OVA with Bonferroni correction. Bottom bar graph shows in vivo nucleoside

and Lin+ BM subsets. Results are normalized to the combined control group.

group and six pools of two to three mice for the combined control group (three

/OE LV-transduced cells. Blue bars represent the fraction of OFP-expressing

d CTRL LV transduced). HSC were defined as LSK CD150+CD48� cells. Lin+

ice.

t staining in HSC-enriched LSK CD150+ and total LSK cells (n = 5 pools of three
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substantially decreased 126/OE chimerism in the LSK CD150+

CD48� HSC compartment with respect to all other BM popula-

tions (Figures 4G and S4F). Moreover, although more 126/OE

LSK cells were in the S/G2/M phase of the cell cycle, HSC-

enriched fractions (LSK CD150+) contained significantly more

126/OE cells in G0 (Figure 4H). This is strikingly reminiscent

of the situation in human cells, in which CD34+CD38+ progeni-

tors were cycling more frequently upon 126/OE, whereas the

HSC-enriched CD34+CD38�CD90+ cells displayed increased

quiescence.

Overall, these results illustrate that miR-126 regulation of cell

fate differs depending on cellular context. During the first weeks

after transplantation of 126/OE cells, specific progenitor subsets

are expanded, which is reflected in an increased multilineage

output. Over time, a competitive disadvantage of 126/OE at

the HSC level results in a progressive reduction of the progenitor

supply, leading to the collapse of hematopoietic output. A

constant reduction in cell-cycle entry of HSC may be the

underlying explanation for the finding that 126/OE HSC are

eventually outcompeted by nontransduced HSC with normal

cycling characteristics.

PI3K/AKT Signaling Is Targeted by miR-126 in Early
Hematopoietic Progenitors
To gain insight into the mechanism whereby miR-126 was

exerting its biological effects on HSPC, gene expression pro-

filing was performed on sorted CD34+CD38� lin� CB HSPC

transduced with 126/KD, 126/OE, and their respective CTRL

vectors. Gene set enrichment analysis (GSEA) was applied to

HSPC gene expression data to identify miR-126 modulated

cellular pathways. Opposing effects between 126/KD and 126/

OE groups were observed with a majority of enriched pathways

(Figure 5A). Furthermore, pathways most highly correlated with

miR-126 expression levels centered on cell-cell contact

(cell junction and adhesion), motility, migration (all upregulated

in 126/KD and downregulated in 126/OE), interferon-gamma

signaling, and protein acetylation (both downregulated in

126/KD). Using four published algorithms, a list of predicted

miR-126 target genes was generated and compared with the

gene expression data set. Predicted targets were found in six

pathways that are significantly influenced bymiR-126 (Figure 5A,

purple lines, p < 0.05). The focal adhesion pathway showed the

most significant overlap with the list of miR-126 predicted

targets (Figure 5A, list 1, p = 0.0003), indicating that this may

be the primary pathway under the influence of miR-126 in

primitive lin� CB cells. In this pathway, PIK3R2, ITGA6, and

ILK, all predicted miR-126 targets, are upregulated upon

126/KD and downregulated upon 126/OE. As the effect of

miRNA modulation of gene expression may be stronger at the

protein level, and to provide another unbiased approach, we

performed a quantitative analysis on the proteome of K562 cells

stably transduced with 126/OE or CTRL vectors by using the

stable isotope labeling of amino acids in culture (SILAC)

technique (Figures S5A–S5C). Interrogation of this data set by

using unsupervised Ingenuity Pathway Analysis (IPA) found

that, upon 126/OE, the PI3K/AKT signaling pathway was among

the most significantly affected canonical pathways (Figures S5B

and S5C), validating the bioinformatic analysis of the mRNA

arrays. These data suggest that PI3K/AKT signaling is a major
8 Cell Stem Cell 11, 1–13, December 7, 2012 ª2012 Elsevier Inc.
pathway through which miR-126 exerts its effects in primary

human hematopoietic cells.

Because the PI3K/AKT pathway transduces crucial signals for

HSC proliferation and differentiation (Buitenhuis and Coffer,

2009; Buitenhuis, 2011), we assessed the expression levels of

individual components of this pathway in both K562 cells (Fig-

ure S5D) and CD34+ CB cells (Figure 5B) upon 126/KD. Among

the investigated genes, PIK3R2/PI3Kp85b and AKT2 were sig-

nificantly upregulated upon 126/KD at both the transcript

and protein level, whereas their respective isoforms, PIK3R1/

PI3Kp85a and AKT1, were unchanged. CRKII protein was also

upregulated by 126/KD as predicted by bioinformatic analysis.

Whereas PIK3R2 is well established as a direct miR-126 target

(Fish et al., 2008; Guo et al., 2008), AKT2 may be regulated

through indirect mechanisms because its transcripts are not

predicted to contain binding sequences for the miR-126 seed

sequence.

miR-126 Attenuates the PI3K/AKT/GSK3b Signaling
Axis upon Extrinsic Stimuli
We next assessed whether miR-126-dependent regulation of

the PI3K/AKT pathway would have an effect on signal transduc-

tion. AKT interacts with several downstream effectors implicated

in stem cell regulation such as mTOR complexes and GSK3b

and FOXO proteins (Buitenhuis and Coffer, 2009). AKT is acti-

vated upon phosphorylation of Ser473. We found increased

phosphorylation of AKT at Ser473 (p-AKT S473) in 126/KD-

transduced CD34+ CB HSPC under steady-state culture condi-

tions (Figures 5C and 5D; see also Figure S5E for K562 cells).

To investigate the acute response to cytokine stimulation at

the single cell level in primary human cells, we assayed pAKT

(S473) by flow cytometry in CD34+ HSPC starved in serum and

cytokine-free medium prior to stimulation. Stem cell factor

(SCF) containing cytokine cocktails rapidly and strongly induced

pAKT (S473) in CD34+ cells (Figure S6). This response was

significantly enhanced in 126/KD HSPC, and this enhancement

was most evident when the analysis was focused on highly

transduced cells (Figure 6A). By using the same starvation/

stimulation protocol, we also found significantly increased

phosphorylation of GSK3b at Ser9 in 126/KD CD34+ CB cells

(Figure 6A). An opposite effect on AKT and GSK3b phosphory-

lation was observed upon 126/OE (Figure 6B). Overall, these

data indicate enhanced transduction of the signal induced by

SCF through the PI3K/AKT pathway in human HSPC upon

126/KD and decreased signal transduction upon 126/OE.

Finally, we were able to abrogate the effect of 126/KD on

HSPCproliferation by a single administration of the PI3K inhibitor

LY294002 at the time of cytokine stimulation, reinforcing the

notion that activation of PI3K signaling is required for the

observed functional effects of 126/KD in HSPC (Figure 6C).

Collectively, these data indicate that miR-126 regulates the

expression of several components of the PI3K/AKT pathway

and, consequently, regulates its activation by extrinsic stimuli

such as SCF.

DISCUSSION

Our data establish that miRNAs, differentially expressed in

HSPC, represent an important regulatory mechanism that
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Figure 5. PI3K/AKT Signaling Is Targeted by miR-126 in Hematopoietic Progenitors

(A) Functional enrichment map for 126/KD and 126/OE fractions revealing miR-126 modulated pathways. Nodes (circles) represent gene sets (pathways), red

indicates gene sets enriched in the 126/KD (node center) or in the 126/OE (node border) fractions, and blue indicates gene sets enriched in CTRL. Green line width

between pathways (nodes) corresponds to the number of shared genes. miR-126 predicted targets (yellow triangle) are connected to enriched pathways by pink

lines; line thickness indicates significance level (proportional to –log (p value)). Overlap of miR-126 targets was significant (p < 0.05) with six enriched gene sets.

miR-126 targets were present in list 1 (KEGG:HSA04510 and KEGG:HSA04512 gene sets), list 2 (GO:0050900), list 3 (GO:0048870 and GO:0051674), and list 4

(GO:0071346). Gene targets shared between lists (common targets) and targets unique to a list (unique targets) are listed on the right.

(B) Protein (blots) and transcript (bar graph) levels of PI3K p85 isoforms, AKT isoforms, and CRKII were measured in CD34+ CB cells 3–5 days after transduction

with CTRL or 126/KD LV. Top, western blots are representative of n = 5 (PI3Kp85a/b) or n = 2 (AKT1/2 and CRKII) independent experiments; GAPDHwas used as

a loading control. Bottom, qPCR graph shows the fold change of the indicated transcript in 126/KD over CTRL-transduced cells. Results are shown as

mean +SEM of n = 5 independent experiments (PIK3R2 and AKT2) or n = 3 independent experiments (AKT1).

(C) Simplified scheme illustrating the flow of signal through the PI3K/AKT pathway.

(D) Left, pAKT (Ser473) was measured in CTRL or 126/KD LV-transduced CD34+ CB cells by western blot performed after 4 days in liquid culture. GAPDH was

used as a loading control. Three independent experiments are shown. Right, bar graph showing the densitometric quantification of pAKT (Ser473) normalized to

GAPDH. Mann-Whitney test was used for statistical analysis. Results are shown as mean +SEM of n = 7 independent experiments. *p < 0.05.
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governs the biological properties of mouse and human HSC. By

gain- and loss-of-function studies, we demonstrate thatmiR-126

functionally regulates HSC and early progenitor cells by modu-

lating signal transduction in response to extrinsic stimuli, such

as SCF, and by inducing specific changes in the cell cycle of

HSC and progenitors within their BM niche in vivo. miR-126

knockdown resulted in increased cell-cycle progression and

expansion of the phenotypic and functional HSC compartment

in vivo. Overexpression of miR-126, on the other hand, resulted

in increased HSC quiescence and transiently increased pro-

liferation of progenitor cell populations, which was followed by

diminishing hematopoietic output. Our work demonstrates the

conservation of miR-126 function between mouse and human

HSC and establishes a conceptual framework to understand
how miR-dependent adjustment of intracellular signals fine-

tunes the balance between HSC quiescence and activation,

enabling them to sustain the blood system throughout life.

We identify components of the PI3K/AKT signaling pathway as

direct or indirect targets ofmiR-126 in humanHSCand show that

miR-126 activity attenuates the degree of activation of this

pathway in response to cytokine signals—such as SCF—known

to be crucial for HSC maintenance (Thorén et al., 2008). Thus,

miR-126 appears to act mostly by imposing a threshold on the

level of stimulation required to activate HSC. Importantly, the

PI3K/AKT pathway plays a central role in regulating HSC homeo-

stasis through downstream effectors, which include FOXO

transcription factors, mTOR, GSK3b, and WNT (Buitenhuis and

Coffer, 2009; Buitenhuis, 2011). Several groups have engineered
Cell Stem Cell 11, 1–13, December 7, 2012 ª2012 Elsevier Inc. 9



Figure 6. Attenuation of PI3K/AKT/GSK3b Signaling upon Extrinsic Stimuli Contributes to miR-126 Control of Proliferation
(A) Cytokine-induced activation of AKT andGSK3b upon 126/KD in CD34+ CB cells after 30min starvation and restimulation with SCF, TPO, FLT3L, and IL6 (TSF6

medium, see Experimental Procedures). Left FACS plots show GFP expression in CD34+ CB cells transduced with 126/KD-LV, and CTRL-LV (not shown) was

stratified into quartiles, with brighter cells expressing more miR-126 decoy targets. Middle histograms show representative induction of pAKT (S473) (top) and

pGSK3b (S9) (bottom) in the top 25% GFP-expressing 126/KD cells (red), CTRL cells (gray), or in 126/KD cells pretreated with the PI3K inhibitor Wortmannin

(dashed line). Right graphs show relative mean fluorescence intensity (MFI) of phospho-AKT S473 (top) and phospho-GSK3b S9 (bottom) from untransduced

(first quartile, Q) to highly transduced (top 10%) cells for CTRL (gray), 126/KD (red), and Wortmannin-treated (dashed) cells that were stimulated with TSF6. Note

that the effect of 126/KD is most pronounced in highly transduced cells. Results are shown as mean +SEM of n = 6 independent experiments (AKT) and n = 3

independent experiments (GSK).

(B) Cytokine-induced activation of AKT and GSK3b upon 126/OE in CD34+ CB cells stimulated as described in (A). Histograms represent the induction of pAKT

(S473) (top) and pGSK3b (S9) (middle) in the top 25% of OFP-expressing 126/OE cells (blue), CTRL (gray), or 126/OE cells pretreated with the PI3K inhibitor

Wortmannin (dashed line). The bar graph on the bottom represents pAKT (S473) or pGSK3b (S9) activation in 126/OE relative to CTRL cells in the corresponding

first Q and top 25% OFP-expressing fractions.

(C) Effect of the PI3K inhibitor Ly294002 (Ly) treatment on the growth of 126/KD cells. Left, representative experiment depicting the growth advantage of 126/KD

CD34+ CB cells over CTRL (dotted lines) and its abrogation upon single-dose administration of 10 mMLy (solid lines). Right, fold change in cell numbers of 126/KD

normalized to CTRL cells, treated (black) or not (red) with Ly. Results are shown as min/max box and whiskers plots of n = 5 independent experiments. *p < 0.05

and **p < 0.01.
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mice to modify PI3K/AKT pathway activation. Recently, a

detailed analysis of HSC in an AKT1/2 double-deficient mouse

model revealed a deficiency in competitive long-term reconstitu-

tion (Juntilla et al., 2010). This defect was attributed to HSC

persistence in G0, arguing that the impaired HSC function

and cell-cycle progression that we observe upon 126/OE may

indeed be due to attenuated PI3K/AKT signaling. Conversely,

hyperactivation of the PI3K/AKT pathway has been studied by

using conditional genetic deletion models of negative regulators

such as Pten, Ship, Fbw7, Pml, and Tsc1 (Li, 2011). These

studies reported a transient increase in cycling HSC, which
10 Cell Stem Cell 11, 1–13, December 7, 2012 ª2012 Elsevier Inc.
was followed by exhaustion and/or impaired repopulation

capacity. Similar phenotypes were obtained by inactivating

negatively regulated downstream targets of the PI3K/AKT

pathway such as GSK3b (Huang et al., 2009) or FOXO (Tothova

et al., 2007). Remarkably, our 126/KD studies also hyperacti-

vated the PI3K/AKT pathway and induced expansion of HSC

without inducing their exhaustion when assayed long-term after

transplant or in secondary transplanted mice. We speculate that

the reason why 126/KD may expand HSC without exhaustion

might be because, rather than affecting a single regulator,

miR-126 likely modulates several functionally important targets
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in interconnected pathways that together orchestrate an HSC

program. Further studies will be needed to investigate whether

additional miR-126 targets in addition to those identified within

the PI3K/AKT pathway contribute to the observed phenotypes.

We note that the sponge vector achieves a knockdown rather

than knockout of miR-126. Thus, it remains to be determined

what influence a full miR-126 knockout would have on HSC.

Germline miR-126 knockout results in a severe angiogenesis

defect with most mice dying in utero (Kuhnert et al., 2008;

Wang et al., 2008). However, the few miR-126 knockout mice

that survived were reported to have no major disturbances of

the hematopoietic system, except for some degree of erythrocy-

tosis. This observation is in line with our findings that 126/KD

increased erythroid and megakaryocytic differentiation of

CD34+ lin� CB cells, whereas ectopic miR-126 expression in-

hibited erythropoiesis, as also recently shown in an embryonic

stem cell (ESC) differentiation model (Huang et al., 2011).

Another important difference between 126/KD and Pten

knockout mice is that the latter mode of PI3K/AKT pathway acti-

vation invariably resulted in the emergence of leukemia (Yilmaz

et al., 2006), whereas 126/KD never produced hematologic

malignancies in up to 1.5 years of follow-up in mice (including

serial transplants). Indeed, vector integration site analysis re-

vealed the polyclonal nature of 126/KD expansion (Figure S3C).

Whereas PI3K/AKT signaling is one of the most frequently acti-

vated pathways in cancer, miR-126 is a tumor suppressor as it

is lost in a number of solid cancers (Guo et al., 2008; Zhang

et al., 2008; Miko et al., 2009; Feng et al., 2010). The PI3K/AKT

pathway is highly branched, with many inputs, outputs, and

feedbacks (Chalhoub and Baker, 2009). Follow-up studies will

clarify which specific output ultimately induces the biological

effects of miR-126 deregulation.

The variety of effects we observed by modulating miR-126 in

hematopoietic cells adds evidence that miRNAs exhibit exten-

sive context-dependent functions. Murine cell transplantation

showed that 126/KD resulted in a cell-cycle increase only

within the stem-cell-enriched compartment, which expresses

the highest levels of miR-126, but not in downstream progeni-

tors. Even more striking is the bimodal response to 126/OE,

whereby the proliferation of the HSC fraction is reduced,

whereas cell-cycle entry of immediate downstream progenitors

is increased both in human and murine experiments. This

suggests that stem and progenitor cells have distinct programs

that govern which targets are available for miR-126 to influ-

ence, resulting in differences in signaling responses within

each cell type. Alternative 30 UTR sequences and/or a different

pool of competing RNA targets for miR-126 could account for

this apparent paradox (Mayr and Bartel, 2009; Poliseno et al.,

2010). Thus, the availability of different sets of mRNA targets

in distinct cell types may contribute to the context specificity

of miRNAs, and further work is required to identify the whole

complement of miR-126 targets in hematopoietic stem versus

progenitor cells.

This report links a miRNA to the regulation of human HSC,

thus opening an avenue to develop therapeutic strategies for

human HSC maintenance and expansion. There is great need

to understand how HSC are regulated in order to take a more

rational approach to harness human HSC for clinical purposes.

The discovery that miRNAs occupy a central regulatory role
opens an alternative avenue to manipulate HSC quiescence

and cell-cycle entry with the ultimate goal of HSC expansion

for clinically important therapies. The significant expansion of

long-term HSC, here induced through the manipulation of the

miR-126/PI3K/AKT signaling axis, supports the plausibility of

this approach. It is conceivable that manipulation of miR regu-

lation may provide a more physiological approach to fine-tune

a cellular response. Finally, given the close relationship

between normal HSC and AML leukemic stem cells (Eppert

et al., 2011), future studies should examine whether miR-126

deregulation contributes to leukemia stem cell properties.
EXPERIMENTAL PROCEDURES

Vector Transduction of Cord Blood and In Vitro Expansion

The following transduction protocols were used with similar results in

Toronto (1) and Milan (2). (1) Lin� CB cells were thawed and plated in

X-VIVO (BioWhittaker) supplemented with 20% BIT 9500 (StemCell Technol-

ogies), 2 mM L-glutamine, and 100 U/ml penicillin/streptomycin (P/S). Viral

particles were resuspended in the same medium and added to cells at

a multiplicity of infection (MOI) of 30–50. The mixture was then supplemented

with stem cell factor (SCF) 100 ng/ml, Flt3 ligand (Flt3-L) 100 ng/ml, throm-

bopoietin (TPO) 20 ng/ml, and interleukin 6 (IL-6) 20 ng/ml for a minimum of

16 hr. Subsequent expansion was performed in the same medium with half

the concentration of these cytokines. (2) When indicated, the following condi-

tions, referred to as TSF6, were used: CD34+ cells were cultured in Stem-

Span medium (Stem Cell Technologies) with the same supplements and

cytokines as mentioned above except BIT. After 12–18 hr of prestimulation,

cells were exposed to lentiviral vectors for 12–24 hr at an MOI of 50–100.

Optionally, a second hit transduction was performed after a 12 hr resting

phase in fresh medium. Subsequent expansion was performed in StemSpan

medium containing half the concentration of the above-mentioned cytokines

(TSF6half medium).

Mouse Xenotransplantation and Human Lin– Cell Isolation

Mouse xenografts were performed as described previously (McDermott et al.,

2010). Briefly, NOD/Lt-scid/IL2Rɣnull (NSG) mice were sublethally irradiated

(225 cGy) 1 day prior to injection. Transduced cells were injected with 25 ml

PBS into the right femur of each recipient mouse. After euthanizing the mice,

bone marrow cells were flushed with 2 ml PBS 2% FCS, and 50 ml was stained

for surface markers. Remaining cells were lineage depleted and/or used for

additional surface or intracellular antigen staining. For lineage depletion, BM

cells flushed from the femurs and tibias of three to five mice (>3% human cells)

were combined and processed with the StemSep Mouse/Human Chimera

Enrichment Kit (Stem Cell Technologies) according to the manufacturer’s

instructions. However, during the antibiotin incubation step, an additional

50 mL/ml human hematopoietic progenitor enrichment antibody cocktail

from the StemSep Human Progenitor Cell Enrichment Kit was added to

deplete human-lineage-positive cells.

Isolation and Transduction of Murine HSPC and Bone Marrow

Transplants

Donor mice between 6 and 8 weeks of age were euthanized by CO2, and BM

was retrieved by femurs, tibias, and humeri. Murine HSPCs were purified by

lin� selection, using the Biotin Mouse Lineage Panel (BD PharMingen) and

the StemSep Mouse Progenitor Enrichment Kit (Stem Cell Technologies).

LVs transduction was performed as previously described (Gentner et al.,

2010). For noncompetitive transplants, R106 transduced cells were trans-

planted via tail injection into 6-week-old lethally irradiated mice (10 Gy total,

fractionated into two doses with an interval of 4 hr). For competitive

transplants, congenic HSPC from either B6.SJL-Ptprca(CD45.1) or C57BL/

6NTac-Ptprcb(CD45.2) mice transduced with either 126/KD or 126/OE and

with CTRL LVs were mixed in a 1:1 ratio and transplanted (R106 cells/mouse)

into 6-week-old lethally irradiated mice. Please see Supplemental Information

for details of the analysis of chimerism.
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Limiting Dilution Analysis

For murine experiments, Lin�BM cells (CD45.2) were transduced with 126/KD

or CTRL LV and transplanted into recipient mice (CD45.1). Mice with similar

chimerism and transduction levels in both the 126/KD and CTRL group were

identified 16 weeks after transplant, and a 126/KD BM pool (n = 3 mice) and

CTRL BM pool (n = 3 mice) were generated. Limiting doses of total nucleated

BMcells (BMTNCs) from each pool weremixedwith 33 105CD45.1 supporter

BM TNCs and transplanted into n = 13 lethally irradiated CD45.1 recipient

mice. A mouse was scored as positive if it had >0.1% engraftment in multiple

lineages by serial bleeding at 8 and 14 weeks after transplantation. Limiting

dilution analysis of human CB cells was performed by sorting human CD45+

GFP+ cells from pooled BM of primary mice 20 weeks after transplantation

and injection of different doses into secondary recipients. A secondary mouse

was scored as positive if it had >0.5% BM engraftment 10 weeks after

transplantation. HSC frequency was estimated by linear regression analysis

and Poisson statistics using publicly available ELDA (Extreme Limiting Dilution

Analysis, http://bioinf.wehi.edu.au/software/elda/) software (Hu and Smyth,

2009).

5-FU Treatment and Secondary Transplants

5-Fluorouracil (Sigma) was administered intraperitoneally at a dose of 2.5 mg.

For secondary transplants of murine experiments, stably engrafted mice were

euthanized (R14 weeks after primary transplant), and 107 BM-nucleated cells

from each mouse were injected into one or two secondary recipients.

Statistical Analysis

Unless otherwise indicated, mean ±SEM values are reported in the graphs. For

pairwise comparisons, a Student’s t test (paired if appropriate) was used

unless otherwise indicated. For three or more matched groups, a one-way

analysis of variance (ANOVA) for repeated measures using a Bonferroni

posttest correction was used. Chimerism (chim) values were transformed

into a log-odds scale (log (%chim/(100-%chim)), given that percentages are

by definition constrained between 0 and 100.
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