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In cancer, a tumour’s cell of origin is the strongest determinant of its clinical behaviour. While cell

of origin is typically clear at the time of diagnosis, 3-5% of cancer patients present with a metastatic

tumour and no obvious corresponding primary tumour. Despite advances in molecular testing, imaging,

and pathology, the primary tumour site cannot be inferred in the majority of these cases. Recent large-

scale analysis of cancer genomes has uncovered strong associations between cancer type and somatic

mutations, prompting the use of somatic mutations as a tool for identifying cancer type. While existing

approaches have attempted to use cancer-associated mutations, which may be more common in specific

cancer types to infer the primary tumour type from the metastatic tissue, these methods have had only

limited success. A more promising alternative is to use the association between patterns of somatic

passenger mutations and cancer type, by exploiting the relationships between both regional mutation

density and cancer type, and mutational processes and cancer type. Somatic point mutations accu-

mulate in regions of closed chromatin, and so mutation density provides information about chromatin

state, which in turn offers hints about the underlying cell type. As some mutational processes are highly

cell-type specific, mutational processes also provide clues about cancer type. In this thesis, I describe a

number of deep learning systems for automatic tumour typing based on patterns of somatic passenger

mutations. I then address challenges for translating the classifier into clinical scenarios through the use

of multiple algorithmic improvements. First, I make use of modern advancements in deep learning to

extend the classifier to accurately discriminate between 29 cancer types. I then use a number of sta-

tistical methods for assessing the uncertainty in the model’s predictions, and for improving uncertainty

quantification. Finally, I make use of information theoretic metrics to use the model’s predictive uncer-

tainty to automatically detect cancer samples that come from rare cancer types that the model was not

trained to classify. These studies demonstrate the utility of passenger mutations as a tool for identifying

cancer type, and address challenges for translating the deep learning classifier into clinical settings.
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Chapter 1

Introduction

Somatic cells accumulate multiple mutations over cycles of cellular division. Mutations in somatic cells

range from single nucloetide variants (SNVs), short insertions or deletions, and large-scale mutations such

as structural variants and copy-number variants. Point mutations or SNVs are the most studied variant in

somatic cells, and represent the majority of all mutations (Gerstung et al. 2017). The effects of mutations

exist on a continuum that depends on the selective pressures placed upon the cells (Martincorena et al.

2017). Some mutations are disadvantageous to the cell and result in cell-death, senescence, or impaired

growth. A small subset of the mutations, termed driver mutations, provide a selective advantage to the

cells that contain them by, for example, disrupting mechanisms of normal homeostatic regulation. The

majority of all point mutations are selectively neutral and are termed passenger mutations (Martincorena

et al. 2017). Through a process of genetic diversification and selection, the aggregate effect of these

mutations contributes to a process of somatic evolution that can result in the development of cancer

(Gerstung et al. 2017).

Importantly, mutations in somatic cells are the result of a number of distinct mutational processes,

some of which are highly specific for certain cell types (Alexandrov et al. 2020). Moreover, regional

mutation density varies significantly, both across a single genome, and across different cell types (Stam-

atoyannopoulos et al. 2009; Hodgkinson, Chen, and Eyre-Walker 2012; Schuster-Böckler and Lehner

2012; Supek and Lehner 2015; Polak et al. 2015; Lee, Abd-Rabbo, and Reimand 2020).

Tumour typing is the diagnostic practice of identifying the cell of origin for a given tumour. The

cell of origin for a tumour is defined by anatomical site from which the tumour is derived, and the

histology of the tumour. While the use of precision medicine in cancer aims to supplement or replace

traditional tumour typing by targeting molecular characteristics of a tumour instead of characteristics

specific to a tumour’s cell of origin, currently, a tumour’s cell of origin is the strongest indicator of

disease progression and clinical presentation. Moreover, a tumour’s cell of origin is the single strongest

predictor of therapeutic response (Hyman et al. 2015; Penson et al. 2019; Jiao et al. 2020). Correctly

identifying the cell of origin, therefore, is a critical task for guiding decision making for a patient, and

forms the basis instructing the use of cancer-specific therapy, which has been shown to be more effective

than broad-spectrum chemotherapy (Greco 2013). The past few decades have seen remarkable advances

in diagnostic protocols, which have resulted in overall improvements in the accuracy of traditional

tumour typing approaches. Despite these advances, challenges arise when determining the primary

tumour of origin for metastatic lesions, and in differentiating between a late metastatic recurrence

1
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or the emergence of a secondary primary tumour (Pavlidis and Pentheroudakis 2012; Vogt et al. 2017).

Correctly leveraging the information that is contained in the mutational history of a tumour is a possible

route for accurately determining tumour type. Here I study the use of patterns of somatic mutations

for the accurate discrimination of cancer type.

My thesis introduction highlights current practices in cancer diagnostics and treatment. I also high-

light two challenging diagnostic scenarios that are not adequately addressed by current practices in

cancer diagnostics - cancers of unknown primary (CUPS) and multiple primary tumours. I provide an

overview of an avenue for addressing difficult to diagnose tumours, by exploring the association between

mutational processes, somatic mutation rate and cell of origin features. Finally, I review machine learning

methods that have utility in identifying cancer type, and I review methods for quantifying uncertainty

in predictive models that are pertinent to the thesis.

1.1 Tumour typing: traditional diagnostic approaches, molecu-

lar diagnostics

Together, the anatomical location from which a tumour is derived, and the histological properties of the

cells comprising the tumour, define broad categories of cancer types. As such, the process of tumour

typing is the process of determining the histopatholgy and organ of origin for a tumour. Traditionally,

this is done through radiographic and pathologic examination by physicians, but more recently, the use

of molecular tests and genomics have been integrated in a form of molecular diagnostics. In this section,

I provide an overview of tumour types, traditional diagnostic approaches, and molecular diagnostic

approaches.

1.1.1 Cancer histopathology

Most commonly, cancers are categorized by their histology or tissue type and their organ of origin.

Tumours with the same cell of origin can be further categorized into subtypes based on shared molecular

characteristics of the tumour (Hayward et al. 2017). While molecular subtyping of tumours has a role

to play, particularly when considering precision or personalized medicine, the cell of origin of a tumour

forms the basis for oncological therapy, and is a crucial piece of information when trying to understand

the clinical progression of a tumour. Consequently, the bulk of diagnostic work focuses on identifying

the organ from which a tumour originates, and the histology of the tumour.

Organ of origin can typically be identified through a combination of blood tests, physical examination,

biochemical tests and radiographic imaging. The bulk of diagnostic work comes down to pathological

examination to identify the histology of the tumour (Fu et al. 2020). The histology of a tumour is typically

determined through pathological assessment of tissue samples. Samples can be obtained through biopsy

in the case of solid tumours, and blood tests for liquid cancers. Histologically, cancers are grouped into

six broad categories. These categories consist of carcinomas, sarcomas, myeloma, lymphoma, leukaemia

and mixed type.

Carcinoma represents the majority of all cancer cases and is defined by cancer of epithelial tissue

(Siegel, Miller, and Jemal 2020). Carcinomas are further divided into two major subtypes: adenocarci-

noma and squamous cell carcinoma. Adenocarcinomas develop from glandular or secretory cells. These

cells make up organs and some tissues. Squamous cell carcinoma develops from squamous epithelium
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which is comprised of thin, flat cells. This tissue type is found in the skin and lining of some organs. Most

cancers of the head and neck tumours, and cervical tumours are squamous cell carcinomas. Squamous

cell carcinomas also represent the second most common cancer of the skin. The biological and clinical

characteristics of adenocarcinomas and squamous cell carcinomas of matched organ of origin can have

significant differences. For example, oesophagal adenocarcinomas are very strongly associated with a

history of Barret’s oesophagus, while squamous cell carcinoma of the oesophagus is mostly associated

with tobacco smoke or excess consumption of alcohol (Kim et al. 2017; Falk 2015).

Cancers that originate in connective or supportive tissues are called sarcomas, which consist of a

highly diverse set of mesodermal malignancies (Ceyssens and Stroobants 2011) that include cancers that

develop in skeletal muscle, adipose tissue, blood, lymphatics, peripheral nerves and in the central nervous

system. Broadly, sarcomas are split into soft tissue sarcoma, primary bone sarcoma, and certain malig-

nancies that arise in the central nervous system. Primary bone sarcomas consist of a number of cancer

types, including cancer of bone-forming osteoblasts (osteosarcoma), Ewing sarcoma, cancers that form in

the bones of the spine (chordoma) and cancers of cartilaginous tissues (chondroblastomas). Soft tissue

sarcomas are similarly diverse and include cancers of the blood or lymphatic vessels (angiosarcoma),

cancers that arise in nerve cells lining the gastrointestinal system (gastrointestinal stromal tumour), and

cancers that arise in skeletal muscle (rhabdomyosarcoma) (Vodanovich and M Choong 2018). As the

central nervous system contains supportive tissue, many cancers of the central nervous system form a

third category of sarcomas. These include gliomas and glioblastomas, which both arise in glial tissue

and represent the most common central nervous system malignancies in adults (Carlsson, Brothers, and

Wahlestedt 2014).

The hematopoietic system is responsible for producing a variety of highly specialized blood cells and

consists of organs and tissues involved in producing blood cells. This includes bone marrow, spleen,

thymus and lymph nodes. Given the wide variety of organs and tissues involved in this system, a

variety of cancer types arise in the hematopeietic system. Myeloma is a malignant disease of plasma

cells that arises from post-germinal centre plasma cells that migrate back to the bone marrow and is

a relatively rare cancer type (Al-Farsi 2013). Leukaemia is a liquid cancer of hematopoietic stem cells

in bone marrow (Mak, Saunders, and Jett 2014). Broadly speaking, leukaemia can be subdivided into

four cancer types: acute lymphoblastic leukaemia, acute myelogenous leukaemia, chronic lymphocytic

leukaemia and chronic myelogenous leukaemia. Tumours that develop in the lymphatic system are called

lymphomas. Lymphomas can develop in any part of the lymphatic system including lymphatic vessels,

lymph nodes, the spleen, tonsils or thymus. Unlike leukaemia, lymphomas are solid tumours. These

tumours are broadly split into Hodgkin’s lymphoma and Non-Hodgkin’s lymphoma.

A final category of cancer consists of tumours that contain a mix of the five categories discussed

above. This category, called mixed type, contains a mix of cells from the different categories of cancer

(Moran et al. 1994). For example, adenosquamous carcinoma contains both squamous cells and gland-like

cells. These tumours tend to either be poorly differentiated or contain cells from multiple histologically

distinct cancer types. Occasionally, histological transformation can occur in a tumour which can lead

to switching of tumour histology. For example, oncogene-driven lung adenocarcinomas can undergo

small-cell transformation following exposure to tyrosine kinase inhibitors (Lin et al. 2020). A similar

phenomenon is seen in prostate cancer when given androgen deprivation therapy (Volta et al. 2018).

These results suggest that tumour cells possess a significant degree of plasticity which can be drawn

upon to escape selective pressures imposed on them due to anti-cancer therapy.
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1.1.2 Histopathologic and cytopathologic examination

Histopathologic examination is the process of examining disease using a biopsy that is fixed to a glass

slide. Specimens can come from tumour sections/biopsies or blood tests. Visualization of different

components is done using several stains that reveal specific cellular components. Hematoxylin-Eosin

(H&E) staining is one of the most commonly used staining methods. Hematoxylin stains cell nuclei blue,

and Eosin stains cytoplasm and connective tissue pink (Painter, Clayton, and Herbert 2010). Cytology

involves the study of the structure, function and chemistry of cells. Cytology commonly involves the

presence of isolated cells and cell clusters in images. Still, it will lack a higher-level organization of

a biopsy sample found in a histopathology sample (Al-Abbadi 2011). Simple staining of sections and

cytology can differentiate between malignant and benign neoplasms by highlighting the tissue sample’s

cellular organization and morphological differences amongst the cells. It can also differentiate squamous

cell carcinomas from adenocarcinomas by comparing the tissue sample to the expected organization and

structure of normal squamous or gland-like tissue.

Immunohistochemistry (IHC), the use of antibodies to detect antigens of interest, is a standard

procedure for the pathologic examination of tumour samples (Yatabe et al. 2019; Duraiyan et al. 2012;

Rosai and Ackerman 1979). In IHC, sectioned biopsies are incubated with antibodies targeting antigens

of interest. Enzymatic reactions, fluorescent dyes, radioactive elements or colloidal gold is then used

to confirm and visualize antibody binding (Matos et al. 2010). IHC with specific markers can be used

for cancer diagnosis, tumour staging and identification of tumour histopathology. Through the use of

antibodies for tumour-specific antigens, oncogenes and other cancer biomarkers, IHC can also be used

as a prognostic tool. Antibodies allow IHC markers to be used to identify molecular subtypes of cancer,

and also allows IHC to be used as a tool for guiding treatment decisions. A good example of this is

found when looking at breast cancer. When patients present with breast cancer, tumour samples are

commonly assessed for the expression of three cell-surface markers: estrogen receptor, human epidermal

growth factor receptor (HER)-2 and progesterone receptor (Yin et al. 2020) (Figure 1.1). The use of these

markers can differentiate breast cancer into broad subtypes and inform the use of specific treatments

that target the over-expression of the markers being stained for. For example, the presence of human

epidermal growth factor receptor (HER)-2 suggests the use of trastuzumab, a monoclonal antibody

that targets HER-2 (Boekhout, Beijnen, and Schellens 2011). Some other commonly used diagnostic

IHC markers include cytokeratins for identifying carcinomas, CD15 and CD30 for Hodgkin’s lymphoma,

CD20 and CD3 for differentiating between B-cell lymphomas and T-cell lymphomas (Orakpoghenor et

al. 2018).
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Figure 1.1: Staining for breast cancer cell-surface markers. Representative micrographs
showing staining for estrogen receptor (ER), progesterone receptor (PgR) and human epidermal
growth factor receptor 2 (Her2). Figure from: (Sikandar et al. 2017), licensed under Creative
Commons Attribution-NonCommercial 4.0 International License
(https://creativecommons-org/licenses/by-nc/4.0/).

More recently, developments in novel IHC markers have allowed for increased resolution when differ-

entiating tumour types. Cellular lineages are often differentiated or defined by gene expression programs

controlled by lineage-specific transcription factors (Fueyo et al. 2018). Identifying the presence of these

transcription factors in a tumour can provide information for identifying the lineage of cells constituting

that tumour. Lineage specifying antibodies can be used to differentiate between cell types of similar

origin such as differentiating between gland-like or squamous cells, and differentiating between types of

mesenchyme derived cells in the case of a suspected sarcoma. Multiple transcription factors can now

be targeted with antibodies, allowing for lineage-specific factors to be stained for (Kei and Adeyi 2020;

Hornick 2014). For example, in lung cancer, the use of adenocarcinoma specific antibodies TTF-1 and

https://creativecommons-org/licenses/by-nc/4.0/
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Figure 1.2: Immunohistochemical differentiation of lung adenocarcinoma and lung
squamous cell carcinoma. (A) Tumour cells with unclear morphology (B) TTF1 staining
identifying adenocarcinoma (C) Tumour cells with unclear morphology (D) p40 staining identifying
squamous cell carcinoma. Figure from: (Yatabe et al. 2019), licensed under Creative Commons
Attribution 4.0 International License (https://creativecommons-org/licenses/by/4.0/).

Napsin A are often used to differentiate between lung adenocarcinoma and lung squamous cell carcinoma

(Yatabe et al. 2019; Inamura 2018) (Figure 1.2). In soft tissue sarcomas, lineage-restricted transcription

factors are commonly used to identify cancer type. This is done by looking for transcription factors

only expressed in a small number of cell types. For example, myogenin is a lineage-specific transcription

factor that is only expressed in skeletal muscle. Expression of myogenin in a soft-tissue tumour provides

evidence that the tumour originated in skeletal muscle (Hornick 2014). Although these antigens are

used to identify specific cell types, there are varying degrees of specificity for each antibody, leading

to potential misdiagnosis. For example, TTF-1 is expressed in 17% of lung squamous cell carcinomas

(Inamura 2018).

1.1.3 Molecular profiling and clinical tumour sequencing

The initial Human Genome Project was a decade-long effort requiring substantial financial investment to

sequence a single genome (Lander et al. 2001). Technological developments since the initial project, how-

ever, have allowed for multiple genomes or transcriptomes to be sequenced in both time and cost-efficient

manner. These technical advancements, referred to as next-generation sequencing (NGS) technologies

have enabled the discovery of genomic markers that can be used to identify cancer type, inform treat-

https://creativecommons-org/licenses/by/4.0/
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ment and provide prognostic information (Tsimberidou et al. 2020). Whole-genome sequencing (WGS),

whole-exome sequencing (WES) and RNA sequencing provide a relatively unbiased look into a tumour’s

genomics. These methods aim to sequence the entire genome, exome or transcriptome, and, conse-

quently, not biased towards pre-defined disease-associated genes. An additional benefit of not focusing

on pre-defined genes is that these approaches provide an opportunity for discovery, and can associate

previously unknown elements of tumour genomics with clinical characteristics. By characterizing the

entire genome or transcriptome, these approaches can improve the sensitivity of clinical tools that use

genomics as a feature. For example, WGS of a tumour provides a complete characterization of the

mutational signatures (discussed in detail in a later section) that were active within that tumour. As

such, clinical tools that utilize mutational signatures have increased sensitivity using WGS compared

to WES. HRDetect, as an example, is a tool that detects homologous recombination deficiency from

patterns of somatic mutations. When HRDetect is applied to WGS data, it has a sensitivity of 86%,

but sensitivity drops to 46% when applied to WES (Davies et al. 2017). Since HRDetect can be used as

the basis for treatment with poly-ADP ribose polymerase (PARP) inhibitors, the sensitivity provided

by WGS provides a significant benefit in the clinic.

Targeted DNA sequencing

Although there are advantages to using unbiased approaches such as WGS in a clinical setting, unbi-

ased approaches are not commonly utilized in the clinic. Until recently, these methods were prohibitively

expensive and required significant computational investment to analyze. Clinical practice has instead

focused on gene panels, which target a small number of pre-selected genes. Targeted approaches have

some advantages compared to methods such as WGS. First, they are more cost-effective and require less

computational investment to analyze. Second, by focusing on well-characterized genes, they can quickly

provide a clinician with important information about actionable targets and other biological character-

istics of a tumour. Targeted approaches include those that make use of NGS such as the MSK-IMPACT

panel which involves the targeted deep sequencing of protein-coding exons from 468 cancer-associated

genes (Zehir et al. 2017). This assay has been deployed in the clinic and used for informing diagnosis,

prognosis and therapy (Penson et al. 2019; Stadler et al. 2020). While gene panels are more commonly

available in clinical settings, they risk missing opportunities for discovery. Our current understanding of

cancer-associated genes further limits them.

RNA Sequencing and microarrays

RNA sequencing allows for the cancer transcriptome’s characterization and can provide information

about biological pathways active within a tumour. Occasionally, biological pathways that are active

within the tumour can be the target of therapeutic agents, which may provide an avenue for tumour

treatment (Uzilov et al. 2016). RNA sequencing can also provide information about gene fusions within

a tumour. Gene fusions are an important oncogenic process, and gene fusions are key developmental

markers in certain cancers such as the BCR-ABL1 fusion in chronic myeloid leukaemia (Haas et al. 2019).

Identification of gene fusions can guide the use of therapeutic agents targeting gene fusions. For example,

identifying BCR-ABL1 fusions can suggest the use of imatinib mesylate, and identification of EML4-ALK

fusions can suggest treatment with crizotinib (Druker 2004; Shaw et al. 2011). To this end, targeted

assays have been developed, specifically identifying cancer-associated fusion genes using targeted RNA

sequencing (Heyer et al. 2019). RNA sequencing also allows for profiling of multiple types of non-coding

RNAs (ncRNA) such as microRNAs (miRNA) which are implicated in the development of cancer and

has been used as a feature for cancer diagnostics (Laplante and Akhloufi 2020; Anastasiadou, Jacob,
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and Slack 2018). An alternative to RNA sequencing, which provides some of the same information is the

gene expression microarray. A gene expression microarray works by creating cDNA from the extracted

mRNA of a sample. cDNA is labelled with a fluorescent molecule that will emit light when hybridized

to DNA. The cDNA is then hybridized to DNA fragments on a slide, and the fluorescent emitted from

each pre-selected well on the slide is used to quantify the expression of different genes (Govindarajan

et al. 2012). Microarrays allow for the expression of thousands of genes to be assessed and have found

use in the clinic for diagnosis and instructing therapy (Kurahashi et al. 2013; Sparano et al. 2018).

Methylation assays

Cancer development is associated with large changes to a cell’s normal phenotype. Phenotypic

changes in cancer development are often accompanied by changes in DNA methylation within a cell.

The widespread changes in DNA methylation allow differentially methylated regions to be used as

features for distinguishing cancer from non-cancerous tissue and identifying cancer type (Locke et al.

2019). An advantage of methylation-based diagnostics is that methylation can reliably be detected from

cell-free DNA (cfDNA), allowing for it to be used to diagnose and identify cancer from non-invasive

liquid biopsies (Chu and Park 2017). To this end, several studies have examined the use of methylation

from cfDNA for cancer identification and even molecular subtyping of tumours (Paemel et al. 2020; Shen

2018). While these approaches show promise, studies examining the use of methylation from cfDNA as

a tool for tumour typing are currently limited to a small number of cancer types and have not shown

the ability to generalize to large sources of data.

Real-time PCR

Whole-genome sequencing, gene panels, and RNA sequencing use NGS technologies to profile ex-

pression and/or mutations in the tumour. An alternative to these technologies is the use of Real-time

Polymerase Chain Reaction (RT-PCR). RT-PCR allows for the quantification of gene expression or

mutation status for specifically targeted genes. RT-PCR based methods are the most commonly used

methods for quantifying gene expression in clinical settings, and multiple RT-PCR based diagnostic tools

are currently in use (Mocellin et al. 2003; Bender and Erlander 2009; Sokolenko and Imyanitov 2018).

Limitations

Regardless of the technology used, genomics cancer testing has several limitations. Genomics tests are

often applied to small, formalin-fixed samples subject to degradation and artefact mutations introduced

by the fixation process (Prentice et al. 2018). Gene panels focus on sequencing cancer driver genes.

Still, it is often difficult to determine the role of putative passenger mutations. Knowledge of cancer-

associated genes depends heavily on the ability to detect positive selection signals from a limited number

of sequenced tumour samples (Sabarinathan et al. 2017). As cancer is a process of somatic evolution,

tumours typically have a large degree of heterogeneity which is not easily captured or accounted for in

single-sample NGS approaches, including WGS (Jamal-Hanjani et al. 2017; Gerstung et al. 2017).

1.1.4 Detecting mutations from sequencing data

To make use of the information generated through NGS, it is essential to accurately identify the variants

present in a tumour sample. To this end, a number of somatic SNV calling algorithms have been

developed (McKenna et al. 2010; Koboldt et al. 2012; Kim et al. 2018b). These algorithms vary in the

specifics of the statistical models used, but fundamentally operate similarly. An SNV can be directly

observed from NGS data and using this data, and it is possible to estimate the relative abundance of an

SNV in a given sample. This is done using the number of sequencing reads containing each SNV, and
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the total number of reads at that locus. The ratio of variant reads to total reads represents the variant

allele frequency (VAF) of the SNV. To separate germline and somatic SNVs, SNV calling is typically

done by utilizing aligned reads from both a tumour and a matched non-cancerous sample.

In theory, all mutations regardless of VAF can be observed given sufficient read depth. In practice,

however, the process of SNV calling is made difficult by the presence of many types of biases, errors

and noise present in NGS data (Cibulskis et al. 2013). A variety of different sequencing errors can be

produced, including CG deletions, short deletions and SNVs. Generally, SNVs are the most frequent

error across sequencing platforms (Fox et al. 2014). Sequencing errors can be mistaken for low prevalence

mutations. Even with a relatively low error rate of one in 1000 bases, sequencing across the three billion

bases of the human genome will produce variant reads that contain the same sequencing error at the

same locus (Travis 2011). Common sequencing errors include the introduction of substitutions, short

insertions or deletions, and misaligned reads. Distinguishing between real, low VAF mutations and

sequencing errors require a precise model of the noise distribution of NGS data. The statistical models

used to differentiate noise from true variants are among the core differences between variant calling

pipelines. Although significant work has been done to improve SNV calling accuracy, the sensitivity of

commonly used pipelines ranges from 80 to 90%, and approximately 95% of variants called by these

pipelines are true SNVs (Campbell et al. 2020). This result suggests that any individual method will

produce erroneous variant calls. One way to improve SNV calling sensitivity is to use a consensus of

multiple pipelines, which has been shown to increase the sensitivity of variant calling without reducing

specificity (Campbell et al. 2020).

1.2 Challenges in tumour typing: cancers of unknown primary,

and multiple primary tumours

Traditional approaches to tumour typing, including histopathologic examination and molecular diag-

nostic methods, have remarkable success in correctly identifying cancer type. Despite this success,

certain challenging diagnostic scenarios exist where traditional approaches struggle to identify cancer

type correctly. Two particularly difficult diagnostic challenges are cancers of unknown primary (CUPS)

and patients who present with multiple primary tumours. CUPS is a heterogeneous category of cancer

where patients present with recognizable metastatic lesions and no obvious or identifiable primary tu-

mour (Greco 2013). Multiple or secondary primary tumours describe the scenario in which a patient has

more than one tumour in the same or different organs (Vogt et al. 2017).

In this section, I provide an overview of CUPS and multiple primary tumours. This is followed

by a brief overview of diagnostic approaches for CUPS, and an examination of the effects of correctly

identifying cancer type on prognosis for patients with CUPs.

1.2.1 Multiple primary tumours

Recent decades have seen remarkable improvements in diagnostic techniques and treatment, resulting in

increases in patients’ long-term survival with malignancy. However, the cost of this clinical success is an

increased incidence of patients presenting with multiple primary tumours. Multiple primary cancers are

defined as multiple primary malignant tumours of different histopathologic origins in a single individual

(Vogt et al. 2017). Incidence of multiple primary cancers is high and represents 16% of incident cancers
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(Travis 2006). While the prevalence of multiple primary tumours has increased due to advances in

cancer care, multiple primary tumours are not a new phenomenon. Reports from the 1920s suggest

that approximately 5% of malignancies present with multiple primary tumours (Vogt et al. 2017). The

increase in the rate of multiple primary tumours is likely the result of both improvements in care and

improvements in detecting and diagnosing cancer. Diagnostic challenges exist when patients present with

multiple primaries, particularly when a patient with previous cancer history and exposure to therapy

presents with an additional primary. There is potential for new metastases to be from the second primary

tumour or the first diagnosis. This will have important implications in patient prognosis and therapeutic

management. Incidence of multiple primaries varies according to the initial primary tumour identified

in a patient and ranges from 1% in primary liver cancer to 16% in primary bladder cancer (Hayat et

al. 2007). Synchronous cancers occur when a patient is diagnosed with more than one histopathologic

tumour within an interval of fewer than 2 months. If an interval of greater than 6 months passes

between diagnoses, the patient has metachronous multiple primary (Amer 2014). In both synchronous

and metachronous cases, accurately identifying cancer type forms the basis for guiding clinical decision

making.

There are two major diagnostic challenges associated with multiple primary tumours. The first

occurs when one of, or both of, the tumours metastasize. In this scenario, it is essential to identify which

primary tumour gave rise to each metastatic lesion. As metastatic lesions can be highly undifferentiated,

determining origin can be difficult. In the metachronous case, the older primary tumour may not be

available for comparison, which can make the process of identifying the origin of a metastatic lesion more

difficult. The second challenging case involves differentiating between a new primary tumour, and a late

metastatic recurrence. In this case, it is essential to correctly determine if a new lesion is the result of

a newly forming primary tumour, or if it represents a metastatic clone from the first primary tumour.

Correctly identifying cancer type in either of these scenarios will form the basis for guiding treatment

and understanding the clinical presentation and progression of the malignancies.

1.2.2 Cancers of unknown primary

CUPS represents a diagnostic scenario in which clinicians are presented with a poorly differentiated

metastatic tumour that cannot be identified using imaging, pathological or molecular examination.

CUPSs represents 3-5% of new cancer diagnoses, and constitute a highly heterogeneous set of cancers

that are currently the seventh most common cancer diagnosis, and the fourth leading cause of cancer-

related mortality (Pavlidis and Pentheroudakis 2012; Pavlidis et al. 2003). These tumours tend to

either be completely undifferentiated or lack the characteristics of any primary tumour. In most cases,

pathologists cannot identify primary tumour site post-humously during the autopsy, which suggests

significant regression of the primary tumour in many CUPS patients (Ferracin et al. 2011). The majority

of CUPS patients present with carcinomas, or cancers that originate in epithelial tissue. Of CUPS cases

that are carcinomas, cancer is most often categorized as adenocarcinomas (Greco et al. 2010). CUPS

is associated with a short history of symptoms and aggressive behaviour (Pavlidis, Khaled, and Gaafar

2015). In most cases, multiple organs are involved in the metastatic spread, with liver, lymph nodes,

bone and lung being the most common metastatic sites (Greco 2013). The patterns of metastatic spread

differ between CUPS and known cancer of the same type. As an example, Pancreatic adenocarcinomas

have a 4-fold higher incidence of metastasizing to the bone compared with pancreatic adenocarcinomas

of known origin (Pavlidis, Khaled, and Gaafar 2015). While the organ specificity of metastases remains
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poorly understood, this fact may suggest that CUPS is molecularly distinct from metastases of known

origin from the same cancer type. Correctly identifying primary tumour site for CUPS may form the

basis for understanding the molecular characteristics of CUPS syndrome. This can help understand

the factors that differentiate CUPS from metastases of known origin. It may help understand the

mechanisms involved in primary tumour recession, and it can help understand the molecular mechanisms

involved in patterns of metastatic spread for CUPS. Standard practice currently splits patients into two

clinicopatholigcal categories: those with favourable prognosis (15-20% of patients), and unfavourable

(Pavlidis et al. 2003). Patients in both categories have a poor prognosis, but the favourable subset

typically has survival times that are twice as long as the average survival time for the unfavourable set.

Identification of primary tumour site for these cases presents a potential avenue for improving prognosis.

Patients for whom primary tumour site can accurately be determined also can potentially be treated

with cancer-specific therapy which generally provides survival benefits (Greco 2013).

As mentioned, in most CUPS occurrences, the primary tumour cannot be identified during the

autopsy, which suggests that metastatic spread in CUPS syndrome is accompanied by recession or

suppression of the primary tumour. The biological processes involved in tumour recession of the primary

tumour, and the development and metastatic seeding of CUPS are poorly understood. This stems,

in part, from an inability to correctly identify primary tumour site. Without knowing the primary

tumour site, it may be difficult to understand the selective mechanisms that suppress primary tumour

development, while allowing or promoting metastatic seeding. Although CUPS develops without a

detectable primary tumour, it is possible that the developmental patterns and metastatic seeding of

CUPS follow those of tumours of known origin.

Tumourigenesis typically involves a process of invasion and intravasation of cancer cells from the

primary tumour into neighbouring tissues, lymphatic vessels or other vasculature (Chaffer and Weinberg

2015; Chiang, Cabrera, and Segall 2016). Metastatic spread occurs when the invading cells from the

primary tumour disseminate through lymphatic vessels or other vasculature. This process involves

an epithelial-to-mesenchymal transition (EMT) where cancer cells discard epithelial markers, allowing

them to lose adhesion to epithelial cells, and acquire mesenchymal markers which allow them to traverse

vasculature (Fares et al. 2020).

For the development of CUPS, many of these processes likely contribute to metastatic spread. Multi-

ple explanations exist for the timing of metastatic spread and apparent recession of the primary tumour.

One possible explanation for the metastatic spread of CUPS proposes that early metastatic spread oc-

curs before a detectable primary tumour develops, or even the development of a primary malignancy

(Rassy, Assi, and Pavlidis 2020; Hu and Curtis 2020). In this model, early metastatic cells alter the

microenvironment at the metastatic site and acquire malignant characteristics upon colonization. In this

scenario, the primary tumour does not have the time to develop to a detectable size before detecting

the metastatic lesions. Another explanation suggests that metastatic spread occurs in a similar pattern

to cancers of known primary, but the microenvironment at the primary tumour site prohibits primary

tumour growth or eliminates the primary tumour site (Rassy, Assi, and Pavlidis 2020; Hu and Curtis

2020). In this scenario, the microenvironment clears the primary tumour while either allowing or pro-

moting the spread of metastatic cells (Figure 1.3). Given that primary tumour site can be uncovered

in autopsy for approximately 30% of CUPS cases, some patients may fall into the first explanation of

CUPS spread and a different set of CUPS cases spread through the second mechanism.

A few studies have uncovered some common molecular characteristics of CUPS. By utilizing a gene
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panel, recent work has shown that many of the most commonly mutated genes in CUPS resemble those of

primary or metastatic tumours of known origin (Rassy, Assi, and Pavlidis 2020). On average, CUPS had

3.1 mutations of known oncogenic consequence, but many samples lacked mutations to clinically action-

able genes (Varghese et al. 2017). One common characteristic of CUPS is the presence of chromosomal

instability. Approximately 70% of CUPS have up-regulated activity of multiple DNA damage response

networks, suggesting that these tumours have increased levels of DNA damage and therefore, chromo-

somal instability (Hedley, Leary, and Kirsten 1985). The presence of chromosomal instability may also

provide some insight into metastatic mechanisms involved in these tumours. Chromosomal instability

can result in cytosolic DNA which has been shown to promote a pro-inflammatory and pro-metastatic

program through activating cGAS-STING pathway (Bakhoum et al. 2018).

Figure 1.3: Competing models for carcinogenesis in cancers of unknown primary. Two
competing models of carcinogenesis and metastatic seeding for cancers of unknown primary. Figure
from: (Rassy, Assi, and Pavlidis 2020), licensed under Creative Commons Attribution 4.0 International
License (https://creativecommons-org/licenses/by/4.0/).

1.2.3 Traditional diagnostic approaches

Identifying the primary tumour site can significantly improve patient survival, and may provide infor-

mation about the underlying biology of this disease. Assessing the accuracy of any CUPS diagnostic

program is particularly challenging; however, as the true primary tumour site is rarely known. A poten-

tial workaround is to use retrospective studies that examine the results of cancer-specific therapy when

a CUPS site is determined through a diagnostic procedure. Diagnosing a patient with CUPS involves

identifying the metastatic lesion, and searching for the primary tumour site. Traditionally, this process

begins with imaging to identify metastatic lesions and is then followed by examination for determining

the primary tumour site. This involves a thorough physical examination and analysis of the patient’s

medical history. The medical history may be able to provide clues about the primary tumour site. For

https://creativecommons-org/licenses/by/4.0/
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example, patients with familial cancer syndrome may have a higher risk of developing certain cancers.

Similarly, if a patient has a known history of exposure to smoking, cancers more strongly associated with

smoking, such as lung cancer, may be likely culprits. Standard blood tests and biochemical examination

follow up physical examination and medical history. Finally, multiple imaging studies, histological ex-

amination of the metastatic lesions and immunohistochemistry (IHC) are used to determine the primary

tumour site.

Radiology and imaging

Typical diagnostic procedures for cancer in general and for CUPS is done using a number of radio-

logical methods including CT scan, MRI and PET-scans. While these methods are standard practice,

they do not provide highly accurate identification of primary tumour site. Diagnostic accuracy using

fluorodeoxyglucose-PET scans is under 50% (Sève et al. 2007). Similarly, CT scans provide only modest

improvements with accuracy of about 55%, heavily biased for a few cancer types (Keller et al. 2011).

Immunohistochemistry

Histopathology represents the most commonly used approach for CUPS diagnosis (Greco 2013). The

use of IHC for identifying cancer type for CUPS is a stepwise procedure. First, IHC is used to assign the

CUPS into one of the broad categories of cancer - carcinoma, sarcoma, melanoma or lymphoma. Next,

identify subtypes of these broad categories: adenocarcinoma, squamous carcinoma, neuroendocrine et

cetera. The final categorization stage is to try to identify the primary tumour site. Typically, IHC for

CUPS can be used to split CUPS into one of five CUPS subtypes: well-differentiated adenocarcinoma,

undifferentiated carcinoma, squamous-cell carcinoma, poorly differentiated neoplasm and neuroendocrine

tumour (Alshareeda et al. 2020). While IHC provides the potential for differentiating between different

primary sites of these CUPS subtypes, a study examining the ability for IHC to differentiate between

11 metastatic adenocarcinomas suggests that pathologists are typically unable to identify primary site

accurately (Sheahan 1993). Improvements in IHC have resulted in modest increases in accuracy for

identifying CUPS site of origin, but these results tend to be on a relatively limited number of cancer

types.

The main limitation of IHC is that IHC is not well-suited for the identification of the poorly-

differentiated tumours that represent many CUPS cases. Despite the availability of antibodies for lineage-

specific transcription factors, IHC often cannot identify primary tumour site, even in well-differentiated

adenocarcinomas (Varadhachary 2007). This suggests that CUPS lesions have diverged significantly

from primary tumours of the same type. Significant divergences from primary tumours in terms of

lineage-specific transcription factors and morphology suggest that the chromatin state, and gene ex-

pression programs in CUPS may also be significantly different from those found in primary tumours.

These differences may significantly impair the utility of gene expression or chromatin features as tools

for identifying the primary tumour site.

Biochemical tests

Biochemical tests often test for the presence of serum tumour markers. Studies suggest, however, that

serum tumour markers may offer little predictive power for CUPS. At least two markers are overexpressed

in approximately 70% of CUPS, but these often encompass multiple markers that provide no specific

diagnostic value when co-expressed (Pavlidis, Khaled, and Gaafar 2015).

Molecular diagnostics

In addition to the standard diagnostic protocols described above, multiple molecular diagnostic meth-

ods are being deployed or tested for identifying primary tumour site. Many of these methods rely on
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assays for gene expression, including RT-PCR and microarrays for miRNA expression. Overall, these

methods provide an improvement compared to typical histopathologic examination, but are often un-

able to identify cancer type, and are limited to a relatively small number of cancer types. However, as

gene expression profiles can describe cell-specific features, gene expression has been used as a feature for

several tumour typing methods. A recent study comparing five commercially available expression-based

tests shows that accuracy ranges from 76% to 87% for differentiating between 6 and 49 different cancer

types, with accuracy tending to drop as the number of cancer types increases (Ferracin et al. 2011;

Monzon and Koen 2010; Bridgewater et al. 2008). Some more recent work utilizing the structure of

miRNA stem-loops and deep learning for cancer type identification has achieved 97% accuracy for dif-

ferentiating 20 anatomical sites (Laplante and Akhloufi 2020). Importantly, this study grouped tumours

from the same anatomical site into the same category, suggesting that their model has difficulty differ-

entiating between distinct tumour types from the same anatomical location. Tumours with significant

morphological differences from those used for developing these methods are more difficult to identify.

As such, methods that use gene expression profiles to identify cancer type tend to struggle with poorly

differentiated tumours, which have lost many cell type-specific markers. One way to address this is to

use somatic mutations as a feature for identifying cancer type. These methods typically use mutations

to cancer-associated genes, copy number profiles, and other mutational features that can easily be ac-

cessed from small-scale sequencing. One example is a model using the MSK-IMPACT gene panel as

features for identifying cancer type. This model shows modest performance with an overall accuracy of

approximately 75% (Penson et al. 2019).

1.2.4 Therapeutic management

The majority of patients with CUPS are treated with broad-spectrum chemotherapy such as platinum-

based therapy, gemcitabine or fluorouracil (Greco 2013). While broad-spectrum therapy provides survival

benefits compared to forgoing treatment, median survival for these patients is still relatively poor at ap-

proximately 9 months (Greco 2013). Cancer-specific therapies, in contrast to broad-spectrum regimens,

have some evidence of improving prognosis. Still, the use of cancer-specific therapy for CUPS is currently

limited by the inability to identify the primary tumour site.

Prospective studies for directly assessing cancer-specific therapy’s ability to improve survival for

patients with CUPS are limited for multiple reasons. Firstly, CUPS is a highly heterogeneous disease

comprised of multiple cancer types (Greco 2013). This fact makes it difficult to enrol sufficiently many

patients from the diverse set of cancer types that constitute CUPS. Secondly, prospective studies are

made difficult because the true cancer type is rarely determined for CUPS (Ferracin et al. 2011). This

means that it is often unknown if cancer-specific therapy targets the correct cancer type. As such, most

evidence favouring cancer-specific therapy for the treatment of CUPS comes from a small number of

retrospective studies. In a study that used molecular testing to identify primary tumour site, CUPS cases

that were judged to be colorectal cancer based on molecular signatures had significantly higher survival

when given a colorectal cancer-specific treatment than patients given empiric therapy (Ma et al. 2006).

Median survival for those receiving site-specific therapy in presumed colorectal CUPS ranged between 21

and 30 months, compared to approximately 8 months for those receiving broad-spectrum chemotherapy

(Varadhachary et al. 2008; Hainsworth et al. 2012; Greco et al. 2012). This suggests that cancer-specific

therapy for colorectal cancer can improve prognosis when the molecular characteristics match those of

colorectal cancer. Similar results have also been observed in CUPS presumed to be renal cell carcinoma.
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For advanced and/or metastatic renal cell carcinomas, empiric therapy provides no survival benefits.

When CUPS cases match the molecular characteristics of renal cell carcinoma and were given cancer-

specific therapy, a modest improvement in prognosis was observed (Sorscher and Greco 2012). A review

paper examining the effects of cancer-specific therapy compared to empiric therapy suggests that median

survival for patients with CUPS receiving empiric therapy was approximately 9 months, compared to

12.5 months for those treated with cancer-specific therapy (Hainsworth et al. 2013). Generally, when

a putative site of origin can be identified, survival for patients with CUPS is similar to that of known

advanced cancers of the same type (Kim et al. 2018a; Hainsworth et al. 2013).

The availability of cancer-specific therapy does not always translate to increases in patient survival;

however, many patients with CUPS do not respond to any form of therapy (Greco 2013; Hainsworth

et al. 2013). For cancer-specific therapy to be effective for treating CUPS, an efficacious, cancer-specific

therapy must exist for the cancer type being considered. The absence of a suitable therapy for a given

cancer type will limit the success of therapeutic approaches. For example, patients that have CUPS

identified to be pancreatic adenocarcinoma will continue to have poor overall prognosis as efficacious

regimens do not exist for pancreatic adenocarcinomas (Hall et al. 2018). These patients may receive

some initial benefit from empiric therapy, but improvements in cancer-specific treatment regiments could

improve these results.

This result is not always limited to specific cancer types. By being advanced cancers, cancer-specific

therapies for CUPS are often limited when compared to earlier stage malignancies. Therefore, the

lack of effective treatment for advanced cancers limits the therapeutic approaches that are effective for

addressing CUPS (Morgan, Ward, and Barton 2004). Advances in treating advanced forms of currently

unresponsive cancer types, such as pancreatic adenocarcinomas, may increase the efficacy of cancer-

specific therapy for CUPS. An alternative or complementary avenue for treatment comes from advances

in personalized medicine and immunotherapy. Therapy directed at specific, actionable mutations or

pathways has shown some evidence of sustained disease stability and recession in CUPS, suggesting

that the use of NGS for profiling tumours, and potential advances in targeted therapy may improve

prognosis (Varghese et al. 2017). In cases where the molecular signatures of a CUPS don’t match

those of the primary tumour, precision medicine approaches that target key oncogenic processes in a

tumour may provide survival benefits when compared with cancer-specific therapy. Similarly, work in

immunotherapy has recognized potential mutational signatures that are associated with responsiveness

to immunotherapy. This includes mutational signatures of UV-radiation and tobacco smoke, which are

present in a subset of CUPS (Varghese et al. 2017). Once more, this result suggests that the use of NGS

for profiling, and advances in treatment may provide significant improvements for treating CUPS.

1.3 Determinants of mutation rate in somatic cells

Somatic cells are exposed to multiple mutational processes throughout their developmental history.

Mutational processes can generate SNVs, copy-number variants (CNVs), structural variants (SVs) and,

insertions and deletions (indels). Through these processes, genetic alterations in somatic cells over

successive cell divisions. SNVs represent the best studied, and most abundant mutations in somatic cells,

with the typical human cell containing thousands of somatic SNVs (Lee-Six et al. 2018; Martincorena et

al. 2015; Brunner et al. 2019). The majority of SNVs are innocuous to somatic cells, with no noticeable

impact on cellular fitness. As a consequence of having little effect on cell fitness, these mutations, often
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called passenger mutations, are passed on to descendent cells and record the mutational history of a

cellular lineage. However, a small number of somatic SNVs are capable of providing a strong selective

advantage (Martincorena et al. 2017). These mutations, termed driver mutations, are implicated in

driving clonal expansions which can result in the development of cancer, and are implicated in human

aging and neurodegeneration (Lodato et al. 2018).

Each mutational process generates characteristic changes within the genome, called mutation types.

Mutational processes can generate multiple mutation types, and many mutational processes generate

similar mutation types in varying proportions. Mutational signatures were constructed to detect the

signal of mutational processes in the genome. Mutational signatures identify and group mutation types

based on the mutational process responsible for generating them (Nik-Zainal et al. 2012a; Alexandrov

et al. 2013; Alexandrov et al. 2020) (Figure 1.4). Regardless of the mutational process, all mutations are

fundamentally the result of DNA damage that fails to be correctly repaired. Local features of the genome

including DNA base composition, nucleosome occupancy, chromatin state and level of transcription

affect both the ability for DNA damage to occur and the efficiency in which DNA damage is repaired

(Sabarinathan et al. 2016; Polak et al. 2014; Supek and Lehner 2015; Tomkova and Schuster-Böckler

2018; Volkova et al. 2020). As these genome features vary heavily across the genome, the distribution of

mutation rate is non-uniform across the genome (Stamatoyannopoulos et al. 2009; Hodgkinson, Chen,

and Eyre-Walker 2012; Schuster-Böckler and Lehner 2012; Supek and Lehner 2015; Polak et al. 2015; Lee,

Abd-Rabbo, and Reimand 2020). In this section, I will provide an overview of mutational signatures and

their characteristic patterns in the genome, the relationship between mutational processes and cell-type,

and on the impact of chromatin features on observed mutation rate.

1.3.1 Mutation types and mutational signatures

Multiple exogenous and endogenous mutation-generating processes contribute to mutations in somatic

cells. Exogenous mutagens include several carcinogens such as UV radiation and tobacco smoke and

include cancer therapies such as chemotherapy and radiation therapy (Pich et al. 2019; Behjati et al.

2016). Endogenous mutational processes range from spontaneous deamination of methylated bases to

defects in DNA damage response pathways such as homologous recombination (Duncan and Miller 1980;

Polak et al. 2017). Each of these mutational processes leaves characteristic patterns or footprints of

mutations. These patterns are composed of different mutation types. The distribution of mutation types

caused by mutational processes can be grouped into mutational signatures. By examining mutational

signatures in NGS of somatic tissues, the exposure of somatic cells to different mutational processes can

be determined.

Mutation types for single-nucleotide variants

The characteristic patterns that different mutational processes leave behind in the genome can be

described by both the base-pair changes induced by the mutational process and short-range sequence

context surrounding the mutation. Together, these characteristic changes makeup mutation types, and

represent the footprint or base-composition spectra of mutational processes on the genome (Alexandrov

et al. 2013; Alexandrov et al. 2020). Mutation types result from either the DNA damage generated

by a mutational process, or differential efficiencies of DNA damage response pathways that repair the

generated damage. An example of this can be seen when looking at the mutations generated by UV-

radiation. DNA damage from UV-radiation can result in the formation of dimers of adjacent pyrimidine

bases on the same DNA strand and preferentially create thymine-thymine dimers. Pyrimidine dimers
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Figure 1.4: Mutational spectra for SBS4. The distribution of mutation types associated with
single-base substitution signature 4 (SBS4). The aetiology of SBS4 is associated with exposure to
tobacco. Figure from: (Alexandrov et al. 2020), licensed under Creative Commons Attribution 4.0
International License (https://creativecommons-org/licenses/by/4.0/).

are bulky lesions that can cause replication fork collapse if not repaired. To prevent replication fork

collapse, low-fidelity translesion polymerases are recruited to the region. Repair of the pyrimidine dimer

by low-fidelity polymerases often results in the production of DNA mismatches. In the case of UV-

radiation, translesion polymerases tend to produce either cytosine to thymine or cytosine-cytosine to

thymine-thymine changes (C >T or CC >TT) (Setlow and Carrier 1966; Waters et al. 2009). Another

common environmental mutagen, tobacco, has a similar process of mutation generation. Carcinogens in

tobacco smoke create bulky DNA adducts at guanines. Once again, low-fidelity translesion polymerases

are used to address the bulky DNA lesions. In this case, the mismatches introduced during the repair

process tend to be cytosine to adenosine (C>A) substitutions (Rodin and Rodin 2005; Wiencke 2002).

In both of these examples, the mutational processes’ characteristic patterns of substitutions are the

mutation types associated with the mutational process. The presence of a specific mutation type can be

used to assess the associated mutational processes’ activity. For example, a tumour with a large number

of mutation types associated with UV-radiation has evidence of greater exposure to UV-radiation.

Initial studies aimed to associate mutation types with specific mutational processes focused on exam-

ining the patterns of mutations found in highly mutated cancer genes, such as TP53 (Hollstein et al. 1999;

Hollstein et al. 1991). In addition to revealing associations between various environmental mutagens such

as UV-radiation, aflatoxin and smoking with specific mutation types, these studies demonstrated the

mutation types found in TP53 varied significantly across different cancer types. This provided some

initial evidence that mutational spectra can provide information about cell-type. For example, the TP53

mutation types in skin carcinomas exhibited the characteristic pattern of UV-radiation described previ-

ously. In contrast, the TP53 mutations in lung cancers from smokers tended to have the characteristic

mutation type associated with tobacco smoke. Interestingly, not all mutation types initially studied in

TP53 displayed evidence of cell-type specificity. All of the cancer types analyzed in this early work had

evidence of C >T mutations at CpG dinucleotides. As this mutation type is present across many cancer

types, it is likely related to an endogenous mutational process active across most cell types. The C

>T mutations at CpG dinucleotides likely result from the spontaneous deamination of 5-methylcytosine

(Pfeifer 2006).

While initial studies focused on mutation types in some well-characterized cancer genes, advances

in sequencing technologies enabled the analysis of mutation types in cancer genomes through NGS.

Analyzing mutation types using data from WES or WGS has the distinct advantage of uncovering

mutation types that are not necessarily biased by signals of positive or negative selection in the genome.

Furthermore, using WGS and WES also allowed for examining the footprint of mutational processes

https://creativecommons-org/licenses/by/4.0/


Chapter 1. Introduction 18

across a wider array of nucleotide contexts. These studies started to reveal the diversity of mutation

types across different cancer types. Also, they provided evidence that the activity of specific mutational

processes can account for differences in mutation rate between tumour genomes. For example, studies

in lung cancer demonstrated that tumours from smokers harboured upwards of a 10-fold increase in the

overall number of SNVs, with much of the increase being directly attributed to mutation types associated

with tobacco smoking (Govindan et al. 2012). Chemotherapy is associated with DNA damage, and

studies examining WES and WGS of tumours exposed to treatment provide direct evidence for the

mutation generating role of chemotherapy. Glioblastoma multiforme tumours treated with alkylating

agents had elevated SNVs compared to non-treated tumours. Tumours treated with alkylating agents

tended to have an elevated number of C>T mutations in various contexts (Parsons et al. 2008; Hunter

et al. 2006). In addition to unveiling the diversity of mutation types associated with environmental or

exogenous sources, early studies using NGS to study mutation types helped characterise mutation types

associated with endogenous mutation generating processes. For example, studies in leukaemia revealed

that the immunoglobulin genes had a large number of T >G transversions which has been attributed

to somatic hypermutation associated with polymerase-η (Puente et al. 2011). Interestingly, many of

these mutation types have specificity for a limited number of cancer types, suggesting that examining

mutational processes may provide information about cancer type.

Mutational signatures are derived from patterns of mutation types

The study of mutation types using NGS data provided a significant advance in understanding the

effect of mutational processes across cancer types. Despite significantly advancing the understanding

of mutational processes, studying mutation types alone did not address the issue that arises when we

consider that most somatic cells, particularly those found in cancer, are exposed to a combination of

multiple mutational processes. This means that the observed mutation types in a tumour genome

represent a superposition of many mutational processes that were active throughout the developmental

history of the cells within the tumour. To address the challenge of examining mixtures of mutation

types generated by many different mutational processes, the mutation types associated with a specific

mutational process need to be separated from other mutation types and summarized based on common

features. To do this, mutational signatures are constructed by decomposing the distinct patterns of

mutation types in a set of genome samples.

Mutational signatures in the form described above were initially demonstrated by examining SNVs

derived from WGS of 21 breast cancer patients (Nik-Zainal et al. 2012a). Mutation types were expanded

by considering the short-range sequence context around every SNV (the base immediately 5′ and 3′

for every SNV). This results in a total of 96 mutation types (although this value can be extended by

considering different ranges of sequence context). Including sequence context around SNVs greatly ex-

pands the number of mutation types compared to looking at only the substituted base. This increases

the resolution at which mutation types can be examined, making it easier to differentiate mutational

processes that may have similarities in the mutation types they produce. For example, temozolomide,

deamination of 5-methylcytosine and UV-radiation tend to produce C >T mutations. Without consider-

ing sequence context around the single-base substitution, it is difficult to determine which of these three

mutational processes generated each C >T mutation. The initial analysis provided mutational signatures

associated with several endogenous processes. One of these highly relevant processes for breast cancer is

the mutational signature associated with mutations in BRCA1 and BRCA2. This mutational signature

had a relatively uniform distribution over mutation types, but its activity could accurately discriminate
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BRCA1/2 wild-type from mutant tumours (Nik-Zainal et al. 2012a) (Figure 1.5). The strong associ-

ation of this mutational signature with BRCA1/2 mutations formed the basis for the development of

algorithms like HRDetect, which use patterns of mutations to identify if tumours have deficiencies in

homologous recombination (Nik-Zainal et al. 2012b). Presence of homologous recombination deficien-

cies can be targeted with specific therapies, underscoring the clinical utility of examining mutational

signatures in tumours (Davies et al. 2017).

Figure 1.5: Mutational spectra for SBS3. The distribution of mutation types associated with
single-base substitution signature 3 (SBS3). The aetiology of SBS3 is associated with defects in
homologous recombination. This signature is often found in tumours that have BRCA1/BRCA2
mutations. Figure from: (Alexandrov et al. 2020), licensed under Creative Commons Attribution 4.0
International License (https://creativecommons-org/licenses/by/4.0/).

Mutational signatures were further extended by including information about the transcriptional

strand on which an SNV resides (Alexandrov et al. 2013). This allowed for the resolution of muta-

tional signatures to effectively be doubled, allowing greater ease when differentiating mutational pro-

cesses with similar mutation types. For example, if a mutational signature contains the mutation type

C >A on the transcribed strand and not the untranscribed strand, it provides evidence that this muta-

tional signature may result from a transcription-coupled mutational process such as the recruitment of

transcription-coupled nucleotide excision repair machinery (Fousteri and Mullenders 2008). The compu-

tational framework used for constructing mutational signatures in breast cancer has since been applied

to multiple pan-cancer datasets, uncovering initially 30 and later at least 60 mutational signatures in

total (Alexandrov et al. 2013; Alexandrov et al. 2020). By doing this in a pan-cancer fashion, mutational

signatures that have relatively uniform activity across different cancer-types were discovered. Included

in this set is the mutational signature for spontaneous deamination of 5-methylcytosine discussed pre-

viously. Interestingly, analysis of the burden of mutations contributed by this mutational signature

demonstrated a correlation between the activity of this mutational signature and the age of the patient

at diagnosis. The relatively large collection of tumour samples in this dataset allowed for increased

resolution when deciphering mutational patterns. This work has demonstrated several mutational sig-

natures likely associated with sequencing artefacts, which may be useful when trying to determine if

a clinically actionable mutation is actually present or if its due to sequencing quality. This work has

also uncovered multiple mutational signatures associated with APOBEC enzymes, consisting of several

cytidine deaminases traditionally used to protect mammalian cells from viral infection (Swanton et al.

2015). Despite extensive study into the aetiology of mutational signatures, many mutational signatures

have uncertain or unknown origin (Alexandrov et al. 2020).

While some early work uncovered mutational signatures associated with chemotherapy exposure, such

as temozolomide treatment in glioblastoma multiforme, mutational signatures associated with treatment

have been difficult to discover. This difficulty can be contributed to a limited number of post-treatment

https://creativecommons-org/licenses/by/4.0/
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tumour genomes. Recent studies examining mutational spectra in post-treatment metastatic tumours has

allowed for mutational signatures associated with chemotherapy to be uncovered. A recent study exam-

ining metastatic breast cancer demonstrates multiple treatments associated with mutational signatures

(Angus et al. 2019). This study uncovered a novel mutational signature associated with cisplatin expo-

sure, which characteristically results in CC >AA mutations. This study also showed that, regardless of

treatment type, metastatic breast cancer samples sequenced following treatment had a significant enrich-

ment for mutation signature 17. More recent work studying pan-cancer treatment associated mutational

signatures in a large cohort of metastatic tumours has further expanded the mutational spectra associ-

ated with chemotherapy (Pich et al. 2019). This study describes four mutational signatures associated

with three platinum-based drugs and two signatures associated with multiple drugs. Furthermore, this

work showed that mutational signatures associated with platinum-based chemotherapy had transcrip-

tional strand bias. This work also uncovered a novel signature associated with exposure to fluorouracil

and capecitabine. Interestingly, the mutational signature associated with exposure to fluorouracil and

capecitabine displayed a mutational footprint highly similar to that of mutational signature 17b, a sig-

nature of unknown aetiology, but was thought to be associated with oxidative damage to DNA. The

identification of therapy associated signatures also allowed for the mutational burden of chemotherapy

to be assessed. On average, exposure to chemotherapy contributed thousands of mutations to exposed

tumours, but this value varies based on the patient’s tumour type. Overall, the percentage of mutations

resulting from chemotherapy ranged between 1% and 65% of all mutations within a tumour, suggesting

that both the mutation types observed in a tumour and the overall tumour mutation burden can be

strongly impacted by exposure to chemotherapy. Additional work for uncovering mutational spectra

associated with chemotherapy has been done with experimental models. This work provides evidence

for additional mutational signatures associated with six chemotherapy agents. It has also provided ex-

perimental evidence for mutational signatures associated with a large range of environmental agents

(Kucab et al. 2019).

1.3.2 Association between mutation rate and chromatin-features

Mutations are the result of the interplay between DNA damage generation and DNA damage repair.

DNA damage or nucleotide mismatches are incorporated into DNA. DNA damage repair mechanisms

then address the presence of DNA damage or mismatches. This results in either faithful repair of the

lesion/mismatch or the introduction of a mutation. Each step of this process may be impacted by local

genomic features including chromatin state, nucleosome occupancy, transcription factor binding, level of

transcription and long-range sequence context. As these local features vary across the genome, mutation

rate is non-uniform across the genome. In fact, different regions of the genome vary by up to five-fold

somatic mutation density (Lawrence 2013).

Determinants of mutation rate at the megabase scale

Large-scale WGS of cancer has enabled the study of mutation rate variability across the genome.

Early work demonstrated significant variability in mutation rate across the genome at the megabase scale

(Hodgkinson, Chen, and Eyre-Walker 2012). Early work also systematically examined the association

between mutation rate and chromatin features focusing on correlating SNV density in cancer genomes

with genomic features including, base composition, CpG content, gene density, DNA replication tim-

ing, nucleosome occupancy, and levels of histone acetylation (Schuster-Böckler and Lehner 2012). This

study found that cancer SNV density was associated with features describing chromatin organization
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and structure at the megabase scale. The strongest positive relationship was observed between SNV

density and H3K9me3, a repressive histone modification, which is a mark of inaccessible chromatin.

Similar, albeit weaker, correlations between SNV density and genomic features were observed for sev-

eral repressive chromatin marks. Gene density, early replication timing and histone marks associated

with open chromatin, all marks of accessible euchromatin-like domains, were shown to have a negative

correlation with SNV density. Overall, these results provided evidence that mutation rate is strongly

associated with chromatin organization, and in particular, SNV rate is highest in heterochromatin.

Later work demonstrated that these differences in mutation rate between heterochromatin and eu-

chromatin are explained partly due to the differential efficiency of DNA mismatch repair across the

genome. Mismatch repair mechanisms tend to have greater activity in euchromatic, early-replicating

regions, leading to fewer observed mutations (Supek and Lehner 2015). The differential efficiency of

mismatch repair across the genome is thought to result from multiple factors, including its coupling to

DNA replication and differences in DNA accessibility to the repair machinery. A similar result has been

demonstrated for nucleotide excision repair and base excision repair. Both tend to have lower efficiency

in heterochromatic regions due to differences in DNA accessibility to repair machinery. Fully assembled

nucleotide excision repair machinery, as an example, occupies approximately 100bp, which is larger than

the length of linker DNA between nucleosomes (Polak et al. 2014). This results in an inability for re-

pair machinery to be assembled in condensed chromatin, hindering repair functionality. Similarly, base

excision repair complexes preferentially assemble in euchromatic regions, leading to decreased efficiency

of DNA damage repair in heterochromatin (Amouroux et al. 2010).

The relationship between chromatin state and mutation density suggests that mutation rate may

directly provide information about chromatin accessibility. The plasticity in cancer can result in signif-

icant chromatin heterogeneity in a single tumour. Furthermore, cellular plasticity in cancer can result

in chromatin state shifting significantly as a tumour develops (Gomes et al. 2019). Consequently, the

chromatin state of a tumour may differ from the cell of origin for that tumour. As the mutations in

a tumour record the mutational history of that cell lineage, the regional mutation density of a tumour

may contain mutations that match the chromatin state of the cell of origin for that tumour.

The relationship between regional mutation density and cancer cell chromatin state was investigated

by computing the correlation between SNV rate in 1Mb bins and chromatin accessibility (Polak et al.

2015). In this study, DNAse I hypersensitivity data was used to determine chromatin accessibility. Using

chromatin accessibility data from matched cancer cell lines and the putative normal cell-of-origin for the

cancer sample in question. This study demonstrated that SNV density most strongly correlates with

chromatin features from the normal cell-of-origin for the tumour (Figure 1.6).

A potential explanation for mutation density being more strongly associated with cell-of-origin chro-

matin accessibility than cancer cell chromatin accessibility is that passenger mutations accumulate in

somatic cells’ normal life history before malignant transformation. Based on this result, the regional

mutation density of a tumour genome contains information associated with the pre-malignant state of

the tumour. Consequently, regional mutation density provides information about ancestral cell-states.

Using this fact as intuition, recent work has demonstrated that SNV density can be used as a record

of pre-malignant state to infer the putative normal cell-of-origin for many cancer types (Kübler et al.

2019).
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Figure 1.6: The association between mutation density and chromatin accessibility. Reverse
scale chromatin accessibility in 100-kb windows(blue line) assessed with DNAse I hypersensitivity (high
values correspond to less accessible chromatin) from normal melanocytes compared to the number of C
>T mutations aggregated across multiple melanoma samples. Figure from: (Polak et al. 2015),
licensed under Creative Commons Attribution 4.0 International License
(https://creativecommons-org/licenses/by/4.0/).

1.4 Machine-learning as a tool for tumour-typing

The increased volume of data generated by NGS of tumour genomes and imaging analysis has presented

the opportunity to exploit patterns found in these data to identify cancer type. To process and mine

these rich data, statistical and machine learning methods have been used to model the data, discover

patterns, provide diagnostic predictions and generate biological insight. These models can be used to

make predictions of cancer type, and can be used to assist pathologists in making cancer diagnoses, and

have the potential for providing useful insight into cancer biology. For example, Su et al. described one

of the first methods for identifying cancer type using supervised machine learning approaches, which

could differentiate between 11 cancer types using gene expression data (Su et al. 2001).

There is significant diversity amongst machine learning algorithms. Some methods, such as deep

neural networks (discussed in detail later), consist of compositions of linear transformations and non-

linear activations. Other models, such as random forest classifiers (discussed in detail later), use binary

decision trees to learn decision boundaries for performing classification.

Regardless of the method being used, however, some commonalities exist amongst most machine

learning methods. First, all methods require data. Data for machine learning methods can be split into

training data, validation data and test data. Training data are the data being used to teach or train

the machine learning model. These data are used to determine the function that maps from the input

space to the output space, and are not used for evaluation. Validation data are data samples used for

tuning non-learnable parameters of the model, sometimes called hyperparameters (discussed in detail

later). Test data are the data examples used for evaluating model performance. Test data should be

held-out from training and validation procedures, and the machine learning model should not receive

any information about test examples. Second, all machine learning methods consist of some function

or model that aims to model or describe the relationship between the input features and the output or

target space. As mentioned above, the function being used can be a very simple function or arbitrarily

complex, as is the case with deep neural networks. Third, all machine learning models require a function

that can assess how well the model is doing at approximating the output as a function of the input

features. This is referred to interchangeably as an objective function, loss function or cost function. A

well-performing model will typically find a value of the objective function that lies in the vicinity of an

optima of the objective function when evaluated on training data. Finally, all machine learning methods

https://creativecommons-org/licenses/by/4.0/
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require some optimization procedure which uses the features and the corresponding output targets to

optimize the objective function. This optimization proceeds by altering the learnable parameters of the

model to either maximize or minimize the objective function. The objective function can also be used to

determine if a model has overfit to the training data. When a machine learning model overfits, it learns

to model the noise associated with training data in a way that does not generalize to different datasets.

In this scenario, the model has memorized the training data and will produce very low error on training

data, but will have failed to learn a sufficient amount of information regarding the true signal in the

data, which will result in significantly higher validation or test error (Goodfellow, Bengio, and Courville

2016).

Machine learning has extensively been applied for predicting cancer type based on tumour genomics.

Generally, this involves using NGS data and/or imaging, and training a classifier to predict cancer

type from a pre-defined set of cancer types that the model is trained to identify. Some of the earliest

classification systems are trained on data from RT-PCR or expression microarrays, and have either

limited overall accuracy or are only trained to identify a small number of cancer types (Ma et al. 2006;

Bender and Erlander 2009). More recently, classifiers have been trained on data generated by RNA

sequencing, gene panels and WGS (Penson et al. 2019; Grewal et al. 2019; Yuan et al. 2016; Salvadores,

Mas-Ponte, and Supek 2019). A variety of different algorithms have been employed for identifying cancer

type, including support vector machines, random forests and artificial neural networks. The performance

of these classifiers varies based on the number of cancer types being identified, and the best performing

model has an overall accuracy of 92% for discriminating between 18 cancer types (Salvadores, Mas-Ponte,

and Supek 2019). Notably, the wide range of features used for training models suggests that features

derived from a wide range of sequencing modalities carry cancer-specific information. Unfortunately,

large cohorts containing data from multiple modalities do not currently exist.

Despite efforts towards machine-learning-based tumour typing, it is unclear whether machine learn-

ing models can discriminate between a relatively large number of cancer types with strong predictive

performance. In Chapter 2, I attempt to address this by building a predictive model of cancer type. In

this section, I provide a brief overview of random forests, a commonly used supervised learning method

for tumour typing, a review of two commonly used hyperparameter optimization methods, Bayesian

optimization and k-fold cross-validation, and finally, a review of feed-forward deep neural networks, a

class of machine learning models which I used for developing my models.

1.4.1 Random forests

Random forests is a machine learning method that models data using a collection of binary decision

processes or decision trees (Breiman 2001). A decision tree aims to partition or split the data based on

a set of features or variables. For example, a decision tree that aims to partition images of polar bears

and black bears, may partition the dataset based on features such as size and colour. For classification,

the optimal split is determined by the degree to which data is separated into different classes. The

Gini impurity index (G) can be used as a tool to assess how well the classifier has partitioned the data.

Formally, the Gini impurity index is defined as follows:

G =
nl
N

C∑
i=1

piL(1− piL) +
nR
N

C∑
i=1

piR(1− piR) (1.1)

where N is the number of examples, C is the number of classes, nL and nR are the number of
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examples in the left and right child nodes, respectively, and piL and piR are the fraction of examples

of class i in each child node of the decision tree. Intuitively, the Gini impurity index is the weighted

average between the two daughter nodes in the decision tree.

A random forest model often consists of many decision trees, where each tree makes a prediction

given new data. A random forest model is considered an ensemble method. The ensemble’s output

or prediction is the average or majority vote of the many decision trees in the ensemble. To create

variability in each decision tree’s predictions in the ensemble, each decision tree is given different data.

Datasets for each decision tree are generated through a process called bootstrap aggregation, or bagging.

Bootstrapping is a procedure that generates a dataset by randomly sampling the training data with

replacement. For random forests, bootstrapping is supplemented by choosing random subsets of features

during each bootstrap instance. The bagging procedure described here produces variability in each

dataset. As each decision tree gets a different dataset to train on, each decision tree can learn different

decision rules, providing variability to the random forest. This procedure helps prevent overfitting of

the model, which occurs when models are trained to memorize the training data, and fail to generalize

well to new data.

A useful feature of random forests is the ability for random forests to measure feature importance.

Feature importance measures the predictive value of a feature in the data. It allows for the relative

contribution to the predictive power of each feature to be assessed. This allows the model to be inter-

pretable because the decisions the model makes can easily be followed using feature importance values.

This can allow for important features to be further examined, which has the potential to reveal important

biological characteristics of the system being studied.

1.4.2 Deep neural networks

Deep learning refers to computational models that consist of multiple processing layers that learn hier-

archical representations of the data. The use of multiple processing layers allows deep learning models

to learn representations of the data at multiple levels of abstraction (Goodfellow, Bengio, and Courville

2016). Deep learning overcomes the problem of carefully engineered feature sets by learning directly

from data with limited or no feature engineering. Rather than explicitly doing feature engineering, deep

learning models employ architectures that are well-suited for exploiting the inductive biases implied by

the domain (Wilson and Izmailov 2020). Deep neural networks use a succession of simple, non-linear

transformation of the data to transform input data into increasingly abstract representations. Through

this process, deep learning models use simple transformations to learn highly complex functions that

map input data to the output space. The past decade has seen deep-learning-based approaches signif-

icantly outperform traditional machine learning methods in various tasks, including speech and image

recognition, and text generation (Devlin et al. 2019; He et al. 2015a). Deep learning methods have also

demonstrated success in identifying tumour type, with several methods showing performance comparable

to pathologists when identifying cancer type from imaging data (Yoon et al. 2019; Esteva et al. 2017).

Deep feed-forward networks or multilayer perceptrons are the quintessential deep learning models

(Figure 1.7). The goal of a feed-forward network is to learn a function f∗. In the case of a classifier,

y = f∗(x) is a function that outputs a category or class, y ∈ K = {1, 2..., k} for any input value, x.

A neural network defines a mapping y = f(x; θ), and learns the parameters θ that provide the best

approximation. These models are called feed-forward because information flows from the input to the

output through intermediate transformations used to define f . Feed-forward networks lack feedback
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connections through which information from y can flow backwards through the model (Goodfellow,

Bengio, and Courville 2016). Feed-forward neural networks form the basis for neural networks used

for several tasks, including neural networks used for learning generative probabilistic models, such as

variational autoencoders and generative adversarial networks, and transformers, which show state of

the art performance in natural language processing (Kingma and Welling 2014; Goodfellow et al. 2014;

Vaswani et al. 2017).

Figure 1.7: A deep multilayer perceptron. A schematic showing a deep multilayer perceptron or
feed-forward neural network. Input signal or data enters through the input layer. The hidden layers
perform non-linear transformation of the data, which allow for abstract representations of the data to
be learned. The last layer of the feed-forward network is responsible for providing the model’s outputs.

Feed-forward neural networks are referred to as networks as they are the composition of many different

functions. The functions that compose a neural network form a chain such that the output of one function

is the input or argument for the next. For example, f∗(x) = f (3)(f (2)(f (1)(x))) is a function representing

a 3 layer network composed of the chaining of f (3), f (2), and f (1). In this example, f (1) is called the first

layer of the network, f (2) is the second layer of the network, and more generally, f (j) is the jth layer of

the neural network. The depth of a neural network is the length of the chain of layers that compose the

neural network. The final layer of a neural network is referred to as the output layer.

During training, data provide noisy approximates of f∗(x) that are evaluated at different training

points. Each data point is accompanied by a label or target value, y, and training aims to match

the network’s output with the target, y. The learning algorithm alters the functions in the intermediate
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layers to produce the desired output. Instead of explicitly defining the functional form of the intermediate

layers, the learning algorithms allow the intermediate layers’ functions to be determined by the data

during model training. The intermediate layers in a neural network are sometimes referred to as hidden

layers. In contrast to an output layer, the output of a hidden layer is not directly accessed, but is instead,

used as the input for a subsequent layer.

Each layer of a neural network contains at least one, and typically many, ”neurons” or ”units”. The

number of neurons in a hidden layer specifies the width of a neural network. Each neuron receives a

vector-valued input consisting of the neurons from the previous layer that it forms connections with. As

such, each layer of a neural network is composed of many vector-to-scalar units, which takes in a vector

of outputs from the previous layer, and outputs a scalar value.

A convenient way to understand feed-forward networks is to think of them as in the context of linear

models, such as linear regression and logistic regression. In logistic regression, the output of the model

is defined as:

ŷ = σ(θTx) (1.2)

Where σ is a sigmoid function, and θ is a vector of coefficients or weights. As with neural network

classifiers, logistic regression models are trained to match predictions, ŷ with true labels, y. These

models can be extended to represent increasingly complex, nonlinear functions of the inputs by applying

a nonlinear transformation to the inputs:

ŷ = σ(θTφ(x)) (1.3)

Where φ is a nonlinear transformation. φ provides a new representation of the input features x While

there are many ways to pick φ, in deep learning, φ is learned from the data. In this approach, we have:

y = f(x;λ,w) = φ(x : θ)Tw (1.4)

Where λ are parameters that we use to learn φ, and w are parameters that map from φ(x) to

the desired output. While this approach depends heavily on learning φ from the input data, domain-

specific knowledge can be encoded to restrict the function learned in a way that is expected to improve

performance. In general, this can be written as the output of the first layer as follows:

h(1) = f(W (1)Tx+ b1) (1.5)

and for any arbitrary layer as:

h(l) = f(W (l)Thl−1 + bl) (1.6)

In these equations, W represents a matrix of learned parameters or weights, b is a bias or offset

value, and f is an arbitrary non-linear transformation. Prior to model training, W and b are typically

initialized randomly (Glorot and Bengio 2010).

The non-linear transformations that compose hidden layers and the output layers of a neural network

are formed by applying activation functions to a neural unit’s inputs. Many activation functions exist,

with some functions being more useful for output layers, and others tending to be used for hidden

layers. The choice of activation function for the hidden layers can affect model performance and training
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dynamics. One of the most commonly used activation function for hidden layers is the rectified linear

activation function which produces rectified linear units (ReLU):

f(x) = max(0, x) (1.7)

Rectified linear activation functions are standard defaults that have shown performance improvements

when compared to alternatives. This function is differentiable everywhere except 0 and has several

computationally desirable properties. Some generalizations to the rectified linear function exist which

aim to help improve training dynamics. A commonly used example is the softplus function:

f(x) = ln(1 + ex) (1.8)

A less commonly used activation function that has recently been adapted for certain tasks is the

radial basis function:

f(x) = exp (
−1

σ2
i

‖(W:,i − x)‖2) (1.9)

The radial basis function is a commonly used kernel metric that measures the similarity between

two input arguments. The application of this activation function in modern deep learning tasks will be

touched on in a later section. Activation functions used on the output layer are one of the ways in which

the task of a neural network can be defined. For the purposes of classification, the softmax function is

the most commonly used output activation function. The softmax function takes as input a logit vector

which is a vector consisting of the unnormalized log probabilities for each class:

z = WTh+ b (1.10)

Where h is the output of the previous hidden layer, and b is the bias or offset value, and zi represents

the unnormalized log-probability that an input sample belongs to class i. The softmax function can con-

vert the unnormalized log probabilities into class-specific probabilities. It does so by both exponentiating

and normalizing the elements of the logit vector. The softmax function is defined as follow:

softmax(z)i =
exp (zi)∑
j exp (zj)

(1.11)

The output of a softmax function is a class probability vector which can be interpreted as a cat-

egorical distribution over K classes. The use of a softmax function for classification allows for neural

networks to be interpreted as probabilistic classifiers. For an input sample x, a neural network will

output a class probability vector f̂(x) = (f̂1(x), f̂2(x), ..., f̂k(x)) where
∑K
k=1 f̂i(x) = 1 and f̂i(x) ≥ 0.

The elements of the class probability vector represent the probability that an input x belongs to each of

the K classes that the classifier is trained to identify. The input x is then assigned to the class with the

largest probability. This value is also called the confidence value.

To train a neural network, an appropriate cost or loss function must be selected. The cost function is

typically selected based on the data generating process that the network is modelling, and then derived

based on principles of maximum likelihood estimation. In principle, this means that the cost function

of a neural network is the negative log-likelihood of the data:
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J(θ) = −Ex,y∼pdata
[log pmodel(y|x)] (1.12)

Neural networks are typically trained using a combination of two algorithms: backpropagation and

stochastic gradient descent. Recall that information flows forward from input x to the outputs ŷ. This is

called forward propagation. During training, each forward pass produces a value for j(θ). To allow infor-

mation to flow backwards from the cost through the rest of the network, the backpropagation algorithm

is used (Rumelhart, Hinton, and Williams 1986). The backpropagation algorithm is an algorithm for

efficiently computing the gradient of the cost with respect to the network’s inputs. Stochastic gradient

descent is then used to perform learning by using gradient information to update the neural network’s

weights. The weights of the neural network are updated along the direction of the gradient so that the

updated weights would reduce training loss on the same input data. An overview of backpropagation is

provided by Rumelhart (Rumelhart, Hinton, and Williams 1986), and an overview of gradient descent

is provided by Ruder (Ruder 2017).

1.4.3 Hyperparameter optimization

Neural networks, like most machine learning methods, have several hyperparameters. Hyperparameters

are typically related to architectural choices (the type of hidden layer, activation function, number of

hidden layers, number of units in a hidden layer), and related to regularization methods and training.

Architectural choices are often made based on prior knowledge of the structure or inductive biases present

in the data. For example, if the input data to a model consist of images, neural network architectures that

are well suited to capturing the structure of images, such as convolutional layers are often employed. By

using domain-specific knowledge to inform architectural choices, overall performance and generalizability

can be increased (Wilson and Izmailov 2020).

Multiple methods for optimizing or selecting the best hyperparameters exist. Regardless of the

method used, k-fold cross-validation (CV) is commonly used in the optimization procedure to evaluate

model performance (Figure 1.8) (Hastie, Tibshirani, and Friedman 2009). In CV, training data are

randomly segregating into k partitions or folds of the data. Each k − 1 partitions are used as training

data to build a model with the specified hyperparameters. The trained model is then evaluated on

the held out partition. This procedure is then repeated for each partition, and for each setting of the

hyperparameters. Performance of the model as a function of hyperparameters is taken to be the average

of the performance on each of the k held out partitions (Figure 1.8). Typically, the accuracy or the value

of the loss function are used as metrics to evaluate model performance.

Neural networks have a large number of hyperparameters, and training of neural networks is com-

putationally expensive. This means that simply performing a grid search over all possible combinations

of hyperparameters is not feasible except in very limited scenarios. To counteract this, Bayesian op-

timization (BO) is often used for hyperparameter optimization (Snoek, Larochelle, and Adams 2012).

BO is a sequential, model-based optimization method that aims to perform global optimization with

a minimum number of trials. BO involves two models or functions: a Bayesian probability surrogate

model, which is used to model the objective function (in this case, the performance of a neural network

as a function of the hyperparameters), and an acquisition function which is used to determine the set

of hyperparameters to sample for the next trial. The algorithm is as follows: A prior distribution of the

surrogate model is built; the acquisition function used to sample a set of hyperparameters; the neural
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Figure 1.8: k-fold cross-validation. Schematic illustrating the cross-validation procedure. Training
data is randomly split into k partitions (k = 5 in this example). Each partition is a held-out validation
set for a model trained on the other k− 1 partitions. This procedure is repeated for all combinations of
hyperparameter settings being assessed. A final model is then trained with the optimal
hyperparameters, and performance is evaluated on an independent test set that was not used during
cross-validation.

network is trained and evaluated with the sampled hyperparameters; the posterior distribution of the

surrogate model is computed. This process is repeated until the optimal value is found, or until the

number of trials reaches its limit (Figure 1.9).

Many probability models have been used as surrogate models in BO. Gaussian processes are the most

commonly used surrogate probability models in BO. A Gaussian process describes a stochastic process

where any finite subset of random variables x1, x2, ...xn ∈ X jointly follows a Gaussian distribution.

Gaussian processes are capable of approximating any Lipschitz continuous function arbitrarily well, and

therefore, can approximate any smooth function. Gaussian processes are Bayesian non-parametric mod-

els, and as such, the number of parameters in a Gaussian process does not need to be decided beforehand.

It is determined by the dataset size and inductive biases in the data. For a Gaussian process, the kernel

function must be specified beforehand. The kernel function describes the covariance of the Gaussian

process random variables, and, together with the mean function, completely describes a Gaussian pro-

cess. The choice of kernel function determines most generalization properties of a Gaussian process.

For hyperparameter optimization, the Matérn (5/2) is widely used due to its flexibility and learnable

hyperparameters. In addition to choosing a kernel function, an acquisition function must be chosen for

Bayesian optimization. The acquisition function is used to determine the next set of hyperparameters to

sample. This function needs to weigh exploring the space of possible hyperparameter combinations and

moving towards hyperparameters that will improve the model. The most commonly used acquisition

function is the expected improvement algorithm, which tries to find regions of hyperparameter space

that will, on average, lead to improved model performance. More recently, acquisition functions that
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Figure 1.9: Bayesian hyperparameter optimization. Schematic illustrating Bayesian
optimization for neural network hyperparameters. Neural network performance is approximated with a
Gaussian process model. Hyperparameters are sampled from the Gaussian process by maximizing an
acquisition function. Hyperparameters are used to train and evaluate a neural network. Model
performance on a held-out validation set is then used to update the posterior distribution of the
Gaussian process. This procedure is repeated iteratively until an optimal set of hyperparameters is
found. Figure from: (Pedersen 2020)

use a combination of multiple functions have been shown to offer improved performance on some tasks

(Brochu, Hoffman, and De Freitas 2011).

1.5 Quantifying uncertainty in deep neural networks

Deep neural networks provide highly accurate predictions on several machine learning tasks. In real-

world decision-making systems, such as identifying cancer type, robust estimates of predictive uncertainty

must accompany highly accurate models. However, modern deep neural networks are poor at providing

uncertainty estimates and tend to be overconfident in their predictions (Guo et al. 2017). In cost-sensitive

scenarios, such as the ones encountered when physicians use the predictions of a neural network to make

cancer diagnosis, overconfident predictions may lead to adverse outcomes. For example, an overconfident

but inaccurate prediction for a specific cancer type may form the basis for therapy targeting the incorrect

prediction, which may be ineffective or harmful. In these scenarios, it is crucial to accurately represent

a model’s predictive uncertainty to estimate the reliability of a model’s predictions.

When quantifying uncertainty, it is important to recognize two sources of uncertainty in deep learning

models. The first, called epistemic uncertainty, is the uncertainty that exists in the parameters of the

model. This uncertainty should ideally be high for out-of-distribution data points. A second source
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of uncertainty is called aleatoric uncertainty. This is the uncertainty that is inherent in the data. For

example, an image of 3 is similar to an image of 8. In this case, there is aleatoric uncertainty making

it difficult to differentiate between these two samples (Amersfoort et al. 2020). The uncertainty in a

model’s predictions often consists of a combination of both aleatoric and epistemic uncertainty.

Predictive uncertainty in machine learning can refer to multiple distinct notions of uncertainty. One

quantity could be in-distribution uncertainty. Sometimes referred to as model calibration or confidence

calibration, this refers to how well the uncertainty in the model’s predictions reflects the true uncertainty

for classes the model has been trained to identify (Guo et al. 2017). Put differently, the uncertainty

in the model’s prediction for an input sample should reflect the ground truth correctness likelihood. A

second notion of uncertainty involves a machine learning model’s ability to identify whether an input

sample belongs to a class that the model is not trained to classify (Lakshminarayanan, Pritzel, and

Blundell 2017). For example, if a classifier is trained to differentiate between images of dogs and images

of cats, can it automatically determine if an input image is that of an owl? This is referred to as out-

of-distribution detection, and it also has implications for deploying machine learning systems in clinical

settings.

The majority of the work adapting deep neural networks to represent uncertainty involves proba-

bilistic methods and has focused around Bayesian deep learning. In the Bayesian formalism, a prior

distribution upon a neural network’s parameters (weights) is specified. Given both a neural network ar-

chitecture (as the likelihood) and training data, a posterior distribution over the neural network weights

can be computed. Weights are then sampled from the posterior distribution multiple times. Each set

of sampled weights can be used to make a prediction from the neural network. The collection of pre-

dictions is used to derive a predictive distribution that can represent the predictive uncertainty of the

network (Neal 1996). The complexity of neural network functions means that exact Bayesian inference

is not tractable. This has prompted the use of many approximations such as Laplace approximation,

Markov chain Monte Carlo methods, and several variational Bayesian methods (Neal 1996; MacKay

1992; Blundell et al. 2015).

Despite these advancements, Bayesian deep neural networks have several computational difficulties

and tend to struggle to produce highly well-calibrated uncertainty estimates. The relatively poor perfor-

mance of Bayesian neural networks for providing well-calibrated uncertainty estimates is, in part, a result

of the simplifications required to make these models computationally tractable. Variational Bayesian

methods and Laplace approximations, for example, typically learn a unimodal posterior distribution,

which may not properly model the true underlying uncertainty (Fort, Hu, and Lakshminarayanan 2020).

While Bayesian methods have been the traditional focus for assessing uncertainty in deep learning, more

recently, several non-Bayesian methods have been developed which make use of ensembling approaches

for deriving predictive distributions, stochastic deactivation of neurons at test time, and methods that are

based on deterministic notions of predictive uncertainty (Gal and Ghahramani 2016; Lakshminarayanan,

Pritzel, and Blundell 2017).

In Chapter 3, I develop a number of deep learning models that can address both notions of uncertainty

discussed above. In this section, I will briefly provide an overview of assessing and improving model

calibration and an overview of using the output of neural networks for detecting out-of-distribution

samples.
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1.5.1 Model calibration

A probabilistic classifier such as a deep neural network is well-calibrated if the predicted class distribution

is approximately equal to the true class distribution (Guo et al. 2017). Typically, deep neural networks

produce poorly calibrated output probabilities, yielding overly confident predictions. For this overview,

I will focus on calibration in the multiclass classification setting, where the classification function is a

neural network. To evaluate the calibration of a neural network, several commonly used metrics have

been introduced. These evaluation metrics can assess how well a model is calibrated at different scales.

The strictest notion of calibration is multiclass calibration (Kull et al. 2019). A multiclass-calibrated

classifier is perfectly calibrated for every single class that the model is trained to classify. More formally,

Consider a neural network classifier f̂ : X → ∆k that outputs probabilities for k classes. For any

input x ∈ X, the classifier outputs a class probability vector f̂(x) = (f̂1(x), f̂2(x), ..., f̂k(x)) belonging to

∆k = {(q1, q2, ..., qk) ∈ [0, 1]k|
∑k
i=1 qi = 1} which is the (k − 1)-dimensional probability simplex over k

classes.

Definition 1 A probabilistic classifier f̂ : X → ∆k is multiclass-calibrated if for any prediction vector

q = (q1, q2, ..., qk) ∈ ∆k, the proportions of classes among all possible x ∈ X getting the same predictions

f̂(x) = q are equal to the prediction vector q:

P (Y = i|p̂(x) = q) = qi for i = 1, ...k. (1.13)

A necessary condition for obtaining a multiclass-calibrated classifier is for the classifier to be cali-

brated for all individual classes (Kull et al. 2019). That is, for any given class, the classifier is perfectly

calibrated. Formally, a classwise-calibrated classifier is as follows:

Definition 2 A probabilistic classifier f̂ : X → ∆k is classwise-calibrated if for any class i and any

predicted probability qi:

P (Y = i|f̂(x) = qi) = qi (1.14)

The notion of calibration that is typically of concern is confidence calibration. When neural networks

make predictions, an input x is assigned to the class with the largest element in the output class

probability vector. This value is referred to as the model’s confidence. A classifier is confidence-calibrated

if, for all instances where the confidence is predicted to be c, the expected accuracy of the classifier is c.

Formally, a confidence-calibrated classifier is defined as follows:

Definition 3 A probabilistic classifier f̂ : X → ∆k is confidence-calibrated, if for any c ∈ [0, 1]:

P (Y = argmax(f̂(x))|max(f̂(x)) = c) = c (1.15)

As classifiers are learned from finitely many data with varying levels of noise and uncertainty. This

means that, in practice, perfectly calibrated classifiers are not possible. To assess the calibration of a

model, many metrics have been introduced. One important metric is the Expected Calibration Error

(ECE) (Guo et al. 2017). ECE is the average difference between a model’s confidence and accuracy.

This is defined as follows:

ECE = Ef̂ [|P (Y = argmax(p̂(x))|max(f̂(x)) = c)− c|] (1.16)
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In practice, ECE is calculated using an approximation which partitions predictions in M equally-

spaced bins and takes a weighted average of the difference between accuracy and confidence in each bin.

Formally this approximation is as follows:

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (1.17)

Where n is the number of samples, Bm is the set of indices of samples whose predictive confidence

falls into bin m, acc(Bm) is the accuracy in bin m and conf(Bm) is the confidence for samples in bin m.

ECE is a commonly used metric but has an important limitation. Using ECE, it is difficult to evaluate

each class’s contribution to the overall calibration performance. For example, in a classification task

where the number of instances for each class is highly unbalanced, low ECE on instances from the most

populated classes will result in low overall ECE even if less populated classes are poorly calibrated. A

solution to this issue is to calculate ECE for each class independently and then average the class-specific

ECE (Kull et al. 2019). This metric is called classwise-ECE and is defined as follows:

ECEclasswise =
1

k

k∑
j=1

M∑
m=1

|Bm,j |
n
|yj(Bm,j)− p̂j(Bm,j)| (1.18)

Where k,m, n are the numbers of classes, bins and instances, respectively, Bm,j refers to bin m for

instances of class j, p̂j(Bm,j) is the average probability of class j, and yj(Bm,j) is the true proportion

of class j in bin Bm,j . The contribution of a class j to the classwise-ECE is called class-j-ECE and can

be used to examine how well a classifier is calibrated for each class. Reliability diagrams are used to

visualize a model’s calibration. A reliability diagram is constructed by plotting the empirical accuracy as

a function of confidence. Similar to the approximation of ECE, reliability diagrams split confidence values

into equal-sized bins. For a perfectly calibrated classifier, the reliability diagram should be a perfect

diagonal, and any deviation from the diagonal represents miscalibration. Since reliability diagrams do

not factor in the proportion of samples that fall into each confidence bin, they do not replace summary

statistics like ECE and classwise-ECE.

Deep neural networks tend to produce highly accurate, but poorly calibrated classifiers (Guo et al.

2017). In general, this trend results in overly confident classifiers that may not be immediately useful

when cost-sensitive decisions are being made. The disconnect between calibration and accuracy results

from overfitting, where the neural network overfits to the negative log-likelihood without overfitting to

accuracy (Guo et al. 2017). This results from classifying most samples correctly, but misclassifying a

very small number of samples with increasingly high confidence. More recently, several neural network

architectures have been developed that provide improved model calibration.

Deep ensembles and adversarial data

Deep ensembles are a novel class of neural networks which provide significant improvements in ac-

curacy, calibration and out-of-distribution detection (covered in a later section) (Lakshminarayanan,

Pritzel, and Blundell 2017). Deep ensembles consist of an ensemble of M independent neural networks,

each with the same hyperparameters, but with random initialization. While it is unnecessary to use the

same hyperparameters for each neural network in the ensemble, keeping the hyperparameters constant

reduces the computational cost of multiple hyperparameter optimization procedures. More formally,

consider a training set D consisting of N data points D = {xn, yn}Nn=1, where x ∈ X represents the

input features, and y ∈ Y = {1, 2, ...,K} represent the labels for a classification problem. Given the
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input features, a neural network is used to parametrize the predictive distribution pθ(y|x) over the la-

bels, where θ are the neural network parameters. A deep ensemble, then, is a collection of M neural

networks where {θ}Mm=1 are the parameters of the ensemble. In contrast to the Random Forest model, a

deep ensemble uses all of the training set to train each neural network. This is because the presence of

multiple optima and random parameter initialization in neural networks introduces a sufficient degree

of stochasticity to learn a highly expressive predictive distribution (Fort, Hu, and Lakshminarayanan

2020). An additional contribution of the deep ensemble framework is the use of adversarial data during

training. Adversarial examples are data points that are very similar to original training examples but

are misclassified by the neural network (Goodfellow, Shlens, and Szegedy 2015). The use of adversarial

data has been demonstrated to act as a regularization method, helping prevent overfitting. By doing so,

including adversarial data during training has been shown to improve model calibration, generalization

and robustness (Goodfellow, Shlens, and Szegedy 2015). Adversarial data is included during training

using the fast gradient sign method. Given an input x, a target y and a loss function J(θ, x, y), the fast

gradient sign generates an adversarial example x′ as follows:

x′ = x+ εsign(∇xJ(θ, x, y)) (1.19)

Where ε is a small value which defines the maximum perturbation allowed, intuitively, this method

perturbs the input associated with each training example along a direction which increases loss. These

examples are used to augment training by created additional training data D′ = (x′, y).

The ensemble is treated as a uniformly weighted mixture model such that predictions are made by

combining predictions from each model:

p(y|x) =
1

M

M∑
m=1

pθm(y|x, θm) (1.20)

For classification tasks, this corresponds to averaging the predictions from each individual network

in the ensemble.

Post-hoc model calibration

Given an already trained classifier, several post-hoc calibration methods exist. These methods per-

form transformations on a model’s output in a way that aims to reduce the negative log-likelihood of

the model. These methods have varying parameters or hyperparameters that are tuned by minimizing a

negative log-likelihood on a held-out validation set. Four commonly used post-hoc calibration methods

are temperature scaling, matrix scaling, vector scaling and Dirichlet scaling (Guo et al. 2017; Kull et al.

2019).

Temperature Scaling

Temperature scaling is one of the simplest post-hoc calibration method (Guo et al. 2017). Recall

that the output of a probabilistic neural network is a softmax function. Given the model’s logit vector

zx for an input sample x, the confidence prediction is as follows:

c = max(σsm(zx)) (1.21)

Where σsm is the softmax function.

In temperature scaling, instead of working directly with zx, the logit vector is scaled by a single

temperature parameter, T > 0 for each class. Consequently, the scaled prediction is given by:
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c = max(σsm(zx/T )) (1.22)

When the temperature parameter is greater than zero, T will raise the class probability vector’s

entropy. As T → 0, the confidence value will go up. Temperature scaling has two advantages compared

to other approaches. First, only a single parameter needs to be selected, limiting the risk of overfitting

when learning a post-hoc method on a small validation set. Second, T will not change the class prediction

from the softmax as the same positive number scales each element. This means that a highly accurate

classifier can be scaled to have better calibration performance without affecting the model’s overall

accuracy.

Matrix and Vector Scaling

Similar to temperature scaling, matrix and vector scaling work by performing a transformation on

the logit vector (Guo et al. 2017). Matrix scaling works by learning a linear transformation on the logits

such that the scaled confidence value is:

c = max(σsm(Wzx + b)) (1.23)

W and b are optimized on the negative log-likelihood using a validation set. This approach can

be viewed as learning a multiclass logistic regression model using the model logit vector as the input

features. Since the size of W grows quadratically with the number of classes, this method has a risk of

overfitting when the validation set has a small number of samples. One potential workaround is to use

vector scaling which is identical to matrix scaling, but uses a diagonal matrix W . In both matrix and

vector scaling, there is no guarantee that the predictions after scaling will be the same as those from the

original classifier.

Dirichlet Scaling

Dirichlet scaling is similar to matrix scaling in that it learns a multiclass logistic regression model

on some output from the original classifier. The key difference is that Dirichlet scaling uses the class

probability vector as a feature (Kull et al. 2019). In its linear parametrisation, Dirichlet scaling is as

follows:

c = max(σsm(W ln (q) + b)) (1.24)

Where q represents the class probability vector of the original neural network, the use of log-

transformed class probability vectors as input features compared to logit vectors in the case of matrix

scaling means that the input to Dirichlet scaling has reduced information content compared to matrix

scaling. In the original work describing Dirichlet scaling, this loss of information typically did not affect

the performance of this calibration method (Kull et al. 2019).

Post-hoc calibration methods can also be applied to a classifier when there is a significant shift

between a new dataset and the dataset used to train the classifier (Kull et al. 2019). A new dataset

may have a different prior distribution over classes, and as such, the class probability vector may change

significantly compared to the original dataset. Post-hoc calibration can re-calibrate predictions for this

new context, allowing for an already trained classifier to be more easily adapted in the case of dataset

shift.
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1.5.2 Out-of-distribution detection

A second notion of uncertainty estimation that is important when deploying deep learning models in

cost-sensitive scenarios is the ability to automatically detect anomalous or significantly different data

from the data used during training. Traditionally, deep neural networks have been shown to classify out-

of-distribution data as in-distribution with high confidence. In a cost-sensitive scenario such as in medical

diagnosis, this can lead to falsely identifying the type of cancer a patient has, which could alter treatment

regiments and prognosis. Here, I provide an overview of two approaches for out-of-distribution detection:

the predictive entropy of a deep ensemble, and deterministic uncertainty quantification networks.

Out-of-distribution detection with deep ensembles

The output of a classifier can be used to quantify uncertainty. Recall, that a neural network classifier,

f̂ : X → ∆k, outputs a class probability vector f̂(x) = (f̂1(x), f̂2(x), ..., f̂k(x)) belonging to ∆k =

{(q1, q2, ..., qk) ∈ [0, 1]k|
∑k
i=1 qi = 1}. The probability vector can be used to quantify the overall

predictive uncertainty for an input sample x. This can be done by looking at the entropy of the

prediction vector, and in particular, this can be accomplished by looking at the entropy of the predictive

distribution of a deep ensemble (Lakshminarayanan, Pritzel, and Blundell 2017; Amersfoort et al. 2020).

Recall that the average predictive distribution of a deep ensemble is as follows:

p(y|x) =
1

M

M∑
m=1

pθm(y|x, θm) (1.25)

The entropy of the deep ensemble’s predictive distribution is therefore defined as:

H(p(y|X)) = −
M∑
m=1

pθm(y|x, θm) log pθm(y|x, θm) (1.26)

Predictive distributions with high entropy suggest a greater degree of uncertainty. A deep ensem-

ble’s predictive entropy has demonstrated state-of-the-art performance in detecting out-of-distribution

samples (Amersfoort et al. 2020). Using the deep ensemble’s predictive distribution entropy has the ad-

ditional benefit of not requiring any additional computational overhead, as out-of-distribution samples

can be detected using a simple function of the model’s output.

Deterministic uncertainty quantification networks

Deterministic uncertainty estimation networks (DUQ) is a recently proposed solution to identifying

out-of-distribution data (Amersfoort et al. 2020). These networks require only a single forward pass

of the model to provide uncertainty estimates. Unlike the neural network classifiers discussed thus far,

DUQ is not a probabilistic classifier. Instead, DUQ makes predictions by computing a kernel or similarity

function between embedded features and class-specific centroids. Uncertainty, then, is measured by the

similarity between the model output and the closest centroid. If the feature vector representation of a

data point has low similarity to any of the centroids, it is out-of-distribution. DUQ provides competitive

performance for both classification and for identifying out of distribution samples.

DUQ consists of a feature extractor which embeds input data into a lower-dimensional space. This can

be any feed-forward neural network provided the softmax layer has been removed. Instead of a softmax

layer, DUQ contains a single learnable weight matrix Wk per class, k. DUQ computes a centroid for

each class in the embedded space, and using these centroids; an input sample is assigned to the class

with the most similar centroid. Formally, DUQ uses the radial basis function (RBF) kernel to compute
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the similarity between the model output and the centroids:

RBF (fθ(x), ek) = exp [−
1
n ‖Wkfθ(x)− ec‖22

2σ2
] (1.27)

Where fθ : Rp → Rd is the neural network model, p is the input dimension, d is the dimension of the

embedded space, and θ are the parameters of the neural network. ek is the centroid vector for class k

with centroid size n. Wk is a weight matrix, and σ is the length scale of the radial basis function. DUQ

is trained by maximizing the similarity to the correct centroid while minimizing the similarity to all

other centroids. DUQ provides state-of-the-art performance on several challenging datasets and has also

demonstrated comparable accuracy to commonly used probabilistic neural networks. Similar to deep

ensembles, it has the benefit of low computational overhead and can be used for both classification tasks

and quantifying uncertainty. A limitation of DUQ, however, is that it does not provide an analogue for

confidence calibration.

1.6 Overview of thesis research

Diagnostic challenges such as CUPS and multiple primary tumours underscore the need for genomics-

based tumour typing methods. To this end, several machine learning models have been used to identify

cancer type based on molecular or genomic features derived from tumour samples. These studies have

focused on using cancer-associated mutations, gene expression or epigenetic alterations as features to

train machine learning models for tumour typing (Penson et al. 2019; Grewal et al. 2019; Yuan et

al. 2016). While these methods have had some success, they typically come with some shortcomings.

Focusing on cancer-associated mutations, for example, has relatively low accuracy for a number of cancer

types, and is overly dependent on the ability to identify oncogenic mutations within a tumour correctly.

Methods using gene-expression or chromatin features tend to perform better, but fail to consider the

high degree of phenotypic plasticity in tumours. Readouts of cell-state, such as chromatin assays or

RNA sequencing do not necessarily provide ancestral information about previous cell-states. Therefore,

they may not provide information about the primary tumour that seeded a metastasis. An alternative

approach is to focus on passenger mutations - those mutations that are thought to be inconsequential for

tumourigenesis. This can be done by using the strong relationship between regional mutation rate and

chromatin features, allowing for mutation rate to be used as a proxy for chromatin state (Polak et al.

2015). As most mutations are passed on over multiple cell generations, mutation rate encodes information

about ancestral cell-states and can be used as a feature for identifying tumour type. Additional cancer

type-specific information can be gained by looking at the mutational signatures within a tumour, which

are often specific to only a small number of cancer types. In my thesis, I focused on developing deep

learning classifiers for identifying cancer type from patterns of somatic passenger mutations. After

establishing the utility of passenger mutations for identifying cancer type, I focused on algorithmic

improvements that allow for calibrated uncertainty estimates, a critical need for any machine learning

model deployed in a clinical setting.

In Chapter 2, I describe and evaluate a new deep learning model for identifying cancer type based on

patterns of somatic mutations derived from WGS of cancer genomes. To accomplish this, I implement

and make use of a Bayesian optimization procedure to efficiently search the space of hyperparameters for

deep neural network classifiers. Part of my evaluation included testing deep learning classifiers trained on
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a wide array of features derived from somatic mutations. I evaluated models trained using regional mu-

tation density, mutation types (corresponding to mutational signatures), driver genes (cancer-associated

mutations) and information about the biological pathways in which driver genes operate, and various

combinations of the features. My evaluation demonstrated that the combination of passenger-mutation-

derived features, namely, regional mutation density and mutation types, could accurately discriminate

between 24 cancer types. This model had superior performance compared to other tumour-typing mod-

els when accounting for the relatively large number of cancer types the model is trained on. Surprisingly,

when information about driver genes and pathways was included in addition to the passenger-mutation-

derived features, overall model performance failed to improve, suggesting that passenger mutations alone

are sufficient for accurately identifying cancer type, and providing further evidence for the relationship

between passenger mutations and cancer type. Moreover, a model trained solely on regional muta-

tion density had comparable performance to the best-trained model, suggesting that regional mutation

density is strongly associated with cell-type. By investigating the misclassifications the model made, I

demonstrated that cell-of-origin or mutational exposures could influence misclassifications. For exam-

ple, the classifier mistakes Stomach-AdenoCA and Eso-AdenoCA, two cancers that originate in gastric

tissues. These tumours also have highly similar patterns of mutational exposures, which also contribute

to misclassification.

To demonstrate the utility of the passenger-trained classifier, I applied the classifier to an independent

data set of primary tumours. Despite large differences in analysis pipelines and sequencing depth, the

classifier was able to identify cancer type with high accuracy, suggesting that the model generalizes across

multiple cohorts of tumour WGS. Finally, to determine if the model could identify the primary tumour

site of metastases, I tested the model on the largest collections of WGS from metastatic tumours.

Although most metastatic samples were sequenced following exposure to chemotherapy, the classifier

trained on passenger mutations from primary tumours could accurately identify primary tumour type

for the dataset of metastases. Reassuringly, the misclassification patterns match those seen on other

datasets and generally were associated with common cell-of-origin or common mutational exposures.

In addition to metastases of known primary, the model was applied to 62 CUPS. While the primary

tumour site is not available for evaluating the performance on these data, some clinical information lends

support to the model’s applicability. Although sex chromosomes were not used for training the model,

in all but one case when the classifier assigned a CUPS to be a gynaecological malignancy specific to

female patients, the patients providing the samples were female.

In Chapter 3, I make several algorithmic advancements to address challenges in translating the clas-

sifier described in Chapter 2 into a clinical setting. The classifier described in Chapter 2 provided

impressive performance for identifying cancer type, but several challenges exist for translating the model

into a clinical setting. Namely, the model needs to be extended to a greater number of cancer types, and

it needs to provide calibrated uncertainty estimates. I develop and evaluate a number of deep learning

model architectures for extending the model to a greater number of cancer types and ultimately demon-

strate that using a deep ensemble neural network architecture allows for the classifier to be extended

to 29 cancer types with comparable performance to the model presented in Chapter 2. To improve the

model’s confidence calibration, the deep ensemble was trained with adversarial data. To provide the

best-calibrated model, I implement and assess several post-hoc calibration methods, including Dirichlet

scaling, matrix scaling, vector scaling and temperature scaling. Overall, the evaluation suggests that

both the deep ensemble and the temperature scaled model provide relatively low calibration error, sug-
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gesting that they can provide estimates of reliability when predicting cancer type in a clinical setting.

This represents one of the first uses of confidence calibration and post-hoc calibration to deep learning

models in genomics and molecular biology. Another notion of uncertainty is the ability to determine if

an input sample is highly dissimilar to the data distribution used to train a classifier. This is called out-

of-distribution detection, and in a clinical setting, will allow for cancer samples that cannot be reliably

identified to be automatically detected. To perform out-of-distribution detection, I used the predictive

entropy of the deep ensemble. I ruled samples as out-of-distribution if they had high entropy relative

to a validation set of in-distribution samples. Using this method, I developed a threshold hold that can

accurately discriminate in-distribution from out-of-distribution samples on several datasets. Reassur-

ingly, the CUPS samples’ predictive entropy tended to be lower than the threshold value, suggesting

that CUPS samples may be accurately classified by the deep ensemble method. Furthermore, using this

cut-off to rule out test samples that cannot be reliably classified, the classifier’s overall accuracy was

improved. Together, this work represents significant algorithmic advancements that address challenges

for translating the classifier into a clinical setting.

Taken together, the research presented in my thesis demonstrates the feasibility of using somatic

passenger mutations derived from WGS and deep learning to identify cancer type. It makes important

contributions in quantifying and assessing predictive uncertainty in deep learning models. These findings

suggest that the classifier I developed has immediate clinical applicability in identifying the primary

tumour site for CUPS. Furthermore, my results provide evidence that somatic passenger mutations are

sufficient for accurately identifying cancer type across a large set of cancer types. The results of my

thesis will provide potential diagnostic tools for clinicians, a methodology for assessing uncertainty for

deep learning models in genomics, and evidence for further investigating the use of deep learning for

mapping relationships between regional mutation density and chromatin features.
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Tumour typing using patterns of

somatic mutations

This chapter is adapted from the following manuscript, which is published under the Creative Commons

Attribution 4.0 International Licence (https://creativecommons-org/licenses/by/4.0/):

Jiao W*, Atwal G*, Polak P*, Karlic R, Cuppen E, Danyi A, de Ridder J, van Herpen C, Lolkema

MP, Steeghs N, Getz G, Morris QD, Stein LD. A deep learning system accurately classifies primary and

metastatic cancers using passenger mutation patterns. Nat. Commun.11, 728 (2020)

I developed methods and carried out the experiments using deep learning methods, and contributed to

writing the manuscript. Wei Jiao carried out experiments using random forest models, and contributed

to writing the manuscript. Paz Polak contributed to revising the manuscript. Lincoln Stein and Quaid

Morris supervised the project and revised the manuscript.

2.1 Abstract

In cancer, the primary tumour’s organ of origin and histopathology are the strongest determinants of

its clinical behaviour, but in 3% of cases a patient presents with metastatic tumour and no obvious

primary. Here we train a deep learning classifier to predict cancer type based on patterns of somatic

passenger mutations detected in whole genome sequencing (WGS) of 2606 tumours representing 24

common cancer types produced by the PCAWG Consortium. Our classifier achieves an accuracy of

91% on held-out tumour samples and 88% and 83% respectively on independent primary and metastatic

samples. Surprisingly, adding explicit information on alterations to cancer-associated genes and cancer-

associated pathways reduced accuracy. Our results have clinical applicability, underscore how patterns

of somatic passenger mutations encode the state of the cell of origin and can inform future strategies to

detect the source of circulating tumour DNA.

2.2 Introduction

Human cancers can be categorized at multiple levels of resolution. Most commonly, human cancers are

distinguished by their anatomic organ of origin and their histopathology. For example, lung squamous

cell carcinoma originates in the lung and has histology similar to the normal squamous epithelium that
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lines bronchi and bronchioles. Together these two criteria define the tumour’s cell of origin. Despite

advances in precision medicine, a tumour’s cell of origin is the single major predictor of the disease’s

natural history, including the age at which the tumour manifests, its factors, growth rate, the pattern

of invasion and metastasis, response to therapy, and overall prognosis. Studies have shown that cancer-

specific therapy based on the tumour’s cell of origin is more effective than broad-spectrum chemotherapy

(Greco 2013). Typically, a tumour’s cell of origin can be determined through a variety of pathological

assessments. However, it is not always straightforward to determine the origin of a metastatic tumour.

In the most extreme case, a clinician may be presented with the challenge of determining the source of a

poorly differentiated metastatic cancer when multiple imaging studies have failed to identify the primary

(”cancer of unknown primary,” CUPS) (Pavlidis, Khaled, and Gaafar 2015). In current clinical practice,

pathologists use histological criteria assisted by immunohistochemical stains to determine such tumours’

histological type and site of origin (D’cruze et al. 2013), but some tumours are so poorly differentiated

that they no longer express the cell-type-specific proteins needed for unambiguous immunohistochemical

classification.

Based on recent large-scale exome and genome sequencing studies we know that major tumour types

present different patterns of somatic mutation (Kandoth 2013; Lawrence 2013; Ciriello 2013; Campbell

et al. 2020). For example, ovarian cancers are distinguished by a high rate of genomic rearrangements

(Patch 2015), chronic myelogenous leukaemia (CML) carry a nearly pathognomonic structural varia-

tion involving a t(9;22) translocation leading to a BCR-ABL fusion transcript (Kurzrock et al. 2003),

melanomas have high rates of C >T and G >A transition mutations due to UV damage (Hayward et al.

2017), and pancreatic ductal adenocarcinomas have near-universal activating mutations in the KRAS

gene (Biankin 2012). Recent work has also pointed to substantial variability in regional somatic muta-

tion density(Schuster-Böckler and Lehner 2012). These studies provide evidence for a strong relationship

between regional mutation density and a number of genomic features, including chromatin accessibility,

levels of gene transcription, and histone marks (Supek and Lehner 2015; Polak et al. 2015; Polak et al.

2014). This correlation has suggested that the normal cell of origin for a tumour can be inferred from

differences in regional mutation density (Kübler et al. 2019).

The PCAWG Consortium aggregated whole genome sequencing data from 2,658 cancers across 38

tumour types generated by the ICGC and TCGA projects. These sequencing data were re-analysed with

standardised, high-accuracy pipelines to align to the human genome (reference build hs37d5) and identify

germline variants and somatically acquired mutations, as described in PCAWG Network (Campbell et al.

2020).

This paper asks whether we can use machine learning techniques to accurately determine tumour

organ of origin and histology using the patterns of somatic mutation identified by whole genome DNA

sequencing. One motivation of this effort was to demonstrate the feasibility of a next-generation sequenc-

ing (NGS) based diagnostic tool for tumour type identification. Due to its stability, DNA is particularly

easy to recover from fresh and historical tumour samples; furthermore, because mutations accumulate in

DNA, they form a historic record of tumour evolution unaffected by the local, metastatic environment.

Here we use deep learning techniques to explore whether a simple DNA-based sequencing and analysis

protocol for tumour type determination would be a useful adjunct to existing histopathological tech-

niques. Unexpectedly, we find that the regional mutation density of passenger mutations and mutation

type are sufficient to discriminate among tumour types with a high degree of accuracy, while information

about driver genes and pathways fail to improve classifier performance.



Chapter 2. Tumour typing using patterns of somatic mutations 42

2.3 Results

2.3.1 Training Set

Using the Pan-cancer Analysis of Whole Genomes (PCAWG) data set (Campbell et al. 2020), we built a

series of tumour-type classifiers using individual sequence-based features and combinations of features.

The best performing classifier was validated against an independent set of tumour genomes to determine

overall predictive accuracy and then tested against a series of metastatic tumours from known primaries

to determine the accuracy of predicting the primary from a metastasis.

The full PCAWG data set consists of tumours from 2778 donors comprising 34 main histopathological

tumour types, uniformly analysed using the same computational pipeline for quality control filtering,

alignment, and somatic mutation calling. However, the PCAWG tumour types are unevenly represented,

and several have inadequate numbers of specimens to adequately train and test a classifier. We chose a

minimum cutoff of 35 donors per tumour type. In a small number of cases, the same donor contributed

both primary and metastatic tumour specimens to the PCAWG data set. In these cases, we used only the

primary tumour for training and evaluation, except for the case of the small cohort of myeloproliferative

neoplasms (Myeloid-MPN; N=55 samples), for which multiple primary samples were available. In this

case, we used up to two samples per donor and partitioned the training and testing sets to avoid having

the same donor appear more than once in any training/testing set trial. The resulting training set

consisted of 2436 tumours spanning 24 major types (Table 2.1 and Appendix A1.1).

Table 2.1: Distribution of tumour types in the PCAWG training and test data sets.

Tumor Type Samples

Abbreviation

Liver-HCC Liver hepatocellular carcinoma 306

Panc-AdenoCA Pancreatic adenocarcinoma 235

Breast-AdenoCA Breast adenocarcinoma 198

Prost-AdenoCA Prostate adenocarcinoma 189

CNS-Medullo Medulloblastoma 146

Kidney-RCC Renal cell carcinoma (proximal tubules) 143

Ovary-AdenoCA Ovarian adenocarcinoma 112

Skin-Melanoma Skin melanoma 106

Lymph-BNHL Mature B-cell lymphoma 105

Eso-AdenoCA Esophageal adenocarcinoma 98

Lymph-CLL Chronic lymphocytic leukemia 95

CNS-PiloAstro Pilocytic astrocytoma 89

Panc-Endocrine Pancreatic neuroendocrine tumor 85

Stomach-AdenoCA Gastric adenocarcinoma 70

Head-SCC Head/neck squamous cell carcinoma 57

ColoRect-AdenoCA Colorectal adenocarcinoma 52

Lung-SCC Lung squamous cell carcinoma 48

Thy-AdenoCA Thyroid adenocarcinoma 48

Continued on next page
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Tumor Type Samples

Abbreviation

Myeloid-MPN Myeloproliferative neoplasm 46

Kidney-ChRCC Renal cell carcinoma (distal tubules) 45

Bone-Osteosarc Sarcoma, bone 44

CNS-GBM Diffuse glioma 41

Uterus-AdenoCA Uterine adenocarcinoma 40

Lung-AdenoCA Lung adenocarcinoma 38

2436

2.3.2 Classification using Single Mutation Feature Types

To determine the predictive value of different mutation features, we trained and evaluated a series of

tumour type classifiers based on single categories of feature derived from the tumour mutation profile.

For each feature category, we developed a random forest (RF) classifier (See ”Methods” section). Each

classifier’s input was the mutational feature profile for an individual tumour specimen, and its output was

the probability estimate that the specimen belongs to the type under consideration. Each classifier was

trained using a randomly selected set of 75% of samples drawn from the corresponding tumour type. To

determine the most likely type for a particular tumour sample, we applied its mutational profile to each

of the 24 type-specific classifiers and selected the type whose classifier emitted the highest probability.

To evaluate the performance of the system, we applied stratified four-fold cross-validation by training

on three-quarters of the data set and testing against each of the other quarter specimens. We report

overall accuracy as well as recall, precision and the F1 score using the average of all four test data sets

(see ”Methods” section for cross-validation methodology and definitions of terms).

We selected a total of seven mutational feature types spanning three major categories (Table 2.2):

Table 2.2: WGS feature types used in classifiers.

Feature Name Feature Count Description

Feature Category

Mutation Distribution SNV distribution 2897 Number of SNVs per 1 Mbp bin

Mutation Distribution CNV distribution 2826 Number of CNAs per 1 Mbp bin

Mutation Distribution SV distribution 2929 Number of SVs per 1 Mbp bin

Mutation Distribution INDEL distribution 2757 Number of INDELS per 1 Mbp bin

Mutation Type SNV type 150 Type of single nucleotide substitution

Mutation Pathway Gene 554 Presence of mutation in cancer gene

Mutation Pathway Pathway 1865 Presence of mutation in cancer pathway

Mutation Distribution: The somatic mutation rate in cancers varies considerably from one region of

the genome to the next (Lawrence 2013). In whole genome sequencing, a major covariate of this regional

variation in whole genome sequences is the epigenetic state of the tumour’s cell of origin, with 74-86%

of the variance in the mutation density being explained by histone marks and other chromatin features

related to open versus closed chromatin (Ciriello 2013). This suggests that tumours sharing similar cells
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of origin will have a similar topological distribution of mutations across the genome. To capture this,

we divided the genome into ∼3000 1 Mbp bins across the autosomes (excluding sex chromosomes) and

created features corresponding to the number of somatic mutations per bin. For RF-based models, this

feature was normalized to the total number of somatic mutations. For all other models, the mutation

counts were used directly. Mutation rate profiles were created independently for somatic substitutions

(SNV), indels, somatic copy number alterations (CNA), and other structural variations (SV). Note that

the vast majority of variants, e.g., at least 99% of the SNVs in nearly all samples, used for this analysis

are non-functional passenger mutations. See Campbell (Campbell et al. 2020) and Li (Li et al. 2020) for

descriptions of point and structural variations in the PCAWG dataset.

Mutation Type: The type of the mutation and its nucleotide neighbours, for example, GC >TC,

is an indicator of the exposure history of the cell of origin to extrinsic and endogenous factors that

promote mutational processes (Alexandrov et al. 2013). This in turn can provide information on the

aetiology of the tumour. For example, skin cancers have mutation types strongly correlated with UV

light-induced DNA damage. Reasoning that similar tumour types will have similar mutational exposure

profiles, we generated a series of features that represented the normalized frequencies of each potential

nucleotide change in the context of its 5′ and 3′ neighbours. Like the mutation distribution, the variants

that contribute to this feature category are mostly passengers. Readers are referred to Alexandrov

(Alexandrov et al. 2020) for more information on signature analysis in the PCAWG data set.

Driver Gene/Pathway: Some tumour types are distinguished by high frequencies of alterations in

particular driver genes and pathways. For example, melanomas have a high frequency of BRAF gene

mutations (Pollock and Meltzer 2002), while pancreatic cancers are distinguished by KRAS mutations

(Biankin 2012). We captured this in two ways: (1) whether a gene is affected by a driver event as

determined by the PCAWG Cancer Drivers Working Group (Rheinbay et al. 2020), and (2) whether

there was an impactful coding mutation in any gene belonging to a known or suspected driver pathway

(also see Reyna (Reyna et al. 2020) for cancer pathway analysis performed by the PCAWG Pathway and

Networks Working Group). We counted driver events affecting protein-coding genes, long noncoding

RNAs and micro-RNAs, but did not attempt to account for alterations in cis-regulatory regions. In all,

we created ∼2000 driver pathway-related features describing potential gene and pathway alterations for

each tumour.

The accuracy of individual RF classifiers ranged widely across tumour and feature categories, with a

median F1 (harmonic mean of recall and precision) of 0.42 and a range from 0.00 to 0.94 (Figure 2.1a,b,

Table 2.3). Nine tumour types had at least one well-performing classifier that achieved an F1 of 0.80:

CNS-GBM, CNS-PiloAstro, Liver-HCC, Lymph-BNHL, Kidney-RCC, Myeloid-MPN, Panc-AdenoCA,

Prost-AdenoCA, Skin-melanoma. Five classifiers performed poorly, with no classifier achieving an ac-

curacy greater than 0.6: Bone-Osteosarc, Head-SCC, Stomach-AdenoCA, Thy-AdenoCA and Uterus-

AdenoCA. The remaining eight tumour types had classifiers achieving F1s between 0.60 and 0.80.

Table 2.3: Predictive accuracy of random forest trained on mutational features.
SNV type SNV distribution CNV distribution INDEL distribution SV distribution Gene Pathway

Tumour Type

Kidney-RCC 0.95 0.76 0.65 0.70 0.41 0.79 0.28

Liver-HCC 0.94 0.94 0.48 0.75 0.45 0.59 0.39

Skin-Melanoma 0.87 0.94 0.24 0.25 0.25 0.65 0.63

CNS-GBM 0.74 0.90 0.66 0.38 0.51 0.55 0.38

Myeloid-MPN 0.88 0.33 0.26 0.20 0.31 0.00 0.17

Lymph-BNHL 0.77 0.83 0.51 0.75 0.76 0.86 0.54

Continued on next page



Chapter 2. Tumour typing using patterns of somatic mutations 45

SNV type SNV distribution CNV distribution INDEL distribution SV distribution Gene Pathway

Tumour Type

Prost-AdenoCA 0.77 0.85 0.67 0.35 0.68 0.25 0.27

Panc-AdenoCA 0.76 0.76 0.64 0.54 0.50 0.84 0.79

CNS-PiloAstro 0.69 0.71 0.58 0.66 0.81 0.03 0.53

ColoRect-AdenoCA 0.70 0.79 0.28 0.31 0.32 0.79 0.40

Lymph-CLL 0.79 0.65 0.77 0.45 0.75 0.33 0.16

Lung-SCC 0.70 0.78 0.44 0.55 0.18 0.55 0.27

CNS-Medullo 0.77 0.58 0.55 0.29 0.32 0.32 0.28

Breast-AdenoCA 0.54 0.74 0.44 0.52 0.39 0.37 0.26

Eso-AdenoCA 0.69 0.69 0.38 0.41 0.60 0.15 0.31

Lung-AdenoCA 0.45 0.69 0.11 0.12 0.00 0.00 0.06

Panc-Endocrine 0.62 0.54 0.67 0.29 0.38 0.54 0.12

Ovary-AdenoCA 0.64 0.66 0.65 0.37 0.39 0.20 0.22

Kidney-ChRCC 0.51 0.62 0.61 0.20 0.06 0.00 0.05

Thy-AdenoCA 0.53 0.10 0.40 0.54 0.13 0.03 0.09

Head-SCC 0.42 0.48 0.28 0.09 0.19 0.00 0.04

Uterus-AdenoCA 0.23 0.23 0.05 0.07 0.26 0.38 0.17

Bone-Osteosarc 0.37 0.27 0.20 0.04 0.26 0.00 0.03

Stomach-AdenoCA 0.33 0.32 0.16 0.06 0.24 0.00 0.01

The highest accuracies were observed for features related to mutation type and distribution (Figure

1b). Contrary to our expectations, altered driver genes and pathways were poor discriminatory features.

Whereas both SNV type and distribution achieved median F1 scores of 0.7, RF models built on driver

gene or pathway features achieved median F1s of 0.33 and 0.27, respectively. Only Panc-AdenoCA,

Kidney-RCC, Lymph-BNHL and ColoRect-AdenoCA exceeded F1s greater than 0.75 on RF models

built from gene or pathway-related features, but we note that even in these cases, the mutation type

and/or distribution features performed equally well.

2.3.3 Classification using Combinations of Mutation Feature Types

We next asked whether we could improve classifier accuracy by combining features from two or more

categories. We tested both Random Forest (RF) and multi-class Deep Learning/Neural Network (DNN)-

based models (See ”Methods” section), and found that overall the DNN-based models were more accurate

than RF models across a range of feature category combinations (median F1=0.86 for RF, F1=0.90 for

DNN, p<1.2e-7 Wilcoxon Rank Sum Test; Figure 2.1C). For the DNN-based models, overall accuracy

was the highest when just the topological distribution and mutation type of SNVs were taken into

account. Adding gene and/or pathway features slightly reduced classification accuracy; using only gene

and pathway features greatly reduced classifier performance. We did not investigate the effect of training

the DNN on CNV or SV features as these mutation types were not uniformly available in the validation

data sets (see below).

Figure 2.2 shows a heatmap of the DNN classifier accuracy when tested against held out tumours

(mean of 10 independently-built models). Overall, the accuracy for the complete set of 24 tumour types

was 91% (classification accuracy), but there was considerable variation for individual tumours types

(Table 2.4). Recall (also known as sensitivity) ranged from 0.61 (Stomach-AdenoCA) to 0.99 (Kidney-

RCC). Precision (similar to specificity but is sensitive to the number of positives in the data set) was

comparable, with rates ranging from 0.74 (Stomach-AdenoCA) to 1.00 (CNS-GBM, Skin-Melanoma, and

Liver-HCC). Twenty-one of 24 tumour types achieved F1s greater than 0.80, including 8 of the 9 types

that met this threshold for RF models built on single feature categories. The three worst-performing

tumour types were CNS-PiloAstro (mean F1 0.79 across 10 independently-trained DNN models), Lung-

AdenoCA (F1 0.77) and Stomach-AdenoCA (F1 0.67).
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Figure 2.1: Comparison of tumour type classifiers using single and multiple features. (A)
Radar plots describing the cross-validation-derived accuracy (F1) score of Random Forest classifiers
trained on each of 7 individual feature categories, across six representative tumour types. (B)
Summary of Random Forest classifier accuracy (F1) trained on individual feature categories across all
24 tumour types. (C) Accuracy of classifiers trained on multiple feature categories. RF Best Models
corresponds to the cross-validation F1 scores of Random Forest classifiers trained on the three best
single-feature categories for all 24 tumour types. DNN Model shows the distribution of F1 scores for
held-out samples for a multi-class neural network trained using passenger mutation distribution and
type. DNN Model+Drivers shows F1 scores for the neural net when driver genes and pathways are
added to the training features. The centre line in the boxplot represents the median of the F1 scores.
The lower and upper bounds of the box represent the first and third quartile. The whiskers extend to
1.5 IQR plus the third quartile or minus the first quantile. Figure from: (Jiao et al. 2020)
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Figure 2.2: Heatmap displaying the accuracy of the merged classifier using a held-out
portion of the PCAWG data set for evaluation. Each row corresponds to the true tumour type;
columns correspond to the class predictions emitted by the DNN. Cells are labelled with the
percentage of tumours of a particular type that were classified by the DNN as a particular type. The
recall and precision of each classifier are shown in the colour bars at the top and left sides of the
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Figure 2.3: Performance of the DNN on held-out PCAWG data. (a) The relationship
between training set size and prediction accuracy of the DNN is shown for each tumour type. The blue
line represents a regression line fit using LOESS regression, while the grey area represents a 95%
confidence interval for the regression function. (b) Accuracy of the classifier when it is asked to identify
the correct tumour type among its top N-ranked predictions. The blue dashed line is the median
true-positive rate among all 24 tumour classes. The green and red dashed lines correspond to the true-
positive rate for the best- and worst-performing tumour classes. Figure from: (Jiao et al. 2020)
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Table 2.4: Performance metrics of deep neural network.

Recall Precision F1

Tumour

Kidney-RCC 0.99 0.95 0.97

Skin-Melanoma 0.98 1.00 0.99

Liver-HCC 0.98 1.00 0.99

Breast-AdenoCA 0.96 0.91 0.93

ColoRect-AdenoCA 0.96 0.95 0.95

Ovary-AdenoCA 0.96 0.94 0.95

Lymph-BNHL 0.95 0.91 0.93

Panc-AdenoCA 0.94 0.93 0.93

Prost-AdenoCA 0.94 0.94 0.94

Myeloid-MPN 0.93 0.87 0.90

CNS-Medullo 0.93 0.89 0.91

CNS-GBM 0.93 1.00 0.96

Panc-Endocrine 0.89 0.83 0.86

Head-SCC 0.88 0.90 0.89

Lung-SCC 0.88 0.92 0.90

Lymph-CLL 0.87 0.94 0.91

Eso-AdenoCA 0.84 0.89 0.86

Thy-AdenoCA 0.81 0.91 0.86

Kidney-ChRCC 0.80 0.90 0.85

CNS-PiloAstro 0.80 0.79 0.79

Uterus-AdenoCA 0.78 0.92 0.84

Lung-AdenoCA 0.74 0.81 0.77

Bone-Osteosarc 0.73 0.96 0.83

Stomach-AdenoCA 0.61 0.74 0.67

We investigated the effect of the training set size on classifier accuracy (Figure 2.3a). Tumour types

with fewer than 100 samples in the data set were more likely to make incorrect predictions, and tumour

types with large numbers of samples were among the top performers. However, several tumour types,

including ColoRect-AdenoCA (N=52), Lung-SCC (N=48) and CNS-GBM (N=41) achieved excellent

predictive accuracy despite having small training sets.

The DNN emits a softmax output that can be interpreted as the probability distribution of the

tumour sample across the 24 cancer types. We ordinarily select the highest probability tumour type

as the classifier’s choice. If instead we asked how often the correct type is contained among the top N

ranked probabilities, we find that the worst-performing tumour type (Stomach-AdenoCA) achieved a

true positive rate of 0.88 for placing the correct tumour type among the top-ranked three choices and

that the average true positive rate across all tumour types for this task was 0.98 (Figure 2.3b).
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2.3.4 Patterns of Misclassification

Misclassifications produced by the DNN in many cases seem to reflect shared biological characteristics

of the tumours that are representing in either the mutation distribution or mutation type features.

For example, the most frequent classification errors for Stomach-AdenoCA samples were to two other

upper gastrointestinal tumours, oesophagal adenocarcinoma (Eso-AdenoCA, 14% misclassification rate),

and pancreatic ductal adenocarcinoma (Panc-AdenoCA, 9%). These three organs share a common

developmental origin in the embryonic foregut and may share similar epigenetic profiles, which may

be reflected in the mutation distribution for these tumours. We also speculate that the high rate of

confusion between gastric and oesophagal cancers might be due to similar mutational exposures among

the two sites: a subset of C>A, C>G substitutions are commonly seen in stomach and oesophagal (but

not pancreatic) cancers and comprise Signature 17 in the COSMIC catalogue of mutational signatures

(Forbes 2017). To test this, we assessed the effect of training the DNN with mutation distribution alone,

excluding mutation-type features (Figure 2.4). Using just passenger mutation distribution, the overall

F1 for stomach tumours increased by 4%, supporting the idea that part of the error is due to shared

mutational signatures among stomach and oesophageal cancer. Another possible explanation for the

frequent misclassification of gastric and oesophagal tumours is that some of the tumours labelled gastric

arose at the gastroesophageal junction (GEJ), which some consider to be a distinct subset of oesophagal

tumours (Rüschoff 2012).
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 Supplementary Figure 2. Heatmap displaying the accuracy of the merged classifier using a held-out portion of 
the PCAWG data set for evaluation. Each row corresponds to the true tumor type; Columns correspond to the 
predictions emitted by each of the classifiers. Cells are labeled with the proportion of tumors of a particular type 
that were called by each type-specific classifier. The recall and precision of each classifier is shown in the color
bars at the top and left sides of the matrix

Figure 2.4: Heatmap displaying the accuracy of the merged classifier using a held-out
portion of the PCAWG data set for evaluation. Heatmap displaying the accuracy of the merged
classifier using a held-out portion of the PCAWG data set for evaluation. The classifier was trained
using the mutation distribution. Each row corresponds to the true tumor type; Columns correspond to
the predictions emitted by each of the classifiers. Cells are labeled with the proportion of tumors of a
particular type that were called by each type-specific classifier. The recall and precision of each
classifier is shown in the color bars at the top and left sides of the matrix. Figure from: (Jiao et al.
2020)

Other common misclassification errors include misclassification of 12% of chronic lymphocytic leukaemia

(Lymph-CLL) samples as B-cell non-Hodgkin’s lymphoma (Lymph-BNHL). Both tumours are derived

from the B-cell lymphocyte lineage, and likely share a similar cell of origin. Another pattern was oc-

casional misclassifications among the three types of brain tumour CNS-GBM, CNS-Medullo, and CNS-

PiloAstro, all three of which are derived from various glial lineages. We speculate that these errors are

again due to similarities among the cells of origin of these tissues.

Despite the difficulties described above, the DNN was able to accurately distinguish among several

tumour types that arise from the same organ. Renal cell carcinoma (Kidney-RCC) and chromophobe

renal carcinoma (Kidney-ChRCC), were readily distinguished from each other, as were the squamous

and adenocarcinoma forms of non-small cell lung cancer (Lung-SCC, Lung-AdenoCA), and the exocrine

and endocrine forms of pancreatic cancer (Panc-AdenoCA, Panc-Endocrine). The misclassification rate



Chapter 2. Tumour typing using patterns of somatic mutations 52

between Lung-SCC and Lung-AdenoCA was just 8%, and all other pairs had misclassification rates of

2% or lower. This is in keeping with a model in which major histological subtypes of tumours reflect

different cells of origin.

2.3.5 Validation on an Independent Set of Primary Tumors

A distinguishing characteristic of the PCAWG data set is its use of a uniform computational pipeline

for sequence alignment, quality filtering, and variant calling. In real-world settings, however, the data

set used to train the classifier may be called using a different set of algorithms than the test data. To

assess the ability of the DNN to generalize to this setting, we applied the classifier trained on PCAWG

samples to an independent validation set of 1,436 cancer whole genomes assembled from a series of

published non-PCAWG projects. The validation set spans 14 distinct tumour types assembled from

21 publications or databases (Table 2.5). We were unable to collect sufficient numbers of independent

tumour genomes representing nine of the 24 types in the merged classifier, including colorectal cancer,

thyroid adenocarcinoma and lung squamous cell carcinoma. SNV coordinates were lifted from GRCh38

to GRCh37 when necessary, but we did not otherwise process the mutation call sets.

Table 2.5: Distribution and source of tumour types contained within the validation data
sets.

Type Year Genome Version #Samples

Source

Primary Tumour WGS

doi:10.1038/nature12477 Primary 2013 GRCh37 72

doi:10.1038/nature17676 Primary 2016 GRCh37 455

doi:10.1016/j.cell.2012.04.024 Primary 2012 GRCh37 1

doi:10.1038/nature11213 Primary 2012 GRCh38 11

doi:10.1038/ng.2938 Primary 2014 GRCh38 33

doi:10.1038/ng.2611 Primary 2013 GRCh38 16

doi:10.1038/ng.2699 Primary 2013 GRCh38 14

doi:10.1038/ng.3547 Primary 2016 GRCh37 1

doi:10.1038/nature09744 Primary 2011 GRCh38 8

doi:10.1038/nature08658 Primary 2009 GRCh38 1

ICGC (https://dcc.icgc.org/) Primary Jun2017 GRCh37 551

COSMIC Primary Aug2017 GRCh38 73

doi: 10.1158/1078-0432.CCR-17-2994 Primary 2017 GRCh37 200

Total 1436

Metastatic Tumour WGS

doi: 10.1101/41513 Metastatic 2018 GRCh37 2028

doi: 10.1101/41513 Metastatic 2018 GRCh37 62

doi: 10.1158/1078-0432.CCR-17-2994 Metastatic 2017 GRCh37 92

Total 2182

The DNN classifier recall for the individual tumour types included in the validation data set ranged

from 0.41 to 0.98, and the precision ranged from 0.43 to 1.0 (Figure 2.4a). The overall accuracy of

the classifier was 88% across the 12 cancer types in the validation set. In general, the tumour types

that performed the best within the PCAWG data set were also the most accurate within the validation,

with Breast-AdenoCA, Ovary-AdenoCA, Panc-AdenoCA, Lymph-CLL, CNS-Medullo, and Kidney-RCC

tumour types all achieving greater than 85% accuracy. The Eso-AdenoCA, Liver-HCC, and Pediatric
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Gliomas were poorly predicted with recalls below 70%, and the remaining types had intermediate accu-

racies.

The majority of classification errors observed in the primary tumour validation set mirrored the

patterns of misclassifications previously observed within the PCAWG samples, with the exception that

Liver-HCC cases were frequently misclassified as CNS-Medullo (13%). We believe this case to be due

to a lower than expected mutation burden in the liver tumours from the validation set (median 3202

SNVs per sample in validation set compared to 22,230 SNVs per sample in the PCAWG training set;

P <1.5e-15 by Wilcoxon Rank Sum Test; Figure 2.5). This mutation load is more similar to the rates

observed in CNS-Medullo (median 2330 per sample) among the PCAWG samples, and might suggest

poor coverage of Liver-HCC or another sequencing/analysis artifact in the validation set.

We were initially puzzled that a set of 49 validation data set samples that were identified as CNS

glioma overwhelmingly matched to the pediatric piloastrocytoma model rather than to the CNS-GBM

model. However, on further investigation, we discovered that these samples represent a mixture of low-

and high-grade pediatric gliomas, including piloastrocytomas (Wu 2014; Zhang et al. 2013; Ceccarelli

2016). The SNV mutation burden of these pediatric gliomas is also similar to CNS-PiloAstro and

significantly lower than adult CNS-GBM (Figure 2.5).
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Figure 2.5: Comparison of SNV counts between PCAWG and the validation data set.
Violin charts demonstrating the distribution of the number of SNVs in the PCAWG and validation
data sets. Note that we have paired the validation set of pediatric gliomas with the PCAWG juvenile
piloastrocytoma data set. Figure adapted from: (Jiao et al. 2020).
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Figure 2.6: Prediction accuracy for the DNN against two independent validation data
sets. (a) Primary tumours. (b) Metastatic tumours. Each row corresponds to the true tumour type;
columns correspond to the class predictions emitted by the DNN. Cells are labelled with the
percentage of tumours of a particular type that were classified by the DNN as a particular type. The
recall and precision of each classifier are shown in the colour bars at the top and left sides of the
matrix. Due to rounding of values, some rows add up to slightly more or less than 100%. Figure
adapted from: (Jiao et al. 2020).

2.3.6 Validation on an Independent Set of Metastatic Tumors

To evaluate the ability of the classifier to correctly identify the type of the primary tumour from a

metastatic tumour sample, we developed an independent validation data set that combined a published
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series of 92 metastatic Panc-AdenoCA (Aung 2018) with an unpublished set of 2,028 metastatic tumours

from known primaries across 16 tumour types recently sequenced by the Hartwig Medical Foundation

(HMF) (Priestley et al. 2019), resulting in a combined set of 2,120 samples across 16 tumour types (Table

2.5). All metastatic samples were subjected to paired-end WGS sequencing of tumour and normal at a

tumour coverage of at least 65x, but the computational pipelines used for alignment, quality filtering,

and SNV calling were different from those used for PCAWG. In addition, samples from the HMF dataset

were obtained using a needle biopsy which can limit spatial heterogeneity in the sequenced sample. The

rules for matching classifier output to the validation set class labels were developed in advance of the

experiment, and the DNN classifier was applied to the molecular data from the validation set in a blind

fashion.

When the DNN classifier was applied to these metastatic samples it achieved an overall accuracy of

83% for identifying the type of the known primary (Figure 2.4b), which is similar to its performance on

the validation primaries. Seven of the tumour types in the metastatic set achieved recall rates of 0.80 or

higher, including Breast-AdenoCA (0.97), Kidney (0.96), Panc-AdenoCA (0.94), Prost-AdenoCA (0.86),

Skin-Melanoma (0.85), ColoRect-AdenoCA (0.85), and Lung (0.83). On the other end of the spectrum,

four tumour types failed to achieve a recall of at least 0.50: Head-SCC (0.38), Uterus-AdenoCA (0.30),

Stomach-AdenoCA (0.23), and Thyroid-AdenoCA (0.08). Overall, the patterns of misclassification were

similar to what was seen within PCAWG. For example, the gastric cancers were misclassified as oesopha-

gal tumours 53% of the time.

In contrast to the other tumour types, metastatic thyroid adenocarcinoma was a clear outlier. In

this case, the DNN was unable to correctly identify a great majority of the 13 metastatic samples,

classifying them instead as other tumour types such as Kidney, Panc-Endocrine, Prost-AdenoCA or

Breast-AdenoCA. We lack information on the histological subtype of the metastatic thyroid tumours in

the HMF data set, but speculate that the metastatic thyroid tumours in this set are enriched in more

aggressive histological subtypes than the PCAWG primaries, which are exclusively of low-grade papillary

(N=31), papillary-follicular (N=18) and papillary-columnar (N=1) types.

The HMF data set also included 62 CUPs tumours. While we do not know the corresponding primary

for these samples, we did attempt to classify them (Table 2.6). The CUPs cases were most frequently

classified as Liver-HCC (N=10; 16%), Lung-AdenoCA (N=9; 15%) and Panc-AdenoCA (N=8; 13%).

Reassuringly, despite the fact that information on the sex chromosomes were not used by the classifier,

almost all the CUPS tumours classified as gynaecological tumours (Breast-AdenoCA, N=5; Uterus-

AdenoCA, N=2) came from female patients except one patient with a low confidence prediction.
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Table 2.6: Sample information and top 3 predictions for cancers of unknown primary.

Patient Sex Rank 1 Rank 2 Rank 3

HMF Sample

ID

sample237 FEMALE Panc.Endocrine (0.48) Breast.AdenoCA (0.23) Kidney.RCC (0.12)

sample347 FEMALE Panc.Endocrine (0.42) Kidney.RCC (0.28) Liver.HCC (0.21)

sample396 FEMALE Lung.AdenoCA (1) Skin.Melanoma (0) CNS.GBM (0)

sample474 MALE Stomach.AdenoCA (0.82) Panc.AdenoCA (0.09) Eso.AdenoCA (0.06)

sample487 FEMALE Head.SCC (0.42) Breast.AdenoCA (0.16) Prost.AdenoCA (0.14)

sample492 FEMALE Head.SCC (0.37) Breast.AdenoCA (0.17) Lung.SCC (0.15)

sample584 FEMALE ColoRect.AdenoCA (0.58) Stomach.AdenoCA (0.32) Kidney.RCC (0.1)

sample610 MALE Lymph.BNHL (1) Lymph.CLL (0) Stomach.AdenoCA (0)

sample694 MALE Stomach.AdenoCA (0.9) Panc.AdenoCA (0.1) Eso.AdenoCA (0)

sample713 FEMALE Kidney.RCC (0.44) Liver.HCC (0.38) Prost.AdenoCA (0.07)

sample744 FEMALE Kidney.RCC (0.7) Prost.AdenoCA (0.09) Bone.Osteosarc (0.06)

sample777 NaN Liver.HCC (0.84) Panc.AdenoCA (0.08) Panc.Endocrine (0.02)

sample811 NaN ColoRect.AdenoCA (0.94) Lymph.BNHL (0.06) Liver.HCC (0)

sample896 FEMALE Bone.Osteosarc (0.42) Lung.AdenoCA (0.17) Kidney.RCC (0.12)

sample907 MALE Lung.AdenoCA (1) Lung.SCC (0) Skin.Melanoma (0)

sample934 FEMALE Lung.AdenoCA (1) Lung.SCC (0) Stomach.AdenoCA (0)

sample945 MALE Liver.HCC (0.64) Breast.AdenoCA (0.18) Panc.AdenoCA (0.04)

sample972 MALE Liver.HCC (1) Kidney.RCC (0) Breast.AdenoCA (0)

sample1016 MALE Liver.HCC (0.78) Panc.AdenoCA (0.07) Panc.Endocrine (0.06)

sample1034 FEMALE Lung.AdenoCA (0.9) Lung.SCC (0.1) Stomach.AdenoCA (0)

sample1091 MALE ColoRect.AdenoCA (0.96) Stomach.AdenoCA (0.04) Eso.AdenoCA (0)

sample1145 MALE Kidney.RCC (0.33) Liver.HCC (0.23) Panc.AdenoCA (0.21)

sample1218 MALE Breast.AdenoCA (0.42) Head.SCC (0.18) Uterus.AdenoCA (0.1)

sample1219 MALE Lung.SCC (1) Uterus.AdenoCA (0) Lung.AdenoCA (0)

sample1222 MALE Lung.AdenoCA (1) Lung.SCC (0) Ovary.AdenoCA (0)

sample1254 FEMALE Uterus.AdenoCA (0.36) Prost.AdenoCA (0.32) CNS.Medullo (0.13)

sample1275 MALE Eso.AdenoCA (0.39) Panc.AdenoCA (0.29) Stomach.AdenoCA (0.2)

sample1288 MALE Panc.AdenoCA (0.35) Liver.HCC (0.25) Lung.AdenoCA (0.11)

sample1336 MALE Head.SCC (0.48) Lung.SCC (0.24) Bone.Osteosarc (0.11)

sample1379 FEMALE Breast.AdenoCA (0.94) Prost.AdenoCA (0.05) CNS.Medullo (0)

sample1483 MALE Lung.SCC (1) Lung.AdenoCA (0) Uterus.AdenoCA (0)

sample1529 MALE CNS.Medullo (0.26) Breast.AdenoCA (0.22) Thy.AdenoCA (0.21)

sample1576 MALE Panc.AdenoCA (0.68) Stomach.AdenoCA (0.12) Prost.AdenoCA (0.11)

sample1639 FEMALE Liver.HCC (1) Kidney.RCC (0) Panc.Endocrine (0)

sample1686 MALE Panc.AdenoCA (0.72) Eso.AdenoCA (0.18) Stomach.AdenoCA (0.1)

sample1773 MALE ColoRect.AdenoCA (0.71) Panc.AdenoCA (0.29) Stomach.AdenoCA (0)

sample1808 FEMALE Breast.AdenoCA (0.98) Lung.AdenoCA (0) ColoRect.AdenoCA (0)

sample1817 FEMALE Lung.AdenoCA (1) Lung.SCC (0) Ovary.AdenoCA (0)

sample1877 FEMALE Liver.HCC (0.47) Kidney.RCC (0.31) Prost.AdenoCA (0.15)

sample1927 MALE Head.SCC (0.54) Lung.SCC (0.42) Breast.AdenoCA (0.01)

sample1954 MALE Lung.AdenoCA (1) Lung.SCC (0) Stomach.AdenoCA (0)

sample2077 FEMALE Uterus.AdenoCA (0.97) ColoRect.AdenoCA (0.01) Ovary.AdenoCA (0.01)

sample2080 FEMALE Lung.AdenoCA (1) Lung.SCC (0) Panc.Endocrine (0)

sample2082 FEMALE Breast.AdenoCA (1) Head.SCC (0) Uterus.AdenoCA (0)

sample2102 FEMALE Stomach.AdenoCA (0.66) ColoRect.AdenoCA (0.13) Uterus.AdenoCA (0.1)

sample2140 FEMALE ColoRect.AdenoCA (0.62) Stomach.AdenoCA (0.2) Panc.AdenoCA (0.11)

sample2215 MALE Panc.AdenoCA (0.87) Stomach.AdenoCA (0.05) Eso.AdenoCA (0.03)

Continued on next page
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Patient Sex Rank 1 Rank 2 Rank 3

HMF Sample

ID

sample2242 FEMALE Uterus.AdenoCA (0.58) Ovary.AdenoCA (0.39) Prost.AdenoCA (0.01)

sample2324 MALE Liver.HCC (0.4) Panc.AdenoCA (0.3) Kidney.RCC (0.16)

sample2325 MALE Skin.Melanoma (1) Bone.Osteosarc (0) Breast.AdenoCA (0)

sample2327 FEMALE Panc.AdenoCA (0.21) Kidney.RCC (0.17) Kidney.ChRCC (0.12)

sample2337 MALE Liver.HCC (0.43) Panc.Endocrine (0.17) Kidney.RCC (0.12)

sample2361 FEMALE Panc.AdenoCA (1) Eso.AdenoCA (0) Stomach.AdenoCA (0)

sample2390 FEMALE Head.SCC (0.48) Lung.SCC (0.37) Prost.AdenoCA (0.06)

sample2436 FEMALE Breast.AdenoCA (0.6) Head.SCC (0.2) Bone.Osteosarc (0.1)

sample2466 MALE Eso.AdenoCA (0.46) Panc.AdenoCA (0.19) Stomach.AdenoCA (0.17)

sample2478 MALE Panc.AdenoCA (0.41) Liver.HCC (0.33) Lung.AdenoCA (0.1)

sample2493 MALE Liver.HCC (0.53) Kidney.RCC (0.34) Panc.AdenoCA (0.07)

sample2529 MALE Panc.Endocrine (0.21) Kidney.ChRCC (0.2) Lung.AdenoCA (0.2)

sample2641 FEMALE Lung.AdenoCA (1) Ovary.AdenoCA (0) Lung.SCC (0)

sample2826 MALE Liver.HCC (1) Panc.Endocrine (0) ColoRect.AdenoCA (0)

sample2859 MALE ColoRect.AdenoCA (0.99) Stomach.AdenoCA (0.01) Eso.AdenoCA (0)

2.4 Discussion

Cancer of unknown primary site (CUPS) is a heterogeneous set of cancers diagnosed when a patient

presents with metastatic disease, but despite extensive imaging, pathological and molecular studies the

primary cannot be determined (Greco 2013). CUPS accounts for 3-5% of cancers, making it the seventh

to eighth most frequent type of cancer and the fourth most common cause of cancer death (Pavlidis

et al. 2003). Even at autopsy, the primary cannot be identified roughly 70% of the time (Ferracin et al.

2011), suggesting regression of the primary in many CUPS cases. CUPS is a clinical dilemma, because

therapeutic options are largely driven by tissue of origin, and cancer-specific therapy is more effective

than broad-spectrum chemotherapy (Greco 2013). A related diagnostic challenge arises, paradoxically,

from the medical community’s success in treating cancers and the rising incidence of second primary

cancers, now estimated at roughly 16% of incident cancers (Travis 2006). Pathologists are often asked to

distinguish a late metastatic recurrence of a previously treated primary from a new unrelated primary.

However, histopathology alone may be inaccurate at identifying the site of origin of metastases. In

one study (Sheahan 1993), pathologists who were blinded to the patient’s clinical history were able to

identify the primary site of a metastasis no more than 49% of the time when given a choice among 11

adenocarcinomas. When asked to rank their guesses, the correct diagnosis was among the top 3 choices

just 76% of the time.

In this paper, we used the largest collection of uniformly processed primary cancer whole genomes

assembled to date to develop a supervised machine learning system capable of accurately distinguishing

24 major tumour types based solely on features that can be derived from DNA sequencing. The accuracy

of the system overall when applied in a cross-validation setting was 91%, with 20 of the 24 tumour types

achieving an F1 score of 0.83 or higher. When the tumour type predictions were ranked according to

their probability scores, the correct prediction was found among the top three rankings 98% of the time.

When applied to external validation data sets, the classifier achieved predictive accuracies of 88% and

83% respectively for primary and metastatic tumours. The modestly reduced accuracy in the validation

sets is likely due to their differing somatic mutation-calling pipelines, which used different quality-control
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filters, genome builds and SNV callers from the specimens in the training set.

The regional distribution of somatic passenger mutations across the genome was the single most

predictive class of feature, followed by the distribution of mutation types. The regional density of

somatic mutations is thought to reflect chromatin accessibility to DNA repair complexes, which in turn

relates to the epigenetic state of the cancer’s cell of origin. The DNN’s predictive accuracy is therefore

largely driven by a cell of origin signal, aided to a lesser extent by signatures of exposure. The observation

that the classifier was able to identify the site of origin for metastatic and primary tumours with similar

accuracy suggests that the cell of origin and exposure signals are already established in the early cancer

(or its precursor cell) and are not masked by subsequent mutations that occur during tumour evolution.

Unexpectedly, the distribution of functional mutations across driver genes and pathways were poor

predictors of tumour type in all but a few tumour types. This surprising finding may be explained by

the observation that there are relatively few driver events per tumour (mean 4.6 events per tumour

(Sabarinathan et al. 2017)), and affect a set of common biological pathways related to the hallmarks of

cancer (Hanahan and Weinberg 2011). This finding may also explain the observation that automated

prediction of tumour type by exome or gene panel sequencing has so far met with mixed success (see

below).

There was considerable variability in the classification accuracy among tumour types. In most cases

tumour types that were frequently confused with each other had biological similarities such as related

tissues or cells of origin. Technical issues that could degrade predictive accuracy include uneven sequenc-

ing coverage, low sample purity, inadequate numbers of samples in the training set, and tumour type

heterogeneity. Mutational patterns associated with exposure to chemotherapy may also have an impact

on overall performance. Many of the samples from the HMF dataset were sequenced following exposure

to chemotherapy, which has a marked effect on mutation types observed in a tumour (Pich et al. 2019).

Statistical methods to remove mutations associated with chemotherapy and sequencing artefacts may

improve model performance. A larger collection of tumours with WGS would allow us to improve the

classifier accuracy as well as to train the classifier to recognize clinically-significant subtypes of tumours.

There are other ways of identifying the site of origin of a tumour. In cases in which the tumour

type is uncertain pathologists frequently apply a series of antibodies to tissue sections to detect tissue-

specific antigens via immunohistochemistry (IHC). The drawback of IHC is that it requires manual

interpretation, and the decision tree varies according to the differential diagnosis (D’cruze et al. 2013).

Furthermore, IHC is known to be confounded by the loss of antigens in poorly differentiated tumours

(Bahrami, Truong, and Ro 2008). In principle, tumour differentiation state should not impact the

performance of our classifier because it relies on the distribution of passenger mutations, most of which

are already established at the time of tumour initiation. Because of the many different grading systems

applied across the PCAWG set a direct test of this notion is difficult, but we are reassured that the

independent set of metastases, which frequently represent a higher grade than the primary, performed

as well as the external primary tumour validation set.

An alternative to IHC is molecular profiling of tumours using mRNA or miRNA expression, and

several commercial systems are now available to identify the tissue of origin using microarray or qRT-

PCR assays (Ferracin et al. 2011; Monzon and Koen 2010; Bridgewater et al. 2008). A recent comparative

review (Monzon and Koen 2010) of five commercial expression-based kits reported overall accuracies

between 76 and 89%; the number of tumour types recognized by each system ranges from six to 47 with

accuracy tending to decrease as the number of discriminated types increases.



Chapter 2. Tumour typing using patterns of somatic mutations 59

Patterns of DNA methylation are also strongly correlated with the tissue of origin. A recent report

(Capper 2018) demonstrated highly accurate classification of more than 70 central nervous system tu-

mour types using a Random Forest classifier trained on methylation array data. Another recent report

(Shen 2018) showed that an immunoprecipitation-based protocol can recover circulating tumour DNA

from patient plasma and accurately distinguish among three tumour types (lung, pancreatic and AML)

based on methylation patterns.

Previous work in the area of DNA-based tumour type identification has used targeted gene panel

(Tothill 2013) and whole exome (Chen et al. 2015; Soh et al. 2017; Marquard 2015) sequencing strategies.

The targeted gene-based approach described in Tothill (Tothill 2013) is able to discriminate a handful

of tumour types that have distinctive driver gene profiles, and can identify known therapeutic response

biomarkers, but does not have broader applicability to the problem of tumour typing. In contrast, the

whole exome sequencing approaches reported by Marquard (Marquard 2015), Chen (Chen et al. 2015),

and Soh (Soh et al. 2017) and each used machine learning approaches to discriminate among 10, 17,

and 28 primary sites respectively, achieving overall accuracies of 69%, 62%, and 78%. Interestingly, all

three papers demonstrated that classifiers built on multiple feature categories outperformed those built

on a single type of feature, consistent with our findings. We demonstrate here that the addition of whole

genome sequencing data substantially improves discriminative ability over exome-based features. It is

also worth noting that Soh (Soh et al. 2017) was able to achieve good accuracy using SNVs and CNAs

spanning just 50 genes, suggesting that it may be possible to retain high classifier accuracy while using

mutation ascertainment across a well-chosen set of whole genomic regions.

In practical terms, whole genome sequencing and analysis of cancers is becoming increasingly cost

effective, and there is an accelerating trend to apply genome sequencing to routine cancer care in order

to identify actionable mutations and to test for the presence of predictive biomarkers. An example

of the trend is the National Health Service of the UK, which recently announced a plan to apply

WGS routinely to cancer patients (Sample 2018). Given the increasing likelihood that many or most

cancers will eventually have genomic profiling, it is attractive to consider the possibility of simultaneously

deriving the cancer type using an automated computational protocol. This would serve as an adjunct

to histopathological diagnosis, and could also be used as a quality control check to flag the occasional

misdiagnosis or to find genetically unusual tumours. More forward-looking is the prospect of accurately

determining the site of origin of circulating cell-free tumour DNA detected in the plasma using so-called

liquid biopsies (Chu and Park 2017), possibly in conjunction with methylome analysis(Capper 2018;

Shen 2018). As genome sequencing technologies continue to increase in sensitivity and decrease in cost,

there are realistic prospects for blood tests to detect early cancers in high risk individuals (Han, Wang,

and Sun 2017). The ability to suggest the site and histological type of tumours detected in this way

would be invaluable for informing the subsequent diagnostic workup.

In summary, this is the first study to demonstrate the potential of whole genome sequencing to

distinguish major cancer types on the basis of somatic mutation patterns alone. Future studies will focus

on improving the classifier performance by training with larger numbers of samples, subdividing tumour

types into major molecular subtypes, adding new feature types, and adapting the technique to work

with clinical specimens such as those from formalin-fixed, paraffin-embedded biopsies and cytologies.
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2.5 Materials and methods

PCAWG Training and Testing Data Set

All variant call data were downloaded from the ICGC Portal, and all file names given here are

relative to this path. Note that controlled tier access credentials are required from the ICGC and TCGA

projects as described in PCAWG-Data. The consensus Somatic SNV and INDEL files (consensus_snv_

indel/final_consensus_snv_indel_passonly_icgc.open.tgzand ) covers 2778 whitelisted samples

from 2583 donors. Consensus SV calls from the PCAWG Structural Variation Working Group were

downloaded in VCF format (consensus_sv/final_consensus_sv_vcfs_passonly.icgc.controlled.

tgz and final_consensus_sv_vcfs_passonly.tcga.controlled.tgz). Ploidy and purity information

are from the PCAWG Evolution and Heterogeneity Working Group and driver events were called by

the PCAWG Drivers and Functional Interpretation Group (Rheinbay et al. 2020). Tumour histological

classifications were reviewed and assigned by the PCAWG Pathology and Clinical Correlates Working

Group (annotation version 9, August 2016; clinical_and_histology/pcawg_specimen_histology_

August2016_v9.xlsx). For model training, we first removed all samples that had been flagged as

exhibiting microsatellite instability (MSI) by the PCAWG Technical Working Group (msi/MS_analysis.

PCAWG_release_v1.RIKEN.xlsx). In a small number of cases, the same donor contributed both primary

and metastatic tumour specimens to the PCAWG data set. In these cases we used only the primary

tumor for training and evaluation, except for the case of the small cohort of myeloproliferative neoplasms

(Myeloid-MPN; N=55 samples), for which multiple primary samples were available. In this case, we used

up to two samples per donor and partitioned the training and testing sets to avoid having the same donor

appear more than once in any training/testing set trial.

Independent validation data set: Primary and Metastatic Tumours

To independently validate the neural network-based classifier, we assembled several sets of tumours

that had been subject to whole genome sequencing outside of PCAWG (Table 2.5). The primary tumour

validation data set consisted of 1236 primary tumours contributed by colleagues participating in the

PCAWG Mutational Signatures Working Group and described in (Alexandrov et al. 2020). These

represent 12 tumour types overlapping with PCAWG types collected from a variety of published studies,

non-PCAWG donors submitted to the ICGC data portal (http://dcc.icrg.org), and donors present

in the COSMIC database (http://cancer.sanger.ac.uk/cosmic). These independent primaries were

supplemented using WGS data from 200 advanced primary pancreatic ductal adenocarcinomas (Panc-

AdenoCA) derived from the COMPASS Trial (Aung 2018) and used with the gracious permission of

Dr. Steven Gallinger. In all, the primary tumour validation set contained 1436 primary tumour samples

across 12 tumour types. Only tumour types with 10 or more representatives were used for testing.

The metastatic tumour validation data set was derived from SNV calls on 2028 metastatic tumours

across 16 tumour types, provided by the Hartwig Medical Foundation (HMF data set). They are a subset

of 2090 total samples provided by Dr. Edwin Cuppen with matched PCAWG histology subtypes and are

described in Table 2.5 and Priestley (Priestley et al. 2019). We supplemented this set with 92 metastatic

pancreatic ductal adenocarcinomas to the liver from the COMPASS Trial, for a total of 2120 metastatic

tumours. As for the primaries, only tumour types with 10 or more representatives were tested. Although

the sequencing technologies and genome coverage are comparable among the PCAWG training set and

the independent validation data sets, a mixture of different human genome builds, alignment algorithms

and SNV calling algorithms were used for the validation data sets. We did not attempt to recall the

SNVs, but did lift the genome coordinates of samples that had been aligned to other genome builds to

http://dcc.icgc.org/releases/PCAWG/
https://docs.icgc.org/pcawg/data/
consensus_snv_indel/final_consensus_snv_indel_passonly_icgc.open.tgz
consensus_snv_indel/final_consensus_snv_indel_passonly_icgc.open.tgz
final_consensus_snv_indel_tcga.controlled.tgz
consensus_sv/final_consensus_sv_vcfs_passonly.icgc.controlled.tgz
consensus_sv/final_consensus_sv_vcfs_passonly.icgc.controlled.tgz
final_consensus_sv_vcfs_passonly.tcga.controlled.tgz
clinical_and_histology/pcawg_specimen_histology_August2016_v9.xlsx
clinical_and_histology/pcawg_specimen_histology_August2016_v9.xlsx
msi/MS_analysis.PCAWG_release_v1.RIKEN.xlsx
msi/MS_analysis.PCAWG_release_v1.RIKEN.xlsx
http://dcc.icrg.org
http://cancer.sanger.ac.uk/cosmic
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hg19 by CrossMap (Version 0.2.5).

Human Studies Approval

All patients who donated to the PCAWG, COMPASS and HMF data sets consented to international

data sharing and secondary analysis of their genomes (Aung 2018; Priestley et al. 2019; “International

network of cancer genome projects” 2010). Permission to reanalyze these data was granted by the

University of Toronto’s Research Ethics Board.

Somatic Mutation Feature Sets

Mutational type features are based on all point substitutions (single nucleotide variations; SNVs).

For each sample, SNVs are categorized across the six possible single nucleotide changes (A >C, A >G,

A >T, C >A, C >G, C >T), the 48 possible nucleotide changes plus their 5′ or 3′ flanking base, and

the 96 possible nucleotide changes plus both flanking nucleotides. This generates 150 mutational type

features in total. The counts in each category are then normalized to the total number of SNVs in the

sample, and then represented as Z-scores.

Mutational distribution features are the number of SNVs, small indels, structural variation (SV)

breakpoints, and somatic copy number variations (CNVs) in each 1 megabase bins across the genome.

The total number of SNV, indel and SV counts in each bin were normalized to the total number of

the corresponding mutational events across the genome. When the model being used is a deep neural

network, SNV distribution features were represented as the raw SNV counts. In addition, we generated

the following features: (1) the total numbers of each type of mutational event per genome; (2) the number

of each type of mutational event per chromosome, normalized by chromosome length; (3) sample purity

values; and (4) sample ploidy. In total, there are 2897 SNV+indel, 2826 CNV, and 2929 SV features.

For the initial selection of feature types, we tested all mutational distribution features. However, the

final neural network used SNV features only.

Driver gene and pathway features were derived from the driver event list generated by the PCAWG

Drivers and Functional Interpretation Working Group (Rheinbay et al. 2020). This list contains driver

events in coding genes, as well as events that affect miRNA and lncRNAs. We generated a boolean matrix

from the list in which each row is a tumour sample and each column is a driver event. To mutations

to pathways, we selected any non-synonymous SNV affecting a gene in a pathway, regardless of its

putative driver status. These SNVs were then assigned to 1,865 pathways from the Reactome resource

(http://www.reactome.org, version 58) (Croft 2014). A pathway feature was scored as positive if it

contained at least one driver gene. Because a gene may be contained within more than one pathway, it

is possible for a single driver gene event to generate two or more positive pathway features.

Machine learning procedure - Random Forest

For each of the 24 cancer types selected from the PCAWG sample set, we first used Random Forest

(Breiman 2001) model to train classifiers for each cancer type on each of the feature categories described

in the above section. The data sets were Z-score normalized across the samples before training. We used

nested cross validation to train and test the performance of the classifiers. In the outer loop, the data

set was divided into four folds and each fold was later used as an independent testing set. In the inner

loop, the training portion of the data set was split into three folds and each fold was used as validation

data set to fine-tune the hyperparameters. In the inner loop, we first used a chi-squared test to filter

out non-informative (V coefficient equals to 0) features. Then we tuned two hyperparameters for the

Random Forest model to achieve the highest cross-validation F1 score. The two hyperparameters were

the sample size for positive versus negative classes and the number of trees. We used the default R

http://www.reactome.org
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randomForest package parameter settings to sample the square root of the number of features at each

split of the tree. The code was written in R (version 3.3.0). The main packages used were MLR (version

2.11) and randomForest (4.6-12) in training the model.

Machine learning procedure - Neural Network

We ultimately used a fully-connected, feed-forward neural network for the classification of the 24

cancer types based on SNV type and mutational distribution alone. The network had a softmax output,

which can be interpreted as a probability distribution of the 24 types. The predicted tumour type was

selected by taking the type with the greatest softmax probability.

We used a Bayesian optimization approach to select hyperparameters (Snoek, Larochelle, and Adams

2012). Prior to training, data from PCAWG was split into training, validation and test sets 10 times to

create 10 different partitions over the full dataset. For each of the 10 partitions, hyperparameters were

selected by optimizing performance on the validation data for that partition. We used the ‘gp minimize‘

function from the scikit-optimize 0.5.2 python library (Head et al. 2018) to select the following hyperpa-

rameters: learning rate for Adam, L2-regularization penalty (otherwise known as weight decay), dropout

rate (Srivastava et al. 2014), the number of hidden layers, the number of neurons per hidden layer, and

activation function. Each model was trained using Adam (Kingma and Ba 2014) with a batch-size

of 32 for 50 epochs. All hyperparameters of Adam other than learning rate were set to the default

values specified in the original paper (Kingma and Ba 2014). Bias values were initialized as 0, and all

other network weights were initialized using a glorot uniform distribution (Glorot and Bengio 2010). The

model was evaluated with 200 hyperparameter combinations (i.e., 200 calls to ‘gp minimize‘ were made).

Briefly, ‘gp minimize‘ approximates a function of model performance based on the hyperparameters with

a Guassian Process. For each function call to ‘gp minimize‘, the performance on the current set of hy-

perparameters is evaluated by training the neural network, and assessing accuracy on the validation set.

Based upon this accuracy, the Guassian Process is updated, and a new set of hyperparameters is chosen

by optimizing an acquisition function. We used expected improvement as the acquisition function. After

hyperparameter optimization, model performance was assessed independently on the corresponding test

set for that split. Table 2.7 describes the settings for each of the folds for these hyperparameters. This

procedure was repeated for each set of mutational features used for performing classification: SNV Dis-

tribution SNV Type and SNV Distribution, Driver Genes and Pathways, and all features. A complete

description of the optimal hyperparameters and classification accuracy for each feature set on each of the

10 data partitions is described in Table 2.8. For evaluation on independent datasets, an ensemble of each

of the 10 neural networks (one for each data partition) trained using SNV Type and SNV Distribution

features was used. The ensemble is constructed by taking the mean of the softmax output from each of

the 10 neural networks.
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Table 2.7: Hyperparameter ranges for Bayesian optimization.

Range

Hyperparameter

Learning Rate 1E-4, 1E-2

L2-Penalty 1E-3, 0.50

Dropout Rate (1E-06, 0.50

Number of Layers (0,5)

Number of Neurons/Layer -51,024

Activation Function (relu, softplus)

In order to compare the accuracy of these models with models trained on different feature sets, the

procedure above was repeated using driver genes/pathways as input, and again by appending the driver

genes/pathways features to the SNV features used above. The final hyperparameter values and model

accuracies for each of the trained models is described in 2.8. Each model was implemented and trained

in Tensorflow 1.10.0 (Abadi et al. 2015) and Keras 2.1.5 (Chollet 2015). All code was written in Python

3.6.

Table 2.8: Hyperparameters selected by Bayesian optimization and their test set
accuracy for classifiers trained. Optimal hyperparameter setting found using Bayesian
optimization for each feature set. Model refers to the data partition the model was trained on. L2
refers to the L2-penalty value used. Dropout refers to the dropout rate used during training. Layers
refers to the number of hidden layers. Units refers to the number of units or neurons in each hidden
layer. Activation refers to the activation function used. Accuracy is calculated on the held-out dataset
corresponding to the data partition used to train the model.

Model Learning Rate L2 Dropout Layers Units Activation Accuracy

Features

SNV Type, Distribution 1 0.000195 0.001000 0.000001 4 1024 relu 90.61%

SNV Type, Distribution 2 0.000224 0.001648 0.000003 3 630 relu 88.62%

SNV Type, Distribution 3 0.000167 0.001000 0.000001 3 1024 relu 92.95%

SNV Type, Distribution 4 0.000139 0.010037 0.284099 3 1024 relu 92.31%

SNV Type, Distribution 5 0.000246 0.001000 0.000001 3 1024 softplus 91.29%

SNV Type, Distribution 6 0.000163 0.001000 0.000001 3 826 relu 91.90%

SNV Type, Distribution 7 0.000219 0.001000 0.000079 4 898 relu 90.87%

SNV Type, Distribution 8 0.000100 0.010160 0.500000 1 871 softplus 90.16%

SNV Type, Distribution 9 0.000100 0.001000 0.000001 4 1024 relu 91.21%

SNV Type, Distribution 10 0.000100 0.001000 0.500000 1 630 softplus 91.43%

SNV Distribution 1 0.000216 0.006148 0.004842 3 565 relu 88.57%

SNV Distribution 2 0.000179 0.004249 0.001972 3 716 relu 88.62%

SNV Distribution 3 0.000100 0.001000 0.000017 3 685 relu 90.04%

SNV Distribution 4 0.000320 0.001000 0.052849 3 594 softplus 89.88%

SNV Distribution 5 0.000100 0.003040 0.000001 5 1024 relu 84.23%

SNV Distribution 6 0.000100 0.010714 0.000014 3 832 relu 87.85%

SNV Distribution 7 0.000100 0.001000 0.000001 5 720 softplus 88.38%

SNV Distribution 8 0.000147 0.001126 0.000114 3 852 softplus 88.11%

SNV Distribution 9 0.000329 0.002539 0.003819 3 555 relu 88.70%

SNV Distribution 10 0.000100 0.005926 0.000001 3 1024 softplus 89.39%

All Features 1 0.000425 0.010749 0.000001 2 607 relu 91.02%

All Features 2 0.000100 0.005008 0.000001 3 817 softplus 91.87%

All Features 3 0.000100 0.007431 0.000068 3 1024 relu 90.04%

All Features 4 0.000100 0.001000 0.000001 5 1024 softplus 89.47%

All Features 5 0.000199 0.002103 0.000628 3 795 softplus 90.46%

All Features 6 0.000399 0.031042 0.000001 2 524 relu 89.88%

All Features 7 0.000149 0.013548 0.000001 3 890 relu 92.12%

All Features 8 0.000103 0.001000 0.000001 3 1024 relu 89.34%

All Features 9 0.000100 0.003077 0.000536 5 784 relu 89.96%

All Features 10 0.000219 0.001000 0.019526 4 1024 softplus 90.61%

Genes/Pathways 1 0.000100 0.012803 0.500000 2 530 softplus 38.78%

Genes/Pathways 2 0.000100 0.081871 0.500000 1 1024 softplus 34.96%

Genes/Pathways 3 0.000100 0.001000 0.500000 3 434 softplus 36.93%

Genes/Pathways 4 0.000100 0.120758 0.000049 1 308 softplus 40.49%

Continued on next page



Chapter 2. Tumour typing using patterns of somatic mutations 64

Model Learning Rate L2 Dropout Layers Units Activation Accuracy

Features

Genes/Pathways 5 0.000100 0.067909 0.000003 1 371 relu 35.68%

Genes/Pathways 6 0.000100 0.087498 0.500000 1 194 relu 44.94%

Genes/Pathways 7 0.000103 0.002803 0.499240 3 789 relu 41.49%

Genes/Pathways 8 0.000138 0.480229 0.031914 1 67 relu 43.44%

Genes/Pathways 9 0.000100 0.104290 0.000001 2 470 relu 38.91%

Genes/Pathways 10 0.000100 0.018117 0.500000 2 358 softplus 39.59%

Definitions of Accuracy Metrics

To measure the performance of the classifiers, we use the conventional definitions of recall, precision,

F1 score and accuracy. In the descriptions below, we use the abbreviations TP (true positive), TN (true

negative), FP (false positive), and FN (false negative) to describe correct and incorrect assignments of

an unknown tumour to a predicted type:

Recall: The proportion of samples of a particular histopathological type that are correctly assigned

to that type:

Recall = TP/(TP + FN) (2.1)

Precision: The proportion of samples assigned to a particular type that are truly that type:

Precision = TP/(TP + FP ) (2.2)

F1 score: The harmonic mean of recall and precision:

F1 = 2(recall ∗ precision)/(recall + precision) (2.3)

Accuracy: The proportion of correct assignments.

Accuracy = (TP + TN)/(TP + FP + TN + FN) (2.4)



Chapter 3

Addressing challenges for tumour

typing in a clinical setting

I implemented and trained all machine learning methods. Wei Jiao curated the complete dataset of

tumour samples and assessed accuracy on the two independent validation sets. I carried out all other

experiments and analyses.

3.1 Abstract

The process of tumour typing involves correctly identifying a tumour’s organ of origin and histopathol-

ogy. Despite advances in precision oncology, these two features are the strongest determinants of a

tumour’s clinical behaviour and are essential for properly understanding the tumour’s developmental

characteristics and therapeutic sensitivity. Whilst cancer type is typically available at the time of di-

agnosis, 3-5% of cancer patients present with histologically confirmed metastatic spread but no obvious

or identifiable primary tumour. This constitutes a cancer of unknown primary, a heterogeneous set of

diseases currently the 8th most common cancer diagnosis. Given that somatic mutations vary signifi-

cantly across different cancer types, somatic mutations may be used as a feature for identifying primary

tumour site. A particularly promising approach is to exploit the association between patterns of somatic

passenger mutations and cancer type. To this end, I have previously developed a deep learning classi-

fier for tumour typing based on patterns of somatic passenger mutations. The classifier can accurately

discriminate between 24 common cancer-types with an overall F1 score of 0.91. Despite the model’s

performance, several challenges remain for translating it into a clinical setting. First, there are several

uncommon and rare cancer types that the classifier cannot currently identify. Second, the model does

not provide any metrics related to the model’s predictive uncertainty. To address these challenges, I have

explored the use of uncertainty quantification in deep learning to extend the model to a greater number

of cancer types. To provide calibrated uncertainty estimates, I have assessed the calibration error of the

classifiers and used post-hoc model calibration methods to improve model calibration. Finally, using

measures of model uncertainty, I have developed a robust method for automatically detecting rare cancer

types that the model was not trained to identify.

65
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3.2 Introduction

The process of tumour typing - identifying the organ of origin and histopathology of a tumour - is

typically accomplished through histopathologic assessment, molecular testing and imaging studies. More

recently, genetic testing often supplements this process, and in some cases, the use of genome sequencing.

The use of genetic testing and genome sequencing has allowed for the presence or absence of mutant

genes to guide treatment and inform clinicians of a tumour’s biological characteristics. Despite these

advances in precision oncology, correctly identifying tumour type still forms the basis for understanding

the clinical progression of a tumour. While advances in precision oncology have allowed for treatment

and the biological characteristics of cancer growth to be informed by the presence or absence of mutant

genes, cell of origin remains the strongest predictor of a tumour’s clinical behaviour. Studies suggest

that cancer-specific therapy based on a tumour’s cell of origin is more effective than broad-spectrum

chemotherapy and that cell of origin can impact the efficacy of drugs that target specific cancer-associated

mutations (Greco 2013; Hyman et al. 2015). In most cases, primary site is available upon diagnosis,

but occasionally, patients present with cancers of unknown primary (CUPS). Correctly identifying the

primary tumour site for CUPS forms the basis of a significant diagnostic challenge and is a crucial task

for correctly guiding treatment. Patients presenting with multiple primary tumours represent a related

diagnostic challenge (Travis 2006). In this diagnostic scenario, pathologists are asked to determine if a

newly identified tumour is the result of a late metastatic recurrence of a treated primary tumour or if it

results from a new, unrelated primary tumour.

Different tumour types contain distinct patterns of somatic mutations. Studies suggest that the

spatial distribution of mutations across the genome is non-uniform and that mutation density is strongly

associated with repressive chromatin marks (Schuster-Böckler and Lehner 2012; Supek and Lehner 2015;

Polak et al. 2015). This suggests that regional mutation density may provide sufficient information for

identifying cell-type. Additionally, the study of mutational signatures - representations or proxies for

mutational processes that contributed mutations to a tumour genome - has demonstrated a relationship

between specific mutational processes and cancer type (Alexandrov et al. 2020). In Chapter 2, I made

use of the intuition that somatic mutations carry a significant amount of tumour-specific information to

develop a series of deep learning classifiers that can accurately distinguish between multiple cancer types

(Jiao et al. 2020). The classifiers were trained on data from the Pan-cancer analysis of Whole Genomes

(PCAWG), which had aggregated WGS of 2658 cancer samples across 34 histologically distinct cancer

types. These data were uniformly analyzed with the same computational pipelines. The classifier took as

input information about regional mutation density and mutational spectra within the tumour and could

distinguish between 24 cancer types with an overall accuracy of 91%. Moreover, the classifier generalized

well to additional datasets, showing an overall accuracy of 88% on an additional set of primary tumours,

and 83% on a dataset of metastatic tumours.

The classifier presented in Chapter 2 demonstrated the utility of somatic passenger mutations as

a feature for accurately identifying cancer type. Despite the impressive performance of this classifier,

multiple challenges exist for translating the model into a clinical setting. First, more than 24 cancer

types exist, and a model in a clinical setting should identify as many cancer types as possible. Second,

in a clinical setting where a classifier’s predictions may form the basis for guiding decision making for

a patient, a classifier should provide robust estimates of predictive uncertainty. Predictive uncertainty

refers to two distinct quantities of importance in a clinical setting. One notion of uncertainty refers

to in-distribution uncertainty or confidence calibration. This notion of uncertainty quantifies how well
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the model’s predictions reflect the true uncertainty for classes the model is trained to identify. That

is, in-distribution uncertainty quantifies the relationship between the model’s prediction for an input

sample and the ground truth likelihood of correctness. The second notion of uncertainty pertains to the

automatic identification of rare cancer types that the model was not trained to identify. This notion of

uncertainty, sometimes referred to as out-of-distribution (OOD) detection, uses the model’s predictive

uncertainty to determine if an input sample is anomalous or different from the data distribution used

during model training.

In this chapter, I address these challenges for translating a tumour type classifier into a clinical setting.

I implement and benchmark several algorithmic advancements for extending the classifier to a greater

number of cancer types. Using some of the same algorithmic improvements, I assess the reliability of

the model for accurately quantifying in-distribution uncertainty, and implement and benchmark several

methods for improving in-distribution uncertainty estimation. Finally, I use the uncertainty expressed

in the classifier’s predictive distribution to accurately identify samples from rare, or OOD, cancer types

that the model wasn’t trained to identify.

3.3 Results

3.3.1 Description of training data

Using data from the Pan-cancer analysis of Whole Genomes (PCAWG), the Hartwig Medical Foundation

(HMF) dataset and an independent collection of primary tumour samples, I built a series of tumour type

classifiers using sequence-based features derived from somatic SNVs. The confidence calibration of the

best performing classifiers was evaluated and improved using post-hoc calibration methods. Furthermore,

the best performing classifiers were evaluated for the task of out-of-distribution (OOD) detection on

samples of rare or uncommon cancer types that were not included during model training.

The full PCAWG data set consists of 2778 donors comprising 34 main histopathological tumour types

(Campbell et al. 2020). All samples in this dataset are uniformly analysed using the same computational

pipeline for quality-control filtering, alignment, and somatic mutation calling. For this work, when a

model is trained solely on data from PCAWG, I chose a cut off of at least 15 donors per tumour type.

In a small number of cases, the same donor contributed both primary and metastatic tumour specimens

to the PCAWG data set. In these cases, I used only the primary tumour for training and evaluation,

except for the case of the small cohort of myeloproliferative neoplasms (Myeloid-MPN; N=55 samples),

for which multiple primary samples were available. In this case, we used up to two samples per donor

and partitioned the training and testing sets to avoid having the same donor appear more than once in

any training/testing set trial. The PCAWG-only data set consisted of 2566 samples spanning 29 major

cancer types. All data used for training, validation and testing are described in Table 3.1 and Table 3.2.
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Table 3.1: Distribution of tumour types in the PCAWG training and test data sets.

Tumor Type Samples

Abbreviation

Liver-HCC Liver hepatocellular carcinoma 306

Panc-AdenoCA Pancreatic adenocarcinoma 235

Breast-AdenoCA Breast adenocarcinoma 198

Prost-AdenoCA Prostate adenocarcinoma 189

CNS-Medullo Medulloblastoma 146

Kidney-RCC Renal cell carcinoma (proximal tubules) 143

Ovary-AdenoCA Ovarian adenocarcinoma 112

Skin-Melanoma Skin melanoma 106

Lymph-BNHL Mature B-cell lymphoma 105

Eso-AdenoCA Esophageal adenocarcinoma 98

Lymph-CLL Chronic lymphocytic leukemia 95

CNS-PiloAstro Pilocytic astrocytoma 89

Panc-Endocrine Pancreatic neuroendocrine tumor 85

Stomach-AdenoCA Gastric adenocarcinoma 70

Head-SCC Head/neck squamous cell carcinoma 57

ColoRect-AdenoCA Colorectal adenocarcinoma 52

Lung-SCC Lung squamous cell carcinoma 48

Thy-AdenoCA Thyroid adenocarcinoma 48

Myeloid-MPN Myeloproliferative neoplasm 46

Kidney-ChRCC Renal cell carcinoma (distal tubules) 45

Bone-Osteosarc Sarcoma, bone 44

CNS-GBM Diffuse glioma 41

Uterus-AdenoCA Uterine adenocarcinoma 40

Lung-AdenoCA Lung adenocarcinoma 38

Biliary-AdenoCA Cholangiocarcinoma; Papillary cholangioca 35

Bone-Leiomyo Leiomyosarcoma 34

Bladder-TCC Transitional cell carcinoma; Papillary TCC 23

CNS-Oligo Oligodendroglioma 18

Cervix-SCC Squamous cell carcinoma 18

2564

Table 3.2: Distribution of tumour types in the complete dataset.

Tumor Type Samples

Abbreviation

Ovary-AdenoCA Ovarian adenocarcinom 232

CNS-PiloAstro Pilocytic astrocytoma 164

Continued on next page
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Tumor Type Samples

Abbreviation

Liver-HCC Liver hepatocellular carcinoma 472

Panc-Endocrine Pancreatic neuroendocrine tumor 122

Kidney-RCC Renal cell carcinoma (proximal tubules) 182

Prost-AdenoCA Prostate adenocarcinoma 644

ColoRect-AdenoCA Colorectal adenocarcinoma 462

Lymph-BNHL Mature B-cell lymphoma 137

Uterus-AdenoCA Uterine adenocarcinoma 87

Breast-AdenoCA Breast adenocarcinoma 1139

Lung-AdenoCA Lung adenocarcinoma 63

Panc-AdenoCA Pancreatic adenocarcinoma 686

Eso-AdenoCA Esophageal adenocarcinoma 233

Head-SCC Head/neck squamous cell carcinoma 104

CNS-Medullo Medulloblastoma 204

CNS-GBM Diffuse glioma 136

Bone-Leiomyo Leiomyosarcoma 34

Skin-Melanoma Skin melanoma 468

Lymph-CLL Chronic lymphocytic leukemia 180

Thy-AdenoCA Thyroid adenocarcinoma 61

Kidney-ChRCC Renal cell carcinoma (distal tubules) 45

Stomach-AdenoCA Stomach adenocarcinoma 100

Lung-SCC Lung squamous cell carcinoma 49

Bladder-TCC Transitional cell carcinoma; Papillary TCC 23

Biliary-AdenoCA Cholangiocarcinoma; Papillary cholangioca 34

Bone-Osteosarc Sarcoma, bone 137

Myeloid-MPN Myeloproliferative neoplasm 64

6262

To account for various sources of noise or variance that result from non-uniform processing of tumour

samples, an additional dataset was created by incorporating data from PCAWG, HMF and an indepen-

dent set of primary tumours (Jiao et al. 2020; Alexandrov et al. 2020; Priestley et al. 2019). These

data had significant differences in alignment algorithms and SNV calling algorithms. Additionally, these

samples come from a variety of genome builds. Data were not re-aligned, and SNV calling was not

redone. When a sample was not aligned to hg19, variants were lifted over so as to maintain the same

genome build for all training samples. I chose a cut off of at least 25 donors per tumour type. In total,

this dataset, called the ”complete dataset”, consisted of 6262 samples spanning 27 major cancer types.

All data used for training, validation and testing are described in Table 3.2.

3.3.2 Classification using data from PCAWG

To determine if the classifier could be extended to 29 cancer types, I trained a deep neural network on data

from PCAWG. The classifier was trained using the mutational distribution and mutational types features.
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Two different neural network architectures were compared: Deterministic Uncertainty Quantification

(DUQ) and Deep Ensemble (See ”Methods” for details) (Lakshminarayanan, Pritzel, and Blundell 2017;

Amersfoort et al. 2020). Based on the performance of previous work, I used primarily passenger derived

features for training the model. Given the strength of the association between chromatin features from

the cell of origin and regional mutation density, I made use of the mutation distribution feature for

training the model (Jiao et al. 2020). This feature is captured by dividing the genome into 3000 1-Mbp

bins across the autosomes and counting the number of somatic SNVs in each bin. Additionally, there

is an association between mutation types and cancer type. For example, lung squamous cell carcinomas

have a large amount of exposure to mutation types associated with tobacco smoke (Alexandrov et al.

2020). Similarly, skin cancers have mutation types associated with UV-radiation (Alexandrov et al.

2020). Based on this intuition, I generated an additional set of features that represented the normalized

frequency of each nucleotide change in the context of its 5′ and 3′ neighbours. Each classifier’s input

was a vector of mutational distribution concatenated with mutational type features. For both DUQ and

the deep ensemble, the core of the neural network architecture is a fully-connected feed-forward neural

network. The deep ensemble output was a probability estimate that the specimen belongs to each of the

29 cancer types being considered. An input specimen was assigned to the cancer type with the greatest

probability. The output of DUQ was a similarity metric between the input specimen and each of the 29

cancer types being considered (Amersfoort et al. 2020). An input specimen was assigned to the most

similar cancer type. Ten different training, validation and test partitions were created to evaluate the

classifiers, and each classifier was trained independently on its data partition. In the case of the deep

ensemble, this resulted in 10 sets of deep ensembles, one for each data partition. Each deep ensemble

consisted of 50 neural network classifiers (See ”Methods” for details). To improve model performance,

calibration and generalization, the training set was balanced by oversampling underrepresented cancer

types, and I included adversarial data during model training (Goodfellow, Shlens, and Szegedy 2015). I

report the overall accuracy, recall, precision and F1 score using the average across ten held-out test sets,

one for each data partition (See ”Methods” for a description of data partitions and definition of terms).

For evaluation on independent datasets, an ensemble of 10 deep ensembles (one for each data partition)

is used.

There was large variability in overall performances across tumour types and the two neural network

architectures evaluated. For the model trained with DUQ, the macro-averaged median F1 score (har-

monic mean of recall and precision) was 0.74 and had considerable variability across cancer types (Table

3.3). Average F1 score ranged from 0.05 for Biliary-AdenoCA to 0.97 for ColoRect-AdenoCA (Table

3.4). Figure 3.1 shows a heatmap summarizing the accuracy of the DUQ classifier on held-out tumours.

Overall, the accuracy across 29 tumour types was 82%, which is substantially lower than the original

version of the model, which classifiers 24 tumour types. Recall (otherwise known as sensitivity) ranged

from 0.03 (Biliary-AdenoCA) to 0.98 (Myeloid-MPN).
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Figure 3.1: Heatmap displaying the accuracy of DUQ classifier using a held-out portion
of the PCAWG data set for evaluation. Heatmap displaying the accuracy of the deterministic
uncertainty quantification classifier (DUQ) using a held-out portion of the PCAWG data set for
evaluation. Each row corresponds to the true tumor type; Columns correspond to the predictions
emitted by each of the classifiers. Cells are labeled with the proportion of tumors of a particular type
that were called a specific type by the classifier. Due to rounding of values, some rows add up to
slightly more or less than 100%.
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Table 3.3: Summary of performance metrics for the DUQ classifiers. Recall (specificity),
Precision (sensitivity) and F1 score for classification with the DUQ classifier. Performance is averaged
over 10 held-out test sets from PCAWG.

Recall (%) Precision (%) F1 score

Cancer Type

Biliary-AdenoCA 3 50 0.05

Bladder-TCC 68 65 0.67

Bone-Leiomyo 44 90 0.59

Bone-Osteosarc 77 59 0.66

Breast-AdenoCA 92 79 0.86

CNS-GBM 90 88 0.89

CNS-Medullo 91 76 0.83

CNS-Oligo 38 88 0.44

CNS-PiloAstro 90 66 0.77

Cervix-SCC 17 86 0.19

ColoRect-AdenoCA 96 98 0.97

Eso-AdenoCA 82 78 0.80

Head-SCC 81 61 0.69

Kidney-ChRCC 58 81 0.67

Kidney-RCC 94 89 0.92

Liver-HCC 96 93 0.95

Lung-AdenoCA 71 90 0.78

Lung-SCC 90 90 0.90

Lymph-BNHL 84 92 0.88

Lymph-CLL 91 79 0.84

Myeloid-MPN 98 94 0.96

Ovary-AdenoCA 92 88 0.90

Panc-AdenoCA 92 79 0.85

Panc-Endocrine 76 71 0.73

Prost-AdenoCA 92 86 0.88

Skin-Melanoma 94 99 0.97

Stomach-AdenoCA 44 74 0.54

Thy-AdenoCA 69 67 0.66

Uterus-AdenoCA 57 82 0.66
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Table 3.4: Summary of performance metrics for the three classifiers compared.
Performance metrics for the three classifiers that were trained and compared. Models labeled with
”(PCAWG)” are trained on data from PCAWG. The model labeled with ”(Complete dataset)” is
trained on a collection of data including PCAWG, HMF and independently collected primary tumours.

Macro F1 score Micro F1 score Weighted F1 score

Model

Deep Ensemble (PCAWG) 0.83 0.890 0.889

DUQ (PCAWG) 0.74 0.820 0.800

Deep Ensemble (Complete dataset) 0.82 0.897 0.896

Overall, the deep ensemble had a significantly higher F1 score with a macro-averaged F1 score of

0.83 compared to 0.74 (p=2.60e-05, Wilcoxon Signed-Rank test; Table 3.4). The overall accuracy for

classifying 29 tumour types was 89% for the deep ensemble method, which is similar to the overall

accuracy for classifying 24 cancer types described previously. The discrepancy between macro-averaged

F1 score and accuracy is a result of poor overall performance for classifying Biliary-AdenoCA (F1 score

= 0.11) and Cervix-SCC (F1 score = 0.27) (Table 3.3). The macro-averaged F1 score after excluding

these two cancer types increases to 0.87, comparable to the original version of the classifier. As before,

performance varied significantly across cancer types, and F1 score ranged from 0.11 (Biliary-AdenoCA)

to 1.00 (Skin-Melanoma). Overall, however, 22 of 29 cancer types had F1 scores of at least 0.80,

and 14 cancer types were classified with an F1 score of at least 0.90. Precision (otherwise known as

specificity) ranged from 0.64 (Head-SCC) to 1.00 (Skin-Melanoma, Kidney-ChRCC) (Figure 3.2). Recall

for the deep ensemble also showed significant variability, ranging from 0.06 (Biliary-AdenoCA) to 1.00

(ColoRect-AdenoCA, Skin-Melanoma) (Figure 3.3). Of the three worst-performing cancer types in the

original classifier, CNS-PiloAstro (F1 score = 0.81) and Lung-AdenoCA (F1 score = 0.82) had overall

improvements in performance, and only Stomach-AdenoCA saw a decrease in classification performance

(F1 score = 0.59 compared to 0.67 previously). A complete summary of the performance for the deep

ensemble trained on data from PCAWG is provided in Table 3.4.

Table 3.5: Summary of performance metrics for the deep enesmble classifiers. Recall
(specificity), Precision (sensitivity) and F1 score for classification with the deep ensemble classifier.
Performance is averaged over 10 held-out test sets from PCAWG.

Recall (%) Precision (%) F1 score

Cancer Type

Biliary-AdenoCA 6 67 0.11

Bladder-TCC 86 88 0.87

Bone-Leiomyo 65 86 0.75

Bone-Osteosarc 70 65 0.66

Breast-AdenoCA 99 94 0.96

CNS-GBM 93 78 0.85

CNS-Medullo 97 92 0.94

Continued on next page
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Recall (%) Precision (%) F1 score

Cancer Type

CNS-Oligo 66 90 0.75

CNS-PiloAstro 83 80 0.81

Cervix-SCC 24 90 0.27

ColoRect-AdenoCA 100 88 0.94

Eso-AdenoCA 88 75 0.81

Head-SCC 93 64 0.76

Kidney-ChRCC 84 100 0.89

Kidney-RCC 100 95 0.97

Liver-HCC 98 89 0.94

Lung-AdenoCA 79 86 0.82

Lung-SCC 94 94 0.94

Lymph-BNHL 99 94 0.96

Lymph-CLL 93 98 0.95

Myeloid-MPN 100 88 0.94

Ovary-AdenoCA 97 97 0.97

Panc-AdenoCA 94 86 0.90

Panc-Endocrine 86 91 0.88

Prost-AdenoCA 95 97 0.96

Skin-Melanoma 99 100 1.00

Stomach-AdenoCA 51 75 0.59

Thy-AdenoCA 90 86 0.87

Uterus-AdenoCA 92 88 0.90

3.3.3 Patterns of misclassification

When the deep ensemble made misclassifications, they tended to reflect shared biological character-

istics between the tumours that may influence patterns of somatic SNVs in their genomes. Similar

to the original classifier, Stomach-AdenoCA is frequently misclassified as oesophageal adenocarcinoma

(Eso-AdenoCA, 27% misclassification rate). These organs share a common developmental origin in the

embryonic foregut, which may lead to common epigenetic profiles. As the mutation distribution feature

aims to represent epigenetic profiles, common cell-of-origin may result in similarities in regional mutation

density for these tumour types. Common patterns of mutational signatures, particularly to mutation

signature 17, may also provide an explanation for misclassifications (Jiao et al. 2020). Another possible

explanation for misclassification for gastric and oesophageal tumours is the difficulty in identifying the

origin of tumours that arose at the gastroesophageal junction. As with the original classifier, a small

number of misclassifications occur between cancers of the central nervous system (CNS). Specifically,

CNS-Oligo is occasionally identified as CNS-GBM (24% misclassification rate), and CNS-PiloAstro is

misidentified as CNS-Medullo (9% misclassification rate). CNS-PiloAstro and CNS-Medullo represent

the two pediatric tumours in the dataset, suggesting that some of these misclassifications may be due

to the relatively low mutation burden for these tumours (Jiao et al. 2020).

Another common source of misclassifications came from Biliary-AdenoCA, which was often identified
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Figure 3.2: Heatmap displaying the accuracy of deep ensemble classifier using a held-out
portion of the PCAWG data set for evaluation. Heatmap displaying the accuracy of the deep
ensemble classifier using a held-out portion of the PCAWG data set for evaluation. Each row
corresponds to the true tumor type; Columns correspond to the predictions emitted by each of the
classifiers. Cells are labeled with the proportion of tumors of a particular type that were called a
specific type by the classifier. The heatmap represents the precision (specificity) of the deep ensemble.
Due to rounding of values, some rows add up to slightly more or less than 100%.
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Figure 3.3: Heatmap displaying the accuracy of deep ensemble classifier using a held-out
portion of the PCAWG data set for evaluation. Heatmap displaying the accuracy of the deep
ensemble classifier using a held-out portion of the PCAWG data set for evaluation. Each row
corresponds to the true tumor type; Columns correspond to the predictions emitted by each of the
classifiers. Cells are labeled with the proportion of tumors of a particular type that were called a
specific type by the classifier. The heatmap represents the recall (sensitivity) of the deep ensemble.
Due to rounding of values, some rows add up to slightly more or less than 100%.

as Liver-HCC or Panc-AdenoCA (48% and 32% misclassification rate, respectively). Cholangiocarcinoma

(Biliary-AdenoCA) represents a heterogeneous group of cancers that may arise at various points in the

biliary tract, which extends from the liver through the pancreas. Cholangiocarcinomas are classified

based on their anatomical location, and different subtypes have significant differences in prognosis. One

potential explanation for misclassifications comes from similarities in cell-of-origin. Cholangiocarcinoma

is the second most common primary cancer of the liver, following hepatocellular carcinoma (Bragazzi

et al. 2018). The liver, pancreas and bile duct all share developmental origins in the embryonic foregut,
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and similar to the stomach and oesophagus, this may result in common mutational distribution features

(Faure and De Santa Barbara 2011).

Another large source of misclassifications involves Cervix-SCC and Head-SCC. Cervix-SCC is iden-

tified as Head-SCC in the majority of test cases (59% misclassification rate). Multiple biological char-

acteristics are contributing to this result. First, both tumour types are derived from squamous tissue,

which may be reflected in shared epigenetic features. Second, most of Cervix-SCC samples in the

PCAWG dataset and many of Head-SCC samples in the dataset are HPV-positive tumours (Zapatka

et al. 2020). Exposure to HPV has been demonstrated to cause significant alterations in mutational

signatures, which may contribute strongly to the model’s misclassifications. HPV infection is also asso-

ciated with alterations in epigenetic features, which, once again, maybe reflected in shared mutational

distribution features for these tumours (Karimzadeh et al. 2020).

Despite these difficulties, the deep ensemble can accurately discriminate several tumour types from

the same organ. Squamous and adenocarcinoma forms of non-small cell lung cancer (Lung-SCC, Lung-

AdenoCA) are readily distinguished (4% misclassification rate). Similarly, Renal cell carcinoma (Kidney-

RCC) and chromophobe renal carcinoma (Kidney-ChRCC) are rarely misclassified, with an overall mis-

classification rate of only 4%. Good performance is seen when distinguishing between chronic lympho-

cytic leukaemia (Lymph-CLL) and B-cell non-Hodkin’s lymphoma (Lymph-BHNL), which are derived

from the B-cell lymphocyte lineage. Similarly, cancers of the exocrine and endocrine pancreas are per-

fectly distinguished by the deep ensemble. Overall, the patterns of misclassifications and the ability to

accurately discriminate between cancers that arise in the same organ is similar to the classifier presented

in Chapter 2.

3.3.4 Validation on independent set of primary tumours

In real-world settings, such as deployment in a clinical setting, tumour genome samples may be processed

using various computational methods. As the deep ensemble model is trained on a uniformly processed

dataset, the training set’s noise distribution may not reflect the noise distribution of data seen in clinical

deployment scenarios. To determine if the deep ensemble could generalize to additional data, I applied

the classifier to an independent validation set of 1461 cancer whole genomes assembled from non-PCAWG

projects. This dataset spans 14 cancer types from 21 publications or databases. SNV coordinates were

lifted from GRCh38 to GRCh37 when necessary, but no other processing of mutation sets was done.

The deep ensemble recall ranged from 0.27 (pediatric gliomas) to 1.00 (Ovary-AdenoCA) (Figure

3.5). Overall accuracy was 84% for classification across the range of cancer types. Generally, cancer

types that performed well on data from PCAWG had a similarly strong performance on this validation

set. These include Ovary-AdenoCA, Breast-AdenoCA, Panc-AdenoCA, Kidney-RCC, Skin-Melanoma.

Interestingly, CNS-PiloAstro samples showed stronger performance on this dataset than on PCAWG.

Four cancer types were classified with recall less than 70%: CNS-Medullo, Lymph-CLL, Liver-HCC and

Pediatric Gliomas. Compared to the original classifier results, Lymph-CLL samples had many more

misclassifications using the deep ensemble. Reassuringly, almost all misclassified Lymph-CLL samples

were identified as Lymph-BHNL (46% misclassification rate). Interestingly, Liver-HCC samples were

most often misclassified as CNS-Medullo samples with the original classifier, likely due to Liver-HCC

samples in this dataset having significantly fewer mutations than Liver-HCC samples from PCAWG

(Jiao et al. 2020). However, Liver-HCC samples are most commonly misidentified as Biliary-AdenoCA,

likely reflecting shared biological characteristics of these cancer types with the deep ensemble.
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Figure 3.4: Heatmap displaying the accuracy of deep ensemble classifier on an
independent set of primary tumours. Heatmap displaying the accuracy of the deep ensemble
classifier using a held-out portion of the PCAWG data set for evaluation. Each row corresponds to the
true tumor type; Columns correspond to the predictions emitted by each of the classifiers. Cells are
labeled with the proportion of tumors of a particular type that were called a specific type by the
classifier. The heatmap represents the precision (specificity) of the deep ensemble. Due to rounding of
values, some rows add up to slightly more or less than 100%.
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3.3.5 Validation on metastatic tumours

To evaluate the deep ensemble model’s ability to identify primary tumour site for metastatic tumours

correctly, I tested the model on an independent set of metastatic tumours. This data set consisted of

92 metastatic Panc-AdenoCA samples, and an additional 2175 metastatic tumours sequenced by the

Hartwig Medical Foundation (HMF), resulting in 2267 metastatic samples from 18 cancer types. All

metastatic samples were subjected to paired-end WGS of tumour and normal at a tumour coverage of

at least 65x, but did not use the same computational pipelines for alignment, quality-control filtering

and SNV calling as those used on data generated by PCAWG. Samples from HMF were obtained using

a needle biopsy, limiting spatial heterogeneity in the sequenced sample. Many HMF samples were

sequenced following exposure to chemotherapy (Pich et al. 2019). The rules for matching classifier

output to the validation set class labels were the same as those previously developed for validating the

original version of the classifier (Jiao et al. 2020).

When the deep ensemble was applied to these metastatic samples, the overall accuracy was 83.5%

for identifying primary tumour type. Figure 3.6 contains a heatmap summarizing performance on this

dataset. This is similar to the accuracy on these samples for the original classifier but is now a classifica-

tion task with 18 cancer types compared to 16 cancer types before. Compared with the original classifier,

the deep ensemble now identifies eight cancer types with recall rates of at least 0.80. This includes: CNS-

GBM (0.98), Kidney (0.97), Breast-AdenoCA (0.96), ColoRect-AdenoCA (0.94), Panc-AdenoCA (0.91),

Skin-Melanoma (0.87), Lung (0.87), Prost-AdenoCA (0.86). Five tumour types failed to have recall

rates of at least 0.50, including Head-SCC (0.43), Uterus-AdenoCA(0.34), Stomach-AdenoCA (0.17),

Thy-AdenoCA (0.15) and Biliary-AdenoCA (0.06). Overall, the patterns of misclassification are similar

to those seen on data from PCAWG. For example, Stomach-AdenoCA is misclassified as Eso-AdenoCA

with a 70% misclassification rate. Similarly, Biliary-AdenoCA is often misclassified as Panc-AdenoCA

(45% misclassification rate) and Liver-HCC (23% misclassification rate). The difficulty in correctly

identifying Biliary-AdenoCA lowers the overall accuracy of the deep ensemble on this dataset.

While performance on these data was similar to performance on held-out data from PCAWG, the

dataset of metastases remains more difficult to classify than primary tumour samples. A potential

explanation for this comes from the fact that many of the samples in the HMF dataset were sequenced

following exposure to chemotherapy (Pich et al. 2019). Exposure to chemotherapy can result in marked

differences in the mutational types seen within a tumour genome, which may reduce performance (Angus

et al. 2019; Kucab et al. 2019). A study examining mutational signatures associated with chemotherapy

in this dataset suggests that chemotherapy-associated mutations ranged from 1% to 65% in these samples

(Pich et al. 2019). This suggests that exposure to chemotherapy can significantly affect the overall tumour

mutation burden and mutation types. As mutation types are a feature used for classification, exposure

to chemotherapy may be a potential explanation for misclassifications seen in this dataset.

3.3.6 Classification performance using a combined dataset

To determine if incorporating data from other sources could improve performance, I created a complete

dataset consisting of samples from PCAWG, the independent set of primary tumour samples, and data

from HMF. For this dataset, I restricted myself to 27 cancer types, each with data from at least 25 donors.

This left 6262 samples in total. For model training and evaluation, I created a training, validation and

test set. Given the strong performance of the deep ensemble model, I trained an additional deep ensemble
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Figure 3.5: Heatmap displaying the accuracy of deep ensemble classifier on an
independent set of metastatic tumour samples. Heatmap displaying the accuracy of the deep
ensemble classifier using a held-out portion of the PCAWG data set for evaluation. Each row
corresponds to the true tumor type; Columns correspond to the predictions emitted by each of the
classifiers. Cells are labeled with the proportion of tumors of a particular type that were called a
specific type by the classifier. The heatmap represents the precision (specificity) of the deep ensemble.
Due to rounding of values, some rows add up to slightly more or less than 100%.

on this dataset.

Figure 3.6 summarizes the performance of this model. Overall, the macro-averaged F1 score was 0.83,

and the overall accuracy was 89%. As with the other models tested, there was significant variability

in performance across cancer types. Median F1 scores ranged from 0.32 (Stomach-AdenoCA) to 0.99

(Skin-Melanoma, Kidney-RCC) (3.6). 18 of 27 cancer types were classified with an F1 score of at least

0.80, which is fewer cancer types than the original classifier, and the deep ensemble trained solely on

data from PCAWG. Figure 3.7 contains a heatmap summarizing the results of the classifier trained

on this dataset. Performance on both lung cancer variants (Lung-AdenoCA and Lung-SCC) dropped

when incorporating data from different sources. For the deep ensemble trained solely on data from

PCAWG, F1 scores for lung cancer were 0.82 and 0.94 for Lung-AdenoCa and Lung-SCC, respectively,

compared to 0.73 and 0.75 on the complete dataset. This may be due to chemotherapy-associated

mutations and differences in how cancer samples were labelled between the HMF dataset and PCAWG.

Overall, patterns of misclassification did not follow those seen in data from PCAWG. For example, Lung-

AdenoCA is most often misclassified as Breast-AdenoCA and Kidney-ChRCC (17% misclassification rate

for both). Lymph-BHNL is misclassified most often as Bone-Osteosarc (21% misclassification rate). The
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Figure 3.6: Cancer-specific F1 score for the deep ensemble classifier trained on the
complete dataset. Heatmap displaying the F1 score for each cancer type the deep ensemble was
trained on. The model was trained on a dataset containing samples from PCAWG, HMF and an
independent validation set of primary tumours. Cells are labeled with the F1 score on a held-out test
set.

lack of apparent biological relatedness found in the misclassifications may result from mutation types

caused by chemotherapy exposure. While the overall accuracy of this model is slightly higher than the

model trained on data solely from PCAWG, the macro-averaged F1 score drops slightly, and only 18 of

27 cancer types have F1 scores of at least 0.80 compared with 22 of 29 for the model trained on data

from PCAWG only. Overall, incorporating data from different sources can provide some modest benefits

but tends to reduce accuracy on several cancer types.

3.3.7 Model calibration

In cost-sensitive scenarios, such as clinical decision making for individual patients, a neural network

must quantify the uncertainty in the predictions it makes. As the output of the deep ensemble model

can be viewed as a probability distribution over cancer types, the neural network output provides an

estimate of the probability that an input sample is one of the 29 cancer types the model is trained

to identify. Given the importance of high-confidence predictions for clinical decision making, I sought

to estimate and improve the confidence calibration and classwise calibration of the model’s output

probability distribution. Expected calibration error (ECE) and classwise-expected calibration error

(classwise-ECE) were assessed for the deep ensemble model trained on data from PCAWG and on the

deep ensemble trained with the complete dataset (See ”Methods” for details). To improve calibration

performance, I applied four post-hoc calibration methods to both deep ensemble models: Temperature

scaling, matrix scaling, vector scaling and Dirichlet scaling (See ”Methods” for details). Overall, the

classwise-ECE of the deep ensemble and the temperature scaled model trained on data from PCAWG was

lower than the other post-hoc calibration method, with classwise-ECE of 0.012 for the deep ensemble

and 0.0081 for the temperature scaled model (Figure 3.9). While temperature scaling reduced the

classwise-ECE, it failed to reduce the overall ECE for the deep ensemble model (0.0062 for the deep

ensemble compared to 0.0071 for the temperature scaled model) (Table 3.5). This resulted in the deep

ensemble model, not the temperature scaled model, with overall ECE consistent with the ECE of a

perfectly calibrated classifier (p-value = 0.99, p-value = 0.00, for the deep ensemble and temperature

scaled model, respectively; permutation test).

The deep ensemble trained on a complete collection of data showed slightly different results (Figure

3.10). Overall, the uncalibrated deep ensemble’s classwise-ECE was lower than that for the temperature

scaled model (0.0089 vs 0.0099 for the deep ensemble and temperature scaled model, respectively). Unlike

the model trained solely on PCAWG, temperature scaling reduced the overall ECE on this dataset from

0.044 for the uncalibrated model to 0.0032. However, in both cases, ECE values were consistent with
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Figure 3.7: Heatmap displaying the accuracy of deep ensemble classifier trained on the
complete dataset. Heatmaps displaying the accuracy of the deep ensemble classifier that was trained
on a combination of data from PCAWG, HMF and an independent set of primary tumours. Results
are based on held-out data from this complete dataset. Each row corresponds to the true tumor type;
Columns correspond to the predictions emitted by each of the classifiers. Cells are labeled with the
proportion of tumors of a particular type that were called a specific type by the classifier. The
heatmap represents the recall (sensitivity) of the deep ensemble. Due to rounding of values, some rows
add up to slightly more or less than 100%.
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Class-wise
Calibration Error

Calibration Method

Figure 3.8: Boxplot displaying the classwise calibration error for the deep ensemble
model trained on data from PCAWG. Classwise calibration error for the deep ensemble model
and the deep ensemble model after post-hoc calibration with: Temperature scaling, matrix scaling,
Dirichlet scaling and vector scaling. Points represent the expected calibration error for each of the 29
cancer types. The centre line in the boxplot is the median classwise expected calibration error. The
lower and upper bounds of the box represent the first and third quartile. The whiskers extend to 1.5
IQR plus the third quartile or minus the first quantile.

those expected from a perfectly calibrated classifier (p=0.123, p-value = 1.0; permutation test). Overall,

these results suggest that both variants of the uncalibrated deep ensemble model can provide highly

well-calibrated predictions.

Interestingly, matrix scaling, Dirichlet scaling, and vector scaling increased both classwise-ECE and

ECE. While these methods have favourable properties for improving classwise-ECE, they run the risk

of overfitting to a smaller validation set. Together, these results suggest that more complex calibration

maps may not be suitable for reducing the deep ensemble model’s calibration error. A summary of

classwise-ECE for both deep ensemble models can be found in Table 3.5 and Table 3.6.

Notably, the PCAWG-trained deep ensemble tended to produce high confidence predictions, with con-

fidence values tending to be higher than 0.80 when making predictions. In contrast, since temperature

scaling can increase the entropy of the softmax distribution, the confidence ranges for the temperature

scaled models showed considerable variation. So, while this model provides confidence-calibrated pre-

dictions, the predictions tend not to be high-confident. These results suggest that the deep ensemble

method produces both highly confident and highly reliable predictions (Figure 3.10).
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Class-wise
Calibration Error

Calibration Method

Figure 3.9: Boxplot displaying the classwise calibration error for the deep ensemble
model trained on the complete dataset. Classwise calibration error for the deep ensemble model
and the deep ensemble model after post-hoc calibration with: Temperature scaling, matrix scaling,
Dirichlet scaling and vector scaling. Points represent the expected calibration error for each of the 27
cancer types. The centre line in the boxplot is the median classwise expected calibration error. The
lower and upper bounds of the box represent the first and third quartile. The whiskers extend to 1.5
IQR plus the third quartile or minus the first quantile.
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Table 3.6: Summary of classwise-ECE for the deep ensemble trained on PCAWG
Summary of the classwise expected calibration error for the deep ensemble classifier trained on data
from PCAWG. Results are averaged across 10 held-out test sets from PCAWG.

Deep Ensemble Temperature Scaled Matrix Scaled Dirichlet Scaled Vector Scaled

Cancer

Biliary-AdenoCA 0.021387 0.023951 0.021634 0.022465 0.032275

Bladder-TCC 0.007779 0.004484 0.013175 0.016762 0.035581

Bone-Leiomyo 0.016895 0.013684 0.020358 0.019385 0.031922

Bone-Osteosarc 0.012424 0.011404 0.017431 0.017391 0.028241

Breast-AdenoCA 0.020873 0.006472 0.030302 0.033213 0.066776

CNS-GBM 0.009135 0.005590 0.015249 0.010796 0.045224

CNS-Medullo 0.015332 0.006817 0.026667 0.027627 0.072960

CNS-Oligo 0.010350 0.006856 0.014248 0.014984 0.023481

CNS-PiloAstro 0.018814 0.012964 0.022900 0.023089 0.060157

Cervix-SCC 0.012068 0.010940 0.015885 0.015474 0.023888

ColoRect-AdenoCA 0.006332 0.002895 0.011575 0.012472 0.038230

Eso-AdenoCA 0.018523 0.015226 0.023150 0.021718 0.048038

Head-SCC 0.013863 0.011753 0.020041 0.020038 0.029111

Kidney-ChRCC 0.008617 0.003055 0.014238 0.014995 0.041391

Kidney-RCC 0.010861 0.003092 0.024381 0.022163 0.057656

Liver-HCC 0.018361 0.015522 0.027742 0.030391 0.097264

Lung-AdenoCA 0.008304 0.005453 0.011352 0.010930 0.027183

Lung-SCC 0.005606 0.003076 0.009921 0.012881 0.030882

Lymph-BNHL 0.008685 0.003809 0.015526 0.014354 0.046555

Lymph-CLL 0.012547 0.004556 0.022211 0.020236 0.053352

Myeloid-MPN 0.006262 0.002776 0.012888 0.012459 0.043077

Ovary-AdenoCA 0.009987 0.002789 0.018175 0.020639 0.039449

Panc-AdenoCA 0.026831 0.020192 0.037390 0.035331 0.085378

Panc-Endocrine 0.013948 0.007450 0.017884 0.020723 0.035281

Prost-AdenoCA 0.012547 0.005032 0.022671 0.020538 0.073491

Skin-Melanoma 0.004217 0.000853 0.010505 0.010436 0.038144

Stomach-AdenoCA 0.019961 0.016485 0.024027 0.023248 0.036106

Thy-AdenoCA 0.011279 0.005485 0.014669 0.016064 0.028843

Uterus-AdenoCA 0.009032 0.003581 0.015491 0.018148 0.033890

Table 3.7: Summary of classwise-ECE for the deep ensemble trained on the complete
dataset Summary of the classwise expected calibration error for the deep ensemble classifier trained
on a combination of data from PCAWG, HMF and an independent set of primary tumours.

Deep Ensemble Temperature Scaled Matrix Scaled Dirichlet Scaled Vector Scaled

Cancer

Biliary-AdenoCA 0.008406 0.011909 0.009317 0.009158 0.024688

Bladder-TCC 0.002620 0.004369 0.001487 0.002371 0.008213

Bone-Leiomyo 0.002421 0.003946 0.003297 0.004458 0.011860

Bone-Osteosarc 0.015622 0.014237 0.017237 0.017919 0.023735

Breast-AdenoCA 0.030853 0.050186 0.030439 0.029928 0.165787

CNS-GBM 0.007820 0.010542 0.012452 0.011394 0.067186

CNS-Medullo 0.005804 0.008678 0.006146 0.005841 0.321075

CNS-PiloAstro 0.010146 0.012419 0.015398 0.016397 0.024579

ColoRect-AdenoCA 0.009091 0.006793 0.006800 0.008004 0.071743

Continued on next page
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Deep Ensemble Temperature Scaled Matrix Scaled Dirichlet Scaled Vector Scaled

Cancer

Eso-AdenoCA 0.017504 0.016151 0.015909 0.016907 0.030165

Head-SCC 0.013331 0.016028 0.013975 0.014140 0.054933

Kidney-ChRCC 0.003724 0.005966 0.004120 0.005114 0.016503

Kidney-RCC 0.003351 0.005369 0.004920 0.004403 0.030379

Liver-HCC 0.008463 0.012283 0.016161 0.016631 0.095551

Lung-AdenoCA 0.006702 0.009608 0.006517 0.005846 0.042343

Lung-SCC 0.003234 0.002943 0.004045 0.003599 0.063663

Lymph-BNHL 0.010924 0.011575 0.010860 0.012341 0.051836

Lymph-CLL 0.005292 0.007235 0.007136 0.008713 0.016747

Myeloid-MPN 0.002549 0.003462 0.003827 0.003866 0.018071

Ovary-AdenoCA 0.010970 0.020493 0.015510 0.015468 0.030691

Panc-AdenoCA 0.018397 0.026838 0.026576 0.023977 0.102180

Panc-Endocrine 0.009190 0.012510 0.012998 0.013203 0.038142

Prost-AdenoCA 0.015128 0.020950 0.021558 0.020083 0.082948

Skin-Melanoma 0.002078 0.003820 0.010856 0.010798 0.091594

Stomach-AdenoCA 0.015740 0.017547 0.014496 0.013527 0.015407

Thy-AdenoCA 0.007066 0.010001 0.008131 0.008086 0.020170

Uterus-AdenoCA 0.010155 0.009417 0.010539 0.011197 0.030965

3.3.8 Automatic detection of rare cancer samples

Another notion of uncertainty that is important when the predictions of a deep neural network may

be used as the basis for guiding clinical decision-making is automatically detecting input data that

are anomalous or significantly different from those used to train the model. It is possible to receive

cancer samples from cancer types outside of the 29 cancer types the model is trained to identify in a

clinical setting. The task of identifying these samples can be referred to as rare-cancer detection. To

automatically determine if input samples come from rare cancer samples that the model isn’t trained

to classify, I made use of the deep ensemble’s predictive entropy. Predictive entropy was calculated on

all validation set samples independently for each data partition, and a partition-specific threshold value

was set at the 95th percentile of predictive entropy (See ”Methods” for details).

Figure 3.11 shows a summary of the predictive entropy for all samples in PCAWG. Test-set samples

from in-distribution cancer types (cancer types the model is trained to identify) tend to have predictive

entropy values lower than the 95th percentile cutoff used for identifying rare cancer samples. In some

cases, the median entropy of a cancer type is almost zero. This includes the following cancer types:

CNS-GBM, ColoRect-AdenoCA, Lung-SCC, Lymph-BHNL, Skin-Melanoma. Interestingly, the F1 score

for classification performance for this set of cancers tended to be very high, ranging from 0.85 (CNS-

GBM) to 1.00 (Skin-Melanoma). This result is consistent with the confidence calibration results, which

suggested that the deep ensemble model tended to make high-confidence predictions with comparably

high accuracy.

The predictive entropy of most out-of-distribution (OOD) cancer types was similarly low. Of the OOD

cancer types, Breast-LobularCA, Breast-DCIS, Lymph-NOS, Myeloid-AML and Myeloid-MDS tended

to have entropy values below the threshold entropy. These cancer types tend to have similar biological

characteristics to some in-distribution cancer types. Similarly, Lymph-NOS is similar to the other B-

cell malignancies in the dataset (Lymph-CLL and Lymph-BHNL), and the two OOD myeloid lineage

cancers are similar to Myeloid-MPN. OOD cancer types that are similar to in-distribution cancer types
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Figure 3.10: Boxplot displaying the predictive entropy of the deep ensemble model
trained on PCAWG. Predictive entropy (nats) for each cancer sample from the held-out test sets
used to evaluate the deep ensemble trained on PCAWG, and samples from cancer types the model did
not see during training. Points represent the entropy of each samples in one of the 10 deep ensemble
models. The horizontal black line represents the 95th percentile of predictive entropy, calculated on all
held-out validation samples from PCAWG. Samples labeled in blue belong to cancer types the model
saw during training. Samples labeled in orange belong to cancer types the model did not see during
training. The centre line in the boxplot is the median classwise expected calibration error. The lower
and upper bounds of the box represent the first and third quartile. The whiskers extend to 1.5 IQR
plus the third quartile or minus the first quantile.

having lower entropy is consistent with the classifier often making misclassifications due to biological

relatedness.

Three cancer types in the dataset are relatively uncommon or rare cancers - cervical adenocarcino-

mas (Cervix-AdenoCA), chordoma (Bone-Epith) and chondroblastoma (Bone-Cart). All three of these

cancer types have relatively high entropy compared to the dataset as a whole. Using the threshold

value, I assigned cancer samples as either in-distribution (if they belonged to either the test set or were

highly related to test set samples) or OOD (cervix-AdenoCA, Bone-Cart or Bone-Epith samples) and

assessed classification performance. Overall, the accuracy for classification was 93%. Given that the in-

distribution samples represented approximately 92% of the dataset, the class in-balance might have been

driving OOD detection accuracy. To investigate this, I calculated the Matthew’s Correlation Coefficient

(MCC) for each deep ensemble partition. The mean MCC was 0.62, which suggests that entropy is

strongly correlated with the correct label (in-distribution or OOD) (Table 3.7). This result suggests that

the deep ensemble’s predictive entropy can accurately identify cancer samples that differ significantly

from the training data distribution. Table 3.8 contains a summary of the OOD performance for each

data partition.
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Table 3.8: Summary of out-of-distribution detection using the deep ensemble model.
Summary of out-of-distribution (OOD) detection results using the deep ensemble model trained on
PCAWG, evaluated on data from PCAWG, the independent validation set of primary tumours and
metastatic samples from HMF. Results for PCAWG are averaged across 10 models. Proportion refers
to percentage of samples that are OOD. MCC refers to the Matthews correlation coefficient.

Accuracy (%) Macro F1 score MCC Proportion (%)

Dataset

PCAWG 93 0.80 0.62 8

Independent Primary Tumours 74 0.62 0.40 11

Hartwig Medical Foundation 90 0.69 0.38 10

Table 3.9: Summary of out-of-distribution detection using the deep ensemble model
evaluated on PCAWG. Summary of out-of-distribution (OOD) detection results using the deep
ensemble model trained on PCAWG, evaluated on held-out test data from PCAWG and OOD samples
from PCAWG. Results are shown for each of the 10 models corresponding to each data partition.
MCC refers to the Matthew’s correlation coefficient.

Accuracy (%) MCC Macro F1 Score

Model

1 93 0.61 0.80

2 93 0.62 0.80

3 94 0.61 0.80

4 92 0.58 0.77

5 94 0.64 0.82

6 92 0.61 0.80

7 93 0.62 0.80

8 91 0.57 0.77

9 94 0.66 0.82

10 96 0.70 0.85

To determine if predictive entropy generalizes to the independent dataset of primary tumours, I

calculated entropy on all samples from that dataset. Overall, the predictive entropy of many OOD

cancers was higher than the threshold value (Figure 3.11). Interestingly, all oesophagal squamous cell

carcinoma samples (ESCC) had entropy greater than the cut-off value, suggesting that these tumours are

highly dissimilar to both Eso-AdenoCA and Stomach-AdenoCA. A set of pediatric brain cancers (PBCA)

also had entropy values higher than the threshold, suggesting that it may contain brain cancers that

differ significantly from those found in PCAWG. Interestingly, some in-distribution cancer samples had

relatively high entropy. CNS-Medullo, CNS-PiloAstro, Myeloid-MPN and Panc-Endocrine had entropy

values higher than the threshold despite being present in PCAWG. Using the thresholding procedure

above, I assigned samples to in-distribution or OOD based on entropy. Overall, the accuracy was 74%,

and the MCC for this task was 0.40 (Table 3.7). This dataset contained 72 ESCC, all of which were

correctly identified as OOD samples, although oesophagal adenocarcinoma was included in the training

data. This result is consistent with studies suggesting that ESCC is genomically more similar to other
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Entropy

Cancer Type
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Figure 3.11: Boxplot displaying the predictive entropy of the deep ensemble model
trained on PCAWG on an independent set of primary tumours. Predictive entropy (nats) for
each cancer sample from an independent validation set of primary tumours. Entropy for each sample is
averaged across the 10 deep ensemble classifiers trained on data from PCAWG. The horizontal black
line represents the 95th percentile of predictive entropy, calculated on all held-out validation samples
from PCAWG. The centre line in the boxplot is the median classwise expected calibration error. The
lower and upper bounds of the box represent the first and third quartile. The whiskers extend to 1.5
IQR plus the third quartile or minus the first quantile.

squamous cell carcinomas than with oesophagal adenocarcinomas (Kim et al. 2017).

To determine if the predictive entropy generalizes to the HMF samples, I calculated predictive entropy

for all samples in the HMF dataset, including those not used for classification (Figure 3.12). In general,

most cancer samples tended to have relatively low predictive entropy, but there were some outlier cases.

About half of the Bone/Soft Tissue cancers had predictive entropy greater than the threshold value. As

these cancer samples lack finer-grained categorization, some of these samples may be rare cancer samples,

while a portion of them may be highly similar to other sarcomas in the PCAWG dataset. Of the highly

dissimilar cancer types, most mesothelioma samples had entropy values above the threshold. All other

OOD cancer samples tended to have a relatively low entropy, suggesting that predictive entropy may

need to be re-calibrated for this dataset. Using the same thresholding procedure described above for

identifying in-distribution vs OOD samples, the overall accuracy for detecting OOD samples was 89%.

MCC for this classification task was 0.38, indicating a modest correlation between entropy and OOD

status (Table 3.7). While this dataset’s performance is sufficiently good, re-calibration of the predictive
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Entropy

Cancer Type

95th Percentile

Figure 3.12: Boxplot displaying the predictive entropy of the deep ensemble model
trained on PCAWG on an independent set metastatic tumours. Predictive entropy (nats) for
each cancer sample from an independent set of metastatic tumours from the HMF dataset. Entropy for
each sample is averaged across the 10 deep ensemble classifiers trained on data from PCAWG. The
horizontal black line represents the 95th percentile of predictive entropy, calculated on all held-out
validation samples from PCAWG. The centre line in the boxplot is the median classwise expected
calibration error. The lower and upper bounds of the box represent the first and third quartile. The
whiskers extend to 1.5 IQR plus the third quartile or minus the first quantile.

entropy for this dataset may improve overall OOD detection performance.

Interestingly, nearly every CUPS sample had predictive entropy below the threshold value. Ground

truth labels for CUPS in this dataset are unknown, so it is impossible to determine if these cancer

samples come from in-distribution cancer types. Despite this fact, having a lower predictive entropy

suggests that they have a reasonable likelihood of belonging to in-distribution cancer types. Overall,

this result suggests that CUPS would pass the OOD detection criteria in a clinical setting and would

receive a prediction from the classifier.

3.3.9 Entropy improves accuracy

In a clinical setting where the model’s predictive entropy is used to rule out potential OOD samples,

overall model performance is best judged on samples that pass the entropy threshold. To determine if

lower entropy samples were easier to classify, I calculated entropy on all samples passing the threshold
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value and all higher entropy samples that would be ruled OOD (Figure 3.13). Overall, the accuracy

on low entropy samples was 90% which is higher than the accuracy on all test samples. High entropy

samples had a much lower overall accuracy, with an average classification accuracy of 62% across the

ten data partitions, which is significantly lower than the accuracy on low entropy samples (p <1e-3,

Wilcoxon Signed-Rank test). This result is consistent with the result that the deep ensemble is highly

well-calibrated.

Figure 3.13: Boxplot displaying the accuracy of held-out data from PCAWG based on
entropy. Accuracy of held-out samples from PCAWG that were evaluated with the deep ensemble
method. Samples were assigned to the low-entropy group if predictive entropy was lower than the 95th

percentile of entropy on held-out validation data from PCAWG, and high entropy otherwise. Points
represent performance on each of the 10 held-out test sets from PCAWG. The centre line in the
boxplot is the median classwise expected calibration error. The lower and upper bounds of the box
represent the first and third quartile. The whiskers extend to 1.5 IQR plus the third quartile or minus
the first quantile.

To assess the accuracy of low entropy samples from the independent validation sets, I repeated the

same procedure described above for the dataset of independent primary tumours and the dataset of

metastatic samples. The independent dataset of primary tumour samples contained 1064 low entropy

tumour samples (1533 samples total in this dataset). Accuracy on the low entropy samples was higher

than that seen on the entire independent validation set, and improved from 84.4% for all samples to

90.4% for low entropy samples (Figure 3.14). The dataset of metastatic samples contained 1945 low

entropy samples (2267 samples in total for this dataset). Similar to the dataset of primary tumours, low

entropy samples had a higher overall accuracy. Accuracy for low entropy samples from the dataset of

metastatic samples improved from 83.5% to 86% for low entropy samples (Figure 3.15).

3.4 Discussion

Cancers of unknown primary site (CUPS) occur when a patient presents with identifiable metastatic

cancer, but despite examination, the primary tumour site cannot be determined. This syndrome is the

fourth most common cause of cancer related mortality (Greco 2013; Pavlidis et al. 2003). As current
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Figure 3.14: Heatmaps displaying the accuracy of low entropy samples on the two
independent validation sets. Accuracy of low entropy samples from the two independent validation
sets were evaluated with the deep ensemble method. Samples were assigned to the low-entropy group if
predictive entropy was lower than the 95th percentile of entropy on held-out validation data from
PCAWG. Heatmap summarizing the performance of low entropy samples from the independent dataset
of primary tumours.Each row corresponds to the true tumor type; Columns correspond to the
predictions emitted by each of the classifiers. Cells are labeled with the proportion of tumors of a
particular type that were called a specific type by the classifier. The heatmap represents the recall
(sensitivity) of the deep ensemble. Due to rounding of values, some rows add up to slightly more or less
than 100%.

therapeutic approaches are heavily guided by a tumour’s cell of origin, identifying the primary tumour

site for CUPS is an important clinical task. Outside of the clinical dilemma presented by CUPS patients,
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Figure 3.15: Heatmaps displaying the accuracy of low entropy samples on the two
independent validation sets. Accuracy of low entropy samples from the two independent validation
sets were evaluated with the deep ensemble method. Samples were assigned to the low-entropy group if
predictive entropy was lower than the 95th percentile of entropy on held-out validation data from
PCAWG. Heatmap summarizing the performance of low entropy samples from the dataset of
metastases. Each row corresponds to the true tumor type; Columns correspond to the predictions
emitted by each of the classifiers. Cells are labeled with the proportion of tumors of a particular type
that were called a specific type by the classifier. The heatmap represents the recall (sensitivity) of the
deep ensemble. Due to rounding of values, some rows add up to slightly more or less than 100%.

the inability to correctly identify the primary tumour site severely limits researchers’ ability to investigate

the biological characteristics of this disease. Correctly identifying the primary tumour site can allow
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for the evolutionary mechanisms and biological processes involved in the development of CUPS to be

correctly characterized. A similarly difficult diagnostic challenge arises when patients present with a

history of multiple primary tumours. For these patients, correctly discriminating a late metastatic

recurrence from a new primary tumour and correctly identifying which primary tumour was responsible

for a metastatic lesion is critical for making clinical decisions (Vogt et al. 2017). In Chapter 2, I aimed to

address the need for automatic tumour typing by developing a deep learning system that could accurately

discriminate between 24 common cancer types (Jiao et al. 2020). While this model showed impressive

performance for identifying primary tumour site, multiple challenges existed for translating this system

into a clinical setting. First, the original classifier could only identify 24 cancer types. Second, the

original classifier does not provide estimates of its predictive uncertainty, which are important when

clinical decisions may be guided based on a neural network’s predictions.

In this chapter, I used a large collection of both primary and metastatic cancer whole genomes

to develop a series of deep learning models that can accurately distinguish between 29 cancer types

whilst providing well-calibrated estimates of in-distribution and out-of-distribution uncertainty. The

system had an overall accuracy of 88%, with 22 of 29 cancer types achieving an F1 score of at least

0.80. When applied to external validation data sets, the classifier achieved predictive accuracies of 84%

and 84%, respectively, for primary and metastatic tumours. The reduction in accuracy on metastatic

tumours is driven by multiple features of that data and based on the inclusion of Biliary-AdenoCA,

which is often misclassified as Liver-HCC. Including data from sources outside of PCAWG tended not

to improve performance. Overall, when a classifier was trained using a complete dataset including

PCAWG, independently collected primary tumours and metastases, the overall accuracy of the model

was 89% for distinguishing 27 cancer types, but with the same F1 score of 0.83 as the model trained

only on data from PCAWG. The model trained on this complete dataset also had different patterns of

misclassification. A possible explanation for this may be that many of these samples were sequenced

following exposure to chemotherapy. If a chemotherapeutic agent causes specific mutation types in a

tumour genome, two unrelated cancer types treated with the same agent may have very similar mutation

types, leading to misclassification. As many of the treated samples were exposed to platinum-based

therapy and fluorouracil, chemotherapy-associated mutations may be contributed to misclassification.

While exposure to chemotherapy provides a possible explanation for misclassifications, this result is

still a limitation of the current model. This limitation may be addressed by systematically removing

mutations associated with chemotherapy, but doing so requires both a complete understanding of the

mutational consequences of cancer therapy and a suitable statistical model for removing the contribution

of chemotherapy-associated mutations.

When the predictions of a neural network may guide clinical decision making, properly calibrated

uncertainty estimates are essential. In this setting, for example, a highly confident prediction may form

the basis for cancer-specific therapy. In contrast, a high uncertainty prediction may signal that broad-

spectrum chemotherapy is more advisable. The deep ensemble utilized for classification, combined with

adversarial training, resulted in a confidence-calibrated classifier capable of providing good estimates of

predictive uncertainty. Temperature scaling tended to reduce the classwise expected calibration error

but fails to reduce the overall calibration error for the model trained on data from PCAWG. In this case,

the uncalibrated deep ensemble model trained solely on data from PCAWG had an expected calibration

error that was consistent with that seen from a perfectly calibrated classifier. More complex calibration

maps such as matrix scaling and Dirichlet scaling tended to increase calibration error, possibly due to
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overfitting on a relatively small validation set. Overall, this result suggests that the deep ensemble

model can provide well-calibrated estimates of in-distribution uncertainty. A second use of predictive

uncertainty is to automatically identify rare cancer samples that the model wasn’t trained to classify.

Using the model’s predictive uncertainty, rare cancer samples could automatically be detected with an

overall accuracy of 93% and a Matthew’s correlation coefficient of 0.62 for data from PCAWG. When

extending this approach to the independent set of primary tumours, predictive entropy continued to per-

form well with an overall accuracy of 74% and a Matthew’s correlation coefficient of 0.40. Interestingly,

this approach perfectly identified squamous-cell carcinoma of the oesophagus as an out-of-distribution

cancer type, which is consistent with the two histological variants of oesophagal cancer differing signifi-

cantly at the genomic level (Kim et al. 2017). Overall performance on the HMF samples was lower than

that seen on data from PCAWG and independent primary cancers but was still reasonably good. A

potential method for improving this dataset’s performance would be to remove chemotherapy-associated

mutations that may constitute a relatively large proportion of all mutations in samples sequenced after

treatment. Interestingly, when the predictive entropy of CUPS samples was calculated, they tended to

have a relatively low entropy, suggesting that the model can make high-confidence predictions for these

cancer samples.

In summary, this study further demonstrates the potential of whole-genome sequencing to distin-

guish major cancer types based on patterns of somatic mutations. The work presented here addresses

significant challenges for translating tumour-typing algorithms into clinical settings and is one of the few

applications of deep learning in genomics that assesses model calibration and uncertainty quantification.

In the future, it would be desirable to make algorithmic improvements that allow tumour types to be

subdivided into molecular subtypes, incorporate additional feature types, and extend the model to work

with data generated from liquid biopsies.

3.5 Materials and methods

3.5.1 PCAWG training and test data

All variant calls data were downloaded from the ICGC Portal, and all file names given here are relative to

this path. Note that controlled tier access credentials are required from the ICGC and TCGA projects.

The consensus Somatic SNV file covers 2778 whitelisted samples from 2583 donors. Tumour histological

classifications were reviewed and assigned by the PCAWG Pathology and Clinical Correlates Working

Group. All samples flagged as exhibiting microsatellite instability (MS) by the PCAWG Technical

Working Group were removed for model training. In a small number of cases, the same donor contributed

both primary and metastatic specimens to the PCAWG data set. In these cases, I only used the primary

tumour for training and evaluation, except for the case of a small cohort of myeloproliferative neoplasms

(Myeloid-MPN; N = 55 samples), for which multiple primary samples were available. In this case, I

used up to two samples per donor and partitioned the training and testing sets to avoid having the same

donor appear more than once in any training/test set trial. A complete characterization of data from

PCAWG is provided in Jiao et al., 2020 (Jiao et al. 2020).

http://dcc.icgc.org/releases/PCAWG/
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3.5.2 Independent validation data set: primary and metastatic tumours

To independently validate the neural network classifier, I assembled several sets of tumours that had

been subject to whole-genome sequencing outside of PCAWG.

The primary tumour validation data set consisted of 1333 primary tumours contributed by colleagues

participating in the PCAWG Mutational Signatures Working Group (Alexandrov et al. 2020). These

represent 14 tumour types overlapping with PCAWG types. These independent primaries were supple-

mented using WGS from 200 advanced primary pancreatic ductal adenocarcinomas (Panc-AdenoCA)

derived from the COMPASS Trial (Aung 2018). In all, the primary tumour validation set contained 1533

primary tumour samples across 14 tumour types. Only tumour types with 10 or more representatives

were used for testing. Only tumour types with ten or more representatives were tested.

The metastatic tumour validation data was derived from SNV calls on 2175 metastatic tumours

across 18 tumour types, provided by the Hartwig Medical Foundation. These data were supplemented

with 92 metastatic pancreatic ductal adenocarcinomas to the liver from the COMPASS Trial for a total

of 2267 metastatic tumours. Only tumour types with ten or more representatives were tested.

Although the sequencing technologies and genome coverage are comparable among the PCAWG

training set and the independent validation data sets, a mixture of different human genome builds,

alignment algorithms and SNV calling algorithms were used for the validation data sets. We did not

attempt to recall the SNVs but did lift the genome coordinates of the samples that had been aligned to

the other genome builds to hg19 using CrossMap (Version 0.2.5). Complete descriptions of the validation

set of primary tumours is provided in Table 2.5, and a complete description of the metastatic tumours

can be found in Aung (Aung 2018) and Preistley (Priestley et al. 2019).

3.5.3 Somatic mutation feature sets

Mutational-type features are based on all SNVs. For each sample, SNVs are categorized across the

possible single-nucleotide changes (A >C, A >G, A >T, C >A, C >G, C >T), the 48 possible nucleotide

changes plus their 5′ or 3′ flanking base and the 96 possible nucleotide changes plus both flanking

nucleotides. This generates 150 mutational-type features in total. The counts in each category are

either represented as is or represented as normalized Z-scores. Z-scores were used for training models

that made use of data only from PCAWG. The model trained on the complete dataset used the raw

counts of the mutational-type features. The mutational distribution feature consists of the number of

somatic SNVs in each 1-megabase bin across the genome. For the construction of mutational distribution

features, sex chromosomes are excluded.

3.5.4 Deep learning procedure

In all cases, the deep neural networks were trained on the mutational type and mutational distribution

features described above. The neural networks were trained to classify either 27 or 29 cancer types. The

details for each data set are as follows:

Training of Deep Ensemble on PCAWG

For classification, I used a fully-connected feed-forward neural network. Prior to training, data from

PCAWG were split into training, validation and test sets ten times to create ten different partitions over

the full data set. Data from any cancer type with at least 15 donors in PCAWG was included for a

total of 2566 samples across 29 cancer types. In order to balance the number of samples per cancer type
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during training, the cancer samples in the training set were oversampled using SMOTE with default

settings (Chawla et al. 2002). After oversampling, each cancer type had the same number of examples

in the training set. Hyperparameter optimization (described in detail below) was done independently

for each data partition. Models were trained with a minibatch size of 32 for 100 epochs using Adam.

After hyperparameter optimization was completed, a deep ensemble was created for each of the 10

data partitions. The oversampled training set was used for training the networks. The deep ensemble

was created by initializing 50 neural networks with the same hyperparameters but with random weight

initialization (Lakshminarayanan, Pritzel, and Blundell 2017). Each neural network was trained for

100 epochs using a minibatch size of 32 using Adam (Kingma and Ba 2014). As with hyperparam-

eter optimization, adversarial data were included during training using the fast gradient sign method

(Goodfellow, Shlens, and Szegedy 2015). After training was completed for all ten data partitions, deep

ensembles were created in two ways. First, a deep ensemble was created for each data partition by

averaging the logit vectors produced by each neural network trained on the respective data partition.

These networks were used for partition-specific performance evaluation. Another deep ensemble was

created by creating a deep ensemble where each member of the ensemble consisted of a partition-specific

deep ensemble. This network was used for evaluation on non-PCAWG datasets. In both cases, the class

probability vector was derived by applying the softmax function to the average of the logit outputs from

each neural network in the deep ensemble. The predicted tumour type in these cases is selected to be

the greatest softmax probability.

Training of deterministic uncertainty estimation classifier on PCAWG

A fully connected feed-forward neural network was used as the feature extractor network. During

training, the neural network learns a feature embedding of each input sample and learns class-specific

centroids. Classification is done by first computing the feature embedding of an input sample and then

computing the kernel distance between the feature embedding and all class-specific centroids (Amersfoort

et al. 2020). An input sample is then assigned to the class with the closest centroid. Kernel distance

was computed using a Radial Basis Function (RBF):

RBF (fθ(x), ek) = exp [−
1
n ‖Wkftheta(x)− ec‖22

2σ2
] (3.1)

Data from PCAWG were split into training, validation, and test sets ten times to create ten different

partitions over the full data set. Data partitions were the same as those used for training the deep

ensemble model described above. Data from any cancer type with at least 15 donors in PCAWG was

included for a total of 2566 samples across 29 cancer types. In order to balance the number of samples

per cancer type during training, the cancer samples in the training set were oversampled using SMOTE

with default settings. After oversampling, each cancer type had the same number of examples in the

training set. Hyperparameter optimization (described in detail below) was done independently for each

data partition. Models were trained with a minibatch size of 32 for 100 epochs using Adam. The learning

rate was varied using a learning rate schedule to remain consistent with the original paper describing

this model. After hyperparameter optimization, a single network was trained for each partition using the

associated hyperparameters. The oversampled training set was used for training the networks. As with

hyperparameter optimization, adversarial data were included during training using the fast-gradient sign

method. Training was done for 100 epochs using a minibatch size of 32 with Adam.

Training of Deep Ensemble on the complete data set

A fully connected, feed-forward neural network was used for classification. A complete dataset was
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created by incorporating data from PCAWG and both independent validation sets. Data from a total

of 27 cancer types were used for classification. Overall, this resulted in 6262 samples. Prior to training,

data were split into training, validation or test samples. To balance cancer samples in the training set,

the training set was oversampled using SMOTE with default settings. Hyperparameter optimization

(described in detail below) was done to select hyperparameters for the model. Models were trained with

a minibatch size of 32 for 150 epochs.

After hyperparameter optimization, a deep ensemble was created for this dataset. As with above, the

deep ensemble was created by initializing 50 neural networks with the same hyperparameters but random

weight initialization. Each ensemble was trained using the oversampled training set. Training was done

using a minibatch size of 32 and for 150 epochs using Adam. As with hyperparameter optimization,

adversarial data were included during training using the fast-gradient sign method.

Hyperparameter Optimization

In all cases, I used a Bayesian optimization approach to select hyperparameters (Snoek, Larochelle,

and Adams 2012). Bayesian optimization was done for each dataset (described above) and for each classi-

fication approach. In each case, hyperparameters were selected by optimizing accuracy on the associated

validation data for that data partition. I used the ’gpminimize’ function from the scikit-optimise 0.5.2

Python library to select hyperparameters. In the case of deep ensemble-based classifiers, the following

hyperparameters were optimized: learning rate for Adam, L2-regularisation penalty, dropout rate, the

number of hidden layers, and the number of neurons per hidden layer. For deterministic uncertainty

quantification models, two additional hyperparameters: gradient penalty and length scale, were also

optimized. For deterministic uncertainty quantification models, the learning rate was not optimized,

as a learning rate schedule was used, as per the original paper describing this model. Each model was

trained using Adam with a batch size of 32. All hyperparameters of Adam other than the learning rate

were set to the default values specified in the original paper. Weights and bias values were initialized

with a Kaiming uniform distribution (He et al. 2015b). During training, adversarial data is included in

training by first generating adversarial examples using the fast gradient sign method, with ε set to 1,

and then augmenting the minibatch to include the adversarial examples. The model was evaluated with

400 hyperparameter combinations (i.e., 400 calls to ’gp minimize’ were made). Briefly, ’gp minimize’

approximates a function of model performance based on the hyperparameters with a Gaussian Process.

For each call to ’gp minimize’, the performance on the current set of hyperparameters is evaluated

by training the neural network and assessing accuracy on a validation set. Based on this accuracy,

the Gaussian Process posterior distribution is updated, and a new set of hyperparameters is chosen by

optimizing an acquisition function. I used the ’gp hedge’ acquisition function (Brochu, Hoffman, and

De Freitas 2011). A complete description of hyperparameter settings found by Bayesian optimization is

provided in Table 3.9 and Table 3.10.
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Table 3.10: Hyperparameter settings found by Bayesian optimization for deep ensemble
models. Description of the optimal hyperparameters found using Bayesian optimization for the deep
ensemble classifiers. Dataset refers to the dataset used for training the model. L2 refers to the
L2-penalization value. Dropout refers to the dropout rate. Layers refers to the number of hidden
layers. Units refers to the number of units or neurons per hidden layer. Model refers to the data
partition the model was trained on.

Learning Rate L2 Dropout Layers Units Model Accuracy(%)

Dataset

PCAWG 0.000100 0.007058 0.007244 1 1024 1 88

PCAWG 0.000100 0.004336 0.500000 2 540 2 88

PCAWG 0.000100 0.005592 0.000001 1 650 3 87

PCAWG 0.000100 0.001000 0.500000 2 792 4 92

PCAWG 0.000226 0.001000 0.500000 1 335 5 88

PCAWG 0.000100 0.001282 0.000035 1 507 6 89

PCAWG 0.000100 0.001000 0.000092 2 1024 7 89

PCAWG 0.000241 0.001000 0.500000 1 280 8 89

PCAWG 0.000100 0.005271 0.000001 1 715 9 90

PCAWG 0.000100 0.007937 0.500000 2 328 10 90

Complete dataset 0.000100 0.001425 0.500000 2 379 1 89

Table 3.11: Hyperparameter settings found by Bayesian optimization for deterministic
uncertainty quantification classifiers. Description of the optimal hyperparameters found using
Bayesian optimization for the deterministic uncertainty quantification classifiers trained on data from
PCAWG. Dataset refers to the dataset used for training the model. Penalty refers to the gradient
penalty used during training. Scale refers to the length parameter of a Radial Basis Function. L2 refers
to the L2-penalization value. Layers refers to the number of hidden layers. Units refers to the number
of units or neurons per hidden layer of the feature extractor network. Embedding refers to the number
of units in the embedding layer of the feature extractor. Model refers to the data partition the model
was trained on.

Penalty Scale Embedding Layers Units Model Accuracy (%)

Dataset

PCAWG 0.000100 0.029153 6 5 1024 1 83

PCAWG 0.001801 0.055506 6 4 1024 2 83

PCAWG 0.000788 0.027730 6 3 1024 3 83

PCAWG 0.038864 0.023241 6 3 990 4 80

PCAWG 0.000100 0.012137 6 4 892 5 80

PCAWG 0.002971 0.020739 6 3 845 6 85

PCAWG 0.000100 0.030852 6 5 1024 7 84

PCAWG 0.003690 0.002336 33 5 1024 8 78

PCAWG 0.000100 0.023252 6 4 846 9 82

PCAWG 0.000100 0.020533 6 3 665 10 82
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In all cases, models were implemented and trained with PyTorch 1.4.0 (Paszke et al. 2019). All code

was written in Python 3.7.3 (Van Rossum and Drake 2009).

Definitions of accuracy metrics

To measure the performance of the classifiers, I use the conventional definitions of recall, precision,

F1 score and accuracy. In the descriptions below, I use the abbreviations TP (true positive), TN (true

negative), FP (false positive) and FN (false negative) to describe correct and incorrect assignments of

an unknown tumour to a predicted type:

Recall: The proportion of samples of a particular histopathological type that are correctly assigned

to that type:

Recall = TP/(TP + FN) (3.2)

Precision: The proportion of samples assigned to a particular type that are truly that type:

Precision = TP/(TP + FP ) (3.3)

F1 score: The harmonic mean of recall and precision:

F1 = 2(recall ∗ precision)/(recall + precision) (3.4)

Accuracy: The proportion of correct assignments:

Accuracy = (TP + TN)/(TP + FP + TN + FN) (3.5)

3.5.5 Model calibration

A probabilistic classifier such as a deep neural network is well calibrated if the predicted class distribution

is approximately equal to the true class distribution (Kull et al. 2019). Typically, deep neural networks

produce poorly calibrated output probabilities, yielding overly confident predictions.

The strictest notion of calibration is multiclass calibration. A multiclass-calibrated classifier is per-

fectly calibrated for every single class that the model is trained to classify (Kull et al. 2019). Con-

sider a neural network classifier f̂ : X → ∆k that outputs probabilities for k classes. For any input

x ∈ X, the classifier outputs a class probability vector f̂(x) = (f̂1(x), f̂2(x), ..., f̂k(x)) belonging to

∆k = {(q1, q2, ..., qk) ∈ [0, 1]k|
∑k
i=1 qi = 1} which is the (k − 1)-dimensional probability simplex over k

classes.

Definition 4 A probabilistic classifier f̂ : X → ∆k is multiclass-calibrated if for any prediction vector

q = (q1, q2, ..., qk) ∈ ∆k, the proportions of classes among all possible x ∈ X getting the same predictions

f̂(x) = q are equal to the prediction vector q:

P (Y = i|p̂(x) = q) = qi for i = 1, ...k. (3.6)

A necessary condition for obtaining a multiclass-calibrated classifier is for the classifier to be cali-

brated for all individual classes (Kull et al. 2019). That is, for any given class, the classifier is perfectly

calibrated. Formally, a classwise-calibrated classifier is as follows:
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Definition 5 A probabilistic classifier f̂ : X → ∆k is classwise-calibrated if for any class i and any

predicted probability qi:

P (Y = i|f̂(x) = qi) = qi (3.7)

The notion of calibration that is typically of concern is confidence-calibration. When neural networks

make predictions, an input x is assigned to the class with the largest element in the output class

probability vector. This value is referred to as the model’s confidence. A classifier is confidence-calibrated

if, for all instances where the confidence is predicted to be c, the expected accuracy of the classifier is c

(Kull et al. 2019). Formally, a confidence-calibrated classifier is defined as follows:

Definition 6 A probabilistic classifier f̂ : X → ∆k is confidence-calibrated, if for any c ∈ [0, 1]:

P (Y = argmax(f̂(x))|max(f̂(x)) = c) = c (3.8)

Post-hoc calibration

Given an already trained classifier, a number of post-hoc calibration methods exist. These methods

are essentially post-processing steps that can produce better calibrated probabilities. These methods

have a varying number of parameters or hyperparameters which are tuned by minimizing a negative

log-likelihood on a held-out validation set. Four commonly used post-hoc calibration methods are tem-

perature scaling, matrix scaling, vector scaling and Dirichlet scaling.

Temperature scaling is one of the simplest post-hoc calibration method. Recall that the output of a

probabilistic neural network is a softmax function. Given the model’s logit vector zx for an input sample

x, the confidence prediction is as follows:

c = max(σsm(zx)) (3.9)

Where σsm is the softmax function.

In temperature scaling, instead of working directly with zx, the logit vector is scaled by a single

tempering parameter, T > 0 for each class. Consequently, the scaled prediction is given by:

c = max(σsm(zx/T )) (3.10)

When the tempering parameter greater than zero, T will raise the class probability vector’s entropy.

As T → 0, the confidence value will go up. Since each element of the logit vector is scaled by the same

positive number T , the relative ordering of class probabilities on the softmax output does not change.

Similar to temperature Scaling, matrix and vector scaling work by performing a transformation on

the logit vector. Matrix scaling works by learning a linear transformation on the logits such that the

scaled confidence value is:

c = max(σsm(Wzx + b)) (3.11)

This approach can be viewed as learning a multiclass logistic regression model using the model logit

vector as the input features. Vector scaling is a specific case of Matrix scaling where W is constrained

to a diagonal matrix.

Dirichlet scaling is similar to matrix scaling in that it learns a multiclass logistic regression model

on some output from the original classifier. The key difference is that Dirichlet scaling uses the class
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probability vector as a feature. In its linear parameterization, Dirichlet scaling is as follows:

c = max(σsm(W ln (q) + b)) (3.12)

Where q represents the class probability vector of the original neural network.

Post-hoc calibration methods were trained and applied to the Deep Ensemble trained on PCAWG

data, and the Deep Ensemble trained on the complete dataset. When applied to PCAWG, post-hoc

calibration was trained and applied independently for each of the 10 data partitions. In all cases, the

post-hoc calibration method was trained on the held-out validation set associated with each dataset.

To match the class distribution used during training, samples in the validation set were oversampled so

that the class abundances matched those found during training. For temperature scaling, the model was

trained using LFBGS for 20 epochs. Vector scaling was trained using Adam for 20 epochs. Both Dirichlet

scaling and matrix scaling were optimized using LFBGS, and internal cross-validation was used to select

an L2-norm penalty. After training, all post-hoc calibrated models and the original, uncalibrated model

were evaluated on the associated held-out test set. Evaluation was done using the following metrics:

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (3.13)

Where n is the number of samples, Bm is the set of indices of samples whose predictive confidence

falls into bin m, acc(Bm) is the accuracy in bin m and conf(Bm) is the confidence for samples in bin m.

ECEclasswise =
1

k

k∑
j=1

M∑
m=1

|Bm,j |
n
|yj(Bm,j)− p̂j(Bm,j)| (3.14)

Where k,m, n are the numbers of classes, bins and instances, respectively, Bm,j refers to bin m for

instances of class j, p̂j(Bm,j) is the average probability of class j, and yj(Bm,j) is the true proportion

of class j in bin Bm,j . For both ECE and ECEclasswise, 50 bins were used for calculating error.

In addition to the above calibration metrics, a statistical test proposed in (Vaicenavicius et al.

2019) was used to determine if a classifier deviated significantly from a perfectly confidence-calibrated

classifier. Reliability diagrams were constructed as described in (Guo et al. 2017). For models trained on

PCAWG data only, test samples were pooled across the 10 deep ensemble models prior to constructing

the reliability diagram.

3.5.6 Out-of Distribution Detection

Samples were predicted to be out-of-distribution (OOD) based on either their predictive entropy from

the deep ensemble or the kernel distance using DUQ. Predictive entropy from the deep ensemble was

calculated as follows:

H(p(y|X)) = −
M∑
m=1

pθm(y|x, θm) log pθm(y|x, θm) (3.15)

For neural networks trained only on PCAWG, OOD detection performance was assessed indepen-

dently using in-distribution samples from the test set associated with each data partition. For the

deep ensemble trained on the complete dataset, the same OOD samples described above were used for

evaluation, and in-distribution samples were taken as the associated test samples for that dataset.
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Additional validation was done using OOD samples from the two independent validation sets. Central

nervous system malignancies were removed for evaluation as there was some discrepancy in their true

origin (Jiao et al. 2020). This comprised 1213 in-distribution and 143 OOD samples of primary tumours.

All cancer samples in the HMF dataset, with the exception of 62 cancers of unknown primary, were used

for evaluation. Only those cancer samples matching cancer types from the 29 cancer types the model was

trained to identify were included. This totalled 2179 in-distribution and 231 OOD samples of metastatic

tumours from the HMF dataset.

Performance was evaluated using the following metrics: Matthew’s Correlation Coefficient (MCC),

accuracy score and F1 score. In the descriptions below, I use the abbreviations TP (true positive), TN

(true negative), FP (false positive) and FN (false negative) to describe correct and incorrect assignments

OOD or in-distribution tumours:

Recall: The proportion of samples of a particular category (OOD or in-distribution) that are identified

as the correct category:

Recall = TP/(TP + FN) (3.16)

Precision: The proportion of samples assigned to a particular category that are truly from that

category:

Precision = TP/(TP + FP ) (3.17)

F1 Score: The harmonic mean of recall and precision:

F1 = 2(recall ∗ precision)/(recall + precision) (3.18)

Accuracy: The proportion of correct assignments.

Accuracy = (TP + TN)/(TP + FP + TN + FN) (3.19)

Matthews Correlation Coefficient: The Pearson correlation coefficient between the predicted class

and the true class:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.20)



Chapter 4

Discussion and Summary

4.1 Summary

Cancers are most commonly categorized by their cell-of-origin, which is shaped by both the organ of origin

and histology of the tumour. While advances in precision medicine have allowed for tumours to be treated

based on molecular alterations specific to the tumour, identifying a tumour’s cell of origin is still a critical

task in a clinical setting. While cell-of-origin is often easy to identify for most tumours, challenging

situations arise when a patient presents with multiple primary tumours or CUPS. For these patients,

traditional diagnostic approaches are unable to identify cancer type (Greco 2013). As identifying primary

tumour site is essential for these cases, many approaches to using a tumour’s genomic characteristics have

been proposed. In this thesis, I set out to develop a series of deep learning models that can accurately

identify cancer type based on patterns of somatic mutations, and then address challenges for translating

this model into a clinical setting, by developing statistical methods for quantifying predictive uncertainty

in deep neural networks.

Despite a plethora of tumour typing algorithms using alterations to cancer-associated genes, compu-

tational tumour typing methods either have relatively low accuracy or are restricted to classifying a small

number of cancer types (Ma et al. 2006; Bender and Erlander 2009; Penson et al. 2019; Grewal et al. 2019;

Yuan et al. 2016; Salvadores, Mas-Ponte, and Supek 2019). Recent studies that find strong associations

between somatic passenger mutations and chromatin state provide a potential avenue for improving upon

these methods (Schuster-Böckler and Lehner 2012; Supek and Lehner 2015; Polak et al. 2015). The work

presented in Chapter 2 outlines the comparison of multiple mutation-derived feature sets for identifying

cancer type and results in the development of a deep learning system that can accurately discriminate

between 24 common cancer types. Using random forest classifiers, we show that passenger mutation

derived features, corresponding to regional-mutation density of somatic SNVs and mutation types out-

perform both driver mutation derived features and features associated with large-scale mutations such

as copy-number variants and structural variants. To improve the classifier’s performance, we develop a

series of deep neural networks trained on the best performing passenger mutation derived features. This

model’s performance was significantly higher than the random forest model, emphasizing the ability for

deep neural networks to learn highly accurate models from complex data. Interestingly, the work in

this chapter demonstrated that adding explicit information about alterations to cancer-associated genes

doesn’t significantly improve model performance. When a deep neural network was trained using the

104
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passenger derived features with the addition of explicit information of which cancer-associated alter-

ations occurred in the tumours, classification performance failed to significantly improve. This result

suggests that passenger mutations are sufficient for accurately identifying cancer type. While previous

work has demonstrated a relationship between regional mutation density and cell-of-origin, most pre-

vious work has been done by aggregating mutations over multiple tumour samples (Polak et al. 2015).

Therefore, this result is one of the first studies to demonstrate that a non-linear model (a deep neural

network) can learn a strong relationship between mutation rate derived from a single cancer sample and

cell-of-origin. The strength of this relationship is further emphasized by the patterns of misclassifications

produced by the model. When the deep neural network made misclassifications, they tended to reflect

shared biological characteristics. In particular, patterns of misclassifications potentially reflect common

chromatin features that arise from tumours that share developmental origins. Despite these misclassifi-

cations, the classifier could typically discriminate between different cancers that arise in the same organ.

This provides further evidence for the relationship between passenger mutations and cell-type.

This model, which was trained on a large collection of uniformly processed data, accurately general-

ized to data collected from additional sources, suggesting that the model has applicability in real-world

scenarios. Furthermore, the model accurately identified the primary tumour site for a large collection of

metastatic tumours coming from a diverse set of cancer types. While the classifier had lower accuracy

on this dataset compared to data from primary tumours, many misclassifications may be the result of

mutations caused by exposure to chemotherapeutic agents such as cisplatin and fluorouracil (Pich et

al. 2019). The model provides state-of-the-art performance for discriminating between multiple cancer

types. In comparison to classifiers trained on features traditionally thought to be more indicative of

cell-of-origin, such as gene expression profiles, our classifier provides the similar or better performance

when accounting for the relatively large number of cancer types the model is trained to identify. This

classifier’s overall high performance, coupled with the stability and robustness of DNA, means that this

classifier has immediate clinical applicability in identifying primary tumour site for metastatic tumours

of unknown origin.

Despite the relatively strong performance of this model, challenges exist for translating it into a

clinical setting. First, the model is only trained to identify 24 cancer types. Second, in a clinical

setting where a neural network’s predictions may form the basis for making patient-specific decisions, a

neural network needs to provide well-calibrated estimates of model uncertainty. In Chapter 3, I address

these challenges by developing and benchmarking multiple deep learning and statistical methods for

extending the classifier to a greater number of cancer types and quantifying the predictive uncertainty

of a deep neural network. Using a deep ensemble architecture, I was able to extend the classifier to

discriminate between 29 cancer types accurately. Despite increasing the number of cancer types the

model identifies, overall accuracy and performance are comparable to that for the classifier presented in

Chapter 2. To assess in-distribution uncertainty - the ability for the classifier to quantify how reliable the

predictions it makes are for cancer samples that come from cancer types the model is trained to identify

- I assessed confidence-calibration, and then implemented and compared several post-hoc calibration

methods. Overall, the original deep ensemble model provided highly well-calibrated predictions, an

essential task in a clinical setting. To use the model’s predictive uncertainty to automatically identify

cancer samples from rare cancer types that the model was not trained to classify, I made use of the entropy

of the predictive distribution. Using the entropy of the predictive distribution of the deep ensemble, I

accurately identified cancer samples that come from cancer types the model is not trained to identify,
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allowing for the model to automatically rule out cancer samples that it cannot make high-confidence

predictions on.

My thesis research demonstrates the utility of a DNA-based tumour classifier trained primarily on

information from somatic passenger mutations. Second, my thesis research is one of the first demon-

strations of the utility of confidence-calibration and uncertainty quantification in deep learning applied

to cancer genomics. The classifiers I have developed now form the basis of work not discussed in this

thesis. They are being used as the basis for an online tumour typing application and will be tested on a

large set of clinical tumour samples. In the rest of this chapter, I outline a number of future directions

stemming from the work I’ve presented in this thesis.

4.2 Correcting therapy-induced mutations

Cancer therapy has the potential for introducing a large number of mutations in a tumour. Work studying

the mutational footprints of chemotherapy suggests that chemotherapy can contribute more than 50% of

the mutations found in a tumour sample (Pich et al. 2019). Additional work has uncovered mutational

spectra associated with radiation therapy (Behjati et al. 2016). As seen in both Chapter 2 and Chapter

3, the classifier, despite doing well on treated samples, had a small drop-off in accuracy compared to

performance on untreated tumours. As samples in clinical scenarios, particularly those corresponding

to patients with multiple primary tumours, may have exposure to cancer therapies, correcting for the

effects of these variants may improve performance in real-world settings.

The characterization of mutational spectra associated with cancer therapy falls in the general frame-

work of mutational signature analysis. At its core, mutational signature analysis works by taking ob-

served counts of mutation types in a tumour and learning a latent representation of the mutational

spectra, which can be grouped into mutational signatures. More specifically, the frameworks used to

perform this analysis can be seen as variants of topic modelling, which aims to summarize topics (signa-

tures) based on the counts of words (mutation types) found in documents (tumour genomes) (Alexandrov

et al. 2020; Blei 2003). To correct for mutations associated with chemotherapy, mutational spectra can

be embedded in the latent signature space, the contribution of therapy associated mutational signatures

can then be removed, and the corrected mutational signatures can be used to reconstruct mutation types

that no longer have contributions from mutational signatures associated with cancer therapy. While the

traditional statistical framework for topic modelling makes this difficult, recent advances in amortized

variational inference allow for topic models to be learned using neural networks (Figurnov, Mohamed,

and Mnih 2018). By learning a topic model using a variational autoencoder, it becomes possible to fit

mutational signatures to input samples, and then work directly in the mutational signature space to

remove the contribution of mutational signatures associated with exposure to therapy. The altered mu-

tational signature representation can then be used to reconstruct a mutation types vector that no longer

contains mutations associated with cancer therapy. Using these approaches, it would be interesting to

study the effects of removing mutation types associated with cancer therapy on overall classification

performance.

An alternative approach would be to focus on the VAF of the mutations in a tumour sample. Mu-

tations contributed by cancer therapy may be present at lower VAF than other mutations within the

tumour (Pich et al. 2019). Using the VAF of mutations, it may be possible to reduce the contribution of

therapy-induced mutations by simply removing low VAF mutations. This approach has two potential pit-
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falls. First, clonal expansions following exposure to therapy can increase the VAF of therapy-associated

mutations, making them difficult to distinguish from other mutations. Second, the activity of muta-

tional signatures varies throughout cancer evolution, with some mutational signatures becoming active

in the later stages of cancer development (Gerstung et al. 2017). The mutations caused by mutational

signatures active in the later stages of cancer development would also be present at lower VAF than

other mutations and may be removed alongside mutations potentially associated with cancer therapy.

4.3 Incorporation of additional data modalities

Several different modalities have been used as features for developing tumour typing classifiers. Some

success has been seen using gene expression data, cancer-associated mutations, and methylation assays

(Ma et al. 2006; Bender and Erlander 2009; Penson et al. 2019; Grewal et al. 2019; Yuan et al. 2016;

Locke et al. 2019). While these models have shown some success, they have been limited either in

overall accuracy or in the number of cancer types they can classify. Data from modalities such as RNA-

sequencing has the benefit of providing information about the tumour’s current phenotype, which may

be beneficial as the understanding of precision medicine advances.

In future studies, it would be interesting to incorporate data from additional modalities such as RNA-

sequencing or methylation assays to the passenger mutation based classifier. Using passenger mutations

will allow for ancestral information about a primary tumour to be represented in the classifier, and

would offset any potential uncertainty introduced by using gene expression from highly undifferentiated

tumours. The addition of gene expression data and methylation data may provide the classifier with the

ability to differentiate highly related tumour types that have subtle differences not present at the level

of regional mutation density, and would provide a readout of the tumour’s current phenotype, which

may be beneficial for targeted therapy.

4.4 Molecular subtyping

Tumours can be categorized at different levels of resolution. The work in this thesis has focused on

developing methods to categorize tumours at the level of cell-of-origin, which provides vital information

for clinical decision making. As molecular characterization of tumours has advanced, tumours have

started to become categorized at the level of molecular subtypes. Molecular subtyping of tumours

allows tumours of a single type, such as pancreatic adenocarcinomas, to be further subdivided based on

molecular characteristics such as alterations to cancer-associated genes, gene expression signatures and

chromatin modifications (Moffitt et al. 2015; Lomberk et al. 2018; Hayward et al. 2017). The subtype

of a tumour can be used as the basis for guiding therapy. For example, triple-negative breast cancer is

unresponsive to endocrine therapy or HER2 inhibition (Yin et al. 2020). As molecular subtypes are often

encoded in gene expression programs or chromatin state, its possible that distinct molecular subtypes

of a tumour have differences in the regional mutation density, which may be used to identify tumour

subtype.

Currently, the classifier described in this thesis does not attempt to discriminate between multiple

subtypes of a tumour category. In the future, it will be of interest to explore the use of passenger

mutation derived features for automatically assigning a tumour sample to a distinct molecular subtype.

This would then allow the classifier described in this thesis to be extended such that it is able to first
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assign an input sample to a tumour category and then able to assign the cancer sample to a molecular

subtype of the tumour category.

An alternative approach would be to forego assignment to tumour type and use unsupervised or self-

supervised learning methods to learn new groupings of tumours based on patterns of somatic passenger

mutations. This approach would learn to group cancer samples based on patterns of mutations and then

make use of gene expression programs from cancer samples to define the new tumour groupings’ molecular

characteristics. Using this approach, tumour samples would be assigned to passenger mutation-based

subtypes, and treatment would be guided based on approaches that specifically target gene expression

programs associated with the new subtypes.

4.5 Application to liquid biopsies and cell-free DNA

The presence of cell-free DNA (cfDNA) molecules has been known for over 50 years (Mandel and Metais

1948). Subsequent work has demonstrated that cancer patients have more cfDNA than healthy individ-

uals, likely due to cancer cells shedding fragments of DNA (Fleischhacker and Schmidt 2007). As these

DNA fragments contain mutations and other alterations present within the tumour that shed them, they

have potential utility for early cancer detection and monitoring of tumour progression. Unfortunately,

cfDNA tends to be more sparse and contain noisier data than the DNA uncovered from bulk WGS

(Zviran et al. 2020).

While the classifiers presented in this thesis make use of mutation counts from bulk WGS, this thesis’s

work also demonstrates the utility of using patterns of mutations to identify cancer type accurately. As

cfDNA presents noisier data than bulk WGS, it may not be possible to rely on alterations to specific, pre-

defined cancer-associated genes. Instead, methods that allow for high-sensitivity mutation calling at the

level of individual reads, instead of at specific loci as is common for bulk WGS, may provide estimates

of regional mutation density across the entire genome (Zviran et al. 2020). The work presented in

Chapter 2 demonstrates that a classifier trained using only information from regional mutation density

has the ability to accurately identify cancer type. As this classifier does not explicitly require locus-

specific mutation calls, mutation calling at the read level from cfDNA is potentially applicable to the

model I have developed. Using cfDNA, it may be possible to adapt the classifiers I have developed

using transfer learning methods (Transfer Learning) so that the classifier can be applied for early-cancer

detection using non-invasive liquid biopsies. Currently, however, the sparsity of variant calls from cfDNA

render this approach difficult (Zviran et al. 2020), but future technological advances may allow for deep,

genome-wide variant calling from cfDNA.

4.6 Inferring chromatin state from patterns of somatic muta-

tions

Chromatin state is a defining characteristic of a cell-type. For tumours, the chromatin state of the

initiating cells in a tumour can provide clues to the developmental origins of a tumour. For example,

the chromatin state of tumour initiating cells may be used to determine if tumour initiating cells have

characteristics of stem-like cells. As cancer cells have a large amount of plasticity, chromatin state

tends to change throughout tumour evolution, with some cells diverging significantly from the cells that
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initiated the tumour (Lan et al. 2017). While single-cell approaches have allowed for the heterogeneity

in chromatin accessibility to be characterized, these approaches only provide information about extant

cells. They cannot provide information about ancestral chromatin states that were once present in a

human tumour. (Pritykin et al. 2020).

Ancestral information about real human tumours can reliably be uncovered through the evolutionary

reconstruction of mutations in a human tumour (Gerstung et al. 2017). Evolutionary reconstruction of

mutations allows for mutations to be ordered throughout tumour development, and assigned to distinct

epochs of evolution such as the early-clonal stage or the subclonal stage. This thesis’s work has made

use of the relationship between chromatin state and mutation rate to develop classifiers that can identify

cancer type from regional mutation density (Schuster-Böckler and Lehner 2012; Supek and Lehner 2015;

Polak et al. 2015). A future avenue of research would be to forgo identifying cell-type directly, and

instead, use sequence-based neural networks such as transformer networks (Vaswani et al. 2017) to

develop a model that uses regional mutation density to infer chromatin accessibility. With this model,

it may be possible to use the evolutionary reconstruction of mutations in tumour evolution to describe

how chromatin accessibility changes throughout cancer evolution. Using multi-region sequencing studies,

spatial chromatin heterogeneity may also be analyzed using this approach (Jamal-Hanjani et al. 2017).

4.7 Closing Remarks

Challenging scenarios arise when determining cancer type for metastatic lesions. In extreme cases,

patients present with metastatic tumours that cannot be identified using imaging studies, examination

by a pathologist, and immunohistochemistry. Large-scale genome sequencing studies have uncovered

strong relationships between somatic mutations and cancer type, opening an avenue for using genomics

as a tool for identifying cancer type. The work presented in this thesis demonstrates the utility of using

somatic passenger mutations and deep learning as a tool for identifying cancer type and contains one of

the first applications of confidence-calibration in deep learning applied to genomics.

As sequencing of clinical tumour samples becomes more accessible, the whole-genomes of tumour

samples will routinely be sequenced in clinical scenarios. It is hoped that the methods described in

this thesis will serve as an adjunct to traditional diagnostic approaches, allowing for the accuracy and

reliability of cancer diagnosis to be improved.
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Böhm. Current Topics in Microbiology and Immunology. Berlin, Heidelberg: Springer, pp. 259–281.

isbn: 978-3-540-31390-8. doi: 10.1007/3-540-31390-7_10. url: https://doi.org/10.1007/3-

540-31390-7_10 (visited on 11/27/2020).

Pich, Oriol et al. (Nov. 18, 2019). “The mutational footprints of cancer therapies”. In: Nature Genetics,

pp. 1–9. issn: 1546-1718. doi: 10.1038/s41588-019-0525-5. url: https://www.nature.com/

articles/s41588-019-0525-5 (visited on 11/25/2019).

Polak, Paz et al. (Jan. 2014). “Reduced local mutation density in regulatory DNA of cancer genomes

is linked to DNA repair”. In: Nature Biotechnology 32.1, pp. 71–75. issn: 1546-1696. doi: 10.1038/

nbt.2778. url: https://www.nature.com/articles/nbt.2778 (visited on 09/14/2020).

Polak, Paz et al. (Feb. 18, 2015). “Cell-of-origin chromatin organization shapes the mutational landscape

of cancer”. In: Nature 518.7539. Publisher: Nature Research, pp. 360–364. issn: 0028-0836. doi:

https://doi.org/10.1080/15592294.2020.1790950
https://doi.org/10.1080/15592294.2020.1790950
https://doi.org/10.1080/15592294.2020.1790950
https://doi.org/10.1177/0192623309356449
https://doi.org/10.1177/0192623309356449
https://doi.org/10.1126/science.1164382
https://doi.org/10.1126/science.1164382
http://science.sciencemag.org/content/321/5897/1807
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1038/nature14410
https://doi.org/10.1038/nature14410
https://doi.org/10.1016/j.jare.2014.11.007
https://doi.org/10.1016/j.jare.2014.11.007
https://doi.org/10.1016/s0959-8049(03)00547-1
https://doi.org/10.1016/S0140-6736(11)61178-1
https://doi.org/10.1016/S0140-6736(11)61178-1
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(11)61178-1/abstract
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(11)61178-1/abstract
https://github.com/Hvass-Labs/TensorFlow-Tutorials
https://github.com/Hvass-Labs/TensorFlow-Tutorials
https://doi.org/10.1001/jamaoncol.2019.3985
https://doi.org/10.1001/jamaoncol.2019.3985
https://doi.org/10.1007/3-540-31390-7_10
https://doi.org/10.1007/3-540-31390-7_10
https://doi.org/10.1007/3-540-31390-7_10
https://doi.org/10.1038/s41588-019-0525-5
https://www.nature.com/articles/s41588-019-0525-5
https://www.nature.com/articles/s41588-019-0525-5
https://doi.org/10.1038/nbt.2778
https://doi.org/10.1038/nbt.2778
https://www.nature.com/articles/nbt.2778


BIBLIOGRAPHY 122

10.1038/nature14221. url: http://www.nature.com/doifinder/10.1038/nature14221 (visited

on 01/03/2017).

Polak, Paz et al. (Oct. 2017). “A mutational signature reveals alterations underlying deficient homologous

recombination repair in breast cancer”. In: Nature genetics 49.10, pp. 1476–1486. issn: 1061-4036.

doi: 10.1038/ng.3934. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376751/

(visited on 11/04/2020).

Pollock, P. M. and P. S. Meltzer (2002). “A genome-based strategy uncovers frequent BRAF mutations

in melanoma”. In: Cancer Cell 2. doi: 10.1016/S1535-6108(02)00089-2. url: https://doi.org/

10.1016/S1535-6108(02)00089-2.

Prentice, Leah M. et al. (Apr. 26, 2018). “Formalin fixation increases deamination mutation signature but

should not lead to false positive mutations in clinical practice”. In: PLoS ONE 13.4. issn: 1932-6203.

doi: 10.1371/journal.pone.0196434. url: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC5919577/ (visited on 11/03/2020).

Priestley, Peter et al. (Jan. 16, 2019). “Pan-cancer whole genome analyses of metastatic solid tumors”.

In: bioRxiv. Publisher: Cold Spring Harbor Laboratory, p. 415133. doi: 10.1101/415133. url:

https://www.biorxiv.org/content/10.1101/415133v2 (visited on 05/16/2019).

Pritykin, Yuri et al. (July 26, 2020). “A unified atlas of CD8 T cell dysfunctional states in cancer and

infection”. In: bioRxiv, p. 2020.07.25.220673. doi: 10.1101/2020.07.25.220673. url: https:

//www.biorxiv.org/content/10.1101/2020.07.25.220673v1 (visited on 07/26/2020).

Puente, Xose S. et al. (July 2011). “Whole-genome sequencing identifies recurrent mutations in chronic

lymphocytic leukaemia”. In: Nature 475.7354. Number: 7354 Publisher: Nature Publishing Group,

pp. 101–105. issn: 1476-4687. doi: 10 . 1038 / nature10113. url: http : / / www . nature . com /

articles/nature10113 (visited on 11/04/2020).

Rassy, Elie, Tarek Assi, and Nicholas Pavlidis (Apr. 2020). “Exploring the biological hallmarks of cancer

of unknown primary: where do we stand today?” In: British Journal of Cancer 122.8, pp. 1124–1132.

issn: 1532-1827. doi: 10.1038/s41416-019-0723-z. url: https://www.nature.com/articles/

s41416-019-0723-z (visited on 09/15/2020).

Reyna, Matthew A. et al. (Feb. 5, 2020). “Pathway and network analysis of more than 2500 whole cancer

genomes”. In: Nature Communications 11.1. Number: 1 Publisher: Nature Publishing Group, p. 729.

issn: 2041-1723. doi: 10.1038/s41467-020-14367-0. url: http://www.nature.com/articles/

s41467-020-14367-0 (visited on 11/05/2020).

Rheinbay, Esther et al. (2020). “Analyses of non-coding somatic drivers in 2,658 cancer whole genomes”.

In: Nature 578.7793, pp. 102–111. issn: 0028-0836. doi: 10.1038/s41586-020-1965-x. url: https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC7054214/ (visited on 11/03/2020).

Rodin, Sergei N. and Andrei S. Rodin (Apr. 2005). “Origins and selection of p53 mutations in lung

carcinogenesis”. In: Seminars in Cancer Biology 15.2, pp. 103–112. issn: 1044-579X. doi: 10.1016/

j.semcancer.2004.08.005.

Rosai, J. and L. V. Ackerman (Feb. 1979). “The pathology of tumors. Part II: Diagnostic techniques”.

In: CA: a cancer journal for clinicians 29.1, pp. 22–39. issn: 0007-9235. doi: 10.3322/canjclin.

29.1.22.

Ruder, Sebastian (June 15, 2017). “An overview of gradient descent optimization algorithms”. In:

arXiv:1609.04747 [cs]. arXiv: 1609.04747. url: http://arxiv.org/abs/1609.04747 (visited

on 11/27/2020).

https://doi.org/10.1038/nature14221
http://www.nature.com/doifinder/10.1038/nature14221
https://doi.org/10.1038/ng.3934
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376751/
https://doi.org/10.1016/S1535-6108(02)00089-2
https://doi.org/10.1016/S1535-6108(02)00089-2
https://doi.org/10.1016/S1535-6108(02)00089-2
https://doi.org/10.1371/journal.pone.0196434
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5919577/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5919577/
https://doi.org/10.1101/415133
https://www.biorxiv.org/content/10.1101/415133v2
https://doi.org/10.1101/2020.07.25.220673
https://www.biorxiv.org/content/10.1101/2020.07.25.220673v1
https://www.biorxiv.org/content/10.1101/2020.07.25.220673v1
https://doi.org/10.1038/nature10113
http://www.nature.com/articles/nature10113
http://www.nature.com/articles/nature10113
https://doi.org/10.1038/s41416-019-0723-z
https://www.nature.com/articles/s41416-019-0723-z
https://www.nature.com/articles/s41416-019-0723-z
https://doi.org/10.1038/s41467-020-14367-0
http://www.nature.com/articles/s41467-020-14367-0
http://www.nature.com/articles/s41467-020-14367-0
https://doi.org/10.1038/s41586-020-1965-x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054214/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054214/
https://doi.org/10.1016/j.semcancer.2004.08.005
https://doi.org/10.1016/j.semcancer.2004.08.005
https://doi.org/10.3322/canjclin.29.1.22
https://doi.org/10.3322/canjclin.29.1.22
https://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747


BIBLIOGRAPHY 123

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (Oct. 1986). “Learning representations

by back-propagating errors”. In: Nature 323.6088. Number: 6088 Publisher: Nature Publishing Group,

pp. 533–536. issn: 1476-4687. doi: 10.1038/323533a0. url: https://www.nature.com/articles/

323533a0 (visited on 11/05/2020).
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Appendix

All large data files described below are available as supplementary Excel files.

A.1 Tables related to Chapter 2

Table A.1: This table shows a summary of the tumour samples from PCAWG that were used for

training and testing the classifiers.
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