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Abstract 
Mapping genetic interaction networks in yeast 

Anastasia Baryshnikova 

Doctor of Philosophy, 2013 

Department of Molecular Genetics 

University of Toronto 

Global quantitative analysis of genetic interactions provides a powerful approach for 

deciphering the roles of genes and mapping functional relationships amongst pathways. Us-

ing colony size as a proxy for fitness, I developed a method for measuring genetic interac-

tions from high-density arrays of yeast double mutants generated by synthetic genetic array 

(SGA) technology. I identified several experimental sources of systematic variation and de-

veloped normalization strategies to obtain accurate fitness measurements. I used this scoring 

method to map quantitative genetic interactions among 5.4 million yeast double mutants and 

generated the first functionally unbiased genetic interaction map of a eukaryotic cell. My 

map produced an unprecedented view of the cell in which genes of similar biological pro-

cesses cluster together in coherent subsets and functionally interconnected bioprocesses map 

next to each other. We discovered several physiological and evolutionary gene features that 

are characteristic of genetic interaction hubs, and explored the relationship between genetic 

and protein-protein interaction networks. In particular, by comparing quantitative single and 

double mutant phenotypes, we identified specific cases of positive genetic interactions, 

termed genetic suppression, and constructed a global network of suppression interactions 

among protein complexes. I also demonstrated that an extensive and unbiased mapping of 

genetic interactions provides a key for interpreting chemical-genetic interactions and identi-
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fying drug targets. In addition, I used genome-wide SGA data to map profiles of genetic link-

age along all sixteen yeast chromosomes. These linkage profiles recapitulated previously 

identified recombination patterns and uncovered an unexpected correlation between chromo-

some length and the extent of centromere-related recombination repression. These findings 

suggest a chromosome size-dependent mechanism for ensuring proper chromosome segrega-

tion and highlight the SGA methodology as a unique approach for systematic analysis of 

yeast meiotic recombination. 
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Following the sequencing of the human genome, one of the biggest challenges in hu-

man genetics is understanding the relationship between the genotype and the phenotype of an 

individual. Mendelian disorders, caused by single gene mutations, account only for a small 

fraction of rare human diseases, while the genetic causes of more common and complex con-

ditions still remain largely unknown. The difficulty in understanding common diseases stems 

from the complexity of the human genome: each individual carries ~4 million genetic vari-

ants and polymorphisms (Frazer et al., 2009), none of which can be pinpointed as the single 

cause for a given phenotype. Instead, genetic variants appear to interact with one another by 

enhancing or suppressing each other’s effects on quantitative traits and susceptibility to dis-

ease. These interactions between genetic variants determine the phenotype arising from a 

given genotype and may provide the key for explaining the missing heritability of complex 

traits (Zuk et al., 2012).   

The study of genetic interaction networks in human populations is extremely challeng-

ing due to the impossibility to isolate the effect of each individual genetic variant. As noted 

by Richard Lewontin almost 40 years ago, “There is simply no way to make a large number 

of individuals identically homozygous or heterozygous at one locus while keeping the rest of 

the genome segregating at random” (Lewontin, 1974). This problem, however, can be ap-

proached in model organisms, where inbred populations and systematic mutagenesis projects 

have enabled researchers to analyze the effects of alleles alone and in combination. In this 

thesis, I summarize the state of the art of genetic interaction research in model systems and 

present my own work towards generating and analyzing the properties of quantitative genetic 

interaction networks in yeast Saccharomyces cerevisiae. 
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1.1 Defining genetic interactions 

Geneticists have long recognized that genetic interactions are important for shaping the 

phenotypic landscape of a population. For example, William Bateson introduced the term 

“epistasis” (i.e. “standing upon”) in 1909 to describe a specific type of genetic interaction 

whereby one mutation masks the effects of another mutation on fur color in rabbits and mice 

(Bateson, 1909). The same term was later adopted to describe genetic relationships that often 

occur among members of the same metabolic pathway, where the action of one enzyme de-

pends on a substrate produced by another enzyme. In 1918 Ronald Fisher introduced a simi-

lar term, “epistacy”, to define any multi-locus mutant effect that deviates from the sum of the 

effects of individual loci (Fisher, 1918). Today, the term “genetic interaction” incorporates 

both Bateson’s and Fisher’s definitions of epistasis and refers to any unexpected phenotype 

that cannot be explained by the combined effects of the individual mutations (Figure 1.1). 

A genetic interaction between two genes can be experimentally measured by compar-

ing the phenotype of the double mutant to the expected combination of the two single mutant 

phenotypes. While this may seem relatively straightforward, determining how mutations are 

expected to combine is not as obvious and has generated several mathematical theories, in-

cluding the most widely adopted additive and multiplicative models of genetic interactions 

(Phillips et al., 2000; Mani et al., 2008). In the case of the additive model, each gene is ex-

pected to add a specific quantity to the phenotype, such that the phenotype of a double mu-

tant would equal the sum of the two single mutants phenotypes. Alternatively, according to 

the multiplicative model, each gene is expected to change the phenotype by a specific frac-

tion, and the phenotype of the double mutant would equal the product of the two single mu-
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tants phenotypes. The choice of the most appropriate model is dependent on the particular 

phenotype and scale of measurement (e.g. linear vs. logarithmic) because genes may appear 

independent on one scale but show a genetic interaction on a different scale (Mani et al., 

2008). There exists a theoretical reason for adopting the multiplicative model when measur-

ing interactions based fitness. According to our current understanding of evolutionary mech-

anisms, linkage disequilibrium will not arise in a population at equilibrium if genes are inde-

pendent under the multiplicative model (for more details, see Appendix 6.1). 

 

Figure 1.1. Defining genetic interactions. 
A graphical representation of how genetic interactions are inferred from a measurable phenotype, such as 
growth. 
(A) Negative genetic interactions. The wild-type strain and the single mutants a and b have fitness of 1.0, 0.7 
and 0.5, respectively. Based on the multiplicative model, the expected fitness of the double mutant ab would be 
0.35. Negative deviations from the expected fitness are scored as either synthetic sick or synthetic lethal interac-
tions. 
(B) Symmetric positive genetic interactions. Each single mutant (a and b) exhibits a twofold fitness defect (0.5) 
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relative to wild-type (1.0). The fitness of the resultant ab double mutant is greater than expected (0.5 > 0.25) 
and identical to the fitness of the two single mutants (0.5). 
(C) Asymmetric positive genetic interactions. Single mutants a and b differ in fitness (0.7 and 0.5, respectively). 
Positive deviations from expectation, along with the comparison of single and double mutant fitness, allow clas-
sification of asymmetric positive interactions into masking and suppression subcategories. 

1.2 Negative and positive genetic interactions 

Based on the difference between the observed and the expected mutant phenotypes, ge-

netic interactions can be broadly divided into two major classes, which we refer to as nega-

tive and positive genetic interactions (Baryshnikova et al., 2010b).  

Negative genetic interactions describe double mutants whose phenotype is stronger 

than expected (Figure 1.1) (Phillips et al., 2000; Mani et al., 2008), with the most extreme 

example being synthetic lethality where two mutations, each causing little fitness defect on 

their own, result in an inviable phenotype when combined in the same organism. This phe-

nomenon, initially observed among the progeny of intercrosses between natural variants of 

Drosophila pseudoobscura, provided the first insight into the degree of genetic variability 

concealed within natural populations (Dobzhansky, 1946). Synthetic lethality has since been 

extensively explored in yeast and other organisms, and proved to be an extremely powerful 

genetic tool for identifying and characterizing genes in numerous biological processes 

(Novick and Botstein, 1985; Bender and Pringle, 1991; Guarente, 1993).  

Synthetic lethality and its milder variant, synthetic sickness, are interesting because 

they often occur between genes acting in parallel pathways that impinge on a common essen-

tial biological function, such that the cell can survive the loss of either gene alone but not in 

combination (Figure 1.2A, left panel) (Guarente, 1993; Tong et al., 2001). For example, 
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many genes involved in response to DNA damage are synthetic lethal with one another 

(Gurley and Kemp, 2001; Farmer et al., 2005; Pan et al., 2006), possibly reflecting the im-

portance of compensatory systems in maintaining the integrity of the genetic material. Genes 

acting in the same essential pathway or protein complex may also exhibit synthetic lethality 

if each mutation is hypomorphic, having a partial inhibitory effect on pathway activity 

(Figure 1.2A, right panel) (Guarente, 1993; Bandyopadhyay et al., 2008; Baryshnikova et al., 

2010b). For example, synthetic lethal interactions among partial loss-of-function mutations in 

a group of essential SEC genes helped elucidating the structure of the post-Golgi secretory 

pathway and its relationship to other secretion-related processes (Finger and Novick, 2000).  
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Figure 1.2. Molecular mechanisms underlying genetic interactions. 
(A) Negative interactions can arise from the disruption of parallel pathways converging on a common process 
(“between-pathway” genetic interactions) or by decreasing the flux through the same essential pathway (“with-
in-pathway” genetic interactions). 
(B) Symmetric positive genetic interactions are enriched among members of the same nonessential protein 
complex, such that the disruption of any one or any pair of complex members results in the same effect on fit-
ness. 
(C) Asymmetric positive genetic interactions. Mutation of a negative regulator (a) leads to hyperactivation of 
the pathway and accumulation of a toxic gene product (C). Subsequent loss-of-function mutation of a down-
stream pathway component (b) reduces flux through the pathway, thereby suppressing the toxic effects caused 
by mutant a. Gain-of-function suppression may arise when a downstream or terminal pathway component ac-
quires a mutation (F*) such that it is no longer dependent on upstream activation events. 
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Positive genetic interactions refer to double mutants exhibiting a less severe phenotype 

than expected, and can be further sub-classified into a variety of categories (Figure 1.1) 

(Drees et al., 2005; St Onge et al., 2007; Mani et al., 2008). For example, the symmetric 

class of positive interactions describes cases where the phenotypes of the double mutant and 

the corresponding single mutants are quantitatively indistinguishable (Figure 1.1B). Con-

versely, the asymmetric class consists of interactions, such as genetic suppression, in which 

the phenotypes of the single mutants differ from each other and from the resultant double 

mutant, which shows a fitness greater than that of the sickest single mutant (Figure 1.1C) 

(Drees et al., 2005; St Onge et al., 2007). 

Importantly, different types of positive genetic interactions are associated with different 

biological interpretations and, when measured accurately, offer the potential to infer bio-

chemical relationships between gene products (Figure 1.2) (Drees et al., 2005; St Onge et al., 

2007; Breslow et al., 2008). For example, genetic suppression, whereby the double mutant 

fitness is higher than the fitness of the sickest single mutant, is an asymmetric positive genet-

ic interaction that often links genes to their negative regulators, assuming both carry loss-of-

function mutations (Figure 1.2C; Chapter 3.10) (Baryshnikova et al., 2010b). Suppression 

interactions of this kind are often encountered among genes regulating general amino acid 

biosynthesis in S. cerevisiae. For example, growth defects associated with mutations in 

GCD1, which acts as a negative regulator of amino acid biosynthesis upon starvation, are 

suppressed by mutations in the GCN4 locus, a tightly regulated transcriptional activator act-

ing downstream of Gcd1 (Hinnebusch and Fink, 1983). The suppressor may also carry a 

gain-of-function mutation which renders the pathway independent from an upstream compo-
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nent (Figure 1.2C). An example is the yeast pheromone response pathway, which is normally 

triggered by the binding of a/α factor to their corresponding cell surface receptor, which 

leads to activation of the coupled heterotrimeric G protein, composed by Gpa1, Ste18 and 

Ste4 (Marsh et al., 1991). Constitutive pathway inactivation, observed in null ste4 mutants, 

can be suppressed by dominant mutations in STE11, a protein kinase acting in downstream 

signal transmission (Stevenson et al., 1992). 

Symmetric positive interactions, also known as co-equal interactions, often connect 

genes encoding members of the same non-essential protein complex (Sung, 1997; Ulrich and 

Jentsch, 2000; Ito et al., 2001; Kaliraman et al., 2001; Shor et al., 2005; St Onge et al., 

2007), presumably because the observed phenotype is due to loss of the complex function, 

which can be achieved by removing any one of its components, individually or in pairs 

(Figure 1.2B). A systematic analysis of 26 genes involved in DNA damage repair showed 

that nine out of ten symmetric positive interactions corresponded to physical interactions 

among the encoded proteins, including all four members of the well-characterized SHU com-

plex (St Onge et al., 2007). 

The set of negative and positive genetic interactions involving a particular gene make 

up its genetic interaction profile, which was found to be an extremely accurate reflection of 

the gene’s biological function (Tong et al., 2004; Ye et al., 2005; Costanzo et al., 2010) 

(Chapter 3.3). Early genetic interaction studies recognized that genes acting in the same mo-

lecular pathway or protein complex tend to share similar genetic interaction partners (Figure 

1.2) (Tong et al., 2004). Further analysis showed that common patterns of genetic interac-

tions are often more predictive of co-membership in a protein complex than direct genetic 
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interactions themselves (Ye et al., 2005). Therefore, genetic interaction profiles, just like 

gene expression profiles and other multidimensional phenotypes, can be used to cluster genes 

into functional modules and predict function for previously uncharacterized genes using 

guilt-by-association approaches (Costanzo et al., 2010) (Chapter 3.3). 

1.3 Mapping genetic interactions in yeast 

The vast majority of large-scale genetic interaction screens completed to date have used 

the budding yeast Saccharomyces cerevisiae. With its elegant and straightforward genetics, 

yeast is a powerful model system for dissecting fundamental properties of eukaryotic cells 

and has served as a primary test bed for development of numerous functional genomic tech-

nologies (Botstein and Fink, 2011). Specifically, genome-scale mapping of genetic interac-

tions requires three fundamental tools. First, large collections of mutant strains, carrying ei-

ther gain- or loss-of-function alleles, are required for systematically perturbing gene activity. 

Second, high-throughput methodologies must be available for combining mutations in a rap-

id, accurate and comprehensive manner. Third, phenotypes of interest must be scored easily, 

quantitatively and in parallel for a large number of samples. The development of all three of 

these fundamental genomic tools was pioneered in S. cerevisiae and has enabled early pro-

gress in mapping quantitative genetic interactions. 

1.3.1 Mutant strain libraries 

The yeast deletion collection is a library of strains, in which each known or suspected 

open reading frame was deleted and replaced with the dominant drug-resistance marker, 
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kanMX (Giaever et al., 2002) (Figure 1.3). This collection contains deletion strains for 

~4,800 nonessential genes, available as haploids or homozygous diploids, as well as ~1,000 

essential genes that are required for viability under regular growth conditions and are main-

tained as heterozygous diploids. Molecular tags or barcodes, i.e. strain-specific 20-bp DNA 

sequences, were introduced at both ends of the deletion cassette and act as unique mutant 

strain identifiers (Figure 1.3). The presence of molecular barcodes enables the fitness of a 

particular mutant to be assessed within a pooled population using a barcode microarray 

(Giaever et al., 1999) or, more recently, high-throughput barcode sequencing (Smith et al., 

2009). 

 

Figure 1.3. Construction of the yeast deletion-mutant collection. 
Each yeast ORF is replaced with a “deletion cassette” that consists of an antibiotic-resistance marker, kanMX 
(which confers resistance to kanamycin), and two unique 20 nucleotide molecular barcodes, “uptag” (UP) and 
“downtag” (DN). Each barcode is flanked by common primer sites (indicated by darker blue and brown colors). 
Incorporation of the cassette into the yeast genome is accomplished through homologous recombination of 45-
bp regions of homology upstream and downstream of the yeast ORF. 
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To enable the analysis of essential genes, the yeast community developed additional 

strain libraries that complement the non-essential deletion collection. These libraries consist 

of subsets of the ~1,000 essential genes that have been altered to produce either conditional 

alleles (Mnaimneh et al., 2004; Davierwala et al., 2005; Ben-Aroya et al., 2008; Li et al., 

2011) or hypomorphic alleles that are compatible with viability (Schuldiner et al., 2005; 

Breslow et al., 2008).  

Conditional expression of an essential gene can be obtained in several ways. In one of 

the first systematic approaches, 575 essential genes were placed under the control of a tetra-

cycline-inducible promoter, which turns off in the presence of a tetracycline analog doxycy-

cline (Mnaimneh et al., 2004; Davierwala et al., 2005). An alternative strategy is to target 

protein stability in response to high temperatures by introducing point mutations into the 

gene coding sequence such that the activity of the protein is normal at a permissive tempera-

ture, but is substantially reduced or abolished at a restrictive temperature (Ben-Aroya et al., 

2010). The largest collection of yeast conditional temperature-sensitive (ts) alleles in an iso-

genic background contains 747 mutant strains, covering ~45% of all essential genes, many of 

which represented by multiple alleles (Li et al., 2011). This collection complements a non-

overlapping array of 250 ts mutants constructed independently (Ben-Aroya et al., 2008) to 

generate a combined dataset covering ~65% of all essential genes in yeast. 

In addition to inducible promoters and point mutations, the activity of a gene can be 

partially reduced by destabilizing its mRNA transcript. This approach is exploited by the 

DAmP (decreased abundance by mRNA perturbation) collection, which contains 842 yeast 
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essential genes whose 3’-UTR regions were disrupted through integration of an antibiotic 

selectable marker (Schuldiner et al., 2005; Breslow et al., 2008). 

1.3.2 Genetic interaction mapping technologies 

The availability of large-scale mutant strain collections prompted the development of 

high-throughput technologies for combining mutations and studying genetic interactions. 

Synthetic Genetic Array (SGA) was among the first automated approaches for systematically 

constructing yeast double mutants from arrays of single mutants and analyzing their pheno-

types (Tong et al., 2001; Baryshnikova et al., 2010a). In a typical SGA screen (Figure 1.4), a 

“query” mutant strain is crossed to the array of ~4,800 viable deletion mutants or conditional 

alleles of essential genes. The resulting heterozygous diploids are sequentially replica-pinned 

onto different selective media to induce sporulation, selection of haploid meiotic progeny 

and, finally, selection of haploid double mutants, which can then be scored for growth, meas-

ured as colony size, or other phenotypes of interest (Chapter 1.3.3).  

The power of SGA stems from several genetic constructs, inserted into the query strain 

genome, which enable precise step-wise selection of double mutant cells and can be applied 

to any genetic element, including point mutants, gene-fusion systems and plasmids, for simi-

lar high-throughput manipulations (Baryshnikova et al., 2010a). In the query strain genome, 

the CAN1 locus is replaced with a MATa haploid specific reporter, STE2pr-Sp_his5, in which 

a MATa-specific promoter (STE2pr) drives the expression of the S. pombe his5 gene, thus 

enabling MATa haploid cells to selectively grow on media lacking histidine.  The CAN1 lo-

cus encodes an arginine permease, which also imports canavanine, an arginine toxic ana-
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logue. The can1Δ mutation allows survival in the presence of canavanine and thus enables 

counter-selection against unsporulated diploid mutants, which are heterozygous for the 

can1Δ mutation. To reinforce this selection, the query strain also carries a deletion of the 

LYP1 gene, which encodes a lysine permease and allows mutant cells to grow in the presence 

of thialysine, a lysine toxic analog.  
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Figure 1.4. Synthetic Genetic Array (SGA) methodology.  
In a typical SGA screen, a MATα mutant strain carrying a “query” mutation, marked with the dominant drug-
resistance marker natMX4 (filled black circle), is crossed to an array of ~4,800 viable MATa deletion mutants or 
conditional alleles of essential genes. Each “array” mutation is marked with a kanMX4 resistance cassette (filled 
red circle). The CAN1 gene, which encodes an arginine permease, is replaced in the SGA query strain with a 
MATa haploid specific reporter, STE2pr-Sp_his5 such as can1Δ::STE2pr-Sp_his5. The query strain also carries 
a deletion of the lysine permease gene, LYP1. Following mating, diploid selection and sporulation, meiotic 
progeny are grown on media containing the G418 and nourseothricin and lacking histidine to select MATa hap-
loid double mutants. In addition to positive selection, the media is also supplemented with canavanine and thi-
alysine (toxic analogs of arginine and lysine, respectively) in order to counter-select against unsporulated dip-
loid mutants that are heterozygous for CAN1 and LYP1 deletion mutations. For a more detailed protocol and 
media composition, refer to Baryshnikova et al. (Baryshnikova et al., 2010a) 
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In a pilot study, SGA was applied to examine synthetic lethality between eight query 

strains and the complete array of ~4,800 viable haploid deletion mutants (Tong et al., 2001). 

This approach was later expanded to 132 query genes and resulted in the first large-scale ge-

netic interaction network consisting of ~1,000 genes and ~4,000 synthetic lethal/sick interac-

tions (Tong et al., 2004). The initial analysis of this dataset provided important insights into 

fundamental properties of biological networks and their topology. For example, it was shown 

that, while generally rare, synthetic lethal interactions often connect genes with related bio-

logical functions and are extremely useful for uncovering novel functional relationships 

(Tong et al., 2004). Similarly to other biological and technological networks, synthetic lethal-

ity follows a power-law degree distribution, with most genes having few interactions, while a 

few genes have many and act as network hubs (Tong et al., 2004). Moreover, synthetic lethal 

partners of a gene tended to be synthetic lethal with each other, thus uncovering dense local 

neighborhoods in the genetic interaction network (Tong et al., 2004).  

To follow up on these early discoveries, SGA was applied to subsets of functionally re-

lated genes to uncover genetic interaction networks amongst genes known to participate in 

specific biological processes. In this targeted approach, select “query” strains were crossed to 

arrays composed of a biased set of several hundred deletion mutants involved in vesicle-

mediated transport (Schuldiner et al., 2005), chromosome biology (Collins et al., 2007), 

RNA processing (Wilmes et al., 2008), phosphorylation-mediated signaling (Fiedler et al., 

2009), transcription (Zheng et al., 2010), plasma membrane related processes (Aguilar et al., 

2010) or mitochondrial functions (Hoppins et al., 2011). Together with early genome-wide 

SGA experiments (Tong et al., 2001; Tong et al., 2004), these studies uncovered genetic in-
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teraction networks underlying small subsets of gene-gene combinations. However, unbiased 

examination of genetic interactions on a global scale had not been performed until recently 

and is the focus of Chapters 2 and 3 of my thesis. 

Methods complementary to SGA have also been developed. For example, dSLAM 

(diploid Synthetic Lethal Analysis by Microarray) takes advantage of the unique molecular 

barcodes associated with each deletion mutant to map synthetic lethal interactions by measur-

ing the relative abundance of double mutants in a mixed population (Pan et al., 2004) (Figure 

1.5). Briefly, a pooled set of heterozygous deletion strains, each containing an SGA marker, 

is mass transformed with a marked query mutation. Using the same selection steps as in 

SGA, double mutant haploids are selected and their relative abundance is quantified by 

measuring barcode intensities compared to a non-selected control pool. dSLAM has been 

used to map synthetic genetic interactions between genes involved in DNA integrity and his-

tone modification (Pan et al., 2006; Lin et al., 2009). 

An SGA/dSLAM hybrid approach, called Genetic Interaction Mapping (GIM), was 

used to examine interactions between genes involved in mRNA processing (Decourty et al., 

2008). In a typical GIM experiment, double mutants are generated by mating and sporulation 

in a manner analogous to SGA (Figure 1.5). However, similar to dSLAM, all steps are per-

formed in a pooled format, which involves competitive growth of double mutant meiotic 

progeny, and interactions are identified by comparing barcode microarray hybridization in-

tensities between double mutants and a reference population (Decourty et al., 2008). 
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Figure 1.5. Diploid Synthetic Lethal Analysis by Microarray (dSLAM) and Genetic In-
teraction Mapping (GIM) methodologies. 
The dSLAM and GIM genetic interaction mapping methods differ in the approach for constructing a pool of 
double heterozygous diploid mutants, but are similar in the subsequent selection steps and phenotypic readout. 
In dSLAM, a query mutation (filled black circle), linked to the URA3 selectable marker, is introduced into the 
pool of haploid-convertible heterozygous diploid strains by high-efficiency integrative transformation. In GIM, 
a MATα haploid query strain, in which a specific genomic locus is replaced with a nourseothricin resistance 
marker, is mated with a pool of viable MATa deletion mutants. Haploid single-mutant (control) or double-
mutant (experimental) pools are selected after sporulation, through germination of spores on a medium that 
lacks histidine and selection for the relevant alleles. Genomic DNA samples are isolated from both pools and 
used as templates for PCR amplification of the tags, during which they are labeled with fluorescent dyes. Mi-
croarray analysis of these dye-labeled tags reveals the synthetic interaction between each of the corresponding 
deletion alleles with the query mutation. 
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Global estimates, based on the relatively small data sample available at the time, indi-

cated that the S. cerevisiae genome could harbor as many as ~200,000 synthetic sick and le-

thal interactions, involving both essential and non-essential genes (Tong et al., 2004; 

Davierwala et al., 2005). In light of the most recent findings, including our own work de-

scribed in Chapter 3, this number may in reality be an underestimate of the extensive genetic 

complexity encoded within a single unicellular organism. As we move towards completion of 

the yeast pairwise genetic interaction network, with the spectrum and the resolution of our 

phenotypic assays progressively increasing, it appears that the network might be much denser 

than anticipated and comprise an order of magnitude more genetic interactions (Chapters 

1.3.3, 2 and 3). 

1.3.3 Phenotypes 

All three major technologies for mapping genetic interactions in yeast (SGA, dSLAM 

and GIM) use cellular fitness as their primary phenotype. Fitness, intended broadly as growth 

in a given laboratory environment, is an excellent phenotypic readout as it can be measured 

easily and quantitatively, and it is well amenable for high-throughput applications. Different 

technologies measure fitness in different ways. In SGA, single and double mutant fitness es-

timates are obtained from measurements of colony sizes: plates corresponding to the last 

SGA selection step are digitally photographed and analyzed by an image processing algo-

rithm that identifies the colonies and measures their areas in units of pixels (Chapter 2) 

(Baryshnikova et al., 2010a). dSLAM and GIM estimate fitness by measuring the hybridiza-

tion intensities of mutant-associated barcodes, which are indicative of the relative abundance 

of double mutants in a population (Pan et al., 2006; Decourty et al., 2008; Lin et al., 2009). 
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On a smaller scale, fitness has been measured by monitoring the optical density of a growing 

yeast culture over time and calculating its exponential growth rate, duration of lag phase and 

saturation level (St Onge et al., 2007). 

Despite all the available measures of fitness, it is becoming increasingly evident that 

exploring more subtle and specific phenotypes is necessary for obtaining a more complete 

picture of a cell’s functional organization. For example, nearly 50% of non-essential yeast 

deletion mutants, while having no fitness defect, exhibit a number of morphological prob-

lems (Ohya et al., 2005), suggesting that complex phenotypes may uncover functional con-

nections between genes that are not readily apparent from growth data alone. 

Small-scale studies have explored a variety of high-resolution phenotypes for measur-

ing genetic interactions. For example, a quantitative agar-invasion assay was developed to 

monitor yeast filamentous growth in a set of single and double deletion mutants (Drees et al., 

2005). In response to low ammonium availability, S. cerevisiae differentiates into a filamen-

tous form that can invade agar and serve as a model for understanding the infective mecha-

nisms of pathogenic yeasts, such as Candida albicans (Jin et al., 2008). Genetic interactions 

derived from the agar-invasion phenotype demonstrated a complex relationship between dif-

ferent signaling pathways and regulatory components that impinge on filamentous growth 

and are likely to affect pathogenicity (Drees et al., 2005).  

A pioneering study in Dictyostelium discoideum used global gene expression profiles to 

map genetic interactions among members of the signal transduction pathways that govern the 

Dictyostelium multicellular developmental program (Van Driessche et al., 2005). In another 
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study, arrays of single and double mutants were used to investigate the mechanisms of recep-

tor endocytosis (Burston et al., 2009). Efficiency of protein internalization in single and dou-

ble mutants was quantified using an enzymatic assay based on the cell surface localization of 

Snc1, the yeast vesicle-associated membrane protein (VAMP)/synaptobrevin homologue. 

Quantitative negative and positive genetic interactions derived from Snc1 localization signals 

were used to cluster genes into functional modules identifying 20 novel members of Snc1 

uptake pathways (Burston et al., 2009). 

Using SGA, reporter constructs can be introduced into sets of deletion mutants to moni-

tor activation or repression of specific pathways. For example, the green fluorescent protein 

(GFP) reporter was introduced into the complete set of viable single deletion mutants and a 

select set of double mutants to detect the activation of the endoplasmic reticulum unfolded 

protein response (UPR) (Jonikas et al., 2009). Using a similar strategy, fluorescent reporters 

enabled the examination of cell cycle-dependent transcription on a genome-wide scale 

(Costanzo et al., 2004; Fillingham et al., 2009). 

The spectrum of phenotypic traits amenable for genome-scale mapping of genetic in-

teractions has expanded immeasurably with technological advances in high-throughput mi-

croscopy and imaging tools (Vizeacoumar et al., 2010). By combining cytological reporters 

with high-content screening, it is now possible to classify and measure a variety of yeast 

morphological and protein localization phenotypes in a large-scale manner (Huh et al., 2003; 

Ohya et al., 2005). For example, morphological data pertaining to the cell wall, actin cyto-

skeleton and nuclear DNA have been systematically collected and analyzed for the entire set 

of S. cerevisiae non-essential gene deletion mutants (Ohya et al., 2005). Similar approaches 
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have been applied in mammalian cells to characterize genes regulating various cellular pro-

cesses, including cell morphology and cell cycle progression (Moffat et al., 2006).  

Combining high content screening with SGA enabled genome-wide mapping of genetic 

interactions associated with mitotic spindle morphogenesis (Vizeacoumar et al., 2010). A 

GFP-tubulin reporter was introduced into single and double mutants and, aided by automated 

image processing and computational scoring of phenotypes, enabled quantitative measure-

ment of 90 cell morphological parameters. This approach identified 122 novel genetic inter-

actions that impinge on spindle morphology and, by doing so, produced a genetic interaction 

network four times larger than the one derived for the fitness-based analysis of the microtu-

bule-binding protein Bim1. Thus, integrating diverse phenotypic assays with high-throughput 

technologies for combining mutations, such as SGA, has the potential to uncover vast genetic 

interaction networks that shed light onto the organization of complex biological processes 

(Michaut and Bader, 2012). 

1.4 Mapping genetic interactions in other model organisms 

Besides S. cerevisiae, approaches for large-scale mapping of genetic interaction net-

works have been developed in other eukaryotic and prokaryotic organisms, thus enabling 

cross-species comparison and evolutionary analysis of genetic interaction networks (Butland 

et al., 2008; Dixon et al., 2008; Roguev et al., 2008; Typas et al., 2008). These techniques 

are directly analogous to those employed in S. cerevisiae in that they use genome-wide dele-

tion collections to generate comprehensive sets of double mutants via mating procedures.  
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Large-scale mapping of genetic interactions in fission yeast Schizosaccharomyces 

pombe revealed numerous similarities as well as differences in the wiring of its genetic net-

work compared to S. cerevisiae (Dixon et al., 2008; Roguev et al., 2008). Despite hundreds 

of millions of years of evolutionary separation, S. cerevisiae and S. pombe seem to share 

~30% of their genetic interactions, while ~70% are species-specific (Dixon et al., 2008; 

Roguev et al., 2008). At least some of the differences can be explained by the unique gene 

functions, such as the RNA interference machinery, encoded in the fission but not budding 

yeast genome (Sunnerhagen, 2002). Another potential explanation is offered by a recent 

cross-species comparison of chemical-genetic interactions, which define deletion mutants 

that are sensitive to chemical compounds (Kapitzky et al., 2010). This analysis showed that, 

while individual chemical-genetic interactions are poorly conserved, interactions involving 

specific functional modules are maintained at a much higher level (Kapitzky et al., 2010), 

thus supporting the hypothesis that general network properties, rather than individual pair-

wise connections, are preserved through evolution. Because such network properties are like-

ly shared by other metazoans, including humans, the comparative analysis of genetic interac-

tions in S. pombe and S. cerevisiae will provide important insights into the functional organi-

zation of higher organisms. 

Similar experimental approaches have been devised to uncover genetic interactions in 

the bacterium Escherichia coli (Butland et al., 2008; Typas et al., 2008). Despite the paucity 

of data available so far and the lack of systematic comparisons to the S. cerevisiae network, 

preliminary results suggest that prokaryotic and eukaryotic genomes, while having a two-fold 

difference in gene density, might bear a similar degree of redundancy. For example, system-
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atic interrogation of 39 nonessential genes in E. coli showed that each gene has ~20 synthetic 

lethal partners on average (Butland et al., 2008), which is comparable to the estimate of ~30 

synthetic lethal interactions per nonessential gene in yeast (Tong et al., 2004). Furthermore, 

profiles of synthetic lethal interactions in E. coli are highly informative about a gene’s bio-

logical function and, just like in S. cerevisiae, enable grouping of genes into functional mod-

ules (Butland et al., 2008). 

In addition to unicellular organisms, large-scale genetic interaction studies have also 

been described for the nematode worm Caenorhabditis elegans (Lehner et al., 2006; Byrne et 

al., 2007; Tischler et al., 2008) and the fruit fly Drosophila melanogaster (Horn et al., 2011). 

These studies are made possible by the availability of organism-specific genome-wide RNAi 

libraries, which can mimic the effect of gene deletions by reducing the abundance of tran-

scripts and are compatible with high-throughput combinatorial approaches.  

C. elegans is particularly suitable for RNAi-mediated genetic interaction studies be-

cause a gene’s expression can be inhibited in the entire organism simply by feeding the 

worms on a bacterial lawn expressing the dsRNA of interest. The first systematic study of 

genetic interactions in worms screened 37 query genes against ~1,750 individual RNAis and 

identified 350 synthetic lethal interactions, many of which involved human disease orthologs 

(Lehner et al., 2006). Interestingly, genes encoding chromatin regulators appeared to be cen-

tral to the worm genetic interaction network and acted as network hubs. We later showed that 

the high connectivity of chromatin-related genes is shared by the S. cerevisiae network 

(Chapter 3.7), suggesting a general conservation rule for genetic interaction hubs across or-

ganisms. Despite this finding, the overall degree to which individual genetic interactions are 
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conserved between yeast and worms is still unclear (Byrne et al., 2007; Tarailo et al., 2007; 

Tischler et al., 2008). Recent evidence suggests that conservation of genetic and other bio-

logical interactions is maintained at the functional module level, rather than individual gene 

level, and may be reflecting a common network evolution mechanism in various species 

(Zinman et al., 2011). 

In Drosophila, inhibiting a gene’s function in an entire organism is much more chal-

lenging, and large-scale studies of genetic interactions have instead focused on cell cultures. 

In a recent report, a combinatorial RNAi strategy was used to systematically map pairwise 

genetic interactions among 93 genes encoding signaling factors (Horn et al., 2011). Negative 

and positive genetic interactions were identified using several phenotypic readouts, including 

cell number, nuclear area and fluorescence intensity of stained nuclei (Horn et al., 2011). In-

terestingly, different phenotypes seemed to uncover different functional relationships be-

tween genes, as only ~20% of the identified genetic interactions were common to all pheno-

types under consideration. Consistent with yeast and bacterial studies, genes with similar 

functions shared similar genetic interaction profiles, independent of the phenotypes from 

which the profiles were generated. This indicates that genetic interactions provide a powerful 

tool for annotating uncharacterized Drosophila genes. Indeed, comparison of genetic interac-

tion profiles led to the discovery of a novel activator of RAS-MAPK pathway signaling, 

whose function is conserved from flies to humans (Horn et al., 2011). 
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1.5 Mapping genetic interactions in mammalian cell lines 

Currently, large-scale mammalian genetic interaction studies are based on RNAi-

mediated genetic manipulation of cell cultures. Comparative analyses of different cell lines 

have the potential to uncover cell type-specific molecular vulnerabilities and provide direc-

tions for targeted therapeutic approaches. Most commonly used cancer therapies involve ad-

ministering high doses of radiation or toxic chemicals to the patient, which suppress tumor 

growth but also cause substantial damage to normal cells. Compared to chemo- and radio-

therapy, synthetic lethality emerges as a much more accurate approach, which can selectively 

kill cancer cells carrying a specific mutation by chemically targeting a synthetic lethal partner 

of the mutated gene. The enormous potential of this strategy was first noted by Hartwell and 

colleagues (Hartwell et al., 1997) and has recently been realized by the identification of 

PARP inhibitors as novel treatments for breast cancer (O'Shaughnessy et al., 2011). 

Poly(ADP-ribose) polymerase (PARP) is an enzyme involved in base excision repair, a DNA 

repair pathway that is not essential in normal cells with functional homologous recombina-

tion (Farmer et al., 2005). In cells, however, where homologous recombination is impaired, 

such as BRCA-dependent cancer cells, PARP activity is required for survival, thus suggest-

ing that drug-mediated PARP inactivation will likely result in selective arrest of cancer cell 

growth (Bryant et al., 2005; Farmer et al., 2005). Currently, several PARP inhibitors are in 

various stages of clinical trials and promise successful treatment of breast cancer in the near-

est future (O'Shaughnessy et al., 2011). 

To extend this approach to other types of cancer, several groups have examined gene 

essentiality in human cancer cell lines using large-scale RNAi libraries (Luo et al., 2008; 
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Silva et al., 2008; Cheung et al., 2011; Marcotte et al., 2012). One of these studies tested 

over 11,000 genes in 102 cell lineages and uncovered 54 genes that are specifically essential 

for viability of ovarian cancer cells (Cheung et al., 2011). Among these genes, PAX8 was 

confirmed as a lineage-specific survival gene that is essential for proliferation, highly ex-

pressed and substantially amplified in ovarian cancers (Cheung et al., 2011).  

Lineage-specific essentiality presumably reflects synthetic lethal interactions between 

the knocked-down gene and the genetic background of the cancer cell. While in most cases 

the identity of the relevant endogenous mutations remains to be determined, a few studies 

were able to pinpoint the true effectors of the synthetic lethal phenotype. For example, tumor 

cells harboring oncogenic alleles of the NRAS and HRAS genes were used as queries in a 

screen of 5,760 short hairpin RNAs targeting ~1,000 human genes, including 571 kinases 

(Yang and Stockwell, 2008). This screen identified a synthetic lethal interaction between on-

cogenic Ras and the gene CSNK1E, encoding a casein kinase 1 epsilon kinase (Yang and 

Stockwell, 2008). It was subsequently shown that chemical inhibition of casein kinase 1 epsi-

lon recapitulated the synthetic lethal effect observed with shRNA-mediated knockdown, val-

idating this gene as a potential anticancer drug target.  

The availability of cell lines carrying genetic mutations in loci of interest limits the 

number of human genes that can be tested for genetic interactions. This limitation is partially 

overcome by the development of combinatorial RNAi strategies, which enable simultaneous 

shRNA-mediated knock down of two or more genes in animal cells (Lambeth et al., 2010). 

One of the latest combinatorial RNAi studies identified 878 negative and positive genetic in-

teractions for 12 human lysine deacetylases (KDACs) using a pooled human short hairpin 
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RNA (shRNA) library (Lin et al., 2012). The obtained genetic interaction profiles uncovered 

substrate specificity for individual KDACs and enabled characterization of the AMPK path-

way in lipid metabolism. 

1.6 Mapping genetic interactions in human populations 

The ultimate goal of studying genetic interactions is to understand the genetic basis of 

human phenotypic variation, identify genetic variants responsible for disease and develop 

successful therapeutic strategies. This task is extremely challenging because, unlike model 

organisms and cultured cell lines, standard genetic methods are not applicable in human pop-

ulations, and thus systematic genotype-to-phenotype mapping requires more sophisticated 

approaches.  

Uncovering the genetic causes of human phenotypic variation is a massive epidemio-

logical and statistical endeavor, involving design of sampling strategies, collection of health 

data and development of new statistical analysis tools. The field has been dominated by the 

success of genome-wide association studies (GWAS) in which genetic variants, identified by 

SNP mapping and genome-wide sequencing efforts, are tested for statistical association with 

a particular phenotype. GWAS experiments have quickly and dramatically increased our 

knowledge of human genetics, linking over 1,200 genetic variants to nearly 170 complex 

traits (Lander, 2011). However, only a few of these associations explain a substantial portion 

of trait heritability. For example, 71 genetic variants have been associated with Crohn’s dis-

ease, a chronic inflammatory disorder of the gastrointestinal tract affecting ~0.1% of North 

American population (Zuk et al., 2012). However, only ~22% of Crohn’s disease heritability 
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is explained by the cumulative contribution of these variants, indicating that our understand-

ing of the genetic scaffold of this disorder is far from complete (Zuk et al., 2012). 

A number of reasons have been proposed to explain missing heritability, including en-

vironmental contribution, influence of particularly rare and still undiscovered genetic variants 

or failure to detect small genetic effects due to the limited sample size of a typical GWAS 

study (Gibson, 2011). The penetrance of certain phenotypes may also be affected by stochas-

tic changes in gene expression, whereby the impact of a mutation is masked by a higher 

abundance of an ancestral duplicate or a promiscuous buffer gene (Burga et al., 2011).  

Another potential cause for missing heritability is the presence of genetic interactions 

among the genetic variants, which, when not accounted for, lead to an underestimate of the 

portion of heritability explained by the variants (Zuk et al., 2012). Indeed, a model that in-

corporates the possibility for genetic interactions between the 71 genetic variants associated 

with Crohn’s disease showed that these variants may explain as much as ~84% of the disease 

heritability, compared to ~22% when only additivity between variants is considered (Zuk et 

al., 2012). This finding suggests that we might have already uncovered most of the variants 

necessary to explain heritable phenotypic variation, but more work is required to identify the 

mathematical models that govern their interactions. 

Evidence for the ubiquitous presence of genetic interactions in natural populations have 

been accumulating over the past several years. In yeast, more than 3% of all gene pairs tested 

so far exhibit a detectable positive or negative genetic interaction for fitness (Chapters 2 and 

3), and this rate is substantially higher for more specific phenotypes (Chapter 1.3.3). Moreo-
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ver, a comparative analysis of two closely related S. cerevisiae strains (S288C and Σ1278b) 

showed that conditional essentiality, whereby a gene is essential in one strain’s genetic back-

ground but not in the other, is almost always driven by two or more genetic modifiers 

(Dowell et al., 2010). Being two variants of the same species, S288C and Σ1278b, just like 

two human individuals, are >99% identical (Schacherer et al., 2007), suggesting that condi-

tional essentiality and other strain-specific phenotypes are due to genetic interactions involv-

ing their individual sequence variants (Dowell et al., 2010). 

In conclusion, given the importance of genetic interactions in determining the pheno-

type of an individual, understanding their behavior is a fundamental goal in post-genomic 

biology. Although this task faces many experimental and statistical challenges in multicellu-

lar organisms, particularly in humans, it is theoretically and practically feasible in yeast, 

which is indeed well underway to be the first organism with a complete pair-wise genetic in-

teraction network in at least one experimental condition. In this thesis, I describe the genera-

tion and the analysis of the first 30% of the yeast genetic interaction network derived from 

SGA experiments conducted in our laboratory. This work provides a solid platform for simi-

lar experimental endeavors in other model systems and contributes to the elucidation of com-

plex trait heritability in humans. 

1.7 Thesis rationale 

Our laboratory has undertaken the effort of mapping the complete pair-wise genetic in-

teraction network for budding yeast S. cerevisiae. This ambitious task is feasible through sys-

tematic Synthetic Genetic Array (SGA) experiments, which combine arrays of single gene 
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mutations to generate all possible double mutants and examine their phenotypes (Chap-

ter 1.3.2). The goal of my thesis is to extract quantitative genetic interactions from single and 

double mutant colony size data derived from systematic SGA experiments and analyze the 

properties of the resulting genetic interaction network.  

Mapping genetic interactions between all genes of an organism bears extraordinary im-

portance for understanding the functional organization of the cell: genetic interactions uncov-

er complex functional interconnections between genes, pathways and biological processes, 

and ultimately underlie the relationship between genotype and phenotype of an organism. 

Since so far S. cerevisiae is the only living organism for which an extensive genetic interac-

tion network is available, methods developed in this thesis and findings obtained through 

their application provide a foundation for similar analysis in other organisms, including 

mammalian cells and human populations. 

Similarly to other genomics technologies, SGA suffers from several systematic exper-

imental biases, which interfere with our ability to obtain accurate measures of fitness from 

colony sizes and introduce a substantial number of false positive and false negative interac-

tions. The first aim of my studies, which I describe in Chapter 2, was to identify these sys-

tematic effects and develop computational methods for their removal. In doing so, I was able 

to extract accurate fitness information from SGA-derived single and double mutant colony 

sizes, which rivals the quality of smaller-scale higher-resolution published datasets. Further-

more, I generated a comprehensive catalog of yeast single mutant fitness, which serves as a 

reference for numerous genomic analyses (see, for example, Chapter 3.6). Finally, quantita-

tive fitness-based genetic interaction measurements were derived using my method, provid-
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ing significant improvements in data quality and gene function prediction capacity over pre-

viously available methods for measuring genetic interactions. This method, collectively re-

ferred to as the SGA score, is applicable to similar experimental contexts and was published 

in Nature Methods in 2010 (Baryshnikova et al., 2010b). 

In Chapter 3, I present the results of applying the SGA score to ~1,700 genome-wide 

SGA screens. Analysis of this dataset revealed quantitative genetic interactions among 5.4 

million yeast double mutants (~30% of the yeast genome) and generated the first genome-

wide genetic interaction map of a living organism. I developed a novel network-based meth-

od for visualizing large-scale genetic interaction data that led to an unprecedented view of the 

cell revealing the functional organization of a cell. Genes of similar biological processes 

cluster together in coherent subsets and functionally interconnected bioprocesses map next to 

each other. We discovered several physiological and evolutionary gene features that are char-

acteristic of genetic interaction hubs, and explored the relationship between genetic and pro-

tein-protein interaction networks. By comparing quantitative single and double mutant phe-

notypes, we identified specific cases of positive genetic interactions, termed genetic suppres-

sion, and constructed a global network of suppression interactions among protein complexes. 

I also demonstrated that an extensive and unbiased mapping of genetic interactions provides 

a key for interpretation of chemical-genetic interactions and drug target identification. The 

genetic interaction map and the associated novel biological findings were published in Sci-

ence in 2010 (Costanzo et al., 2010). 

Finally, in Chapter 4, I show that, in addition to genetic interactions, systematic SGA 

experiments produce a genome-wide genetic linkage map for S. cerevisiae. Since SGA gen-
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erates double mutants by mating and sporulation, the frequency of double mutant meiotic 

progeny involving loci on the same chromosome reflects the frequency of recombination be-

tween the loci and can be used to identify recombination hotspots and coldspots across the 

genome. Using SGA-derived genetic linkage data, I mapped domains of high and low meiot-

ic recombination, which recapitulated previously identified recombination patterns, including 

inhibition of recombination at pericentromeric chromosomal regions. Interestingly, I found 

that the extent of centromere-related recombination repression is directly proportional to 

chromosome length, whereas low recombination regions outside the centromere were, on av-

erage, constant in size. These findings corroborate the unique role played by centromeres 

during meiotic division and suggest a chromosome size-dependent mechanism for ensuring 

proper chromosome segregation. 
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2 Measuring quantitative fitness and 
genetic interactions in yeast on a 
genome scale 

Portions of this chapter have been reprinted or adapted from: 

• Baryshnikova A., Costanzo M., Dixon S., Vizeacoumar F. J., Myers C. L., An-
drews B., Boone C., “Synthetic Genetic Array (SGA) Analysis in Saccharomyces 
cerevisiae and Schizosaccharomyces pombe”, Methods in Enzymology, 470:145–
179, 2010 (Baryshnikova et al., 2010a) 

• Baryshnikova A.*, Costanzo M.*, Kim Y., Ding H., Koh J., Toufighi K., 
Youn J. Y., Ou J., San Luis B. J., Bandyopadhyay S., Hibbs M., Hess D., 
Gingras A. C., Bader G. D., Troyanskaya O. G., Brown G. W., Andrews B., Boone 
C., Myers C. L., “Quantitative analysis of fitness and genetic interactions in yeast 
on a genome scale”, Nature Methods, 7(12):1017–1024, 2010 (Baryshnikova et al., 
2010b) 

• Costanzo M.*, Baryshnikova A.*, Bellay J., Kim Y., Spear E. D., Sevier C. S., 
Ding H., Koh J. L., Toufighi K., Mostafavi S., Prinz J., St Onge R. P., VanderSluis 
B., Makhnevych T., Vizeacoumar F. J., Alizadeh S., Bahr S., Brost R. L., Chen Y., 
Cokol M., Deshpande R., Li Z., Lin Z. Y., Liang W., Marback M., Paw J., San 
Luis B. J., Shuteriqi E., Tong A. H., van Dyk N., Wallace I. M., Whitney J. A., 
Weirauch M. T., Zhong G., Zhu H., Houry W. A., Brudno M., Ragibizadeh S., 
Papp B., Pal C., Roth F. P., Giaever G., Nislow C., Troyanskaya O. G., Bussey H., 
Bader G. D., Gingras A. C., Morris Q. D., Kim P. M., Kaiser C. A., Myers C. L., 
Andrews B. J., Boone C., “The genetic landscape of a cell”, Science, 
327(5964):425-431, 2010 (Costanzo et al., 2010) 

* These authors contributed equally to the publication. 

I designed and implemented the SGA score algorithm in close collaboration with Chad My-
ers (University of Minnesota): we jointly defined the problems and the analytical strategies 
for their resolution, and equally contributed to coding. In addition, I performed all technical 
and functional evaluations of the data, and developed the strategy for the assessment of false 
positive/false negative rates. I generated the single mutant fitness catalog and conducted 
comparisons to published datasets. 
Sara Mostafavi developed and applied the GeneMANIA algorithm for evaluating the func-
tion prediction capacity of large-scale datasets. 
Michael Costanzo designed and coordinated all experimental work which was performed by 
technicians in the Boone lab and collaborators. 



Chapter 2 – Measuring quantitative fitness and genetic interactions in yeast on a genome scale 

 

35 

2.1 Abstract 

Global quantitative analysis of genetic interactions is a powerful approach for decipher-

ing the roles of genes and mapping functional relationships among pathways. Using colony 

size as a proxy for fitness, I developed a method for measuring genetic interactions from 

high-density arrays of yeast double mutants generated by synthetic genetic array (SGA) ex-

periments. I identified several experimental sources of systematic variation and developed 

normalization strategies to obtain accurate single- and double-mutant fitness measurements, 

which rival the accuracy of higher resolution but smaller scale studies. I showed that quanti-

tative genetic interactions obtained from these fitness measurements are reproducible and bi-

ologically relevant, and contribute a substantial amount of unique functional information not 

captured by previous genetic interaction studies or other genomic datasets. 
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2.2 Introduction 

Synthetic genetic array (SGA) analysis is an automated form of yeast genetics that uses 

robotic manipulations to combine arrays of mutant strains and construct double mutants in a 

high-throughput manner (Baryshnikova et al., 2010a) (Chapter 1.3.2). SGA was developed to 

enable large-scale mapping of genetic interactions, which are identified as unexpected pheno-

types arising from the combination of two or more mutations and can be broadly divided into 

“positive” and “negative” subcategories (Chapter 1.2). Negative genetic interactions refer to 

double mutants that exhibit a more severe fitness defect than expected, with an extreme case 

being synthetic lethality. Conversely, positive genetic interactions refer to double mutants 

with a less severe fitness defect than expected, and involve, for example, genes encoding 

members of the same nonessential protein complex. The expected fitness of a double mutant 

is typically modeled as a multiplicative combination of the single mutants phenotypes, and 

genetic interactions are quantitatively measured as the difference between observed and ex-

pected double mutant fitness (Chapter 1.1).  

Previous studies have quantified SGA-derived genetic interactions using an interaction 

score, termed S-score (Collins et al., 2006), which relies on colony size measurements ob-

tained from digital images and estimates genetic interactions by comparing each double mu-

tant screen to a set of control screens. The S-score outputs a composite value reflecting both 

the magnitude and reproducibility of genetic interactions, but it does not explicitly measure 

single or double mutant fitness, which are critical for detailed interpretation of genetic inter-

actions (Collins et al., 2006; Breslow et al., 2008). In addition, quantification of genetic in-

teractions using the S-score is not as precise as that achieved by higher-accuracy, albeit low-
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er-throughput, methods (Breslow et al., 2008), especially in the context of genome-wide 

SGA screens (Chapter 2.6). 

To enable mapping accurate quantitative genetic interactions on a genome-wide scale, I 

developed a new method, called the SGA score. I identified several systematic effects associ-

ated with genome-scale SGA experiments and developed normalization methods for remov-

ing them. This led to single and double mutant fitness measurements of comparable precision 

to those obtained using other high-resolution methodologies. I applied the SGA score to a 

genome-scale collection of SGA screens to quantify genetic interactions among ~5.4 million 

gene pairs, and showed that normalization of systematic effects has a striking impact on their 

function prediction capacity. Moreover, genetic interactions obtained using our method con-

tribute a substantial amount of unique functional information not captured by previous genet-

ic interaction studies or other genomic datasets. 

2.3 A quantitative fitness-based model for genetic 
interactions 

The requirement for accurate phenotypic measurements has imposed constraints on the 

scale and functional scope of quantitative genetic interaction studies (Drees et al., 2005; St 

Onge et al., 2007; Breslow et al., 2008). Genome-scale surveys require experimental designs 

that optimize throughput and, as a result, often sacrifice accuracy. I developed a strategy for 

deriving quantitative genetic interactions from arrays of double mutant yeast colonies gener-

ated by genome-scale SGA screens, such that all possible Saccharomyces cerevisiae digenic 

interactions could be examined in an accurate and unbiased manner. 
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Figure 2.1. The SGA score for measuring quantitative genetic interactions. 
(A) In a typical SGA experiment, a “query” single mutant strain (geneΔ::natMX) is crossed to an input array of 
single mutants (xxxΔ::kanMX), each carrying a wild-type copy of the “query” gene and a unique “array” strain 
mutation. After several SGA selection steps, a final output array of double mutants (geneΔ::natMX 
xxxΔ::kanMX) is generated, photographed and quantified using an image-processing software that measures 
colony areas in terms of pixels. Relative colony size, determined by measuring deviation of individual colonies 
from the median size for the same colony across 1,712 different experiments, is shown. 
(B) Schematic depiction of the five factors that contribute to experimental variance of colony size. 
(C) Relative colony size after normalization. Single mutant fitness (fi, fj) and double mutant-fitness (fij) derived 
from normalized colony size measurements are used to identify and measure genetic interactions (SGA score, 
ε). 
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Similar to other high-throughput technologies, genetic interaction screens using ordered 

mutant arrays are susceptible to systematic experimental effects that introduce noise in colo-

ny size measurements (Figure 2.1, Figure 2.2). Contributing factors include differences in 

growth conditions from one array plate to the next, as well as subtle differences in local nu-

trient availability within the same plate. For example, more nutrients are available to colonies 

located in less densely populated areas of the plate. As a result, colonies located in the 

outermost rows and columns of a plate are on average 40% larger than centrally located col-

onies (Figure 2.2B). Similarly, strains located next to less fit neighbors, including those 

showing negative genetic interactions, are also significantly larger and may be mistakenly 

associated with positive genetic interactions (Figure 2.2D). 

The most problematic source of systematic variability is due to the so-called “batch ef-

fect”, where a batch is defined as a set of screens conducted on the same day by the same 

person using the same robotic instrument (Figure 2.1, Figure 2.2E). Because screens con-

ducted in a batch are influenced by common experimental factors, they often exhibit similar 

trends in colony size variation irrespective of the query strain identity. Such colony size vari-

ation is comparable in magnitude to the genetic interactions we aim to measure, substantially 

increasing our false positive rate. Indeed, without accounting for the batch effect, genetic in-

teraction profiles of functionally unrelated genes appear to be as similar as profiles of genes 

encoding members of the same protein complex (Figure 2.2E). Given the importance of cor-

relation-based approaches for genetic interaction analyses (Chapter 1.2; Chapter 3.3), strate-

gies for normalizing batch signatures are critical for harnessing the full potential of large-

scale genetic interaction data. 
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Figure 2.2. Correction of systematic experimental effects. 
(A) Plate normalization. Colony size distributions for 10 plates randomly selected from control SGA screens are 
shown before and after plate normalization. Each color corresponds to a different SGA plate. 
(B) Row/column normalization. Colony sizes located in columns 1 to 5 were averaged across 80 SGA control 
screens. The mean and standard deviation of colony sizes in each column are shown before and after 
row/column normalization. 
(C) Spatial effect normalization. Residual colony sizes (Eq. 2.6) for 6 typical SGA plates are shown before and 
after spatial effect normalization. Colonies are displayed according to plate position and highlighted in yellow, 
blue or black depending on whether they appear larger, smaller or equal to the average colony size in that posi-
tion. 
(D) Competition normalization. (i) Schematic of colonies neighboring a synthetic sick/lethal interaction (blue). 
Replicate colonies corresponding to the same double mutant are enclosed by a dotted line. Arrows point to the 
colonies (yellow) that are most affected by the sick neighbor. (ii-iii) Colonies neighboring the top 1,000 largest 
colonies in our dataset were binned into 10 deciles and normalized to the background distribution of all colo-
nies. The bar graphs show fold enrichment over background for neighbor colonies in each decile before (ii) and 
after (iii) competition normalization. This analysis shows that large colonies tend to have small neighbors. This 
trend is significantly less pronounced after competition normalization. 
(E) Batch effect normalization. The distribution of Pearson correlation coefficients among genetic interaction 
profiles of all queries (blue) and queries screened within the same batch (pink) are shown before and after batch 
effect normalization. For reference, the distribution of correlations among genes encoding members of the same 
protein complex is shown as a black line. Before batch correction, the average correlation among queries 
screened in the same batch is as high as the correlation of co-complex genes. 
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I developed normalization procedures that estimate and remove systematic biases in 

colony size arising from experimental factors (Chapters 2.4.1–2.4.5). I applied statistical 

techniques including spatial smoothing, quantile normalization, and linear discriminant anal-

ysis to substantially reduce colony size variability and improve correlation between inde-

pendent replicates (Chapters 2.4.1–2.4.5). After removal of experimental artifacts, I use nor-

malized colony sizes to fit a model estimating fitness and genetic interactions for each double 

mutant (Chapter 2.4.9). The resulting measure, termed the SGA score, captures single and 

double mutant fitness measurements and provides a quantitative genome-wide assessment of 

genetic interactions (Chapters 2.5–2.8). 

2.4 SGA genetic interaction score 

I model colony size as a multiplicative combination of double mutant fitness, time and 

systematic experimental factors. Specifically, for a double mutant carrying mutations in 

genes i and j, colony area Cij can be expressed as: 

Cij = α fij t sij e Eq. 2.1 

where fij is the fitness of the double mutant, t is time, sij is the combination of all sys-

tematic factors, α is a constant scale factor, and e is a log-normally distributed error. In addi-

tion, double mutant fitness fij can be expressed as fij = fi fj + εij, where fi and fj and the single 

mutant fitness measures, and εij is the genetic interaction between genes i and j.  
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This model is motivated by two empirical observations. First, colony sizes of replicate 

mutants grown different amounts of time can be normalized by a single multiplicative factor, 

suggesting that colony area scales linearly with time. Second, colony sizes of double mutants 

having the same query mutation can be normalized by a single multiplicative factor, suggest-

ing that colony area also scales linearly with the fitness of each mutation. I also find that 

most experimental factors (Chapters 2.4.1–2.4.5) tend to scale colony sizes, which motivates 

a multiplicative model. 

Our goal is to fit this model to colony area obtained from systematic genome-wide 

SGA experiments, eliminate the contribution of systematic experimental effects and extract 

the biological factors of interest: the single mutant fitnesses fi and fj, and the genetic interac-

tion score εij. A summary of all sources of systematic variation and the corresponding nor-

malization schemes are presented below. 

2.4.1 Plate effect 

Plate-to-plate variance in colony size can be substantial due to the variability in each 

plate’s incubation times as well as to the contribution of the query mutant fitness (Figure 

2.2A). From Eq. 2.1 above, we assume that observed colony area is a function of single mu-

tant fitness and time: 

Cij = α fi fj t sij e Eq. 2.2 

as genetic interactions are rare and in most cases εij ≈ 0. 
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In a typical SGA screen, a plate consists of a single query mutant j crossed to an array 

of 384 array mutants pinned in quadruplicate. Each plate is grown until most colonies reach a 

minimum size, which is assessed visually, and plates are only imaged once. Thus, each 

plate’s incubation time is directly linked to the fitness of the query mutant, and their product 

is relatively constant, i.e. fj t ≈ c, for some constant c. Given the SGA experimental design, 

optimized for cost and throughput, estimating fj and t separately is an extremely challenging 

task. As a result, I opted to scale each plate by a composite normalization factor, which in-

corporates the product of fj and t, and is computed as the plate middle mean (PMM, mean of 

the middle 60% of colonies on the plate). The corrected colony areas are computed as: 

 Eq. 2.3 

where PMMglobal is derived from the PMM values across all plates. 

Note that PMMk ≈ fj tk, where tk is the incubation time for plate k. This normalization 

approach eliminates any dependence of the normalized colony size on the query mutation in 

the absence of a genetic interaction (εij = 0). The new normalized colony size can now be ex-

pressed as: 

 Eq. 2.4 

When an interaction is present, the normalized colony size depends on the query fitness 

as follows: 

′Cij = Cij

PMMglobal

PMMk

′Cij =α fisije
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 Eq. 2.5 

As observed previously (Collins et al., 2006), detecting interactions using these nor-

malized colony sizes is relatively convenient. To detect an interaction, the double mutant of 

interest can simply be compared to all other double mutants sharing the same array mutation, 

given that, after plate normalization, a double mutant’s colony size should reflect only the 

array mutant fitness, the associated systematic effects and the genetic interaction, if present. 

Following this logic, I define a colony residual Rij as 

 Eq. 2.6 

which is simply the difference between the normalized colony size for double mutant ij 

(C′ij) and the median normalized colony size for all double mutants sharing the same array 

mutation i ( ). As a result, Rij should reflect the genetic interactions εij we aim to measure, 

in addition to lingering systematic effects, sij. 

There are several advantages for correcting lingering systematic effects in colony re-

sidual space as opposed to the original colony space. Colony size variation in the original 

colony space is the result of variation in single mutant fitness of the array strain (fi), the sys-

tematic effects (sij) and the genetic interactions (εij). Variation in colony residual measures, 

however, is free from the array fitness component. In addition, a substantial fraction of sys-

′Cij =α fi +
ε ij
f j

⎛

⎝⎜
⎞

⎠⎟
sije

 
Rij = ′Cij − ′C ij ≈α

ε ij
f j
sije

 ′Cij

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tematic effects is linked to colony position on the plate, which is constant for any given array 

mutant. Thus, colony residuals indirectly normalize for the colony positional effects as well. 

As a result, observed variation in colony residual space is more closely related to the quantity 

of interest, i.e. the genetic interaction between two genes, which facilitates normalization for 

the remaining systematic effects. 

2.4.2 Row/column effect 

Similar to other array-based genomic technologies, positional effects are a major con-

tributor to systematic variation in colony sizes. For example, colonies located in the outer-

most rows and columns of a plate are visibly larger than internal colonies (Figure 2.2B), 

mostly because of a reduced colony density near the plate edges and the resulting availability 

of extra nutrients. Such row/column effect, when left uncorrected, introduces an abundance 

of spurious positive genetic interactions and undermines our ability to map connections with-

in and between molecular pathways. 

I estimate the extent of row/column effects on a plate-by-plate basis using a linear 

LOWESS smoothing (Cleveland, 1979) on normalized colony sizes. While the shape of the 

estimated trends appears to be consistent across plates, the severity of the effect is variable 

and the correction must be plate-specific. Row and column correction is applied as follows: 
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 Eq. 2.7 

where rm and cn are estimates derived from LOWESS smoothing for row m and column 

n, respectively, and  and  denote average row and average column factors. 

2.4.3 Spatial effect 

Plates often exhibit spatial gradients in colony size, such that, for example, colonies lo-

cated on the left-hand side of the plate grow larger than colonies located on the right-hand 

side (Figure 2.2C). Such spatial gradients are potentially due to an uneven distribution of 

media across the plate or to a non-uniform temperature within the incubator, and result in the 

appearance of false positive and negative genetic interactions. 

I identify and correct spatial gradients using a series of two-dimensional smoothing fil-

ters applied to colony residuals. First, a median spatial filter is applied on a 7×7 grid of colo-

nies surrounding the position of interest. Colony residuals used for the smoothing are calcu-

lated on a log scale as follows: 

 Eq. 2.8 

Median filter estimates are then further smoothed with a simple average filter on a 

10×10 grid to derive the final estimates of the surface gradient. The spatial normalization is 

applied as follows: 

Cij
′ = Cij
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 Eq. 2.9 

where zij is the final spatial effect estimated by the spatial filters. 

2.4.4 Competition effect 

In order to afford the throughput necessary to map all pair-wise genetic interactions in 

yeast, SGA screens are performed using high density mutant arrays, each containing 384 mu-

tant strains pinned in quadruplicate for a total of 1,536 colonies per plate. In such a crowded 

environment, colonies compete for nutrients, and small positional advantages, such as, for 

example, proximity to a low fitness neighbor, translate into substantial growth benefits. As a 

result, the largest double mutant colonies on a plate are typically associated with small 

neighbors and may be erroneously identified as strong positive genetic interactions (Figure 

2.2D). 

To normalize for the nutrient competition effect, I take a step-wise approach. First, col-

ony residuals are binned into ten deciles based on the size of their smallest neighbor. Within 

each decile, competition effect is normalized by scaling the colonies by a multiplicative fac-

tor estimated from the linear LOWESS fit of colony residuals against the size of their neigh-

bors. Finally, competition effect is corrected across deciles using quantile normalization, 

which matches the distribution of residual colony sizes within each decile to that of colonies 

with relatively healthy neighbors (60–80 percentile). 

Cij
′ = Cij

1
exp zij( )
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2.4.5 Batch effect 

We found that SGA screens performed in batch, i.e. by the same person on the same 

day using the same robotic instrument, tend to share a common pattern of colony size varia-

bility (Figure 2.2E). This batch effect is likely caused by the fact that concurrent screens are 

influenced by common experimental factors, such as media stock, incubation time and the 

single mutant source array. The combination of these and other factors, that we might be un-

aware of, generates unusually small or large colonies that are shared by all screens in the 

batch and can be easily misinterpreted as real negative or positive genetic interactions. The 

batch-related non-biological signature is often stronger than the real biological signature and 

represents a severe impediment for predicting biological function using profiles of genetic 

interactions (Figure 2.2E). 

Eliminating the batch effect is statistically challenging since batches are relatively 

small (5–10 screens), while their quantitative readouts are extremely large (100,000–200,000 

colonies). Linear discriminant analysis (LDA) is often used for finding linear combinations 

of features that are highly discriminative across sets of classes and thus can be applied for 

estimating batch signatures. Unlike other similar approaches, such as principal component 

analysis (PCA) and singular value decomposition (SVD), LDA is a supervised method that is 

able to leverage pre-defined class distinctions, which correspond to batches in our experi-

mental context. 

Specifically, we can construct a matrix X of double mutant colony data, such that rows 

consist of screens grouped into different batches. Subsequently, the objective of a multi-class 

LDA is to find projections of the data that maximize the following criterion: 
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 Eq. 2.10 

where 

 and  

for C different batches where µi is the centroid of batch i and µ is the global centroid. 

Intuitively, this criterion measures the ratio of between-batch differences to within-

batch differences and the optimal vector v represents linear combinations of the features that 

maximize this batch signal-to-noise ratio. Optimal projections v can be readily computed by 

finding the principal eigenvectors of the matrix Sw
–1Sb. Principal eigenvectors identified 

through LDA are effectively focused towards cross-batch variation, which should avoid re-

moving potentially important biological signatures from the data. 

To normalize the batch effect, we construct a matrix Vn consisting of the top n principal 

eigenvectors and normalize the original data matrix as follows: 

 Eq. 2.11 

This computes the projection of the original colony size data onto the space of “batch 

signals” and removes these signatures from the data. The number of components removed is 

chosen as the principal eigenvectors satisfying λi/λmax > 0.1 for eigenvalues λi. Based on our 

J v( ) = det v
TSbv( )

det vTSwv( )

Sb = Ni µi − µ( ) µi − µ( )
i=1

C

∑ Sw = xk − µ( ) xk − µ( )
xk∈Ci
∑

i=1

C

∑

′X = X − X *Vn
TVn
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empirical evaluation, removing a higher or a lower number of principal eigenvectors results 

in over- or under-correction of batch effects, as measured by the distribution of within-batch 

similarities. 

2.4.6 Linkage filter 

Most physically linked genomic loci, i.e. loci positioned close to one another on the 

same chromosome, are also genetically linked, i.e. they tend to be inherited together due to 

the scarcity of recombination events occurring between them (Chapter 4). As a result, cross-

ing an SGA query mutation to a genetically linked array mutation produces fewer double mu-

tant meiotic spores, compared to a pair of independently segregating loci, and results in a vis-

ibly smaller double mutant colony, which can be confused with a negative genetic interaction 

(Figure 4.2).  

To eliminate these spurious negative interactions from our dataset, I identify and filter 

out data involving the chromosomal region affected by linkage for each individual query. Ar-

ray genes are sorted by chromosomal position and the resulting genetic interaction profile is 

smoothed using a moving average window of 40 kb. The boundaries of a linkage region are 

defined as chromosomal positions closest to the query such that the smoothed genetic interac-

tion score is no longer negative. Using this approach, I found that the boundaries of linkage 

regions are relatively constant across large chromosomal regions, but are different in other 

regions, suggesting that linkage patterns reflect local patterns of meiotic recombination 

(Chapter 4). On average, linkage affects 410 ± 150 kb around the query locus. 
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2.4.7 Large colony filter 

Due to unexpected diploidization of certain strains during SGA selection steps, I fil-

tered any double mutant presenting abnormally large colonies (more than 150% the size of a 

median colony) from our analysis. 

2.4.8 Jackknife filter 

To eliminate exceptionally small or large outliers from each group of replicates for a 

given double mutant, I applied a jackknife procedure to assess the impact of each colony on 

the overall variance of the replicates. Colony i is filtered if σi < 0.1σ, where σ is the variance 

of all replicates and σi the jackknife variance derived from holding out colony i. 

2.4.9 Estimation of fitness, genetic interactions and confidence 
measures 

As mentioned above, in the absence of genetic interactions, the normalized colony sizes 

directly reflect the single mutant fitness of the array strain. Unlike genetic interactions, which 

are most sensitive to variance on colony residuals, precise estimation of single mutant fitness 

depends critically on proper normalization at the colony size level. For example, positional 

biases consistent across plates do not present a problem for detecting interactions (as these 

biases equally affect all SGA screens and are indirectly normalized for in colony residual 

space), but could lead to highly inaccurate estimates of fitness.  

To avoid such inaccuracy, we constructed several array configurations, where subsets 

of non-essential single mutant deletion strains were placed in randomized positions. We per-

formed control SGA screens by crossing a neutral query mutant to the various array configu-
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rations, and derived single mutant fitness estimates from each array by computing the median 

normalized colony size across all screens. Variance in single mutant fitness estimates was 

obtained from bootstrap sampling of the median, and final fitness measures were derived by 

pooling across all array configurations. 

Quantitative estimates of genetic interactions are derived from normalized colony re-

siduals. Specifically, for each replicate colony k of a double mutant ij, colony residual is 

computed as: 

 Eq. 2.12 

where represents the normalized colony size and the median across all queries. 

An interaction estimate is derived by averaging across all Nij replicates of a double mu-

tant: 

 Eq. 2.13 

To estimate our confidence in a given interaction estimate, I calculate two distinct vari-

ance measures: (1) a measure of local variability of the replicate colonies; (2) a measure of 

the expected double mutant variance, given the estimated variances of the array and query 

single mutants. 

The first variance measure is derived from the unbiased estimate of variance on the in-

teraction mean: 

 
Rijk = ′Cijk

− ′C ijk

′Cijk  ′C ijk

Iij =
1
Nij

Rijk
k
∑
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 Eq. 2.14 

As reported in previously (Collins et al., 2006), variance estimates derived from local 

double mutant colony reproducibility can dramatically underestimate the true variance. This 

is likely due to the fact that replicate colonies are not truly independent, as they are situated 

next to each other on the plate and experience much of the same systematic variation. I there-

fore derive a second more accurate measure of variance by combining error estimates across 

all occurrences of the array and query strains for the double mutant of interest. 

As stated in Eq. 2.2, we assume that, in the absence of genetic interactions (εij ≈ 0), a 

double mutant colony size is proportional to the product of the two single mutant fitnesses. 

Thus, we can assume that this colony size is log-normally distributed with variance contribu-

tions from both the query and the array mutations: 

   for    Eq. 2.15 

where σi
2 and σj

2 are array- and query-specific variance contributions. 

Array-specific variance is calculated using normalized colony sizes derived from con-

trol SGA screens. Query-specific variance is calculated by combining variances of all double 

mutants sharing the corresponding query mutation. 

σ ij =
Rijk − Iij( )

k
∑

Nij −1

 
Cij α fi f je

X

 
X  N 0,σ i

2 +σ j
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For each measured interaction, I calculate both the measured standard deviation of the 

interaction estimate itself (σij; Eq. 2.14) and the expected combined variance of the array and 

the query mutations, computed as a geometric standard deviation: 

 Eq. 2.16 

To integrate these two standard deviations into a single confidence measure, I compute 

a geometric mean of the two normal cumulative distribution functions (CDF): 

p = CDF −
Iij
σ ij

⎛

⎝
⎜

⎞

⎠
⎟ ⋅CDF −

log Cij( )
log σ ijexpected( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 Eq. 2.17 

The resulting p-value p measures the probability of observing a genetic interaction 

score equal or more extreme than Iij, given the variances of the query mutant i, array mutant j 

and double mutant ij. 

2.4.10 Post-interaction filters 

In our experimental setup, array mutant strains are distributed across 14 plates in chro-

mosomal order, such that on average each individual plate contains mutant strains from one 

to three chromosomes. As a result, plates harboring array mutant strains that are genetically 

linked to a given query mutations contain an exceptionally large number of inviable or slow 

growing colonies (Chapter 2.4.6). These colonies generate extreme competition effects that 

are not completely removed by our normalization procedures. Thus, to avoid introducing 

σ ijexpected
= e σ i

2+σ j
2
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numerous false positives, I filter any positive genetic interaction that is adjacent to a strain 

affected by genetic linkage. 

2.5 A high-resolution catalog of yeast single mutant 
fitness 

To validate our approach for correcting systematic experimental effects, I used a panel 

of control SGA screens to measure colony areas for 4,635 viable deletion mutants and 1,388 

temperature-sensitive or hypomorphic alleles of essential genes. Control SGA screens are 

performed using a query strain deleted for the neutral URA3 locus, which is unlikely to inter-

act with other genes and thus produces an output array of reference single mutant colonies. I 

processed the colony areas using the SGA score (Chapter 2.4) and generated the first ge-

nome-wide colony size-based single mutant fitness catalog (Materials & methods 2.10.5).  
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Figure 2.3. Comparison of single mutant fitness measures. 
(A) Comparison of fitness or relative growth measurements for nonessential gene deletions mutants derived 
from eight independent approaches: colony size measurements (this study); competitive growth analyzed by 
barcode hybridization (Deutschbauer et al., 2005), flow cytometry (Breslow et al., 2008) or gene expression 
profiles (Hughes et al., 2000); gene expression microarrays (Brauer et al., 2008); liquid growth profiling 
(Warringer et al., 2003; Jasnos and Korona, 2007); and a spot assay on solid growth medium (phenotypic assay) 
(Hartman and Tippery, 2004). 
(B) Distribution of single mutant fitness measures reported by the studies described in (A) reporting fitness or 
relative growth rate. 

Comparison to previously published fitness or relative growth rate studies showed that 

SGA captures fitness as well or better than other available methodologies. Indeed, together 
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with barcode-based measurements from competitive growth assays, our colony size-based 

fitness catalog had the highest average cross-study correlation (Figure 2.3A). In addition, the 

range of growth defects detectable by our method substantially exceeded that of most other 

studies (Figure 2.3B). For example, competitive growth assays, while testing a similar num-

ber of strains (Deutschbauer et al., 2005; Breslow et al., 2008), do not report fitness for mu-

tants with relative growth defect greater than 50% (Figure 2.3B). 

In order to obtain high-quality quantitative genetic interactions, both single and double 

mutant fitness must be accurately measured. I validated the quality of our double mutant fit-

ness measurements by evaluating the reproducibility of 211 genome-wide SGA screens per-

formed in duplicate. Replicate double mutant fitness measurements were highly correlated 

(average Pearson correlation of 211 pairs of replicate screens, R = 0.89; Figure 2.4), indicat-

ing that colony size-based fitness estimates should provide a robust basis for accurate as-

sessment of genetic interactions. 

 

Figure 2.4. Reproducibility of double mutant fitness measurements. 
(A) Correlation of double mutant fitness measures obtained from two independent replicates of a representative 
genome-wide SGA screen. Red line, y = x.  
(B) Distribution of correlations between double mutant fitness measures obtained from 211 genome-wide SGA 
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screens conducted in duplicate. Average Pearson correlation, R = 0.89. 

2.6 Evaluation of the reproducibility of genetic interaction 
measurements 

We screened 1,712 S. cerevisiae query genes, including 334 conditional or hypo-

morphic alleles of essential genes, for a total of ~5.4 million gene pairs spanning all biologi-

cal processes (Materials & methods 2.10.1). These queries were selected randomly with re-

spect to function (Costanzo et al., 2010); however, preference was given to mutants exhibit-

ing fitness defects. I scored the SGA screens using the SGA score and used multiple ap-

proaches to evaluate the technical reproducibility and the biological value of the identified 

genetic interactions.  

First, I compared genetic interactions measured from independent replicate experiments 

and found them to be highly reproducible (R = 0.87; Figure 2.5A).  

Second, I assessed the reproducibility of interactions among reciprocal gene pairs (que-

ry mutant A crossed to array mutant B versus query mutant B crossed to array mutant A). In 

an SGA experiment, query and array deletion mutants for the same gene are subject to slight-

ly different experimental conditions. In particular, query mutants with severe fitness defects 

are allowed to grow longer than their corresponding array mutants, resulting in greater reso-

lution for detecting genetic interactions. Despite these differences, I observed good agree-

ment among reciprocal genetic interaction pairs (R = 0.67; Figure 2.5B), especially when I 

restricted the analysis to more confident interactions (R = 0.75). Notably, agreement between 
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reciprocal interactions decreases by ~30–40% when experimental noise factors are left uncor-

rected (Baryshnikova et al., 2010b). 

 

Figure 2.5. Reproducibility of quantitative genetic interactions. 
(A) Scatter plots of genetic interactions derived from 211 genome-wide SGA screens conducted in duplicate. 
Pearson correlation coefficients were computed after applying a lenient (p < 0.05) or intermediate (|ε| > 0.08, 
p < 0.05) confidence threshold. 
(B) Scatter plots of genetic interaction measures between reciprocal gene pairs. Pearson correlation coefficients 
were computed after applying a lenient (p < 0.05) or intermediate (|ε| > 0.08, p < 0.05) confidence threshold. 
(C) A scatter plot illustrating the overlap between genetic interaction scores for 239 unique gene pairs extracted 
from the large-scale SGA dataset and a small-scale high-resolution liquid growth profiling study (St Onge et al., 
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2007). 

 

Finally, I compared our SGA scores to a smaller-scale high-resolution liquid growth 

study (St Onge et al., 2007), which measured quantitative genetic interactions among 26 

genes conferring resistance to the DNA damaging agent methyl methanesulfonate (MMS). I 

observed a highly significant correlation between 239 gene pairs tested in both studies 

(R = 0.89; Figure 2.5C). Such correlation was not simply attributable to extreme genetic in-

teraction scores because even modest interactions were highly correlated (R = 0.73 for SGA 

score absolute value |ε| < 0.4; Figure 2.5C). 

2.7 Functional impact of systematic effects 

I evaluated the functional utility of positive and negative genetic interactions identified 

by the SGA score by comparing them to commonly used functional benchmarks: annotation 

to the same Gene Ontology (GO) biological process term and overlap with protein-protein 

interactions (Figure 2.6, Figure 2.7).  

Early experimental evidence showed that genetic interactions are enriched among 

genes acting in the same biological process (Tong et al., 2001; Tong et al., 2004). As a result, 

the frequency of genetically interacting gene pairs annotated to the same GO term serves as 

an objective metric for quantifying the functional utility of a given dataset (Myers et al., 

2006). I used precision/recall analysis to assess the frequency of co-annotated gene pairs 

along a list of gene pairs sorted by their genetic interaction score (Materials & methods 
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2.10.2). Precision was calculated as the fraction of gene pairs above a certain genetic interac-

tion score threshold that are co-annotated to the same GO term, while recall corresponded to 

the total number of co-annotated gene pairs at that threshold (Materials & methods 2.10.2). 

Both negative and positive genetic interactions overlapped with co-annotated gene pairs more 

frequently than expected by chance (Figure 2.6A). In addition, interactions derived from a 

version of the SGA score that omits systematic effect normalization were significantly less 

enriched for co-annotated gene pairs (Figure 2.6A): at 30% precision, negative SGA scores 

recovered over four-fold more co-annotated gene pairs than unnormalized negative SGA 

scores, indicating that experimental variability contributes substantially to the false positive 

rate of large-scale SGA screens. The SGA score had similar improvement over genome-wide 

screens processed using the S-score (Collins et al., 2006), which does not account for many 

of the systematic effects we identified (Figure 2.6A). Moreover, similar trends were observed 

when genetic interactions were evaluated against a protein-protein interaction standard 

(Figure 2.6B). A shared physical interaction, similarly to a shared GO annotation, is indica-

tive of a functional relationship between genes and their encoded proteins. 
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Figure 2.6. Functional evaluation of negative and positive genetic interactions. 
Plots of precision (TP/TP+FP) versus recall (TP) for negative and positive genetic interactions, as determined 
by the SGA score or the S-score. A version of the SGA score that omits systematic effect normalization is also 
plotted for comparison [SGA score (no normalization)]. Precision and recall were calculated as described in 
Materials & methods 2.10.2. 
(A) Evaluation against the Gene Ontology (GO) co-annotation standard. A set of gold standard GO terms was 
chosen using previously described criteria (Myers et al., 2006). True positive interactions (TP) were defined as 
those involving both genes annotated to the same GO term. 
(B) Evaluation against the protein-protein interaction standard. True positive interactions (TP) were defined as 
those involving genes encoding physically interacting proteins reported in the BioGRID database (Stark et al., 
2011).  
TP, true positive; FP, false positive. 
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In addition to its effect on direct genetic interactions, accounting for systematic noise 

had a striking impact on the functional utility of genetic interaction profiles (Figure 2.7). For 

example, at 30% precision genetic interaction profiles computed using the SGA score recover 

~3,000 co-annotated gene pairs, compared to less than ten gene pairs obtained using unnor-

malized scores (Figure 2.7A). The main contributor to such improvement for both individual 

genetic interactions and genetic interaction profiles was batch effect normalization (Figure 

2.8). 

 

Figure 2.7. Functional evaluation of genetic interaction profile similarities. 
Plots of precision (TP/TP+FP) versus recall (TP) for genetic interaction profile similarities computed using the 
SGA score or the S-score. A version of the SGA score that omits systematic effect normalization is also plotted 
for comparison [SGA score (no normalization)]. Precision and recall were calculated as described in Materials 
& methods 2.10.2. Pearson correlation was used to compute profile similarity for every pair of array mutant 
strains across profiles consisting of interactions with the 1,712 query mutant strains.  
(A) Evaluation against the Gene Ontology (GO) co-annotation standard. A set of gold standard GO terms was 
chosen using previously described criteria (Myers et al., 2006). True positive interactions (TP) were defined as 
those involving gene pairs annotated to the same GO term. 
(B) Evaluation against the protein-protein interaction standard. True positive interactions (TP) were defined as 
those involving genes encoding physically interacting proteins reported in the BioGRID database (Stark et al., 
2011).  
TP, true positive; FP, false positive. 
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Figure 2.8. Relative contributions of each systematic effect 
(A) The contribution of each normalization procedure to the functional performance of the genetic interaction 
dataset was assessed by evaluating SGA scores against co-annotated gene pairs and measuring the area under 
the precision-recall (AUPR) curve. The genetic interaction dataset was scored five times, each time omitting all 
correction steps except for plate normalization and the correction procedure indicated on the x-axis. Consistent 
with our other evaluations, each correction alone contributes to improve data quality. The most significant con-
tribution is made by the batch effect correction. 
(B) Comparative functional evaluation of negative interactions, positive interactions and genetic interaction 
profiles to assess the impact of the batch effect. SGA scores and profiles were evaluated using normalized data 
(SGA score), data without normalization (SGA score w/o normalization) or data in which only the batch effect 
normalization was applied (SGA score w/ batch norm. only). Pearson correlation was used to compute profile 
similarity for every pair of array mutant strains across 1,712 query mutant strains. True positive interactions 
were defined as those involving co-annotated gene pairs (Myers et al., 2006) or protein-protein interactions 
(Stark et al., 2011). Precision and recall were calculated as described in Materials & methods 2.10.2. 
TP, true positive; FP, false positive. 
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To further characterize our dataset, I estimated false negative and false positive rates 

for a range of SGA score and p-value thresholds using a strategy based on the reproducibility 

of reciprocal gene pairs and a set of reference genetic interactions identified by small scale 

studies (Materials & methods 2.10.3; Figure 2.9A). I chose an intermediate stringency 

threshold (|ε| > 0.08, p < 0.05) and used this filtered data set for all subsequent analyses. 

At the chosen threshold, I uncovered ~170,000 unique genetic interactions, a threefold 

increase over all existing data (Figure 2.9B). Our dataset captures ~35% and ~20% of previ-

ously reported negative and positive genetic interactions, respectively, with an estimated 

false discovery rate of ~40% in both cases (Table 2.1; Figure 2.9C). Notably, false discovery 

rate is substantially lower for SGA experiments conducted in duplicate (~21% and ~28% for 

negative and positive interactions, respectively), suggesting that data quality will be further 

improved by future experiments (Figure 2.9C).  
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Figure 2.9. Characterization of SGA genetic interaction score thresholds. 
(A) Sensitivity (black line) and precision (blue line) were systematically measured (as described in Materials & 
methods 2.10.3) for positive and negative genetic interactions at various SGA score (ε) cutoffs (x-axis) and two 
p-value cutoffs (p < 0.5, dashed line, and p < 0.05, solid line). 
(B) Dataset size comparison. I compared the total number of negative (red) and positive (green) genetic interac-
tions at our intermediate and stringent cutoffs to those reported by the 10 largest genetic interaction datasets 
available in BioGRID (Stark et al., 2011). The intermediate confidence SGA dataset represents a 3-fold increase 
over the total number of genetic interactions reported so far. 
(C) The same analysis as in (A) was repeated on 211 screens performed in duplicate. False discovery rate was 
computed as 1 – precision. 
TP, true positive; FP, false positive. 
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Overall, I found about twice as many negative as positive genetic interactions (Table 

2.1). Also, negative interactions tended to be more functionally informative than positive in-

teractions, both at the direct SGA score level (Figure 2.6) and at the level of genetic interac-

tion profile similarities (Figure 2.10). This presumably reflects a higher incidence of noise or 

less functionally informative interaction profiles in the positive interaction dataset. However, 

optimal predictive power is obtained using complete genetic interaction profiles, which in-

clude both negative and positive genetic interactions (Figure 2.10). 

 

Figure 2.10. Functional evaluation of negative and positive genetic interaction profile 
similarities. 
Plots of precision (TP/TP+FP) versus recall (TP) for genetic interaction profile similarities computed using only 
negative genetic interaction scores (red line), only positive genetic interaction scores (green line) or both (black 
line). True positive interactions were defined as those involving co-annotated gene pairs (Myers et al., 2006) or 
protein-protein interactions (Stark et al., 2011). Precision and recall were calculated as described in Materials & 
methods 2.10.2. 
TP, true positive; FP, false positive. 

2.8 Comparative analysis of function prediction capacity  

We tested the ability of our genetic interactions to predict novel functional associations 

in comparison to other genomic datasets (Figure 2.11). We chose a subset of 1,885 GO bio-

logical process categories associated with at least 3 and at most 3,000 genes, and used the 
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GeneMANIA algorithm (Mostafavi et al., 2008) to re-assign genes to GO categories based 

on specific data sources only (Materials & methods 2.10.4). For any given category, predic-

tion performance was evaluated by measuring the number of correctly assigned genes rela-

tive to all predictions (precision), as well as the number of correctly assigned genes relative 

to all known annotations for the category (recall).  

Despite covering only 30% of the genome, our SGA dataset was able to predict gene 

function as well as the combination of two exhaustive AP/MS studies and better than any 

other major data type available in the literature (Figure 2.11A). Compared to individual da-

tasets, our data exhibited the second best predictive power by showing an average ~11% pre-

cision across all tested categories (Figure 2.11B). Furthermore, excluding our SGA dataset 

from the compendium of all available genetic interactions results in the greatest loss in aver-

age precision (Figure 2.11C), suggesting that our data contributes a substantial amount of 

unique functional information not captured by other genetic interaction studies.  
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Figure 2.11. Comparative function prediction capacity of the genetic interaction da-
taset. 
(A) The performance of the four major data types (genetic interactions, protein-protein interactions, gene ex-
pression and protein localization) in predicting gene function was determined by the GeneMANIA algorithm 
(Mostafavi et al., 2008) as described in Materials & methods 2.10.4, and measured as the total number of GO 
terms predicted at 70% precision or higher at 10% recall. 
(B) Comparison of individual high-throughput datasets in predicting gene function. 
(C) Comparison of high-throughput genetic interaction studies using the leave-one-out approach.  

2.9 SGA score application to other functional genomics 
datasets 

The development of the SGA score established a standard computational framework 

for processing colony size data in various experimental contexts, and made an important con-

tribution to our global understanding of yeast biology. 
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In addition to the collection of 1,700 genome-wide SGA experiments, described in this 

chapter, I used the SGA score to map quantitative genetic interactions among ~185,000 gene 

pairs acting in yeast metabolism (Szappanos et al., 2011). Metabolism is one of the most ex-

tensively characterized cellular systems and an ideal test bed for investigating the molecular 

mechanisms underlying genetic interactions. Hundreds of chemical reactions connecting en-

zymes and their products have been modeled through high quality network reconstructions, 

as well as computational algorithms that predict the phenotypic outcomes of network pertur-

bations. Systematic SGA experiments, together with rigorous SGA score processing, provid-

ed experimental evidence to refine these theoretical models and correct previous misannota-

tions (Szappanos et al., 2011). The theoretical models, in turn, offered a mechanistic explana-

tion for the distribution of negative and positive genetic interactions in the empirical data and 

showed that the genes with the highest genetic interaction degree are the ones that impact the 

abundance of the largest number of key metabolites in the cell and therefore contribute to the 

largest number of biological processes (Szappanos et al., 2011). 

Experimental strategies similar to SGA have been developed in other model organisms, 

which, just like S. cerevisiae, form single colonies that can be quantitatively measured as a 

proxy for fitness and genetic interactions (Chapter 1.4). For example, I applied the SGA 

score methodology to map genetic interactions between 222 genes involved in DNA replica-

tion and repair, chromatin remodeling and intracellular transport in the fission yeast Schiz-

osaccharomyces pombe (Dixon et al., 2008). The SGA score identified 669 high confidence 

negative genetic interactions, which were highly reproducible and enabled the investigation 

of cross-species connectivity of ortholog genes (Chapter 1.4). 
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In addition to loss-of-function alleles, such as deletion mutants, SGA has also been 

used to examine gain-of-function perturbations, such as increased gene dosage (Sopko et al., 

2006; Sharifpoor et al., 2012). I adapted the SGA score algorithm to enable quantitative 

analysis of synthetic dosage lethality (SDL) experiments, where a genome-wide overexpres-

sion library was combined with a set of deletion mutants to uncover mutant-specific sensitivi-

ty to gene dosage. This approach exploits the idea that high levels of a protein are often in-

nocuous in a wild-type cell but may be deleterious in a deletion mutant defective for the pro-

tein’s negative regulator (Kroll et al., 1996; Sopko et al., 2006). Consistent with this idea, 

SDL analysis of 92 protein kinases, coupled with quantitative SGA score processing, identi-

fied ~1,300 interactors, which were highly enriched for known kinase targets, physical in-

teractors of kinases and phosphoproteins (Sharifpoor et al., 2012). The integration of SDL 

with positive and negative genetic interactions revealed numerous recurring network motifs, 

which were predictive of regulatory relationships between kinases, their substrates and other 

proteins (Sharifpoor et al., 2012). 

Knowledge gained through application of the SGA score to colony-based high-

throughput genetic surveys spans multiple biological processes, model organisms and pertur-

bation strategies (Dixon et al., 2008; Costanzo et al., 2010; Szappanos et al., 2011; 

Sharifpoor et al., 2012). More importantly, the development of the SGA score has improved 

our understanding of the experimental conditions affecting colony growth in high density 

mutant arrays and helped us to refine the experimental design of our future high-throughput 

endeavors. The ideas behind the SGA score can be extended beyond genetic interactions to 

other array-based interaction mapping technologies, such as yeast two-hybrid (Yu et al., 
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2008) or protein-fragment complementation assay (Tarassov et al., 2008), which rely on col-

ony growth to identify physically interacting proteins. Protein-DNA binding can also be as-

sessed using colony-based methods, such as for example yeast one-hybrid, which maps tran-

scription factors interacting with genomic regions of interest (Reece-Hoyes et al., 2011). A 

version of the SGA scoring method is currently being adapted to yeast-one hybrid experi-

ments (C. Myers, personal communication). 

2.10 Materials & methods 

2.10.1 SGA query construction and screening 

SGA query strain construction and screening were conducted as described in 

(Baryshnikova et al., 2010a). A total of 1,712 query mutants were screened against an array 

of 4,293 non-essential deletion mutants. 408 array mutants were removed by quality control 

procedures or due to incompatibility with the SGA technology, resulting in a final dataset of 

1,712 queries × 3,885 arrays. All screens were conducted a single time with 4 replicate colo-

nies per double mutant, except for 211 screens that were performed twice. 

2.10.2 Precision/recall analysis against functional standards 

Gene pairs are sorted based on their genetic interaction scores or Pearson correlation 

coefficient, such that the strongest values are sorted to the top of the list (i.e., in descending 

order for positive values and ascending order for negative values). Each pair is associated 

with functional association score , based on the chosen functional standard (GO co-

annotation or protein-protein interactions), such that 1 indicates that the pair is a positive in 

S = 1,−1{ }



Chapter 2 – Measuring quantitative fitness and genetic interactions in yeast on a genome scale 

 

73 

the standard and –1 indicates that it is a negative. Pairs not reported in the functional standard 

are assigned a score of 0 and do not contribute to the calculation.  

At each position n in the list, recall R(n) is calculated as: 

 

where S(ni) is the functional score at position ni. 

At each position n in the list, precision P(n) is calculated as: 

 

where R(n) is recall at position n and S(ni) is the functional score at position ni 

2.10.3 Estimation of false negative and false discovery rates 

Sensitivity is defined as the fraction of known interactions identified by an assay: 

 

where TP is the number of true positives and FN is the number of false negatives. 

I estimated SGA sensitivity by evaluating previously published genetic interactions 

stored in the BioGRID database (Stark et al., 2011) as of May 4th, 2009. By systematically 

varying SGA genetic interaction score (ε) and p-value cutoffs, I calculated the number of true 
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positives (TP) as the number of BioGRID interactions with SGA scores and p-values more 

extreme than the chosen cutoff (Figure 2.9, sensitivity). For negative genetic interactions, I 

considered BioGRID interactions annotated as phenotypic enhancement, synthetic growth 

defect and synthetic lethality. For positive genetic interactions, I considered BioGRID inter-

actions annotated as phenotypic suppression and synthetic rescue.  

Precision is the fraction of true interactions in the set of all identified hits: 

 

where TP is the number of true positives and FP is the number of false positives. 

I estimated precision of our positive and negative genetic interactions using the follow-

ing strategy. Given a square matrix of SGA genetic interaction scores where every gene A is 

present both as query (AB) and as array (BA), the total number of interactions at a certain 

cutoff is the sum of interactions called by AB pairs only, BA pairs only and those called by 

both. The interactions called by both AB and BA (Noverlap) are expected to be a mixture of 

true positives and false positives. The true positive portion of Noverlap depends on the total 

number of interactions called by AB (NAB), the probability of them being true positives (pre-

cision, p) and the probability of them not being missed by BA (sensitivity = 1 – FNR). The 

false positive portion of Noverlap depends on the total number of interactions called by AB 

(NAB), the probability of them being false (1 – p) and the probability of them being incorrect-

ly called positive by BA (specificity = 1 – TNR). 

Overall, the number of interactions called by both AB and BA is given by: 

precision = TP
TP + FP
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Given that Noverlap, NAB and FNR are known, and 1–TNR can be at most equal to the to-

tal density of interactions in the matrix (adopting the conservative assumption that all the re-

ported interactions are false), precision can be calculated as follows  (Figure 2.9, precision): 

 

Table 2.1. Sensitivity and precision of SGA genetic interaction scores. 

 

 Lenient cutoff 

p < 0.05 

Intermediate cutoff 

|ε| > 0.08, p < 0.05 

Stringent cutoff 

ε < –0.12, p < 0.05 

ε > 0.16, p < 0.05 

Negative 
interactions 

Number of interactions 366,085 108,417 58,508 

Sensitivity 0.41 0.35 0.28 

Precision 0.27 0.63 0.89 

Positive 
interactions 

Number of interactions 323,935 59,887 6,185 

Sensitivity 0.26 0.18 0.05 

Precision 0.20 0.59 ~1 

 

2.10.4 Comparative analysis of function prediction capacity 

The input to the GeneMANIA algorithm is one or more functional association net-

works, i.e. networks where nodes represent genes or proteins, and edges are weighted accord-

ing to evidence of shared function between the connected nodes (Mostafavi et al., 2008). We 

obtained 23 large-scale datasets from BioGRID (Stark et al., 2011) or the Supplementary da-

Noverlap = Noverlap_ true + Noverlap_ false = pNAB 1− FNR( ) + 1− p( )NAB 1−TNR( )

p =
Noverlap − NAB 1−TNR( )

NAB 1− FNR( )− NAB 1−TNR( )



Chapter 2 – Measuring quantitative fitness and genetic interactions in yeast on a genome scale 

 

76 

ta of the corresponding publications (Table 2.2, below), and used them to construct dataset-

specific and data type-specific functional association networks (Figure 2.11). For protein-

protein and genetic interaction data, we represented shared function using direct binary inter-

actions, as well as similarity of interaction profiles as defined by Pearson correlation coeffi-

cients (PCC) or other similarity measures. For gene expression and localization data, only 

profile similarity was used. All correlation-based networks were sparsified by setting to zero 

all but the top 100 highest connections for each gene. 
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Table 2.2. List of datasets used in comparative function prediction analysis. 

Data type Dataset name Reference Source 

AP/MS 

Gavin 2006 (Gavin et al., 2006) BioGRID 

Krogan 2006 (Krogan et al., 2006) BioGRID 

Ho 2002 (Ho et al., 2002) BioGRID 

Y2H 
Yu 2008 (Yu et al., 2008) BioGRID 

Y2H Union (Yu et al., 2008) BioGRID 

PCA Tarassov 2008 (Tarassov et al., 2008) BioGRID 

Other PPI Miller 2005 (Miller et al., 2005) BioGRID 

Gene expression 

Chua 2006 (Chua et al., 2006) Supplementary data 

Spellman 1998 (Spellman et al., 1998) Supplementary data 

Gasch 2000 (Gasch et al., 2000) Supplementary data 

Hughes 2000 (Hughes et al., 2000) Supplementary data 

Roberts 2000 (Roberts et al., 2000) Supplementary data 

Yvert 2003 (Yvert et al., 2003) Supplementary data 

Protein localization Huh 2003 (Huh et al., 2003) Supplementary data 

Genetic interactions 

Tong 2004 (Tong et al., 2004) BioGRID 

Schuldiner 2005 (Schuldiner et al., 2005) BioGRID 

Pan 2006 (Pan et al., 2006) BioGRID 

Collins 2007 (Collins et al., 2007) BioGRID 

Lin 2008 (Lin et al., 2008) BioGRID 

Wilmes 2008 (Wilmes et al., 2008) Supplementary data 

Fiedler 2009 (Fiedler et al., 2009) Supplementary data 

Phosphorylation Ptacek 2005 (Ptacek et al., 2005) Supplementary data 

Chemical genomics McClellan 2007 (McClellan et al., 2007) Supplementary data 
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2.10.5 Data access 
Matlab source code for the SGA score algorithm 

https://research.cs.umn.edu/csbio/SGAScore/Supplementary_software_1_Matlab_source_code.zip 

Supplementary software 1, (Baryshnikova et al., 2010b) 

 

Raw colony size data 

https://research.cs.umn.edu/csbio/SGAScore/Supplementary_data_4_Raw_sgadata_fullgenome_101209.txt.gz  

Supplementary data file 4, (Baryshnikova et al., 2010b) 

 
Single mutant fitness standard 

https://research.cs.umn.edu/csbio/SGAScore/Supplementary_data_1_SMF_standard_100209.xls  

Supplementary data file 1, (Baryshnikova et al., 2010b) 

 

Genetic interaction scores 

http://drygin.ccbr.utoronto.ca/~costanzo2009/sgadata_costanzo2009_rawdata_101120.txt.gz 

Supplementary data file 1, (Costanzo et al., 2010) 
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3 The genetic landscape of a cell 
 
 

Portions of this chapter have been reprinted or adapted from: 
 

• Baryshnikova A.*, Costanzo M.*, Kim Y., Ding H., Koh J., Toufighi K., Youn J. Y., Ou 
J., San Luis B. J., Bandyopadhyay S., Hibbs M., Hess D., Gingras A. C., Bader G. D., 
Troyanskaya O. G., Brown G. W., Andrews B., Boone C., Myers C. L., “Quantitative 
analysis of fitness and genetic interactions in yeast on a genome scale”, Nature Methods, 
7(12):1017–1024, 2010 (Baryshnikova et al., 2010b) 

• Costanzo M.*, Baryshnikova A.*, Bellay J., Kim Y., Spear E. D., Sevier C. S., Ding H., 
Koh J. L., Toufighi K., Mostafavi S., Prinz J., St Onge R. P., VanderSluis B., Ma-
khnevych T., Vizeacoumar F. J., Alizadeh S., Bahr S., Brost R. L., Chen Y., Cokol M., 
Deshpande R., Li Z., Lin Z. Y., Liang W., Marback M., Paw J., San Luis B. J., Shuteriqi 
E., Tong A. H., van Dyk N., Wallace I. M., Whitney J. A., Weirauch M. T., Zhong G., 
Zhu H., Houry W. A., Brudno M., Ragibizadeh S., Papp B., Pal C., Roth F. P., 
Giaever G., Nislow C., Troyanskaya O. G., Bussey H., Bader G. D., Gingras A. C., Mor-
ris Q. D., Kim P. M., Kaiser C. A., Myers C. L., Andrews B. J., Boone C., “The genetic 
landscape of a cell”, Science, 327(5964):425-431, 2010 (Costanzo et al., 2010) 

 
* These authors contributed equally to the publication. 

 
I generated the SGA dataset by performing quality control procedures on raw colony size da-
ta and applying the SGA score to measure genetic interactions. I produced the correlation-
based genetic interaction network and performed the downstream analysis of functional clus-
ters. I integrated genetic and chemical-genetic interaction networks and identified the novel 
drug target. 

Jeremy Bellay performed the comparison of genetic interaction degree against physiological 
and evolutionary properties, and computed the frequency of interactions between biological 
processes. 
Judice Koh developed and ran the GINECA clustering algorithm. 

Yungil Kim analyzed the genetic suppression network between protein complexes. 
Michael Costanzo designed and coordinated all experimental work which was performed by 
technicians in the Boone lab and collaborators. Follow-up experiments were conducted in the 
laboratories of Chris Kaiser, Anne-Claude Gingras, Guri Giaever and Corey Nislow. 
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3.1 Abstract 

A genome-scale genetic interaction map was constructed by examining ~5.4 million 

gene pairs in Saccharomyces cerevisiae using the Synthetic Genetic Array (SGA) technolo-

gy. A network based on quantitative genetic interaction profiles for ~75% of yeast genes re-

vealed a functional map of the cell, in which genes of similar biological processes clustered 

together in coherent subsets. Highly similar genetic interaction profiles delineated specific 

pathways and defined new functional roles for uncharacterized genes. The global network 

identified high level functional cross-connections between bioprocesses and mapped the wir-

ing diagram of pleiotropy. Genetic interaction degree correlated with a number of different 

gene attributes, which may be informative about genetic network hubs in other organisms. 

Comparison of physical and genetic interaction networks showed that, in contrast to previous 

expectation, positive genetic interactions often connect functionally distinct protein complex-

es and form a network of genetic suppression among loss-of-function alleles. Finally, exten-

sive and unbiased mapping of genetic interactions provided a key for interpretation of chemi-

cal-genetic interactions and enabled identification of novel drug targets. 
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3.2 Introduction 

The relationship between genotype and phenotype of an organism is governed by a 

myriad of genetic interactions (Chapter 1). Although a complex genetic landscape has long 

been anticipated (Waddington, 1957), exploration of genetic interactions on a genome-wide 

level has been limited. Systematic deletion analysis in the budding yeast Saccharomyces 

cerevisiae demonstrates that the majority of its ~6,000 genes are individually dispensable, 

with only a relatively small subset (~20%) required for viability (Giaever et al., 2002). This 

finding suggests that cells have evolved extensive buffering against genetic perturbations 

(Hartwell, 2004), which can be uncovered by genome-scale screens for genetic interactions. 

In yeast, synthetic genetic array (SGA) methodology enables the systematic mapping of ge-

netic interactions through an automated form of genetic analysis that produces high-density 

arrays of double mutants (Chapter 1.3.2). In this chapter, I report the systematic application 

of the SGA methodology to ~30% of the yeast genome and the construction of the first ge-

nome-scale functionally unbiased genetic interaction map for a eukaryotic cell. 

In our definition, a genetic interaction occurs when the fitness a double mutant shows a 

significant deviation from the multiplicative combination of the two single mutant fitnesses 

(Chapter 1.1). Negative interactions refer to a more severe fitness defect than expected, with 

the extreme case being synthetic lethality. Positive genetic interactions refer to double mu-

tants with a less severe fitness defect than expected. To quantitatively score genetic interac-

tions in large-scale SGA screens, I developed a model to estimate fitness defects directly 

from double mutant colony sizes (Chapter 2.4). We screened 1,712 S. cerevisiae query genes, 

including 334 conditional or hypomorphic alleles of essential genes, for a total of ~5.4 mil-
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lion gene pairs spanning all biological processes. Data evaluation, using several different ap-

proaches, indicated that the identified genetic interactions were reproducible and functionally 

informative (Chapters 2.6–2.7). 

3.3 A functional map of the cell 

Genes acting within the same pathway or biological process tend to share common sets 

of genetic interactions, i.e. they have similar genetic interaction profiles (Chapter 1.2). I ex-

ploited this property to construct a global network, in which nodes represent genes and edges 

connect gene pairs with similar genetic interaction profiles (Figure 3.1). This network high-

lights the genetic relationships between diverse biological processes and reveals the inherent 

functional organization of the cell. Genes displaying tightly correlated genetic interaction 

profiles form discernible clusters corresponding to distinct bioprocesses, and the relative dis-

tance between them appears to reflect shared functionality (Figure 3.1). For example, the role 

of the microtubule cytoskeleton in bridging nuclear chromosomal- and actin cytoskeleton-

based functions is illustrated by close proximity and relative positioning of gene clusters in-

volved in cell polarity and morphogenesis, mitosis and chromosome segregation, and DNA 

replication and repair (Figure 3.1). 
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Figure 3.1. A correlation-based network connecting genes with similar genetic interac-
tion profiles. 
Genetic profile similarities were measured for all gene pairs by computing Pearson correlation coefficients 
(PCCs) from the complete genetic interaction matrix. Gene pairs whose profile similarity exceeded a PCC > 0.2 
threshold were connected in the network and laid out using an edge-weighted spring-embedded network layout 
algorithm implemented in Cytoscape (Smoot et al., 2011). Genes sharing similar patterns of genetic interactions 
are proximal to each other, while less similar genes are positioned farther apart. Colored regions indicate sets of 
genes identified as described in Materials & methods 3.13.1, and enriched for GO biological processes summa-
rized by the indicated terms. 

Despite screening only ~30% of all yeast genes as queries, we recovered genetic inter-

actions for ~75% of the genome because nearly all nonessential genes are present on the ar-

ray and obtained partial genetic interaction profiles across 1,712 queries.  
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3.4 Predicting function and relations 

The genetic interaction network contains functional information at multiple levels of 

resolution. At the general level, it reveals functional connections between broad biological 

processes (Figure 3.1). At a higher level of resolution, the network dissects biological pro-

cesses into more specific genetic cohorts, such as individual molecular pathways and protein 

complexes (Figure 3.2A). Even further, direct positive and negative genetic interactions re-

veal the connections that underlie a gene’s functional clustering within a given cohort, and 

relate the gene to other members of the same biological pathway or protein complex (Figure 

3.2B–D). As predicted previously (Segre et al., 2005), connections within and between dif-

ferent pathways and protein complexes were often monochromatic, i.e. composed almost ex-

clusively by a single type of genetic interaction, either all negative or all positive. 

I used similarity of genetic interaction profiles to predict function for several uncharac-

terized genes (Figure 3.3). PAR32, ECM30 and UBP15 had interaction profiles similar to 

those of members of the Gap1-sorting module (Figure 3.2B), and consistent with a role in 

this process, deletion mutants for all three genes led to defects in Gap1 sorting (Figure 3.3A) 

and transport (Figure 3.3B). Additional experimental results (Huber et al., 2009; Costanzo et 

al., 2010) suggest that Par32 may function in target of rapamycin (TOR)-dependent regula-

tion of the Gln3, Gat1, Rtg1, and Rtg3 transcription factors (Chen and Kaiser, 2003), whereas 

Ecm30 forms a stoichiometric complex with the Ubp15 ubiquitin protease that may modulate 

Gap1 localization, perhaps by controlling its ubiquitination state. 
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Figure 3.2. Magnification of the functional map better resolves cellular processes. 
(A) A subnetwork corresponding to a region of the global map described in Figure 3.1 is indicated in red (inset). 
Node color corresponds to a specific biological process: dark green, amino acid biosynthesis and uptake; light 
green, signaling; light purple, ER-Golgi; dark purple, endosome and vacuole sorting; yellow, ER-dependent 
protein degradation; red, protein folding and glycosylation, cell wall biosynthesis and integrity; fuchsia, tRNA 
modification; pink, cell polarity and morphogenesis; orange, autophagy; black, uncharacterized. Individual ge-
netic interactions contributing to genetic profiles revealed by (A) are illustrated for three specific subnetworks 
in (B) to (D). 
(B to D) Subsets of genes belonging to amino acid biosynthesis and uptake, ER-Golgi, and tRNA modification 
regions of the network were selected, and, in some cases, additional genes were included from the complete 
network shown in Figure 3.1. Nodes are grouped according to profile similarity, and edges represent negative 
(red) and positive (green) genetic interactions (| ε| > 0.08, p < 0.05). Nonessential (circles) and essential (dia-
monds) genes are colored according to the biological process indicated in (A), and uncharacterized genes are 
depicted in yellow. 
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Figure 3.3. Genetic interaction profiles reflect diverse types of functional relationship. 
(A–B) PAR32, ECM30, and UBP15 are required for plasma membrane localization (A) and activity (B) of the 
Gap1 amino acid permease (Materials & methods 3.13.3). DIC, differential interference contrast; GFP, green 
fluorescent protein.  
(C) Stg2 physically interacts with components of the GET pathway and members of the Hsp70 chaperone fami-
ly. Proteins identified with high confidence as specific interactors for tandem affinity purification (TAP)-tagged 
Sgt2 (Sgt2-TAP) are shown in decreasing order of spectral counts (Materials & methods 3.13.4). 
(D) Similar to GET pathway mutants, SGT2 is required for proper Pex15 localization (Materials & methods 
3.13.5). 
(E) Distribution of Elp and Urm modified codon usage among synthetic sick or lethal interaction partners (Ma-
terials & methods 3.13.6). The fraction of Elp and Urm modified codons (lysine, glutamine, and glutamic acid) 
relative to all codons was measured for all negative interactors of the Elp or Urm complex members (red) rela-
tive to the background usage of all genes (blue). 

In another example, similarity of genetic interaction profiles suggested a strong func-

tional relation between the GET pathway and the poorly characterized gene, SGT2 (Figure 

3.2B). Consistent with a role in endoplasmic reticulum (ER)-dependent membrane targeting 
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(Jonikas et al., 2009) or protein folding (Metzger and Michaelis, 2009), we found that Sgt2 

physically interacts with Get4, Get5 and heat shock 70 (Hsp70) protein family members 

(Figure 3.3C). In addition, similarly to GET pathway mutants (Jonikas et al., 2009), deletion 

of SGT2 results in mislocalization of the tail-anchored protein, Pex15 (Figure 3.3D). 

3.5 Deciphering complex regulatory relations from the 
global genetic network 

Because the global genetic interaction map represents a broad functional survey, it 

should provide insights into the regulatory wiring diagram of the cell. For example, synthetic 

lethal interactions between members of the elongator (Elp) complex and those of the urmyla-

tion (Urm) pathway suggested that the Urm pathway collaborates with the Elp complex in the 

modification of specific transfer RNAs (tRNAs) (Figure 3.2D) (Leidel et al., 2009). In addi-

tion to their synthetic lethal relationship, Elp and Urm pathway genes shared highly similar 

genetic interaction profiles. Notably, these interactions were enriched for cell polarity and 

secretion genes (p < 10–3), which reflects a specific cell polarity defect associated with Elp 

pathway mutants (Rahl et al., 2005). 

The elongator tRNA modification machinery has been postulated either to broadly af-

fect the translation of a suite of mRNAs whose genes have cell polarity roles or to selectively 

influence the activity of a key polarity regulatory gene (Esberg et al., 2006). We were in-

trigued by the finding that the subset of Elp-Urm negative interactors, as well as cell polarity 

and secretion genes in general, encode proteins that are significantly enriched for the amino 

acids that charge Elp- and Urm-modified tRNAs (Figure 3.3F). These findings suggest that 
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Elp and Urm pathways may be biased toward the regulation of a functionally specific subset 

of cellular proteins. ELP1 is a highly conserved gene whose human ortholog, inhibitor of 

kappa light polypeptide gene enhancer in B cells, kinase complex-associated protein 

(IKBKAP), is associated with a neurological disorder, familial dysautonomia, which leads to 

disruption of cytoskeletal organization when mutated (Johansen et al., 2008; Naumanen et 

al., 2008). Thus it is possible that disease manifestation may involve impaired IKBKAP-

dependent translation of a set of human genes belonging to a specific functional group. 

3.6 Genetic network connectivity 

Consistent with the degree distribution of other biological networks, the majority of 

genes had few genetic interactions, whereas a small number were highly connected and 

served as network hubs (Figure 3.4A). Biases in interaction number were supplemented by 

biases in interaction type. About 2% of array genes exhibited preferentially negative genetic 

interactions, presenting a positive to negative degree ratio lower than 1:8. Conversely, ~1% 

of array genes were biased towards positive genetic interactions and showed a positive to 

negative degree ratio greater than 4:1 (Figure 3.4B). Genes displaying this distinct behavior 

were also functionally distinct. The set of negatively biased genes included preferentially 

those required for normal cell cycle progression (p < 10–8), reflecting the central role of 

checkpoints in maintaining viability in dividing cells. Predominantly positive interactions 

were indicative of genes involved in translation, ribosomal RNA processing, and mRNA de-

cay (p < 10–5), which may suggest that defects in the translation machinery somehow mask 

phenotypes that would otherwise be expressed in normal cells. 
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Figure 3.4. Genetic network connectivity. 
(A) The distribution of genetic interaction network degree for negative (red) and positive (green) interactions 
involving query genes. 
(B) The distribution of the ratio of positive to negative interactions for query genes. 

Genetic interaction hubs showed a clear association with several fundamental physio-

logical and evolutionary properties (Figure 3.5A), which may be predictive of genetic inter-

actions in other organisms. In particular, we uncovered a strong correlation between genetic 

interaction degree and single mutant fitness (R = 0.73). Single mutants with increasingly se-

vere fitness defects tended to exhibit an increased number of both negative and positive in-

teractions (Figure 3.5B–C). This relation was also observed for essential genes where the av-

erage number of interactions involving a temperature-sensitive mutant allele was inversely 

proportional to allele fitness at a given semipermissive temperature (Figure 3.5D). The in-

creased connectivity of genes with fitness defects was not due to nonspecific interactions de-

rived from a generally compromised cell or experimental noise: interactions involving these 

genes overlap with known functional relationships just as frequently as other interactions 

(Costanzo et al., 2010). 
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Figure 3.5. Genetic interaction degree, fitness, multifunctionality, and pleiotropy. 
(A) Pearson correlation between interaction degree and a number of physiological and evolutionary features was 
measured for positive (green), negative (red) and protein-protein (black) interactions. Chemical-genetic degree 
refers to the number of chemical perturbations to which a gene exhibits hypersensitivity. (Inset) The relation to 
gene multifunctionality for each of the interaction datasets is illustrated by measuring the average number of 
annotations to specific biological process GO terms for the top 1% highest degree genes for each interaction 
type. 
(B–C) Relationship between genetic interaction degree and single mutant fitness. 3,885 array genes (B) and 
1,712 query genes (C) were binned into seven groups on the basis of their single mutant fitness. For each bin, 
the fraction of tested gene pairs showing a genetic interaction at the intermediate confidence threshold 
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(|ε| > 0.08, p < 0.05) was measured for positive (green), negative (red) and all (black) genetic interactions.  
(D) The relationship between genetic interaction degree and single mutant fitness was examined for different 
types of genetic perturbations. 1,712 query genes were separated by the type of genetic perturbation (deletion, 
temperature-sensitive allele (TS), or DAmP allele) and genetic interaction degree was measured for each single 
mutant fitness bin. Genetic interaction degree of essential genes correlated with allele fitness measured at semi-
permissive temperature (26ºC). 

In addition to the correlation with single mutant fitness defects, the number of genetic 

interactions for a particular hub was significantly correlated with the number of biological 

functions annotated to that gene (Figure 3.5A). The connection between hubness and multi-

functionality was further supported by an increased phenotypic capacitance, which measures 

the number of different morphological phenotypes linked to a specific gene (Figure 3.5A) 

(Levy and Siegal, 2008). This relation suggests that genetic network hubs play key roles in 

the integration and execution of multiple morphogenic programs. 

It is important to note that these correlations persisted after we controlled for fitness de-

fects of single mutants (Costanzo et al., 2010). Furthermore, they reveal characteristics that 

distinguish genetic network hubs from hubs on the physical interaction network (Figure 

3.5A). Notably, the correlation to both fitness and multifunctionality was several fold strong-

er for genetic interaction degree than for physical interaction degree (Figure 3.5A). This like-

ly reflects the ability of genetic perturbation analysis to identify broad phenotypic connec-

tions that cannot be captured in networks subject to physical constraints and suggests that 

large-scale genetic interaction networks will be of wide utility for defining the functional wir-

ing diagrams of cells and organisms. 

Although there are several distinguishing characteristics of genetic interaction hubs, we 

measured a significant correlation (R ~ 0.2) between the genetic and physical interaction de-
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gree for any given gene (Figure 3.5A). Similar to protein-protein interaction hubs (Pal et al., 

2001; Fraser et al., 2003; Kim et al., 2006), we found that genetic hubs tend to be expressed 

at higher mRNA levels (Figure 3.5A). Based on a comparison of whole-genome sequences of 

23 different Ascomycota fungi species, genetic interaction degree correlated positively with 

gene conservation and negatively with copy number volatility, indicating that hubs tend to be 

lost or duplicated less frequently. Genetic interaction hubs also evolved more slowly (as 

measured by the dN/dS ratio) than genes with fewer interactions (Figure 3.5A), which sug-

gests that hubs generally tend to be evolutionary constrained. Only a subset of genetic inter-

action hubs seemed to behave differently: proteins exhibiting a higher level of native disorder 

appear to evolve faster than their ordered counterparts (Figure 3.5E), suggesting that they 

may represent a distinct class of genetic interaction hubs (Bellay et al., 2011). 

3.7 Distribution of genetic interactions by bioprocess 

We assessed the distribution of both negative and positive genetic interactions across 

different cellular processes (Figure 3.6A–B). The analysis identified functions which are en-

riched or depleted for genetic interactions relative to the expected frequency of a random 

gene set. As observed previously (Tong et al., 2001), genes involved in the same biological 

process were enriched for negative interactions (Figure 3.6A). However, we also observed 

numerous genetic interactions connecting across bioprocesses. Specifically, genes involved 

in chromatin, transcription, ER-Golgi transport and Golgi-endosome transport showed a sig-

nificant number of interactions that bridge diverse functions, suggesting that many of these 

genes are highly interconnected or multifunctional. Indeed, these bioprocess-level findings 
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concur with individual gene analyses, which indicate that genes involved in processes related 

to chromatin structure and transcription, as well as secretion and vesicle transport, were 

among the most highly connected genes in our network (p < 10–14 and p < 10–9, respectively). 

The central role for chromatin- and transcription-related processes identified in the yeast ge-

netic network is consistent with large-scale genetic network mapping in Caenorhabditis ele-

gans (Lehner et al., 2006), and the bridging function for secretory pathway genes emphasizes 

their role as communication conduits for the cell.  

Particular gene sets, such as meiosis, drug or ion transport, and metabolism or mito-

chondrial genes, showed a reduced number of genetic interactions (Figure 3.6A–B). This 

may arise because some processes are more buffered than others and require more complex 

genetic analysis to uncover their interactions, whereas other biological functions may only be 

needed under certain environmental conditions. 

In contrast to genetic interactions, protein-protein interactions connect relatively fewer 

bioprocesses (Figure 3.6C), thus suggesting that, although highly informative of local path-

way architecture, they fail to provide a complete picture of multifunctionality or interconnec-

tions between cellular processes. 
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Figure 3.6. Distribution of genetic and physical interactions by bioprocess. 
Frequency of negative (A) and positive (B) genetic interactions, as well as protein-protein interactions (C) was 
calculated within and between 17 broadly defined functional categories (Materials & methods 3.13.9). The color 
of each process-process element reflects interaction frequency relative to random expectation (blue, below ran-
dom; yellow, above random; black, statistically indistinguishable from random). The diagonal represents with-
in-process interactions. The red line in the color scale bar indicates random background. 

Because variation was observed in the average number of genetic interactions across 

different bioprocesses, we tested whether gene-specific properties (Figure 3.5A) were predic-

tive of this variation. For example, we found that gene duplicates exhibited fewer interactions 

than singleton genes (Costanzo et al., 2010; VanderSluis et al., 2010), and we asked if bio-
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processes with relatively few genetic interactions could be explained by a high percentage of 

duplicated genes. An analysis of covariance (ANCOVA; Materials & methods 3.13.11) 

showed than a linear model including the gene-specific properties predictive of genetic inter-

action hubs was sufficient to explain the number of genetic interactions for the majority of 

bioprocesses (12 out of 17 for negative interactions, and 13 out of 17 for positive interac-

tions; Figure 3.7). For example, the relatively few genetic interactions observed for genes in-

volved in drug and ion transport are explained by a combination of high gene duplication rate 

(~50–60%) and copy number volatility. This is consistent with the tendency of genes encod-

ing protein pumps to undergo numerous duplication events (Dunham et al., 2002) and con-

firms that extensive redundancy associated with large gene families complicates the identifi-

cation of digenic interactions.  

 

Figure 3.7. Gene-specific factors explaining the variation in genetic interaction number 
across biological processes. 
ANCOVA analysis was used to assess the significance of gene-specific factors (Figure 3.5A) at predicting the 
number of negative (A) and positive (B) genetic interactions observed for a specific biological process (Materi-
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als & methods 3.13.9). The top panel shows the average number of interactions within each process. The color 
of the bars indicates whether the factors listed on the y-axis explain the interaction degree of the process (black) 
or whether the interaction degree is significantly above (yellow, p < 0.05) or below (blue, p < 0.05) expectation. 
For each process, the proportion of variance explained by each of the gene-specific factors is indicated by the 
corresponding column in the heatmap. 

Three bioprocesses had significantly more negative interactions than predicted 

(p < 0.05; Figure 3.7A), including those that show functional enrichment for genetic interac-

tion hubs (Figure 3.5A). Conversely, DNA replication and repair and amino acid biosynthesis 

showed significantly fewer negative interactions than predicted (p < 0.05; Figure 3.7A), sug-

gesting that these genes are more buffered and inherently less connected on the digenic net-

work or that more genetic interactions will surface when these genes are tested under differ-

ent environmental conditions. 

3.8 Overlap between genetic and protein-protein 
interaction network 

We examined the relationship between quantitative genetic interactions and protein-

protein interactions as defined by affinity purification-mass spectrometry (Gavin et al., 2006; 

Krogan et al., 2006), yeast two-hybrid protocol (Yu et al., 2008), and protein-fragment com-

plementation assay (PCA) (Tarassov et al., 2008). We found that genetic interactions overlap 

10–20% of protein-protein interaction pairs, depending on the physical interaction mapping 

technology (Figure 3.8). This overlap is significantly higher than expected randomly (~3%) 

and includes roughly an equivalent number of negative (~7%) and positive (~5%) genetic 

interactions.  
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In contrast, only a small fraction of gene pairs that show a negative or a positive genet-

ic interaction are also physically linked (0.4% and 0.5%, respectively). This suggests that the 

vast majority of both positive and negative interactions occur between, rather than within, 

complexes and pathways, connecting those that presumably work together or buffer one an-

other, respectively. 

 

Figure 3.8. Overlap of genetic and physical interaction networks 
For each of the three major mapping technologies (TAP/MS, yeast two-hybrid and PCA), we measured the frac-
tion of physically interacting pairs that also showed a positive or a negative genetic interaction at the intermedi-
ate confidence threshold (|ε| > 0.08, p < 0.05). For comparison, the fraction of pairs identified by other protein-
protein interaction technologies (excluding the dataset of interest) was also measured. 

3.9 Analysis of genetic interactions within and between 
protein complexes 

We measured the frequency of genetic interactions within and between 161 protein 

complexes (Materials & methods 3.13.12) for which more than one protein pair had been 

screened in our study. Consistent with a smaller-scale analysis (Bandyopadhyay et al., 2008), 
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a large portion of these complexes (92 out of 161) were significantly enriched for genetic in-

teractions among their members (hypergeometric test, p < 0.05). Interestingly, most com-

plexes showed a strong preference for a single type of genetic interactions: 46% of the en-

riched complexes were connected by only positive interactions, while 37% by only negative 

interactions (Figure 3.9A–B). This finding confirms previous theoretical observations (Segre 

et al., 2005), where similar groups of genes were described as “monochromatic”. 

 

Figure 3.9. Analysis of genetic interactions within protein complexes. 
(A) Distribution of protein complexes with respect to within-complex monochromatic purity scores (Materials 
& methods 3.13.12.3). 
(B) Ninety-two protein complexes enriched for negative and/or positive genetic interactions were subdivided 
into monochromatic positive (yellow), monochromatic negative (blue) and mixed (gray) categories. Within each 
group, the fraction of complexes containing an essential gene is indicated with a lighter shade of the corre-
sponding color. Three protein complexes representative of the major categories are shown on the sides. Nones-
sential genes are represented as circles and essential genes as diamonds.  
(C) Genetic interaction frequency among co-complex members with and without a direct protein-protein inter-
action. The background rate of positive and negative interactions among random gene pairs is indicated by the 
black lines. 
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Virtually all (94%) monochromatic negative protein complexes contained at least one 

essential gene (Figure 3.9B), which is much higher than appreciated previously 

(Bandyopadhyay et al., 2008). This observation suggests that essential complexes may con-

tain partial internal redundancy, allowing the complex to tolerate the loss of a single nones-

sential component, whereas any additional perturbation disrupts the complex function and 

impairs cell growth. In contrast, only a relatively small fraction of monochromatic positive 

protein complexes (14%) contained an essential gene (Figure 3.9B).  

Complexes with mixed interactions (both positive and negative; 17.5%) tended to be 

essential (Figure 3.9B) and, in some cases, had a well-defined structural organization. For 

example, the conserved oligomeric Golgi (COG) complex consists of an essential and a non-

essential domains (Ungar et al., 2006) which exhibit negative and positive genetic interac-

tions, respectively (Figure 3.9B). By differentiating the two domains of the COG complex, 

the SGA score demonstrates its capacity to capture fine-grained genetic interactions, a task 

that had been so far accomplished only using high-resolution competitive-growth assays 

(Breslow et al., 2008). 

In addition to essentiality, the type of genetic interaction observed within a protein 

complex was also influenced by the presence of a direct physical interaction, as determined 

in the yeast two-hybrid assay (Figure 3.9C). Complex members with a direct physical link 

were nearly threefold more likely to share a positive genetic interaction. Conversely, com-

plex members with no evidence of a direct physical interaction showed a modest preference 

for negative genetic interactions (Figure 3.9C).  
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We analyzed the genetic interactions occurring between members of different protein 

complexes (Figure 3.10A) and observed that monochromaticity of a given complex was pre-

dictive of its connectivity to other complexes (Figure 3.10B–C).  

 

Figure 3.10. Analysis of genetic interactions between protein complexes. 
(A) Distribution of protein complexes with respect to between-complex monochromatic purity scores (Materials 
& methods 3.13.12.3). 
(B) Negative and positive degree was calculated as the number of negative and positive genetic interactions for 
each protein complex. Node color reflects the prevalence of positive (yellow) or negative (blue) genetic interac-
tions within the complex. Gray nodes denote complexes with insufficient data to assess within-complex interac-
tions. Node size indicates the number of proteins associated with the complex.  
(C) Number of between-complex interactions was measured for monochromatic negative and monochromatic 
positive protein complexes. Error bars, s.e.m. (n = 37, positive, and n = 25, negative). Significance was calcu-
lated using a rank-sum test. 
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Nonessential members of monochromatic positive protein complexes had on average 

twice as many genetic interactions as nonessential genes within monochromatic negative 

complexes (Figure 3.10B–C). This behavior may reflect the internal redundancy of essential 

protein complexes: a single perturbation is less likely to compromise complex activity, and 

thus, these nonessential genes exhibit fewer genetic interactions. Conversely, deletion of a 

nonessential gene in a monochromatic positive complex may have a more severe impact on 

complex activity and, consequently, exhibited more genetic interactions with the rest of the 

genome. 

3.10 Defining subclasses of positive genetic interactions 

Even though both positive and negative genetic interactions are enriched among mem-

bers of protein complexes, the vast majority of genetic interactions do not overlap physical 

interactions (Chapter 3.8). This observation strongly suggests that genetic interactions reflect 

functional rather than physical relationships between genes, a concept that is well established 

for negative genetic interactions (Tong et al., 2004). However, the role of positive interac-

tions outside individual pathways or protein complexes is much less understood. 

We found 1,182 pairs of protein complexes that were significantly enriched for positive 

interactions connecting them (false discovery rate of 5%; Materials & methods 3.13.12.2). 

Among these complex pairs, we observed a surprisingly high incidence of genetic suppres-

sion, which is a particular type of positive genetic interaction indicative of mutations that res-

cue growth defects caused by other mutations (Hartman and Roth, 1973; Prelich, 1999). We 

identified genetic suppression among protein complexes by comparing single- and double-
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mutant fitness of the corresponding mutants and by selecting cases where members of a par-

ticular complex consistently rescued growth defects associated with another complex (Mate-

rials & methods 3.13.13). By doing so, we constructed the first genome-wide network of 

suppression interactions between protein complexes (Figure 3.11). 

 

Figure 3.11. Cross-complex genetic suppression network. 
A network illustrating suppression interactions between protein complexes. Arrows point to the complex whose 
fitness defect is suppressed. 

We identified several cross-complex suppression interactions that reflect known func-

tional relationships between protein complexes and are supported by independent experi-

mental validation (Figure 3.12–Figure 3.15).  

HTZ1 encodes the yeast histone variant H2A.Z which is deposited into chromatin by 

the Swr-C protein complex (Zlatanova and Thakar, 2008). Our SGA analysis confirmed the 



Chapter 3 – The genetic landscape of a cell 

 

103 

results of a previous high-resolution competitive growth analysis (Breslow et al., 2008) by 

showing that loss-of-function mutations involving members of the Swr-C complex suppress 

the growth defects associated with the loss of HTZ1 (Figure 3.12). While the nature of this 

suppressive interaction is still unclear, it provides further evidence that the relationship be-

tween histones and their exchange factors is complex and still unresolved. 

 

Figure 3.12. Genetic suppression between Swr1 protein complex and htz1Δ  
Comparison of colony-size derived single and double mutant fitness measures suggests that mutations in genes 
encoding members of the Swr1 complex (swc3Δ, swc5Δ, swr1Δ, vps72Δ, arp6Δ and vps71Δ) suppress growth 
defects associated with deletion of HTZ1. 

We also confirmed loss-of-function suppression interactions involving genes acting in 

the Rim101 signaling pathway (RIM8, RIM9 or DFG16), multivesicular body sorting path-

way (DID4 and VPS24, which comprise an ESCRT-III subcomplex), and the AAA-type 

ATPase gene, VPS4 (Figure 3.13).  
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Figure 3.13. Genetic suppression between Rim101 signaling and MVB sorting path-
ways. 
(A) Schematic showing activation of the Rim101 pathway in response to alkaline stress. 
(B) Comparison of colony-size derived single and double mutant fitness measures suggests that rim8Δ, rim9Δ 
and dfg16Δ suppress growth defects associated with deletion of DID4, VPS4 or VPS24. Error bars for single 
mutants: s.e.m. derived from bootstrapping (n = 800). Error bars for double mutants: s.d. (n = 4). 
(C) Analysis of RIM101 overexpression in the indicated single and double mutant backgrounds. 

A functional relationship between Rim101 signaling and multivesicular body sorting 

has been established previously (Hayashi et al., 2005; Mitchell, 2008). RIM101 encodes a 

transcription factor activated in response to alkaline growth conditions via proteolytic cleav-

age at endosomal membranes (Figure 3.13A). Our suppression network indicated that dele-

tion of genes encoding upstream signaling components of the Rim101 pathway suppressed 
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fitness defects associated with deletion of DID4, VPS24 or VPS4 (Figure 3.13B). This may 

occur because a defect in upstream signaling prevents constitutive activation caused by loss 

of function of downstream negative regulators. We confirmed that did4Δ, vps24Δ and vps4Δ 

mutants were sensitive to RIM101 overexpression, and this sensitivity was rescued by dele-

tion of RIM8 (Figure 3.13C), a putative upstream component of the Rim101 pathway 

(Hayashi et al., 2005) (Figure 3.13A). Interestingly, in the presence of lithium chloride, a 

condition in which the Rim101 pathway is activated and required for viability, suppression is 

observed in the opposite direction (Hayashi et al., 2005), thus emphasizing the importance of 

considering condition-specificity when inferring pathway architecture based on genetic inter-

actions (Avery and Wasserman, 1992). In addition to characterized pathway components, our 

genetic interaction analysis placed DFG16, an uncharacterized gene associated with Rim101 

signaling (Barwell et al., 2005), upstream in the pathway along with RIM8 and RIM9. Anoth-

er gene previously implicated in the Rim101 signaling, YFR122W (Rothfels et al., 2005), 

likely functions further downstream and closer to the Rim13 protease (Costanzo et al., 2010). 

In another example derived from our cross-complex suppression network, disruption of 

the FAR complex, originally implicated in cell-cycle control (Kemp and Sprague, 2003), res-

cued growth defects associated with TORC2 kinase complex mutant alleles, tor2-29 and 

tsc11-1 (Figure 3.14A–B). Moreover, FAR11 deletion suppressed actin polarization defects 

of a tsc11-1 mutant in a nonpermissive condition (37ºC, Figure 3.14C). These results suggest 

that the FAR complex may function downstream to negatively regulate TORC2 function in 

actin organization. Similar to TORC2, FAR complex members are conserved from yeast to 

humans, and mammalian Far protein orthologs belong to a multiprotein complex that con-
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tains the PP2A phosphatase (Goudreault et al., 2009). Suppression of TORC2 growth and 

actin polarity defects was also achieved by loss of PPG1 (Figure 3.14A–C), which encodes a 

PP2A-related phosphatase (Posas et al., 1993). Thus it is possible that the FAR complex me-

diates its function by working with Ppg1 to dephosphorylate and inactivate proteins that 

normally control actin-based cell polarity. 

 

Figure 3.14. Genetic suppression between FAR and TORC2 protein complexes. 
(A) Comparison of colony size-derived single and double mutant fitness measures suggests that mutations in 
genes encoding members of the Far3–11 protein complex suppress growth defects associated with mutant al-
leles of TORC2 kinase complex gene members, tor2-29 and tsc11-1. Similarly, tor2-29 and tsc11-1 mutants are 
also suppressed by deletion of PPG1, a PP2A-related serine-threonine phosphatase. 
(B) Serial dilution growth assays confirm that tsc11-1 growth defects are suppressed by deletion of FAR11, 
FAR8 and PPG1 under semipermissive (30ºC) and nonpermissive (37ºC) temperatures (Materials & methods 
3.13.14.1). Suppression interactions are enhanced in the presence of 2% (0.4 M) NaCl. 
(C) A tsc11-1 temperature-sensitive mutant exhibits an abnormal actin morphology that is suppressed by loss of 
FAR11 and PPG1. The extent of actin polarization was quantified in wild type and the indicated single and 
double mutants. 
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Genes involved in chromatin and secretory functions act as hubs in the global genetic 

interaction map (Chapter 3.6) and our suppression network exhibited a similar topology 

(Figure 3.11). Specifically, protein complexes involved in chromatin modification or secre-

tion suppressed growth defects associated with disruption of several different pathways 

and/or complexes. One such interaction involved suppression of DNA polymerase delta 

(Polδ) mutants by the disruption of the COG complex (Figure 3.11, Figure 3.15A). Unlike 

Polδ, which functions in the nucleus, the COG complex is important for the structure and 

function of the Golgi apparatus (Ungar et al., 2006), indicating genetic suppression analysis 

can uncover very broad connections between functionally diverse genes. To explore this ge-

netic relationship, we assessed whether cogΔ deletion mutants also rescued the UV light-

sensitivity of a strain lacking a nonessential Polδ gene, POL32 (Figure 3.15B). Upon UV-

light exposure, cog7Δ pol32Δ and cog8Δ pol32Δ double mutants grew as well as cog7Δ and 

cog8Δ strains, confirming the COG-Polδ suppression interactions. 
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Figure 3.15. Genetic suppression between Polδ  and COG protein complex. 
(A) Comparison of colony size-derived single and double mutant fitness measures suggests that mutations in 
genes encoding members of the COG protein complex suppress growth defects associated with mutant alleles of 
DNA polymerase δ genes, pol32Δ, cdc2-2 and cdc2-7. 
(B) Serial dilution growth assays show that sensitivity to UV light of the pol32Δ mutant is suppressed by dele-
tion of COG7 and COG8. 
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3.11 Integrating genetic and chemical-genetic interaction 
networks 

Findings obtained in various model organisms suggest that cell buffering strategies 

against genetic perturbations are similar to the strategies employed to resist chemical and en-

vironmental insults (Ho et al., 2011). This observation is particularly relevant for the devel-

opment of successful therapeutic approaches where the administration of chemical com-

pounds seeks to selectively arrest the growth of specific cell types, such as tumor cells, which 

often carry mutations that distinguish them from the normal cells of an organism.  

To explore the chemical resistance mechanisms in yeast, the set of ~4,700 viable dele-

tion mutants has been exposed to hundreds of different chemical compounds (Hillenmeyer et 

al., 2008). Numerous chemical-genetic interactions were identified as specific drug-mutant 

combinations causing a severe growth phenotype. We compared the number of chemical or 

nutritional environments causing growth defects in a particular deletion mutant to the number 

of genetic interactions associated with the corresponding gene, and found them to be highly 

correlated (R = 0.4, p < 10–5; Figure 3.5). This finding suggests that hubs on a chemical-

genetic network are predictive of hubs on the genetic interaction network and can be used to 

link environmental capacitance to genetic robustness. Furthermore, our data suggest that the 

same genes buffer the cell against both environmental and genetic insults. It is not known 

whether natural selection favors genetic robustness (de Visser et al., 2003), but the positive 

correlation between genetic interaction degree and environmental capacitance suggests that 

genetic and environmental robustness may coevolve (Meiklejohn and Hartl, 2002). 
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Because chemical perturbations can mimic genetic perturbations, the genetic network 

should be useful for predicting the cellular targets of bioactive molecules (Parsons et al., 

2004). I identified genetic interaction profiles that are significantly correlated to a chemical-

genetic profile of a particular compound (Materials & methods 3.13.15) and showed that 

compounds often clustered to dense regions of the genetic network indicative of specific bio-

processes (Figure 3.16A). For example, hydroxyurea, a compound that inhibits ribonucleo-

tide reductase and blocks DNA synthesis, clusters with genes involved in DNA replication 

and repair (Figure 3.16). These results demonstrate that clustering of chemical-genetic and 

genetic interaction profiles complements haploinsufficiency profiling, which has the potential 

to identify drug targets directly (Hillenmeyer et al., 2008). 

I used this network approach to examine a previously uncharacterized compound, 

0428-0027. This compound clustered with genes associated with protein folding, glycosyla-

tion, and cell wall biosynthesis functions (Figure 3.16A) because its chemical-genetic profile 

most closely resembled the genetic interaction profile of ERO1, an essential member of the 

oxidative protein folding pathway (Figure 3.16B,D). I hypothesized that Ero1 might indeed 

be the target of 0428-0027 and named the compound erodoxin. 

Several additional lines of evidence supported our hypothesis. ERO1 encodes an essen-

tial enzyme participating in disulfide bond formation by recharging protein disulfide isomer-

ase (PDI) into its oxidized state (Sevier et al., 2007) (Figure 3.16E). Heterozygous deletion 

mutants ero1Δ/+ and fad1Δ/+, which encodes a cofactor that functions in the Ero1 reaction 

cycle (Wu et al., 1995), were the most hypersensitive mutants identified from haploinsuffi-

ciency profiling of erodoxin (Figure 3.16C). Moreover, we found that erodoxin leads to inhi-
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bition of Trx1 oxidation, an in vitro substrate of Ero1 (Figure 3.16F), and delays the pro-

cessing of carboxy peptidase Y (CPY), a widely used reporter for protein folding and matura-

tion (Figure 3.16G). Both these findings suggest that erodoxin inhibits Ero1 activity both 

in vitro and in vivo. 

 

Figure 3.16. Integrating genetic and chemical-genetic interaction networks 
(A) A chemical-genetic map was constructed on the basis of the genetic interaction map as in Figure 3.1. A 
compound was positioned next to the gene whose genetic interaction profile most closely resembles the chemi-
cal-genetic profile of the compound. Genes are represented as white circles. Chemical compounds are repre-
sented as triangles, which are colored according to the color of the corresponding functional cluster as in Figure 
3.1. The chemical-genetic profile of hydroxyurea clustered with genes involved in DNA replication and repair, 
whereas that of erodoxin clustered with genes involved in protein folding, glycosylation, and cell wall biosyn-
thesis. Compounds positioned outside functional clusters are colored light purple. 
(B–C) Scatter plot visualizations of homozygous (B) and heterozygous (C) deletion profiling of erodoxin. The 
y-axis represents the sensitivity of homozygous deletion strains of nonessential genes (B) or heterozygous dele-
tion strains of essential genes (C) when grown for 5 generations in the presence of the compound. Strains exhib-
iting severe sensitivity are labeled. Experiments were conducted as described previously (Hillenmeyer et al., 
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2008). 
(D) Network displaying overlap between ERO1 negative genetic interactions and genes hypersensitive to 
erodoxin. 
(E) ERO1-dependent pathway for oxidative protein-folding. 
(F) Erodoxin inhibits Ero1-dependent oxidation of Trx1 in vitro. 
(G) Erodoxin inhibits CPY processing to the vacuolar form in vivo. ER (p1), Golgi (p2) and vacuolar (m) forms 
of CPY are indicated. 

3.12 Summary & conclusions 

The data presented in this chapter shows that unbiased, systematic, and quantitative 

analysis of pairwise genetic interactions assigns a rich phenotypic profile to every gene and 

enables construction of a functional map of the cell, organizing genes and higher-order bio-

processes according to their related roles (Figure 3.1). The functional connections uncovered 

by genetic interactions complement the information derived from physical interaction net-

works (Figure 3.8), and link previously uncharacterized genes to specific pathways and pro-

tein complexes (Figure 3.2). Moreover, genetic interactions reveal long-ranging connections 

between pathways and complexes, and in some cases identify complex regulatory relation-

ships (Figure 3.2). 

We show that genetic interaction hubs share numerous physiological and evolutionary 

properties (Figure 3.5) and tend to participate in specific biological processes (Figure 3.6). 

Genetic interaction hubs in other organisms, such as C. elegans, seem to play similar biologi-

cal roles (Lehner et al., 2006), thus suggesting that, while conservation of individual genetic 

interactions may be limited, the overall network topology and its properties may be more 

highly preserved. This is particularly important as global mapping of genetic networks be-

comes approachable in more complex cells and higher organisms (Costanzo et al., 2011). In-

deed, the ability to prioritize genes based on their centrality in the network, estimated from 
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their biological and evolutionary properties, is key for time-efficient and cost-efficient exper-

iments.  

We show that genetic and physical interaction networks, despite several common prop-

erties, are mostly orthogonal to each other and share little overlap (Figure 3.8). A small sub-

set of negative genetic interactions connect members of essential protein complexes (Figure 

3.9), potentially uncovering internal redundancy among complex members. In contrast, posi-

tive genetic interactions tend to link members of nonessential protein complexes (Figure 3.9), 

especially those sharing a direct physical interaction as defined by yeast-two-hybrid assays 

(Figure 3.9). However, a surprisingly high number of positive interactions span across pro-

tein complexes (Figure 3.10) and chart a cross-complex genetic suppression network (Figure 

3.11). 

The integration of genetic and chemical-genetic perturbation data shows that genetic 

interaction hubs also tend to be hypersensitive to numerous chemical compounds (Figure 

3.5), suggesting a common cellular mechanism for protection against both genetic and chem-

ical/environmental insults. Moreover, our global genetic interaction network helps linking 

bioactive compounds to their targets (Figure 3.16) and offers the potential to design synthetic 

lethal therapies for targeting genetically defined tumors (Fong et al., 2009). In addition, it 

may be possible to devise drug combination therapies based on the presence of genetic inter-

actions between drug targets (Lehar et al., 2008), although a recent study suggests that this 

may be more challenging than anticipated (Cokol et al., 2011). 
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In summary, genetic interaction maps provide a model for understanding the functional 

organization of a cell and the general organizing principles of complex biological networks. 

Genetic interactions underlie the intricate relationship between the genotype and the pheno-

type of an organism, and must play a key role in governing inherited human disease. As 

recognition of the importance of genetic interactions grows among human geneticists (Zuk et 

al., 2012), yeast remains an invaluable tool for studying genetic interactions in a relatively 

simple and controlled setting. Discoveries made in the yeast model system will have an im-

mense impact on our global understanding of human biology. 

3.13 Materials & methods 

3.13.1 Identifying subnetworks from the global map 

The correlation-based network (Figure 3.1) was clustered using Markov Clustering Al-

gorithm (MCL; inflation = 1.4) (van Dongen, 2000), as well as GINECA, a newly developed 

approach for identifying partially overlapping clusters (Materials & methods 3.13.2). Clusters 

identified in both methods were aggregated into eight subnetworks on the basis of their relat-

edness, measured by the degree of cluster overlap for GINECA and by average network 

proximity after 25 network layout iterations for MCL. Eighty functionally unrelated genes 

were removed from the network because their similarities may be due to experimental arti-

facts, such as residual systematic effects whose influence on clustering is enhanced in the ab-

sence of strong genetic interactions. 
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3.13.2 GINECA clustering algorithm 

GINECA (Genetic Interaction Network Enumerative Clustering Algorithm) is a scala-

ble semi-supervised graph clustering algorithm for identifying overlapping clusters of func-

tionally related genes from dense weighted molecular interaction networks. The core of 

GINECA is a set of matrix operations, simulating density-based searches of local maxima in 

a 2-dimensional data space, applied recursively to extract submatrices from a large dense ma-

trix representation of weighted interaction scores between the genes. This iterative approach 

enables some genes to have overlapping memberships in more than one functional cluster, 

since a gene can be involved in multiple biological processes. Through a constraint-based 

semi-supervised clustering approach, GINECA exploits known functional assignments of the 

genes, such as the Gene Ontology (GO) annotations, to guide the clustering algorithm to-

wards more meaningful data partitioning, thus generating clusters of highly connected genes 

that are also functionally enriched. One or more clusters meeting statistical functional signifi-

cance criteria are pruned from the network at each iteration, with the algorithm converging 

when all functionally enriched clusters are extracted, or when the remaining network is 

loosely connected. 

3.13.3 Gap1 permease localization and activity 

Strains deleted for PAR32, ECM30 and UBP15, and expressing GAP1-GFP were 

grown in SD ammonium medium and Gap1 localization was visualized as described previ-

ously (Risinger et al., 2006). Wild type (WT) cells and gtr1Δ mutant cells were included as 

positive and negative controls, respectively. Gap1 permease activity was measured by 14C-
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citrulline uptake assays as described previously (Roberg et al., 1997). Data shown are the av-

erage of four independent experiments. 

3.13.4 Identification of Sgt2 and Ubp15 physical interactors 

3.13.4.1 Tandem Affinity Purification 

TAP-tagged strains were grown to OD600 ~0.7 in Synthetic Complete media lacking 

histidine. Cells were collected by centrifugation and lysed (vortexing with glass-beads), and 

the lysate cleared by centrifugation, followed by filtering (0.45 µm filters). Purification and 

identification of TAP-tagged proteins and their interacting partners was performed as de-

scribed in (Gingras et al., 2005), except that human IgG cross-linked to tosyl-activated mag-

netic beads were employed instead of IgG-sepharose. Following elution with 25 mM EGTA 

in 50 mM ammonium bicarbonate (pH 8), 500 ng of sequencing-grade trypsin was added, 

and the samples were incubated at 37ºC overnight. Digested samples were analyzed by nano-

scale liquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS), as de-

scribed in (Peng et al., 2003).  

3.13.4.2 Protein identification and initial data analysis 

LTQ data files were converted from binary .raw files to Mascot generic files (*.mgf) 

and searched using Mascot 2.2.1 database search tool (Perkins et al., 1999) against the 

S. cerevisiae complement of RefSeq release 21 containing both forward and reverse protein 

entries (total 11,668 entries). Variable modifications were deamidation of asparagine and glu-

tamine, oxidation of methionine and 1 missed trypsin cleavage. Mass accuracy requirements 
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for searches were set to 3 Da on the parent, and 0.6 Da on product ions. Peptide scores above 

35 corresponded to a protein false discovery rate of < 4%, determined using a target-decoy 

strategy (Elias and Gygi, 2007). 

3.13.4.3 Data filtering and interpretation 

A list of likely contaminants in TAP samples was generated by compiling results from 

62 unrelated TAP purification experiments. Proteins detected in 10% or more of these 62 

samples were placed on a contaminant list provided in Supplementary Table 1 in Costanzo et 

al. (Costanzo et al., 2010). All other proteins identified with 2 or more unique peptides were 

considered for subsequent analysis, and are listed in Supplementary Table 2 in Costanzo et 

al. (Costanzo et al., 2010). To further validate the specificity of the detected interactions, we 

compared spectral counts for each protein detected in the Sgt2-TAP and Ubp15-TAP exper-

iments with spectral counts detected across 19 unrelated experiments. In particular, we ana-

lyzed the occurrence of detection of a given hit across these 19 unrelated samples, but also 

the maximal spectral counts with which this hit was detected across these samples. This al-

lowed us to calculate an enrichment ratio for each of the observed hits in the Sgt2-TAP or 

Ubp15-TAP samples. For example, Sse1 (detected with 11 peptides in Sgt2-TAP) was de-

tected in 2 out of 19 unrelated samples, with a maximal spectral count of 2 in these samples, 

indicating high enrichment in the Sgt2-TAP sample. Only those peptides detected with a 

number of spectra ≥ 5 and 5-fold “enrichment” are reported in the main portion of the text. 
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3.13.5 Pex15 localization 

A pAG-EGFP-PEX15 plasmid was constructed by sub-cloning the PEX15 ORF from 

the Yeast FLEXGene collection (Hu et al., 2007) into the Gateway(R) donor vector 

pDONR201 and subsequent cloning into an N-terminal GFP fusion expression vector 

(pAG416GAL-GFP) as described previously (Alberti et al., 2007). The EGFP-PEX15 plas-

mid was transformed into WT, sgt2Δ and get4Δ strains. Cell cultures were grown at 30ºC in 

SD-HIS media to early log phase, harvested by centrifugation. A 1.5 µl suspension was spot-

ted onto a glass slide and images were captured using Quorum WaveFX Spinning Disc Con-

focal System. 

3.13.6 Elp/Urm amino acid usage analysis 

The three codons that pair with the URM/ELP modified tRNAs are AAA, GAA and 

CAA. For every ORF in the yeast genome, we calculated the relative frequency of the three 

codons by dividing their occurrence by the total number of codons for any amino acid in the 

sequence. The relative frequencies of these codons in URM- and ELP-negative interacting 

genes were compared to a background distribution composed of all the genes tested in our 

study, excluding the URM/ELP interactors. Significance was evaluated using t-test and Wil-

coxon rank sum statistics. 

3.13.7 Identification of genetic interaction hubs and monochro-
matic genes 

We measured the number of positive and negative genetic interactions for all 3,885 

non-essential array deletion mutants at the intermediate confidence threshold (|ε| > 0.08, 
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p < 0.05). Genetic interaction hubs were selected as the top 10% most connected genes. 

Genes with a bias towards positive interactions were selected by finding genes with at least 

30 total interactions and positive to negative ratio greater than 1, which is twice the back-

ground ratio. Genes with a bias towards negative interactions were selected by finding genes 

with at least 30 total interactions and positive to negative ratio lower than 0.25, which is one-

half of the background ratio. Both of these sets consist of approximately 130 genes. 

3.13.8 Functional enrichment analysis of genetic interaction hubs 
and monochromatic genes 

Genes were evaluated for functional enrichment using the standard approach described 

in (Boyle et al., 2004) based on the hyper-geometric distribution with the Westfall and 

Young step-down procedure for multiple hypothesis correction (Westfall and Young, 1993). 

Enrichment analysis was based on annotations downloaded from the Saccharomyces Genome 

Database (www.yeastgenome.org) on July 9th, 2009. 

3.13.9 Biological process annotations 

Biological process categories were derived from functional enrichment of network 

clusters identified in Figure 3.1 and further refined by examining cluster enrichment of net-

work sub-regions in Figure 3.2. Genes were assigned to one or more of these functional cate-

gories on the basis of their Gene Ontology annotations and gene function descriptions availa-

ble from the Saccharomyces Genome Database (SGD, www.yeastgenome.org). Specific an-

notations are provided in the Supplementary material in Costanzo et al. (Costanzo et al., 

2010). A subset of uncharacterized or multifunctional genes were not assigned to any func-

tional category. 
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3.13.10 Correlation analysis of genetic and physical interaction de-
gree 

The number of positive and negative interactions for all 3,885 non-essential array dele-

tion mutants was calculated using the intermediate confidence cutoff (|ε| > 0.08, p < 0.05). 

Pearson correlation coefficients (PCC) were measured between each of the quantitative fea-

tures described below and positive genetic interaction degree, negative genetic interaction 

degree and protein-protein interaction degree (Figure 3.5A). Protein-protein interaction de-

gree was computed using the union of AP/MS (Gavin et al., 2006; Krogan et al., 2006), two-

hybrid (Yu et al., 2008), and PCA (Tarassov et al., 2008) datasets. 

Given that single mutant fitness is a major correlate of each feature, we repeated the 

analysis controlling for the effect of single mutant fitness through the calculation of partial 

correlation (Kendall et al., 1994). Correlation between genetic interaction degree and each 

feature remains significant, as does the distinction between genetic and protein-protein inter-

action hubs (Costanzo et al., 2010). 

3.13.10.1 Single mutant fitness defect 

Single mutant fitness was derived from colony size data as described in Chapter 2.5. 

For correlation analysis, we used fitness defect di = 1–fi where fi is the fitness of single mu-

tant i. 

3.13.10.2 Multi-functionality 

For each gene, multi-functionality was measured as the total number of annotations to a 

set of functionally distinct GO terms described in (Myers et al., 2006). 
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3.13.10.3 Phenotypic capacitance 

Measures of phenotypic capacitance was derived directly from (Levy and Siegal, 

2008). 

3.13.10.4 Chemical-genetic degree 

A measure of chemical-genetic degree was derived from (Hillenmeyer et al., 2008), 

which measured the sensitivity of all non-essential deletion mutants to a library of drugs and 

a variety of environmental conditions. Specifically, for each deletion mutant, we summed the 

number of drug and environmental sensitivities in the homozygous profiling dataset that met 

a p-value < 0.05 cutoff. 

3.13.10.5 PPI degree 

The protein-protein interaction degree was measured as the total number of interactions 

in the union of four high-throughput physical interaction datasets (Gavin et al., 2006; Krogan 

et al., 2006; Tarassov et al., 2008; Yu et al., 2008). Interactions from (Gavin et al., 2006; 

Krogan et al., 2006) were obtained from BioGRID. Interactions from (Yu et al., 2008) corre-

spond to the Y2H-Union dataset reported in the publication. Interactions from (Tarassov et 

al., 2008) were defined using the 97.7% confidence cutoff as recommended. 

3.13.10.6 Protein disorder 

The protein disorder measure is the percent of unstructured residues as predicted by the 

Dispred2 software (Ward et al., 2004) and reported in (Gsponer et al., 2008). For correlation 
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and ANCOVA analyses, this percentage was used directly as a correlate. For categorical 

analysis, we adopted the binning suggested in the original study: genes reporting scores low-

er than 0.1 were considered to be structured, scores between 0.1 and 0.3 to be moderately un-

structured and scores above 0.3 to be unstructured. 

3.13.10.7 Expression level 

Expression level measurements were obtained from (Holstege et al., 1998). 

3.13.10.8 Yeast conservation 

A measure of conservation across the Ascomycota phylum was computed as the num-

ber of species (out of a total of 23) that possess an ortholog for a given gene (Wapinski et al., 

2007). Ortholog data was downloaded from www.broadinstitute.org/regev/orthogroups/. The 

23 species are an expanded set of the 17 species described in (Wapinski et al., 2007), with 

the additions of S. octosporus, S. japonicus, L. elongosporus, C. parasilosis, C. tropicalis and 

C. guilliermondii. 

3.13.10.9 Copy number volatility 

Volatility measures the frequency with which a given gene is gained (including dupli-

cation) or lost across 23 species of Ascomycota fungi (Wapinski et al., 2007).  
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3.13.10.10 dN/dS ratios 

We computed the average dN/dS ratio for S. cerevisiae in comparison to the sensu 

strictu yeast species (S. paradoxus, S. bayanus and S. mikatae). Sequences were aligned us-

ing MUSCLE (Edgar, 2004) and dN/dS ratios were computed using PAML (Yang, 2007). 

3.13.10.11 Evolutionary age 

As an approximate measure of evolutionary age, we used a reconstruction of the ances-

tral species as described in (Kunin and Ouzounis, 2003). 

3.13.10.12 Gene duplicates 

The list of duplicate pairs consists of those identified as the result of the whole genome 

duplication events as reconciled from several sources (Byrne and Wolfe, 2005). Additionally, 

any pair of genes fulfilling established similarity requirements (Gu et al., 2002) was reasoned 

to be a duplicate pair resulting from a small scale duplication event. Specifically, the gene 

pair must have a sufficient sequence similarity score (FASTA Blast, E = 10) and sufficient 

protein alignment length (> 80% of the longer protein). The pair must also have an amino 

acid level identity of at least 30% for proteins with aligned regions longer than 150 amino 

acids. For shorter proteins the identity must exceed 0.01n + 4.8L – 0.32(1 + exp(–L/1000)), where L 

is the aligned length and n = 6 (Rost, 1999; Gu et al., 2002). Pairs from the whole genome 

duplication event (WGD) were combined with pairs determined through sequence alone 

(SSD). 
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3.13.11 Analysis of variation in genetic interactions number across 
bioprocesses 

Analysis of covariance (ANCOVA) was used to investigate variation in genetic interac-

tion degree across biological processes. We measured the number of positive and negative 

interactions for all 3,885 non-essential array deletion mutants at the intermediate confidence 

threshold (|ε| > 0.08, p < 0.05), and used ANCOVA to estimate the contribution of a gene’s 

functional category to determining its genetic interactions degree, in addition to other gene-

specific properties that affect connectivity (Figure 3.5A). Specifically, we included 17 bio-

logical processes (Materials & methods 3.13.9) as independent variables in a linear model 

relating genetic interaction degree to various gene-specific features (Figure 3.5A). We as-

sessed whether each biological process had a significant effect on genetic interaction degree 

in the presence of other factors. The complete results of the ANCOVA analysis for negative 

and positive genetic interactions are reported in the Supplementary material in Costanzo et 

al. (Costanzo et al., 2010). 

3.13.12 Analysis of genetic interactions within and between protein 
complexes 

3.13.12.1 Construction of the protein complex standard 

A literature-curated standard of 430 protein complexes was compiled by combining the 

SGD Macromolecular Complex GO annotations (www.yeastgenome.org), the CYC2008 pro-

tein complex catalog (Pu et al., 2009) and 26 manually curated complexes/pathways. Redun-

dant protein complex annotations were minimized by eliminating all but one complex with 

identical components and by excluding smaller complexes if all their members also belong to 
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a larger complex. A complete list of protein complexes and their members is provided in 

Supplementary Data 2 in (Baryshnikova et al., 2010b). 

3.13.12.2 Analysis of genetic interaction enrichment 

We calculated enrichment of genetic interactions among members of protein complexes 

where at least two gene pairs were tested in our study. We ignored all dubious ORFs and re-

stricted our analysis to interactions satisfying a lenient confidence threshold (p < 0.05). 

Moreover, interactions involving different alleles of the same gene were merged. 

Significance of enrichment within a protein complex i was evaluated using the hyper-

geometric distribution as follows: 

 

Eq. 3.1 
 

where M is the total number of gene pairs screened in this study, K is the total number 

interactions at the chosen cutoff, Ni is the number of gene pairs screened within complex i 

and Xi is the number of genetic interactions within complex i. 

Enrichment of genetic interactions between protein complexes i and j was assessed in a 

similar manner but replacing Ni and Xi with Nij and Xij, where Nij is the number of gene pairs 

screened between i and j and Xij is the number of interactions recovered. 
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3.13.12.3 Monochromatic analysis of genetic interactions 

To evaluate the prevalence of positive or negative genetic interactions within a protein 

complex i, we computed a monochromatic purity score (MP-score) as follows: 

 

Eq. 3.2 
 

where P and N are the total number of positive and negative scores in the dataset, Pi 

and Ni are the number of positive and negative interactions between members of complex i, 

and .  

The MP-score is designed to assume a value of +1 for a monochromatic positive pro-

tein complex, and a value of –1 for a monochromatic negative complex. A complex reflect-

ing the background ratio of positive to negative interactions will present an MPi = 0. 

Monochromaticity of between-complex genetic interactions was assessed in a similar 

way but with Pi and Ni replaced by Pij and Nij referring to the number of positive and nega-

tive interactions spanning across complex i and complex j, respectively. 

3.13.13 Protein complex suppression network 

To construct a cross-complex genetic suppression network, we identified all pairs of 

protein complexes that (a) share at least 5 positive genetic interactions in common, and (b) 

are statistically enriched for shared positive interactions (Materials & methods 3.13.12.2). 

MPi =

Pi − Ni

Pi + Ni

− P − N
P + N

1−α P − N
P + N

α = sign Pi − Ni( )
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We then categorized between-complex positive interactions into suppression and masking 

subclasses using the following strategy.  

Assuming that (1) fa, fb and fab are the fitness measures for single mutants a, b and the 

double mutant ab, respectively, (2) σa, σb and σab are the corresponding standard deviations, 

and (3) fa = max(fa,fb), we filtered all positive interactions such that ε > 0.08, p < 0.05, fa < 1, 

fb < 1 and . Then, we classified all the remaining interactions into suppres-

sion and masking categories using the following rules: 

(1) if , mutant a was determined to suppress the phenotype of mutant b; 

(2) if rule (1) was not true, but , then mutant b was determined to mask the 

phenotype of mutant a. 

In constructing the network of cross-complex genetic suppression, we only included 

protein complex pairs where more than 80% of gene pairs were classified as suppression and 

showed consistent directionality. 

3.13.14 Suppression confirmation experiments 

3.13.14.1 Spot dilutions: tsc11-1 suppression 

Overnight cultures were serially diluted 20-fold and spotted onto agar medium as indi-

cated. Strains were grown for two days at 30ºC or 37ºC as indicated. 

fa − fb ≥σ a +σ b

fab > fb +σ b

fab < fa −σ a
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3.13.14.2 Actin staining 

Cultures were grown at 30ºC to early log phase (OD600 of 0.1~0.2) and then shifted to 

nonpermissive temperature (37ºC) for 6 hours. Actin staining was done as described (Friesen 

et al., 2006) without added fluorescent brightener. Stained cells were imaged using a DMI 

6000B fluorescence microscope (Leica Microsystems) equipped with a spinning-disk head, 

an argon laser (458, 488, and 514 nm; Quorum Technologies) and ImagEM-charge-coupled 

device camera (Hamamatsu C9100-13, Hamamatsu Photonics). Cells were imaged in 7 Z 

stacks with 0.3 µm intervals and all Z stacks were collapsed into one extended focus. 

3.13.14.3 UV sensitivity: pol32Δ suppression 

The UV sensitivity assay was performed as described previously (Bellaoui et al., 

2003). 

3.13.15 Integrating genetic and chemical-genetic interaction data 

Chemical sensitivity profiles of all non-essential yeast deletion mutants were obtained 

from previously published studies (Parsons et al., 2006; Hillenmeyer et al., 2008). In addi-

tion, homozygous and heterozygous profiling of Erodoxin and nine other chemical com-

pounds were conducted as described previously and released as Supplementary Data File 7 in 

Costanzo et al. (Costanzo et al., 2010). 

For each chemical compound, Pearson correlation coefficients were computed between 

its chemical-genetic profile and the genetic interaction profiles of 1,712 queries in our da-

taset. Each compound was then assigned a position on the genetic interaction map corre-
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sponding to its top most correlated query gene. If that position was already occupied by an-

other compound, having a higher similarity to the same query gene, the compound was as-

signed a different position corresponding to its second best correlated query gene, and so on.  

3.13.16 Ero1 in vitro activity and CPY processing assays 

Ero1 in vitro activity was monitored in the absence or presence of 25 µM Erodoxin by 

examining oxidation of reduced Trx1. Proteins were resolved by non-reducing SDS-PAGE 

and Trx1 was visualized as described previously (Sevier et al., 2007). In vivo activity of Ero1 

was assessed by carboxypeptidase Y (CPY) processing. 0.5 mM Erodoxin was added to wild-

type yeast cells in minimal medium, cells were incubated for 10 min at 30ºC, pulse labeled 

for 7 min, and chased for 0–30 min. CPY was immunoprecipitated and resolved by SDS-

PAGE as described in (Sevier and Kaiser, 2006). 
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4 Mapping genome-wide 
recombination patterns using SGA 

 

 

I conceived and performed all the analyses described in this Chapter. 

Experimental data were obtained from the large-scale SGA experiments, designed and 

coordinated by Michael Costanzo. 
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4.1 Abstract 

Synthetic Genetic Array (SGA) is a high-throughput method for constructing yeast 

double mutants and mapping genetic interactions. In addition, SGA experiments produce a 

genome-wide genetic linkage map for S. cerevisiae, because construction of double mutants 

involving loci on the same chromosome requires meiotic recombination, whose frequency 

affects double mutant colony size. Genetically linked loci, i.e. those that recombine rarely, 

form small double mutant colonies and are usually removed from SGA analysis as they can 

be mistaken for negative genetic interactions. I have developed a computational approach to 

correct for these so-called “genetic linkage effects” and recovered 7,958 novel negative inter-

actions, which contribute to a more comprehensive coverage of the yeast genetic interaction 

network. In addition, I used genetic linkage data to map regions of high and low meiotic re-

combination. This analysis recapitulated previously identified recombination patterns, includ-

ing inhibition of recombination at pericentromeric chromosomal regions. Interestingly, I 

found that the extent of centromere-related recombination repression is proportional to chro-

mosome length, whereas low recombination regions outside the centromere are, on average, 

constant in size. The molecular mechanisms underlying the relationship between chromo-

some size and genetic linkage remain a mystery; however, this novel finding supports the ex-

istence of a chromosome size-dependent mechanism that counteracts the tension generated 

by microtubules during meiosis I. These results highlight SGA methodology as a unique ap-

proach for systematic analysis of yeast meiotic recombination. 
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4.2 Introduction 

In most sexually reproducing organisms, genetic diversity is promoted by meiotic re-

combination, a molecular mechanism in which homologous chromosomes exchange genetic 

information and generate new allelic combinations (Petes, 2001). In addition, recombination 

is necessary to physically link homologous chromosomes during the first meiotic division, 

preventing their premature separation and ensuring that the reshuffled genetic information is 

accurately transmitted to the progeny (Zickler and Kleckner, 1998; Zickler and Kleckner, 

1999). As a result, meiotic recombination is central to many aspects of chromosome biology, 

genetic robustness and evolution, and plays a primary role in shaping the genetic structure of 

natural populations. Failure to recombine is incompatible with growth and successful repro-

duction, as it results in severe cellular abnormalities, including chromosome nondisjunction, 

infertility, and birth defects. 

In yeast, meiotic recombination is initiated by the endonuclease Spo11, which forms di-

rected double-strand breaks (DSBs) during prophase of the first meiotic division (Keeney et 

al., 1997) (Figure 4.1). Spo11 is a topoisomerase II-related protein that works as a dimer to 

break both DNA strands via a transesterification reaction (Keeney and Neale, 2006). Follow-

ing the formation of the DSB, Spo11 remains covalently attached to DSB ends and must be 

removed by the endonucleolytic activity of the Mre11-Rad50-Xrs2 (MRX) complex in order 

for the DSB to be processed and repaired (Figure 4.1). DSB ends are then resected by exonu-

cleases to produce 3’ single-strand DNA (ssDNA) overhangs, which are substrates for strand 

invasion, mediated by the RecA-homologs Dmc1 and Rad51 (Figure 4.1). Resolution of the 

recombinant structures formed by strand invasion can lead to a crossover event, resulting in 



Chapter 4 – Mapping genome-wide recombination patterns using SGA 

 

133 

reciprocal exchange of the chromosome arms flanking the DSB, or a non-crossover event, in 

which only local exchange of genetic information occurs (Figure 4.1). 

 

Figure 4.1. Mechanism of meiotic recombination. 
A Spo11 dimer binds one of the four sister chromatids aligned at meiotic metaphase I (A) and initiates the for-
mation of the DSB (B). Spo11 remains covalently attached to the 5’ ends of the DSB and must be removed by 
two endonucleolytic nicks catalyzed by the MRX complex (B, vertical arrows). The ends of the DSB are then 
resected by exonucleases to form 3’-ssDNA overhangs (C), which are bound by strand-exchange proteins 
Rad51 and Dmc1 (D) and initiate strand invasion (E). The 3’-terminus of the invading strand primes DNA syn-
thesis (F, dashed lines) using the homologous chromosome (solid red lines) as a template and displacing the 
resident strand. The displaced strand pairs with its complement from the homologous chromosome and forms a 
heteroduplex structure containing two Holliday junctions (F). Cleavage of the Holiday junctions in two alterna-
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tive ways (arrows) leads to a cross-over (G) where chromosome arms are exchanged reciprocally, or gene con-
version (H), where only local exchange of information occurs. 

Observations in yeast and other organisms indicate that recombination events are non-

randomly distributed across the genome (Petes, 2001). Chromosomal regions with high re-

combination activity, known as recombination hotspots, are separated by regions where re-

combination is rare and genes tend to be inherited jointly (Petes, 2001). In humans, these sets 

of genetically linked loci, called haplotypes, are invaluable for associating genes with diseas-

es and understanding the structure and history of populations (Lander, 2011). For example, 

large-scale genotypic projects, such as HapMap (The International HapMap Consortium, 

2003), rely on genetic linkage to capture up to 90% of the total genetic variance in a popula-

tion by genotyping only 5–10% of the sequence variants (Daly et al., 2001; Lander, 2011). 

In order to understand the causes of the nonrandom distribution of recombination 

events and to gain insight into their biochemical mechanisms, global maps of meiotic recom-

bination have been produced in yeast using several experimental approaches. These studies 

focused primarily on mapping the initial phases of recombination, including Spo11 DNA 

binding (Gerton et al., 2000; Pan et al., 2011) and DSB formation (Baudat and Nicolas, 

1997), as well as early recombination intermediates, such as ssDNA produced by resection 

(Blitzblau et al., 2007; Buhler et al., 2007). In addition, crossover and non-crossover recom-

bination outcomes have been identified by genotyping single nucleotide polymorphisms 

(SNPs) in parents and progeny of sampled meioses (Mancera et al., 2008).  

Findings derived from these global studies of meiotic recombination are largely con-

sistent with one another and uncover a number of common factors influencing the positioning 
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and relative activity of recombination hotspots and coldspots. First, meiosis-specific DSBs 

occur preferentially between, rather than within, gene coding sequences (Wu and Lichten, 

1994; Baudat and Nicolas, 1997; Blitzblau et al., 2007; Pan et al., 2011). Specifically, they 

involve nucleosome-depleted, DNAse-I sensitive regions of promoters (Wu and Lichten, 

1994; Pan et al., 2011), indicating that recombination initiation requires open chromatin 

structure. Although transcription itself is not required (White et al., 1992), the activity of a 

recombination hotspot can depend on the binding of a transcription factor (White et al., 

1993). Finally, recombination activity is strongly correlated to high GC content (Baudat and 

Nicolas, 1997; Gerton et al., 2000; Pan et al., 2011), possibly reflecting local DNA packag-

ing and accessibility for the recombination machinery. 

A reduction in recombination frequency has been observed in centromere- and telo-

mere-proximal regions (Lambie and Roeder, 1988; Baudat and Nicolas, 1997; Gerton et al., 

2000). Centromeres play an essential role during meiotic chromosome segregation and are 

likely protected from interference with the recombination machinery (Brar and Amon, 2008). 

Indeed, crossover events near centromeres in yeast, flies and humans have been associated 

with premature separation of sister chromatids and severe aneuploidy (Koehler et al., 1996a; 

Lamb et al., 1996; Rockmill et al., 2006), possibly due to the disruption of pericentric cohe-

sion necessary to align homologous chromosomes during the first meiotic division (Rockmill 

et al., 2006). Similarly, recombination near telomeres, the rDNA locus and other highly re-

petitive genomic sequences increases the risk of deleterious chromosomal rearrangements 

and, thus, appears to be actively repressed in these regions (Petes and Botstein, 1977; Su et 

al., 2000). 
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Synthetic Genetic Array (SGA) technology provides a novel systematic approach to 

survey the global landscape of yeast meiotic recombination (Jorgensen et al., 2002). SGA is a 

high-throughput method designed for constructing yeast double mutants via large-scale mat-

ing and sporulation (Chapter 1.3.2). An ordered array of single mutant strains, each carrying 

a drug-resistance cassette at a specific locus, forms a set of colinear mapping markers cover-

ing every 3 kb of the yeast genome (Giaever et al., 2002). Systematic crosses of mutants lo-

cated on the same chromosome allow estimation of the efficiency of double mutant produc-

tion and, thus, the frequency of meiotic recombination via colony size measurement of hap-

loid meiotic progeny (Jorgensen et al., 2002; Menne et al., 2007; Costanzo and Boone, 

2009).  

Genetic linkage defines chromosomal regions where frequency of meiotic recombina-

tion is low and loci tend to be inherited jointly. In SGA and other genetic methods based on 

mating and sporulation, linked gene pairs form small double mutant colonies (Figure 4.2B) 

and are normally removed from analysis to prevent them from being mistaken for true nega-

tive genetic interactions. As a result, the functional relationships between linked gene pairs 

remain largely unknown. To facilitate the investigation of linked gene pairs, I have developed 

a computational approach to correct for linkage effects in SGA data and recover negative ge-

netic interactions. I show that interactions recovered from linked gene pairs are functionally 

informative and provide additional insights into the functional organization of the yeast ge-

nome. 

In addition, I used genome-wide SGA data to map profiles of genetic linkage along all 

sixteen yeast chromosomes. These linkage profiles are accurate and reproducible, and reca-
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pitulate previously identified recombination patterns, including inhibition of recombination at 

pericentric chromosomal regions. Interestingly, I found that the extent of centromere-related 

recombination repression is directly proportional to chromosome length, whereas low recom-

bination regions outside the centromere are, on average, constant in size. These findings cor-

roborate the unique role played by centromeres during meiotic division and suggest a chro-

mosome size-dependent mechanism for ensuring proper chromosome segregation.  

4.3 Mapping genetic linkage using SGA 

In a typical SGA experiment (Figure 1.4), a “query” strain, carrying a deletion or a 

conditional mutation in a gene of interest, is crossed to an array of ~4,800 viable deletion mu-

tants (Chapter 1.3.2). Both query and array mutations are linked to drug-resistance cassettes, 

which enable selection of the double mutant meiotic progeny, following mating and sporula-

tion, and act as markers of meiotic recombination. When the query and the array mutations 

are located on the same chromosome, recombination is required to produce double mutants 

(Figure 4.2A). Physical distance between the loci and the local recombination rate determine 

the efficiency of double mutant production, which, together with double mutant fitness, de-

fines the size of the double mutant colony formed at the final stage of SGA selection (Figure 

4.2A). As a result, recombination frequency can be estimated from double mutant colony 

size, which is measured quantitatively using the SGA data acquisition pipeline described in 

Chapter 2 (Materials & methods 2.10.1). 
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Figure 4.2. Segregation of unlinked and linked loci during meiosis. 
(A) Unlinked query and array mutations (filled black and filled green squares, respectively) segregate inde-
pendently, such that on average 25% of all spores contain both mutations. However, when the query and the 
array mutations are located on the same chromosome (filled black and filled red squares, respectively), the fre-
quency of double mutant spores depends on the frequency of recombination between the loci and is in general 
lower than 25%, resulting fewer double mutants and smaller colonies. 
(B) A typical SGA experiment, showing (on the right) a set of array mutants (yhr018cΔ–yhr030cΔ) linked to the 
query mutation (yhr030cΔ) and thus producing smaller double mutant colonies compared to a control screen (on 
the left) which uses a genetically independent query mutation. 

4.4 Recovering genetic interactions from linked gene pairs 

Compared to loci that segregate independently, double mutants involving genetically 

linked loci result in considerably smaller colonies and, thus, can be mistaken for negative ge-

netic interactions (Figure 4.2B). To avoid introducing false positives, most SGA-based stud-
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ies discard gene pairs located within ~50–200 kb from each other, resulting in the loss of 

~140 genes per genome-wide screen on average or ~4% of all tested gene pairs 

(Baryshnikova et al., 2010b; Collins et al., 2010) (Chapter 2.4.6). As a result, linked gene 

pairs are significantly underrepresented for the number of genetic interactions reported in the 

literature (2.5-fold underrepresentation in BioGRID, p < 10–21; Materials & methods 4.9.1), 

and their functional relationships are much less well understood. 

To examine the genetic interactions among linked gene pairs, I developed a normaliza-

tion approach to correct for linkage effects and extract fitness information. My strategy is 

based on the observation that genetic interactions are rare (Chapter 3.6) and the linkage effect 

is relatively constant within a given genomic region (Chapter 4.6). Consequently, the average 

colony size of double mutants located in the same genomic region should reflect the strength 

of the linkage effect in that region, while deviations from average indicate the presence of a 

genetic interaction (Figure 4.3A; Materials &  methods 4.9.2). 

I applied this correction strategy to ~1,700 SGA genetic interaction screens, described 

in Chapter 3, and recovered 7,958 novel negative genetic interactions, which had been dis-

carded by the previous linkage filtering method (Chapter 2.4.6). I focused on detecting nega-

tive, rather than positive, genetic interactions as they are less prone to noise and can be iden-

tified with higher confidence (Chapter 2.7), especially in the context of genetic linkage where 

most of the variation in colony size is due to the efficiency of double mutant production and 

not double mutant fitness. The recovered interactions represent a ~7% increase over the total 

number of negative genetic interactions reported previously for this dataset (Chapter 3) and 

show a similar SGA score distribution (Figure 4.3B). 
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To assess the quality of the recovered genetic interactions, I performed a preci-

sion/recall analysis in which I evaluated the number of genetic interactions, at a range of sig-

nificance thresholds that connected genes annotated to the same Gene Ontology (GO) term or 

genes encoding physically interacting proteins (Figure 4.3C–D). The precision/recall analysis 

showed that, similarly to genetic interactions among unlinked gene pairs, genetic interactions 

recovered from linkage are highly enriched for co-annotations and protein-protein interac-

tions (Figure 4.3C–D) and are therefore predictive of shared function.  

While being highly enriched, the frequency of co-annotations among genetically inter-

acting linked genes was ~2-fold lower than the frequency of co-annotations among unlinked 

gene pairs (Figure 4.3C), suggesting a higher false positive rate among the recovered interac-

tions and advising against their integration with the main genetic interaction dataset without 

further normalization. To reduce the incidence of false positives in the recovered genetic in-

teractions, I restricted the analysis to only gene pairs that were tested reciprocally (query mu-

tant A-array mutant B and query mutant B-array mutant A) and produced consistent genetic 

interaction scores. The set of 1,292 genetic interactions that satisfy these criteria overlap with 

co-annotated gene pairs or protein-protein interactions as often as genetic interactions ob-

tained from unlinked gene pairs (Figure 4.3C–D), thus indicating that filtering for reciprocal 

AB/BA consistency is a valid strategy for improving the quality of the recovered interactions. 
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Figure 4.3. Recovering genetic interactions from genetically linked gene pairs. 
(A) A genetic linkage profile for query mutant ybr054wΔ is shown where the average contribution of linkage in 
a given chromosomal region is indicated by the red line (Materials & methods 4.9.2). After subtracting the con-
tribution of linkage, genetic interactions can be recovered from colony sizes of genetically linked double mu-
tants. Only negative genetic interactions are visualized. 
(B) Distribution of negative SGA scores for unlinked gene pairs (blue line) and linked gene pairs (red bars) after 
correction for linkage is applied (Materials & methods 4.9.2). 
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(C) Functional evaluation of the recovered negative genetic interactions against the Gene Ontology (GO) co-
annotation standard. A set of gold standard GO terms was chosen using previously described criteria (Myers et 
al., 2006). True positive interactions (TP) were defined as those involving both genes annotated to the same GO 
term. Precision and recall were calculated as described in Materials & methods 2.10.2. 
(D) Functional evaluation of the recovered negative genetic interactions against a set of physical protein-protein 
interactions. Precision and recall were calculated as described in Materials & methods 2.10.2. 

An alternative strategy for reducing false positives is to only retain genetic interactions 

that are supported by additional lines of evidence. For example, twelve of the 7,958 recov-

ered genetic interactions connected genes encoding members of the same protein complex. 

Ten of these complexes are essential or contain redundant components and thus are expected 

to show a negative genetic interaction (Figure 4.4A–I; Chapter 3.9). For example, I recovered 

a known synthetic lethal relationship between two interchangeable catalytic subunits of the 

protein phosphatase 2A, Pph21 and Pph22 (Figure 4.4I) (Sneddon et al., 1990). In addition, I 

detected a novel interaction between putative tyrosine phosphatases OCA2 and OCA3 (Figure 

4.4J), which are likely to share at least partially redundant functions given that increased dos-

age of OCA3 suppresses the growth defect associated with the deletion of OCA2 (Roma-

Mateo et al., 2011). The extensive overlap between protein-protein binding, dosage suppres-

sion and negative genetic interactions was noted in a recent study from our laboratory 

(Magtanong et al., 2011), thus supporting the newly found relationship between OCA2 and 

OCA3. One additional negative interaction between members of the nonessential Rpd3S 

complex (UME1 and EAF3; Figure 4.4K) was not supported by previous findings and thus I 

cannot rule out the possibility that this represents a potential false positive interaction associ-

ated with my correction method. Further experimental validation will be necessary to charac-

terize this interaction and determine its biological relevance.  
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Overall, these findings indicate that the majority of genetic interactions recovered from 

linked gene pairs are biologically informative and contribute towards a comprehensive cov-

erage of all double mutant combinations in yeast. 

 

 

Figure 4.4. Intra-complex negative genetic interactions involving linked gene pairs. 
Twelve intra-complex negative genetic interactions were recovered from the set of linked gene pairs (A–K). 
Two pairs of linked genes belonged to the same protein complex (B), and thus a total of eleven complexes are 
shown. Red and green edges correspond to negative and positive genetic interactions, respectively. Yellow 
nodes indicate the gene pairs that were recovered after linkage normalization. 
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4.5 Estimating genetic distances from colony size data 

Recombination rate between two loci is often expressed in terms of their genetic dis-

tance, which is measured in centimorgans (cM) and refers to the average number of crossover 

events occurring between the loci in a single meiosis (Griffiths et al., 2000). Given a popula-

tion of cells undergoing meiotic division, genetic distance between two loci can be computed 

using the frequency of recombinant progeny relative to the total number of meiotic products 

(Griffiths et al., 2000). By definition, a genetic distance of 50 cM corresponds to a 50% fre-

quency of recombinants and thus is indicative of genomic loci that segregate independently. 

A compilation of 40 years of genetic analyses in S. cerevisiae determined that on average 1 

kb corresponds to approximately 0.36 cM, and thus most gene pairs located at ~139 kb and 

farther should be genetically independent [50 cM/(0.36 cM/kb) = 139 kb] (Cherry et al., 

1997). In contrast, recombination occurs less frequently in S. pombe, in which 1 kb corre-

sponds to 0.18 cM (Munz, 1994; Dixon et al., 2008). 

In theory, recombination frequency can also be estimated from SGA experiments by 

measuring double mutant colony size, which reflects the relative frequency of recombinant 

meiotic progeny (Chapter 4.3). However, multiple crossovers often generate parental ar-

rangements of alleles that remain undetected during assessment of recombinant frequency 

and thus result in an underestimate of the genetic distance between loci. A correction method, 

such as, for example, the Haldane mapping function, must be applied to account for multiple 

crossover events and obtain more accurate genetic distances (Materials & methods 4.9.1). 
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We screened ~3,800 query strains against the array of ~4,800 non-essential deletion 

mutants (Costanzo et al., manuscript in preparation) and obtained double mutant colony sizes 

for ~1.2 million gene pairs located on the same chromosome. For every gene pair, I used the 

corresponding single and double mutant colony sizes to estimate the relative fraction of re-

combinant meiotic products and derive their genetic distance (Materials & methods 4.9.1).  

For every gene in our dataset, I generated a genetic linkage profile, defined as the set of 

genetic distances between that gene and all the other genes located on the same chromosome 

(Figure 4.5A–B). As expected, genetic distance increased linearly with physical distance 

(Figure 4.5A), indicating that crossover frequency is relatively constant within a given ge-

nomic region and recombination hotspots are rare. Occasionally, genetic linkage profiles on 

the left and the right hand side of a gene were visibly different (Figure 4.5B), likely reflecting 

brusque changes in recombination rate in the two regions flanking the gene’s locus.  
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Figure 4.5. Relationship between genetic and physical distances. 
(A) The genetic linkage profile of the query mutant ypl152wΔ (rrd2Δ) is shown. Black bars correspond to the 
frequency of recombinant progeny involving the query mutation and an array mutation located at the position 
indicated on the x-axis. The red line indicates the corresponding genetic distance, calculated as described in 
Materials & methods 4.9.3. 
(B) A genetic linkage profile similar to (A) but showing a visible difference between the slope of the left and 
the right genetic distance estimates relative to the physical distance from the query mutant locus. A trend of this 
kind might indicate a significant difference in local recombination rates between the regions to the right and to 
the left of the query. 
(C) Relationship between physical distance and recombination estimates, as measured by the fraction of recom-
binant progeny (black line) or genetic distance measured in centimorgans (red line). The dotted line indicates 
the 50 cM threshold, which corresponds to the shortest genetic distance between two unlinked loci and on aver-
age is equivalent to a physical distance of ~35 kb. 

My SGA-based analysis suggested that, on average, genes located more than 35 kb 

apart tended to segregate independently, as their genetic distance was 50 cM or greater 

(Figure 4.5C). In contrast, early genetic analyses (see above) estimated that unlinked loci are 

normally positioned at ~139 kb, a distance ~4-fold greater than my estimate of 35 kb, sug-
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gesting that meiotic recombination in SGA is occurring at a considerably higher frequency. 

This hypothesis is consistent with the observation that the selectable kanMX cassette, which 

replaces every array locus in an SGA experiment, increases local frequency of meiotic re-

combination (Valerie Borde, personal communication) and thus may be responsible for the 

systematic increase in recombination rate amongst deletion alleles. Despite this limitation, 

every chromosomal region in our dataset should be equally affected by this phenomenon, 

which therefore is expected to have a minor impact on the results of my comparative anal-

yses. 

While most pairs of unlinked loci were positioned ~35 kb away from each other, the 

extent of genetic linkage varied considerably across the genome, ranging from ~0 to 400 kb 

(Figure 4.6A). This variability, however, was not randomly distributed. Genetic linkage pro-

files of genes located within the same chromosomal region were highly consistent with each 

other (Figure 4.6B). Indeed, for any pair of loci within a 10 kb distance, the median correla-

tion of their genetic linkage profiles was R = 0.94 and the distance to the nearest unlinked 

locus differed by 5 kb (median; n = 2,407; Materials & methods 4.9.4). Similarly, linkage 

profiles of query and array strains mutated for the same gene were highly reproducible 

(Figure 4.6C; median R = 0.95; Materials & methods 4.9.4). These observations indicate that 

variation in SGA-derived genetic linkage profiles reflects the underlying variation in local 

recombination rates and thus can be used to analyze the distribution of meiotic recombination 

events across the yeast genome. 
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Figure 4.6. Reproducibility of genetic linkage profiles. 
(A) Distribution of physical distances between pairs of closest unlinked loci across the entire genome. 
(B) Genetic linkage profiles for 9 consecutive query mutants located on chromosome XV. Genetic profiles of 
neighboring genes are highly consistent (median R = 0.94). 
(C) Genetic linkage profiles for 9 pairs of query-array mutants involving the same genomic locus. Genetic pro-
files involving reciprocal double mutants (e.g., query mutant a-array mutant b, and vice versa, query mutant b-
array mutant a) are highly consistent (median R = 0.95). 

4.6 Validation of recombination patterns 

I constructed a consolidated genetic linkage map for every yeast chromosome by aver-

aging the genetic linkage profiles of query and array mutants for the same genomic locus, as 

well as profiles of neighboring loci (Figure 4.7; Materials & methods 4.9.5). These genetic 
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linkage maps revealed a highly structured chromosomal organization, with large blocks of 

strong linkage separated by shorter regions of unlinked loci, likely corresponding to recom-

bination hotspots (Figure 4.7). 

 

Figure 4.7. Genetic linkage maps for all yeast chromosomes. 
A consolidated genetic linkage map for each chromosome was constructed as described in Materials & methods 
4.9.5) and visualized as a heatmap, where the x- and the y-axis correspond to chromosomal positions and the 
color at the intersection of two positions corresponds to the average genetic distance between gene pairs located 



Chapter 4 – Mapping genome-wide recombination patterns using SGA 

 

150 

in those regions of the chromosome. 

I identified 222 putative recombination hotspots defined as local peaks of recombina-

tion frequency, measured in centimorgans per kb, that were higher than the average recombi-

nation frequency for a given chromosome (Materials & methods 4.9.6). The distribution of 

these peaks coincided well with known genomic loci associated with high levels of meiotic 

recombination (Lichten and Goldman, 1995). For example, 8 out of 9 most characterized re-

combination hotspots were identified in my analysis (HIS2, HIS4, ARG4, CYS3, DED81, 

ARE1–IMG1, CDC19 and THR4; Figure 4.8). 

 

Figure 4.8. Validation of known recombination hotspots. 
Profiles of recombination frequency for chromosomes I, II, VI and VIII were computed as described in Materi-
als & methods 4.9.6, and plotted relative to the position on the corresponding chromosome. Red dots represent 
local maxima of recombination frequency. The positions of the nine characterized recombination hotspots are 
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indicated by vertical lines. 

Meiotic recombination in yeast has been investigated on a genome-wide scale using a 

variety of experimental approaches (Baudat and Nicolas, 1997; Borde et al., 2004; Blitzblau 

et al., 2007; Buhler et al., 2007; Mancera et al., 2008). I compared the recombination profiles 

obtained from these studies to those derived from our SGA-based genetic linkage analysis, 

and found them to be highly consistent (Figure 4.9).  
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Figure 4.9. Comparison of recombination profiles across various experimental ap-
proaches. 
Profiles of recombination frequency for chromosome XVI were derived using six different approaches: map-
ping of Spo11 (Gerton et al., 2000) and Mre11 (Borde et al., 2004) binding, analysis of ssDNA-enriched re-
gions (Blitzblau et al., 2007; Buhler et al., 2007), SNP mapping (Mancera et al., 2008) and SGA-derived genet-
ic linkage analysis (this study). Data relative to the published studies were obtained from the corresponding 
supplementary datasets. 
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On average, 61% of local recombination peaks identified in my analysis were located 

within or adjacent to a recombination peak identified in a previously published study (Figure 

4.10; Materials & methods 4.9.6). This overlap is highly significant (p < 0.01) and compara-

ble to the overlap observed between other published datasets (Figure 4.10), thus supporting 

the utility of the SGA-based approach for examining genetic linkage. 

 

Figure 4.10. Overlap between recombination peaks across various experimental ap-
proaches. 
Local peaks of recombination frequency were mapped for all the indicated datasets. The overlap between any 
two datasets is visualized as a heatmap/table, where colors and numbers reflect the fraction of peaks identified 
by study A (listed on the y-axis) that are located within 15 kb from a peak identified by study B (listed on the x-
axis). For example, of all the peaks identified by Gerton et al. (y-axis), 30% were also identified by Borde et al. 
(x-axis), and, vice versa, of all the peaks identified by Borde et al. (y-axis), 68% were also identified by Gerton 
et al. (x-axis). 
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Furthermore, I detected 46% of all recombination hotspots reported in other studies, 

which, in turn, recall 34–77% of each other’s findings (Figure 4.10). Our lower sensitivity, 

which ranks fifth among the six analyzed studies, likely stems from the lower resolution of 

our experimental design, which is based on systematic crosses of gene deletion mutants and, 

as a result, can only map recombination events between genomic loci, most of which are lo-

cated at an average distance of ~3 kb. 

Similarly to hotspots, my analysis also identified known recombination coldspots. As 

expected, a large ~85 kb block of strong genetic linkage corresponded to the rDNA locus on 

chromosome XII (Figure 4.7, panel XII; Figure 4.11A). Moreover, linkage blocks between 

60 and 150 kb in size overlapped the pericentromeric regions of each chromosome (Figure 

4.7, panels I–XVI; Figure 4.11B). Recombination frequency near telomeres could not be 

quantified in our data due to the low gene density in the corresponding regions. 



Chapter 4 – Mapping genome-wide recombination patterns using SGA 

 

155 

 

Figure 4.11. Coldspots of recombination. 
(A) A section of the genetic linkage map of chromosome XII, highlighting the linkage block surrounding the 
rDNA locus. 
(B) A section of the genetic linkage map of chromosome XIII, highlighting the linkage block surrounding the 
centromere. 

4.7 Characterization of genetic linkage patterns in 
pericentric regions 

Centromeres are chromosomal regions that mediate the attachment of chromosomes to 

spindle microtubules through large protein structures known as kinetochores. In S. cerevisiae, 

unlike other organisms, centromeres are defined by a single highly conserved ~125 bp se-

quence, with little, if any, repetitive DNA surrounding it (Fitzgerald-Hayes et al., 1982a; 

Fitzgerald-Hayes et al., 1982b). Numerous studies have reported a reduction of recombina-

tion frequency within pericentric regions in yeast (Lambie and Roeder, 1988; Baudat and 

Nicolas, 1997; Gerton et al., 2000; Borde et al., 2004; Buhler et al., 2007; Chen et al., 2008; 

Mancera et al., 2008) and in higher organisms (Hassold et al., 1996; Koehler et al., 1996b). 
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While the mechanism of repression is still poorly understood, it is clear that recombination 

events near centromeres are extremely deleterious, often result in catastrophic missegregation 

phenotypes and are the primary cause of severe human genetic defects, such as the Down 

syndrome (Sherman et al., 2006) (Chapter 4.2). 

Global analyses of meiotic recombination in yeast found that DSBs, which initiate re-

combination, are significantly underrepresented within 8–20 kb surrounding centromeres, 

although the exact extent of repression is dependent on the strain genetic background and the 

experimental approach (Gerton et al., 2000; Borde et al., 2004; Buhler et al., 2007). Interest-

ingly, our SGA-derived data shows that the reduction of inter-homolog recombination events 

extends much farther than 8–20 kb from the centromere, suggesting that centromere-

proximal DSBs are repaired via alternative pathways. In SGA, genes located on opposite 

arms of a chromosome, must be separated by at least 40–90 kb in order to segregate inde-

pendently (Figure 4.12A,C). This distance is 15–160% higher than the overall genomic aver-

age for unlinked loci (~35 kb, Figure 4.5, Figure 4.12B,C), reflecting the strong negative ef-

fect on recombination frequency exerted by centromeres. 

In addition, I found that the variation in the extent of centromere-related linkage 

showed a strong correlation with variation in chromosome length (R = 0.77, Figure 4.12C), a 

trend that has not been noted previously. This correlation was specific to linkage involving 

the centromere because distance between unlinked loci positioned on the same arm of the 

chromosome was generally constant with respect to chromosome length and matched the 

overall genomic average of ~35 kb (Figure 4.12B–C). The only exceptions were the four 
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smallest chromosomes (I, III, VI and IX), which are known to have particularly high levels of 

recombination and therefore show smaller genetic linkage effects (Figure 4.12B,C). 

 

Figure 4.12. Relationship between linkage and chromosome size. 
(A–B) The distribution of genetic distances for gene pairs located at the indicated physical distances is shown. 
Gene pairs located on the same chromosome (y-axis) were grouped according to their physical distance (x-axis). 
Within each group, genetic distances were averaged and visualized as a heatmap, where brighter colors corre-
spond to shorter genetic distances and stronger linkage. Gene pairs located on opposite arms of a chromosome 
(A) or on the same arm of the chromosome (B) were analyzed separately. 



Chapter 4 – Mapping genome-wide recombination patterns using SGA 

 

158 

(C) Physical distance at which gene pairs were on average unlinked (50 cM) was estimated from (A) and (B) for 
each chromosome, and plotted against chromosome length. 
(D) Pearson correlation was computed between chromosome length and centromere-related recombination, as 
defined by the shortest physical distance between loci unlinked from the centromere (This study, SGD) or dis-
tance between centromere-adjacent hotspots of meiotic recombination (Gerton et al., 2000; Borde et al., 2004; 
Mancera et al., 2008). 

The analysis of other published datasets strongly supports the patterns of centromere-

related recombination uncovered in SGA data (Figure 4.12D). For example, genetic data 

from the Saccharomyces Genome Database (SGD; (Cherry et al., 2012)), which were com-

piled from classical tetrad analysis carried out by a number of different studies, indicate that 

the shortest distance between two unlinked loci bridging the centromere is larger for longer 

chromosomes (R = 0.77, Figure 4.12D). Similarly, the distance between centromere-adjacent 

DSB hotspots, as measured by increased Mre11 or Spo11 binding (Gerton et al., 2000; Borde 

et al., 2004), correlates with chromosome length (R = 0.77–0.8; Figure 4.12D). The con-

sistency of this trend across several independent datasets is a strong indication of its robust-

ness and suggests that indeed centromere-related recombination is established by an underly-

ing mechanism involving chromosome size.  

4.8 Discussion 

An explanation for the unique role of centromeres in determining local rates of meiotic 

recombination may be related to the structural organization of pericentric regions during var-

ious phases of meiotic division (Brar and Amon, 2008). In meiosis, one round of DNA repli-

cation is followed by two consecutive rounds of chromosome segregation, in which homolo-

gous chromosomes separate from each other during meiosis I and sister chromatids separate 

during meiosis II. Protein complexes, known as cohesins, form a heterotetrameric ring 
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around sister chromatids, thus ensuring that they remain attached during meiosis I and are 

released in a timely manner during meiosis II (Figure 4.13A). Cohesins are normally distrib-

uted along the entire length of the chromosome, but are removed from chromosome arms at 

the metaphase I-anaphase I transition to facilitate the resolution of inter-homolog chiasmata 

that mediate recombination and link homologous chromosomes at metaphase I (Buonomo et 

al., 2000) (Figure 4.13A). Cohesins bound to the centromeres, however, are maintained be-

yond anaphase I and remain attached to the centromeres until the metaphase II-anaphase II 

transition, when sister chromatid segregation occurs (Miyazaki and Orr-Weaver, 1994) 

(Figure 4.13A). It is therefore possible that the longer persistence of cohesin at pericentric 

regions causes a reduction in the number of successfully completed recombination events and 

the formation of larger genetic linkage groups in those regions.  

The formation of large cohesin clusters at centromeres is thought to be necessary to re-

sist the mechanical tension generated by microtubules bound to sister kinetochores and to 

prevent premature chromatid separation (Brar and Amon, 2008). It is not known how chro-

mosome length relates to the resistance a chromosome must oppose to microtubule action, 

but the presence of larger cohesin clusters around the centromeres of larger chromosomes 

might play a role in this process. In at least one study of cohesin binding (Glynn et al., 2004), 

the extent of cohesin clustering at pericentric regions of meiotic chromosomes shows a sig-

nificant correlation to chromosome length (R = 0.51; Figure 4.13B); although this trend does 

not hold for other studies (Kiburz et al., 2005) and thus whether it is true or not remains in-

conclusive. 
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Figure 4.13. Cohesin-dependent linkage formation around centromeres. 
(A) Cohesin protein complexes (blue rings) are normally distributed along the entire length of the chromosome, 
but they are removed from chromosome arms at the metaphase I-anaphase I transition to facilitate the resolution 
of inter-homolog chiasmata. The persistence of cohesin binding to centromeres might explain the formation of 
larger linkage groups in the corresponding regions. 
(B) The width of centromere-centered cohesin clusters was measured using data from (Glynn et al., 2004) and 
plotted against chromosome length. 
(C) Pericentric DNA is known to extend towards cell poles under the action of microtubule-generated tension. 
Such extension might be more pronounced in larger chromosomes and thus explain the relationship between 
chromosome length and the extent of centromere-related linkage. 

In addition, recent findings indicate that in S. cerevisiae, similarly to other organisms, 

mitotic centromeres and their flanking DNA form large intra-molecular loop structures that 

extend from the chromosome axes towards the cell poles, driven by the tension of spindle 

microtubules (Yeh et al., 2008) (Figure 4.13C). These loop structures are stabilized by intra-
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chromosomal cohesin links and, in the case of chromosome III, involve ~25 kb of pericentric 

DNA (Yeh et al., 2008) (Figure 4.13C). While the size of these loops has not been quantified 

yet for other chromosomes nor have similar analyses been performed during meiosis, it is 

possible that tension mechanisms separate sister chromatids to a degree that is proportional to 

chromosome size and the loop structures formed in this manner prevent recombination from 

occurring within pericentric regions of varying length. 

An intriguing hypothesis is that the S. cerevisiae loop-forming centromeres and the as-

sociated chromosome size-dependent repression of recombination may reflect a common 

mechanism for chromosome segregation shared by all eukaryotes, despite drastic differences 

in their centromere structures (Brar and Amon, 2008). Human centromeres, composed by 

0.3–5 Mb of highly repetitive α-satellite DNA sequences, correlate in size with their respec-

tive chromosomes (Sanchez et al., 1991; Martorell et al., 2000) and, similarly to S. cere-

visiae, elongate towards cell poles during mitosis (Zinkowski et al., 1991). A positive corre-

lation between centromere size and chromosome length is also typical of several plant spe-

cies (Bennett et al., 1981; Jenkins and Bennett, 1981). Interestingly, this trend may also ex-

tend to C. elegans chromosomes, which lack monocentric centromeres and make contact 

with spindle microtubules throughout the entire lengths of their chromosomes (Albertson and 

Thomson, 1982). A recent analysis uncovered an extensive low recombination domain cen-

tered in the middle of the each worm chromosome (Rockman and Kruglyak, 2009). The ex-

tent of this area is directly proportional to chromosome length (Rockman and Kruglyak, 

2009) and therefore may reflect the influence of a segregation mechanism similar to 

S. cerevisiae, plants and humans. 
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In summary, the analysis presented in this Chapter uses SGA-derived genetic linkage 

data to uncover a previously unappreciated trend between chromosome length and centro-

mere-related frequency of meiotic recombination. Despite the uniqueness of yeast centromere 

structure, our data, together with other reported evidence, suggest the existence of a common 

eukaryotic mechanism regulating inter-homolog recombination within pericentric regions, 

potentially responsible for proper chromosome segregation and accurate transmission of ge-

netic information to the progeny. 

4.9 Materials & methods 

4.9.1 Overlap with previous genetic interactions reported in Bi-
oGRID 

Genetic interactions were downloaded from BioGRID (www.thebiogrid.org) on April 

18, 2012, and analysis was restricted to the following data types: negative genetic, phenotyp-

ic enhancement, synthetic growth defect, synthetic lethality. Underrepresentation for genetic 

interactions among linked gene pairs was evaluated using the following fold change and sig-

nificance hypergeometric p-value calculations: 

    Eq. 4.1 

where M is the total number of unlinked gene pairs in the dataset, K is the number of 

unlinked gene pairs that have a genetic interaction in BioGRID, N is the total number of 
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linked gene pairs in the dataset and X is the number of linked gene pairs that have a genetic 

interaction in BioGRID. 

4.9.2 Recovering genetic interactions from genetically linked gene 
pairs 

The contribution of linkage to the colony size of a double mutant ab was calculated as 

the mean colony size of all double mutants, sharing the same query mutation a and having 

the array mutation located within 60 kb from b. This estimated contribution was then sub-

tracted from each double mutant’s colony size to produce a corrected estimate of double mu-

tant fitness. Genetic interaction scores were recalculated as the difference between the cor-

rected double mutant fitness and the product of the two single mutants fitnesses. Confidence 

p-values relative to all genetic interactions were recomputed accordingly (Materials & meth-

ods 2.4.9). 

4.9.3 Calculation of genetic distances 

To quantify the extent of genetic linkage, I estimated the relative fraction of recombi-

nant progeny for each double mutant as: 

 
Eq. 4.2 

where fi, fj and fij are the colony size-based fitnesses of the two single and of the double 

mutant, respectively, calculated as described in Chapter 2.4. The idea is that, in the absence 

of genetic linkage, just like in the absence of genetic interactions (Chapter 1.1), the fitness of 

a double mutant should equal the product of the two single mutant fitnesses. Therefore, the 

R = 1
2

fij
fi f j
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relative size defect of the double mutant colony (fij) compared to expectation (fi fj) should re-

late to the effect of genetic linkage or genetic interactions. Because genetic interactions are 

rare and do not normally depend on physical distance between loci, their contribution to the 

shape and the width of genetic linkage profiles can be considered negligible. The ratio of ob-

served and expected double mutant fitness is multiplied by a factor of 0.5 such that R = 0.5 

for genetically independent loci (fij = fi fj). 

Recombinant fraction R counts the number of recombinant spores relative to all spores 

generated by meiosis, and can be used as a measure of recombination among genomic loci. 

However, R often underestimates the true recombination rate as it does not account for re-

combination events that do not produce double mutants. For example, multiple crossover 

events result in a parental arrangement of alleles and the resulting meiotic products do not 

contribute to recombinant frequency.  

Several normalization methods have been proposed to correct for this inaccuracy 

(Morton, 2004). One of the simplest methods, known as Haldane’s map function (Haldane, 

1919), is based on the assumption that recombination events are distributed randomly within 

a given region and thus the probability of observing i recombination events follows the Pois-

son distribution:  

 
Eq. 4.3 

where m is the mean number of recombination events in the region per meiosis. 

f i( ) = e
−mmi

i!



Chapter 4 – Mapping genome-wide recombination patterns using SGA 

 

165 

Recombinants make up 50% of the spores derived from meioses in which at least one 

recombination event occurred in the region. Thus, recombinant fraction R can be expressed 

as: 

 
Eq. 4.4 

where e–m is the number of meioses with zero recombination events: 

 
Eq. 4.5 

From Eq. 4.4, we can derive m, which would equal to the probability of observing a re-

combination event in a given region: 

 Eq. 4.6 

Recombination rate between loci is often expressed in terms of their genetic distance, 

measured in Morgans, such that 1 Morgan equals 1 recombinant product per meiosis. Since 

each recombination event produces two recombinant products, genetic distance M is derived 

from Eq. 4.6 as: 

 Eq. 4.7 

1 centimorgan equals 0.01 Morgans. 

R = 1
2
1− e−m( )

f 0( ) = e
−mm0

0!
= e−m

m = − ln 1− 2R( )

M = 1
2
m = − 1

2
ln 1− 2R( )
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4.9.4 Reproducibility of genetic linkage profiles 

A genetic linkage profile is defined as the set of genetic distances between a given gene 

and all other genes located on the same chromosome. Genetic linkage profiles for query and 

array mutants involving the same gene were computed independently and their similarity was 

quantified using Pearson correlation coefficient. The same approach was used for neighbor-

ing gene pairs. In addition, the distance between every gene and its closest unlinked partner 

was measured by computing a smoothed genetic linkage profile and identifying chromosomal 

positions where the smoothed linkage profile reaches 50 cM. 

4.9.5 Construction of consolidated genetic linkage maps 

Each chromosome was split into a set of consecutive non-overlapping bins of 5 kb 

each. Query and array genes were assigned to bins based on their chromosomal position, as 

reported by the Saccharomyces Genome Database (SGD, www.yeastgenome.org, accessed in 

February, 2011). A genetic linkage map G for chromosome C was generated as a n × n ma-

trix, where n is the total number of bins in C, and the value Gij corresponds to the average of 

genetic distances for query-array gene pairs where queries belong to bin i and arrays belong 

to bin j. The consolidated genetic linkage map G′ was calculated by averaging query-array 

and array-query genetic linkage maps for the same positions: 

 Eq. 4.8 

Averaging of query and array genetic linkage maps was applied to all chromosomes, 

with the exception of chromosome III, because of its peculiar role in the SGA selection pro-

′G = G +GT

2
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cess. Chromosome III carries the yeast mating type locus (MAT), which determines the sex of 

a yeast haploid cell and distinguishes array and query mutants, which are MATa and MATα, 

respectively. Since SGA selects specifically for MATa meiotic progeny, a query mutant n 

(filled black square in part A of the figure below), located between gene M (empty red 

square) and the MAT locus (empty green square), requires a double recombination event to 

acquire both the array mutation m (filled red square) and the MATa information (filled green 

square). The array mutant n, however, (filled black square in part B of the figure below), be-

ing already linked to MATa, only requires one recombination event to acquire query mutation 

m (filled red square). As a result, query and array mutants linked to the MAT locus show dif-

ferent degrees of linkage to nearby genes, and averaging their genetic linkage maps would 

conceal the true recombination activity occurring within the region. 

 

4.9.6 Hotspot analysis 

Using the consolidated genetic map for each chromosome (Materials & methods 4.9.5), 

I estimated the recombination frequency at each position x along the chromosome by compu-

ting the average genetic distance within the interval [x – 2, x + 2], corresponding to a 25 kb 

interval centered on position x (5 bins × 5 kb/bin). The resulting profile of recombination fre-

quency was smoothed using a moving average filter over 5 consecutive positions.  
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5 Conclusions, discussion & future 
directions 
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5.1 Thesis summary 

Mapping all pair-wise genetic interactions in an organism is essential for understanding 

functional connections between genes and their role in determining cellular phenotypes. In 

this thesis, I described the construction and the analysis of the genome-wide genetic interac-

tion network for budding yeast Saccharomyces cerevisiae, which covers ~30% of all possible 

gene-gene combinations and represents the largest genetic interaction network to date. I also 

showed that systematic analysis of yeast double mutants enables investigation of genetic 

linkage on a global scale and uncovers novel patterns of meiotic recombination. 

Large-scale analysis of genetic interactions in yeast is made possible by the Synthetic 

Genetic Array (SGA) technology, which generates double mutants by mating and sporulation 

of yeast single mutant arrays. Similar to other genomics technologies, SGA suffers from sev-

eral systematic experimental biases, which complicate colony size measurements and inter-

fere with our ability to obtain accurate estimates of fitness. In Chapter 2, I described a novel 

computational method, an SGA scoring system (Baryshnikova et al., 2010b), for identifying 

and removing these systematic experimental biases. I applied the SGA score to a set of con-

trol SGA screens and generated a comprehensive catalog of colony-size based single mutant 

fitness, which rivals the accuracy of other published datasets and serves as a reference for 

numerous genomic analyses. Next, I applied the SGA score to double mutant colony sizes to 

derive quantitative fitness-based genetic interactions, and showed that their quality and gene 

function prediction capacity provide a several fold improvement over previously available 

methods. 
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In Chapter 3, I presented the large-scale application of the SGA score to ~1,700 ge-

nome-wide SGA screens that resulted in a quantitative genetic interaction network based on 

5.4 million yeast double mutants (Costanzo et al., 2010). I developed a novel network-based 

approach for visualizing large-scale genetic interaction data that led to an unprecedented 

view of the functional organization of the cell. In this view, genes participating in similar bio-

logical processes clustered together in coherent subsets, which in turn mapped next to each 

other if they shared numerous functional interconnections. We discovered several physiolog-

ical and evolutionary gene properties that characterize genetic interaction hubs, and analyzed 

the relationship between genetic and protein-protein interaction networks, particularly those 

involving stable protein complexes. Indeed, the strong relationships identified in our study 

motivated the development of computational models for predicting genetic interaction hubs 

in complex organisms that are less amenable to high throughput genetic analyses (Koch et 

al., submitted). In addition, we used genetic suppression, a type of positive genetic interac-

tions, to connect protein complexes whose loss compensates for the disruption of other com-

plexes, and constructed the first global network of genetic suppression (Baryshnikova et al., 

2010b). I also integrated genetic and chemical-genetic interaction networks to identify a po-

tential molecular target of a novel chemical compound.  

In Chapter 4, I showed that, in addition to genetic interactions, systematic SGA exper-

iments produce a genome-wide genetic linkage map for S. cerevisiae, which can be used to 

estimate local frequencies of meiotic recombination on a global scale. I demonstrated that the 

SGA-derived genetic linkage maps are accurate in recapitulating previously identified re-

combination patterns, including inhibition of recombination at pericentromeric chromosomal 
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regions. I found that the extent of centromere-related recombination repression is directly 

proportional to chromosome length. The relationship between chromosome size and genetic 

linkage may possibly result from a chromosome size-dependent mechanism that counteracts 

the tension generated by microtubules during meiosis I, and highlights SGA methodology as 

a unique approach for systematic analysis of the global landscape of yeast meiotic recombi-

nation. 

5.2 Next steps in genetic interaction analysis 

As we approach the completion of all pair-wise genetic interactions in yeast, we can 

envision what needs to be done next to further advance our understanding of the yeast func-

tional organization. Our next steps should make the best use of the available data and put 

forward new experimental and analytical strategies to fill in the gaps still remaining in our 

knowledge. 

5.2.1 Decoding genetic redundancy 

Similarly to individual gene mutations, the vast majority of yeast double mutants 

(~98%) do not show any fitness defect (Chapter 3.6), suggesting that many more genetic in-

teractions remain to be uncovered. For example, some genes may be buffered at a much 

higher level of redundancy or be inactive under the investigated growth conditions. Moreo-

ver, the effect of a genetic interaction may be manifested through a phenotype other than fit-

ness and thus remain undetected in our standard SGA analysis. Examining each of these sce-

narios in a systematic manner is necessary to build truly comprehensive genetic interaction 
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networks, uncover the full spectrum of yeast genetic robustness and draw precise functional 

connections between all genes in the genome.  

5.2.1.1 Condition specific network analysis 

The yeast deletion collection has been exposed to hundreds of environmental and 

chemical growth conditions, revealing that virtually every gene is required for optimal 

growth in at least one of the tested environments (Hillenmeyer et al., 2008). Similarly, we 

expect a much higher frequency of genetic interactions when cells are grown in conditions 

that require normally dispensable genes and pathways. Indeed, treatment with sublethal con-

centrations of the DNA damaging agent methyl methanesulfonate (MMS) nearly doubles the 

number of genetic interactions detected among members of DNA repair and recombination 

pathways (St Onge et al., 2007; Bandyopadhyay et al., 2010), whereas growth in high salt 

concentration or other stress conditions increases interaction rate among duplicate pairs by 

~16% (Musso et al., 2008).  

Expanding the analysis of condition-specific genetic interaction networks to a genome-

wide scale is a challenging task, given the high number of double mutant combinations and 

the near infinite range of testable growth environments. It is therefore necessary to develop 

radically new genetic mapping technologies that would enable rapid assessment of double 

mutant growth in multiple parallel conditions. Analogously to the single mutant collection, a 

library of yeast double mutants would greatly facilitate this task. Such library, constructed via 

SGA, dSLAM or GIM approaches (Chapter 1.3.2), could be stored in a pooled format (for 

example, ~6,000 pools of ~6,000 double mutants each) and examined under various growth 
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conditions using large-scale barcode analysis, made affordable by recent advances in high-

throughput sequencing (Smith et al., 2009). Alternatively, the double mutant collection can 

be stored as a single pool of ~36 million mutants, although this approach would require novel 

strategies for identifying each double mutant within a mixed population, for example by 

stitching together barcodes associated with the deletion of each locus (Roth et al., 2009).  

The scope of condition-specific genetic network analysis could be greatly reduced by 

prioritizing genetic interaction screens based on their expected functional outcome. We 

showed, for example, that in at least one growth condition the genetic interaction degree of a 

query mutant is highly correlated to its single mutant fitness (Chapter 3). As a result, single 

mutant fitness can be used as a robust predictor of genetic network density under any condi-

tion of interest. Specifically, mutants presenting condition-specific fitness defects are the 

most likely to produce condition-specific genetic interaction networks and thus provide 

unique insights into the structure of yeast buffering systems. 

5.2.1.2 Higher order genetic interactions 

In addition to condition-specific genetic interaction networks, yeast robustness to per-

turbations must be further explored using higher order mutant combinations, which involve 

three or more genes. Complex genetic interaction networks are key for modeling natural gen-

otype-to-phenotype relationships, where numerous genetic variants interact in determining a 

particular phenotype (Hartman et al., 2001; Zuk et al., 2012). Moreover, multi-locus genetic 

interactions uncover the functional roles of highly redundant gene groups, such as those de-

rived from recent gene duplication events (Tong et al., 2004). The analysis of our pair-wise 
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genetic interaction network showed that duplicate genes exhibit fewer genetic interactions 

with the rest of the genome compared to non-duplicated genes, likely reflecting the ability of 

each duplicate to compensate for the absence of its partner (Costanzo et al., 2010; 

VanderSluis et al., 2010). Pilot triple mutant experiments, using double mutant query strains 

deleted for both duplicates, uncovered numerous novel genetic interactions, which were spe-

cific to triple mutant combinations and did not appear during the analysis of double mutants 

(Tong et al., 2004) (E. Kuzmin, C. Boone, unpublished data). Large-scale examination of 

triple genetic interactions will enable the identification of shared versus unique biological 

functions of gene duplicates, thus shedding light onto the mechanisms of functional diver-

gence and the evolution of the yeast genome. 

Given the size of the yeast genome (~6,000 genes), the number of possible triple mu-

tant combinations (6,000 x 6,000 x 6,000 = 2.2 x 1011) is extremely high and their systematic 

analysis using current genetic mapping technologies is nearly impossible. We must therefore 

develop novel experimental methods that would accelerate construction and phenotypic anal-

ysis of yeast mutants by at least an order of magnitude.  

5.2.1.3 Expanding phenotypic assays 

Investigating phenotypes other than fitness will greatly increase the sensitivity of ge-

netic interaction analysis. A recent survey of spindle morphology phenotypes uncovered four 

times more genetic interactions than the equivalent fitness-based study (Vizeacoumar et al., 

2010), forecasting an explosion of data as soon as the costs and times of high-throughput mi-

croscopy become more affordable. Similar results were obtained from investigating genetic 
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interactions affecting yeast filamentous growth (Drees et al., 2005), receptor endocytosis 

(Burston et al., 2009) and protein folding pathways (Jonikas et al., 2009). An in-depth analy-

sis of subcellular phenotypes may also provide mechanistic explanations for fitness-based 

genetic interactions by linking double mutant growth defect to the malfunction of a specific 

molecular pathway. 

5.2.2 Mapping complex phenotypes in yeast and in higher organ-
isms 

As a model system for genetic interactions, yeast plays an important role in answering 

the genotype-to-phenotype question, which attempts to associate quantitative traits, such as 

disease risk, to specific combinations of genomic variants carried by an individual. Recent 

advancements in genome sequence analysis and genome-wide association studies have rec-

ognized that interactions between genomic variants account for a substantial fraction of dis-

ease heritability that is not explained by the variants’ additive contributions (Chapter 1.6). As 

a result, genetic interactions must be taken into account when estimating loci contribution to 

the heritability of disease.  

The complexity of common phenotypes, however, likely extends well beyond single 

gene contributions and their pair-wise interactions, and is governed by an intricate network 

connecting multiple genomic loci. In S. cerevisiae, for example, most cases of conditional 

essentiality, where a gene is essential in one laboratory strain but completely dispensable in 

another, appear to be modulated by four or more modifiers (Dowell et al., 2010). Similarly, 

yeast chemical resistance traits are regulated by as many as 40–50 loci (Ehrenreich et al., 

2010), with variation depending on the strain’s genetic background and the trait under exam-
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ination (Ehrenreich et al., 2012). These findings indicate that even an organism as simple as 

yeast has an extremely intricate genotype-to-phenotype relationship and that systematic map-

ping of pairwise genetic interactions reveals just the tip of the iceberg of its complex genetic 

architecture. Approaching this problem in higher organisms, including humans, faces numer-

ous additional challenges, including reduced sample sizes and heterogeneous genetic back-

grounds. However, since the divergence between the two laboratory yeast strains is often 

comparable to the divergence of two human individuals (Wang et al., 2008; Dowell et al., 

2010), yeast is an ideal model organism to pursue the investigation of complex phenotypes 

and will help uncovering the general rules connecting an individual’s phenotype to its geno-

type. 

5.2.3 Stochastic effects in genotype to phenotype mapping 

While increasing evidence shows that genetic interactions contribute a substantial frac-

tion of disease heritability (Zuk et al., 2012), for most diseases the total extent of heritability 

is still undetermined, as we don’t know what fraction of phenotype variance is controlled by 

genetic factors (e.g., genomic variants and their interactions) and what fraction is instead due 

to environmental differences or stochastic variability at the intracellular level. A recent anal-

ysis of medical histories of monozygotic twins suggests that the non-genetic components of 

disease risk may be more prominent than anticipated: for 13 of the 27 analyzed conditions, 

the majority of the affected individuals would result negative to a genetic test based on the 

phenotypes of their twins, i.e. individuals with an identical genotype (Roberts et al., 2012). 

This suggests that the environmental and stochastic components of disease risk are as im-

portant as their genetic counterparts and must be investigated in a systematic manner. 
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Recent findings in C. elegans have started to unravel the potential mechanisms of non-

genetic phenotypic variation (Burga et al., 2011; Casanueva et al., 2012). It was shown, for 

example, that genetic variation in one gene can be buffered by stochastic or environmentally 

induced changes in the expression level of a buffering gene, such as a duplicate (Burga et al., 

2011) or a molecular chaperone (Burga et al., 2011; Casanueva et al., 2012). 

In yeast, large populations of genetically identical cells can be easily monitored using 

robotic manipulations and high-throughput imaging approaches. Phenotype penetrance, i.e. 

the proportion of genetically identical individuals expressing a given phenotype, can be 

scored using single-cell microscopy or, at a higher level, colony growth variation. For exam-

ple, a set of deletion mutants can be examined for growth to determine the distribution of rel-

ative fitness values within an isogenic population. The width and shape of this distribution 

will be very informative for identifying mutations that predispose yeast to genotype-unrelated 

phenotypic variation and might be indicative of its underlying cause. For example, secondary 

site mutations are expected to arise at a low frequency in the population and will likely result 

in isolated peaks of unexpected fitness. In contrast, stochastic changes in gene expression 

levels are more likely to cause a multi-modal distribution of fitness and will involve genes 

whose dosage suppresses or exacerbates the phenotype of the original genetic background. 

The availability of yeast large-scale genetic interaction data, involving both loss-of-function 

and gain-of-function mutations (Costanzo et al., 2010; Magtanong et al., 2011; Sharifpoor et 

al., 2012), will greatly facilitate the interpretation of this phenotypic variability and help elu-

cidating the natural buffering mechanisms of eukaryotic cells. 
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5.2.4 The global functional map of S. cerevisiae 

Despite the importance of exploring yeast robustness to perturbation using a variety of 

experimental approaches, the next big challenge in yeast functional genomics is integration 

of all the accumulated data into a single model of yeast biology. In the ten years that have 

elapsed since the completion of the yeast deletion collection (Giaever et al., 2002), nearly all 

non-essential genes have been scrutinized in hundreds, if not thousands, of different ways 

(Botstein and Fink, 2011). However, despite the availability of this incredible wealth of data, 

we are still lacking a global unified picture of the yeast functional organization, which would 

serve as a repository for our collective knowledge and a model for more complex cellular 

systems. Numerous studies have firmly established that different types of genomic data pro-

vide complementary information for defining gene function (Beyer et al., 2007), but the ex-

act relationships between data types are still elusive to our understanding.  

For example, the analysis of our global genetic interaction network showed that genetic 

interactions, while often connecting members of the same pathway or protein complex, can 

also span across very distant biological processes, describing the degree to which they share 

common functionality (Chapter 3.7). In contrast, protein-protein interactions define strictly 

local relationships and, for example, cannot link genes acting in different cellular compart-

ments. The integration of physical and genetic interactions has been very successful in ex-

ploring the local neighborhoods of numerous genes (Tewari et al., 2004; Kelley and Ideker, 

2005; Ye et al., 2005; Zhao et al., 2005; Pan et al., 2006). However, unification of the two 

data types on a global level still remains to be accomplished. Similarly, the integration of 

physical and genetic networks with gene expression or protein abundance profiles has the 
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potential to add a spatio-temporal dimension to the network, i.e. uncover network domains 

that are active in a particular growth condition or at a particular stage of the cell cycle. In 

C. elegans, this strategy helped elucidating the coordination of early embryogenesis process-

es and showed that static and dynamic networks are highly informative when combined 

(Gunsalus et al., 2005). In yeast, the identification of subnetworks active under specific envi-

ronmental conditions may help prioritizing experiments for constructing condition-specific 

genetic interaction networks, thus reducing the number of testable combinations (Chapter 

5.2.1.1). 

Importantly, the scientific community is making remarkable efforts to facilitate integra-

tion of genome-wide datasets. For example, it provides easy access to genomic data by 

adopting common data exchange formats, such as BioPAX (Demir et al., 2010), and releas-

ing open-source data visualization software, such as Cytoscape (Smoot et al., 2011). Unprec-

edented progress in computer infrastructure development in the last decade has revolution-

ized genomic data storage, transfer and analysis, introducing cloud computing and parallel 

computer architectures (Schadt et al., 2010). In addition, numerous computational algorithms 

have been developed to minimize the noise and maximize the sensitivity of genomic datasets, 

often through integration of heterogeneous data which compensates for their reciprocal false 

positive and false negative rates (Beyer et al., 2007). 

5.3 Yeast as a model for genome organization 

Meiotic division is a key reproductive mechanism that promotes biological diversity by 

re-shuffling genetic information through homologous recombination (Chapter 4). While most 
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genetic variants assort at random relative to their maternal and paternal configurations, a 

smaller portion of the genome tends to remain unchanged across generations due to physical 

and genetic linkage among loci (Chapter 4). An important question that remains unanswered 

is what determines such an uneven distribution of recombination events. It is possible, for 

example, that within certain genomic regions recombination is harmful and thus has been re-

duced by natural selection. Alternatively, the positioning of recombination events could be 

independent from selective pressure and merely reflect the local properties of the DNA se-

quence or chromatin structure. A comparative examination of functional, structural and evo-

lutionary features of genes located at hotspots and coldspots of recombination will likely 

provide an answer to this question and help elucidating the history of current genomes. 

In theory, preserving certain combinations of gene variants could be evolutionary ad-

vantageous if, for example, they share a strong positive interaction for fitness (Peters and 

Lively, 2000). More generally, tight linkage between genes sharing a common biological 

function would prevent recombination from combining mutations arising independently in 

each gene, thus precluding potential deleterious effects. Supporting this hypothesis, yeast 

genes located closely on the same chromosome (but not necessarily adjacent to one another) 

tend to show similar expression profiles throughout the cell cycle, suggesting a common reg-

ulatory mechanism (Cohen et al., 2000). Several other studies have reported similar non-

random distributions of functionally related genes within yeast, worm and human genomes 

(Nei, 2003; Michalak, 2008). However, the degree to which functional clustering relates to 

frequency of meiotic recombination is still unclear.  



Chapter 5 – Conclusions, discussion & future directions 

 

181 

A preliminary analysis of the genome-wide genetic linkage map for S. cerevisiae, pre-

sented in Chapter 4, indicates that linked gene pairs share co-annotation to the same Gene 

Ontology term as often as gene pairs segregating independently, thus suggesting that linkage 

does not correlate with co-function (A. Baryshnikova, unpublished data). However, an anno-

tation-based approach in the analysis of co-segregating gene pairs bears several limitations 

that may hinder our ability to detect a strong relationship. First, an annotation bias against 

closely located gene pairs is not unexpected, given the experimental challenges associated 

with the investigation of their relationships (Chapter 4.4). Second, phenotypic analyses of 

closely located mutants might be affected by the so-called neighboring-gene effect, where the 

phenotype of a deletion mutant strain reflects the combined biological consequence of both 

inactivating the gene of interest and perturbing its neighbors (Baryshnikova and Andrews, 

2012; Ben-Shitrit et al., 2012). As a result, the assessment of functional relationships be-

tween linked gene pairs must be carried out using annotation-independent and possibly dele-

tion-independent approaches. For example, it must be determined how often linked gene 

pairs share direct protein-protein interactions or belong to the same protein complex, whether 

they are similarly expressed in response to the same chemical and environmental stimuli, and 

whether their protein abundances are comparable.  

Selection for a reduced recombination frequency within certain genomic regions may 

also be unrelated from gene function. Homologous recombination is a potentially mutagenic 

mechanism and is normally suppressed whenever its consequences might be particularly del-

eterious (San Filippo et al., 2008). For example, recombination rarely occurs within highly 

repetitive genomic regions, such as telomeres and the ribosomal DNA locus (Chapter 4.2), to 



Chapter 5 – Conclusions, discussion & future directions 

 

182 

prevent substantial chromosomal rearrangements. Moreover, yeast essential genes tend to 

cluster away from double-strand breaks (DSB) which initiate meiotic recombination (Pal and 

Hurst, 2003), suggesting that DSB repair involving essential gene sequences may cause le-

thality. Pal and Hurst (2003) suggested that, if mutagenic risk is the cause of essential gene 

clustering, silent substitutions should be particularly rare in regions of low recombination, a 

hypothesis that can be tested by examining the sequences of S. cerevisiae close relatives. 

High quality genomes of at least three Saccharomyces sensu stric-

to yeasts (S. bayanus, S. kudriavzevii and S. mikatae) have been assembled recently (Scannell 

et al., 2011), thus enabling the assessment of substitution rates in proximity of essential 

genes. 

The preservation of linkage may also be unrelated from selection mechanisms and be 

simply the result of a random distribution of recombination hotspots, determined by local 

properties of DNA sequence or chromatin configuration. In this case, linked gene pairs will 

not display any functional relationship, but may share a number of additional features reflect-

ing their common history. For example, linked gene pairs would be more likely to be con-

served in other species, both in terms of their sequence and relative ordering. The evolution 

rates of linked genes would be expected to be comparable, as would be the frequencies of 

gain or loss of additional gene copies. Because of the availability of many sequenced ge-

nomes, we can now test these hypotheses and elucidate the contribution of meiotic recombi-

nation to the evolution of eukaryotic genomes.  
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5.4 Mechanisms of recombination inhibition within 
pericentric regions 

Genetic linkage surrounding yeast centromeres is especially interesting because its ex-

tent appears to be proportional to chromosome length (Chapter 4.7). Centromeres play an es-

sential role during meiotic division and are responsible for the correct segregation of homol-

ogous chromosomes (Brar and Amon, 2008). Centromeres associate with complex protein 

structures, which mediate the attachment of spindle microtubules and assist the timely sepa-

ration of homologous chromosomes and sister chromatids (Chapter 4.2). It may not be sur-

prising that larger chromosomes require larger protein structures for segregation; however, 

our knowledge of chromosome-size related meiotic mechanisms is quite limited and experi-

mental validation is necessary to confirm this hypothesis. 

One potential explanation for the chromosome-size dependent inhibition of recombina-

tion around the centromeres is the formation of chromosomal loops, extending towards the 

cell poles in response to the tension generated by the spindle microtubules (Chapter 4.7). A 

number of experimental tests can be performed to validate this hypothesis. First, a fluores-

cently marked histone H3 variant, as well as other centromere-specific proteins (Chen et al., 

2000; Goshima and Yanagida, 2000; Pearson et al., 2001), can be used to assess whether the 

distance between homologous centromeres oscillates at the metaphase I-anaphase I transition, 

similarly to the oscillation of sister centromeres prior to mitotic anaphase (Yeh et al., 2008). 

At meiosis I, sister kinetochores show monopolar attachment to the same spindle pole and are 

not under tension. Therefore, intracellular fluorescent signal should localize to one or two 

defined spots, depending on the relative distance between homologous centromeres. In addi-
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tion, repeated arrays of specific protein binding sequences can be inserted into the yeast ge-

nome to examine oscillation amplitude at varying distances from the centromere. For exam-

ple, introduction of the E. coli lac operator (lacO) enabled monitoring of lac repressor (lacR)-

GFP localization to various chromosomal domains during mitotic division (Straight et al., 

1997; Goshima and Yanagida, 2000; He et al., 2000; Tanaka et al., 2000; Pearson et al., 

2001). Similarly, tetO and tetR-GFP constructs have been used to map sister kinetochore bi-

orientation during mitosis (Tanaka et al., 2002). The simultaneous use of two constructs with 

two different fluorescent markers, for example, by mating a strain carrying lacO/lacR-GFP 

construct and a strain carrying tetO/tetR-RFP construct, will allow to observe the dynamics 

of the two homologous centromeres and their flanking regions relative to one another. The 

insertion of these constructs into pericentric regions of small and large chromosomes will 

help determining whether chromosome length affects the degree to which centromeres extend 

towards the cell poles during metaphase I-anaphase I transition, and thus will provide a po-

tential explanation for the chromosome size-dependent genetic linkage variation we observe 

in SGA data.  

The relationship between chromosome size and pericentric linkage could also be the re-

sult of a centromere-specific distribution of recombination proteins and their regulators, 

which determine the number of crossover events occurring within a given genomic region. In 

yeast, about 150 DSBs are generated during each meiosis, but only ~20 are resolved as 

crossovers (Hyppa and Smith, 2010), suggesting that a regulatory mechanism directs most 

DSBs towards alternative repair pathways. One of the factors determining the fate of a DSB 

could be its physical location, intrinsically associated with local chromatin structure and 
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availability of recombination effectors. It is possible, for example, that recombination pro-

teins bind DNA at a much lower frequency within pericentric regions than anywhere else in 

the genome and thus Spo11-mediated DSBs, which occur at a relatively normal rate up to 8–

20 kb from the centromere (Gerton et al., 2000; Borde et al., 2004; Buhler et al., 2007), can-

not be resolved via a crossover mechanism. To investigate this hypothesis, we must compare 

our linkage map to the genome-wide distribution of recombination protein binding sites that 

can be systematically obtained using chromatin immunoprecipitation (ChIP) coupled with 

microarray hybridization or high-throughput sequencing (Park, 2009).  

Among the first candidates for localization mapping is Dmc1, the meiosis-specific Re-

cA homolog that binds ssDNA and initiates strand invasion (Krejci et al., 2012). Dmc1 is an 

essential component of the inter-homolog crossover process and, when mutated, causes a 

dramatic reduction of recombination intermediates and spore inviability (Krejci et al., 2012). 

The function of Dmc1 is assisted by several auxiliary proteins, such as the Mei5-Sae3 com-

plex, required for Dmc1 recruitment and loading, and the Hop2-Mnd1 complex, which stabi-

lizes Dmc1-filaments and promotes strand invasion and D-loop formation (Krejci et al., 

2012). Mapping the location of these and other meiosis-specific recombination effectors will 

be invaluable for understanding the non-random distribution of recombination events, partic-

ularly near centromeres. 

Another important component of the meiotic recombination process is the synap-

tonemal complex (SC), a large protein structure that mediates inter-homolog pairing during 

meiotic prophase (Lynn et al., 2007). Members of the SC include Hop1, Red1, Zip1, Zip2, 

Zip3 and Mek1 (Rockmill and Roeder, 1988; Hollingsworth et al., 1990; Sym et al., 1993; 
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Chua and Roeder, 1998; Agarwal and Roeder, 2000). Zip1, in particular, has been associated 

with regulating recombination around centromeres: in a zip1Δ mutant, pericentric repression 

of recombination is entirely abolished, while frequency of DSBs is unaltered (Sym and 

Roeder, 1994), thus suggesting that Zip1 normally channels pericentric DSBs into a different 

resolution pathway. The genome-wide localization of Zip1, together with other SC compo-

nents Hop1 and Red1, has been recently made available via a large-scale ChIP-chip experi-

ment (Panizza et al., 2011), thus enabling the analysis of the dataset in relation to our genetic 

linkage data. 

5.5 Conclusions 

The awesome power of yeast genetics remains the leading force for understanding the 

inner workings of a simple eukaryotic cell and charting the general rules governing the life of 

other organisms. In this Thesis, I have shown that systematic genetic approaches, coupled 

with rigorous data processing, provide a formidable tool for exploring the functional organi-

zation of a living cell and generate information-rich datasets that will be revealing countless 

layers of novel biology for the next several years. Our results have set up the stage for nu-

merous follow-up experiments, several of which are already under way and promise to 

achieve higher levels of speed, throughput and functional content than possible ever before. 

These data will provide us with a wider and deeper understanding of eukaryotic organisms, 

including humans. 
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6 Appendix 

6.1 Theoretical evidence for adopting the multiplicative 
model of genetic interactions for fitness 

It is not always clear which model of genetic interactions (additive or multiplicative) is 

the most appropriate for a particular phenotype. In case of fitness, there is a theoretical reason 

for adopting the multiplicative model: linkage disequilibrium will not arise in a population at 

equilibrium if genes are independent under the multiplicative model. 

Linkage disequilibrium is defined as the non-random association of alleles at two or 

more loci in a population. Given a two-locus two-allele model, the population is in linkage 

equilibrium when the frequencies of the four genotypes (A1B1, A1B2, A2B1 and A2B2) equal to 

the products of the frequencies of the relative alleles. 

f A1B1( ) = pA pB
f A1B2( ) = pA 1− pB( )
f A2B1( ) = 1− pA( ) pB
f A2B2( ) = 1− pA( ) 1− pB( )

 

where pA and pB are the frequencies of the alleles A1 and B1, respectively. 

Following Lewontin and Kojima (Lewontin and Kojima, 1960), deviations from equi-

librium are usually measured by the coefficient of linkage disequilibrium D: 

D = f A1B1( ) f A2B2( )− f A1B2( ) f A2B1( )  
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The frequencies of the four genotypes can then be expressed as a function of the fre-

quencies of the individual alleles and D: 

f A1B1( ) = pA pB + D
f A1B2( ) = pA 1− pB( )− D
f A2B1( ) = 1− pA( ) pB − D
f A2B2( ) = 1− pA( ) 1− pB( ) + D

 

To provide theoretical evidence in favor of the multiplicative model of genetic 

interactions for fitness, we can calculate the linkage disequilibrium coefficient ′D  in a 

population after one round of selection and show that, if the population was originally at 

equilibrium (D = 0), it will stay so after selection ( ′D = 0 ) only if allele fitness defects 

combine multiplicatively.  

After selection, the frequency of each genotype equals the product of its frequency be-

fore selection times its relative fitness, which equals its genotypic fitness divided by the mean 

population fitness, W. Assuming an additive model of genetic interactions, the fitness and the 

relative frequency of each genotype can be expressed as follows: 

Genotype Fitness (addi-
tive) 

Genotype frequency 
before selection Genotype frequency after selection 

A1B1  1 pA pB + D  pA pB + D( ) 1
W

 

A1B2  1− t  pA 1− pB( )− D  pA 1− pB( )− D⎡⎣ ⎤⎦
1− t
W

 

A2B1  1− s  1− pA( ) pB − D  1− pA( ) pB − D⎡⎣ ⎤⎦
1− s
W

 

A2B2  1− t − s  1− pA( ) 1− pB( ) + D  1− pA( ) 1− pB( ) + D⎡⎣ ⎤⎦
1− t − s
W
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The coefficient of linkage disequilibrium ′D  can be computed as: 

′D = 1
W

pApB + D( )1− t − s
W

1− pA( ) 1− pB( ) + D⎡⎣ ⎤⎦ −
1− t
W

1− s
W

pA 1− pB( )− D⎡⎣ ⎤⎦ pB 1− pA( )− D⎡⎣ ⎤⎦

′D = − 1
W 2 ts pA 1− pB( )− D⎡⎣ ⎤⎦ pB 1− pA( )− D⎡⎣ ⎤⎦ + 1− t − s( ) D − 2D2 − 2pA pBD( ){ }

 

When the initial population is in linkage equilibrium (D = 0), ′D  simplifies to: 

′D = − 1
W 2 pA pB 1− pA( ) 1− pB( )ts  

Under the assumption of a multiplicative model of genetic interactions, the fitness and 

the relative frequency of each genotype will follow the following rules: 

Genotype Fitness (multipli-
cative) 

Genotype frequency before 
selection 

Genotype frequency after selection 

A1B1  1 pA pB + D  pA pB + D( ) 1
W

 

A1B2  1− t  pA 1− pB( )− D  pA 1− pB( )− D⎡⎣ ⎤⎦
1− t
W

 

A2B1  1− s  1− pA( ) pB − D  1− pA( ) pB − D⎡⎣ ⎤⎦
1− s
W

 

A2B2  1− t( ) 1− s( )  1− pA( ) 1− pB( ) + D  1− pA( ) 1− pB( ) + D⎡⎣ ⎤⎦
1− t( ) 1− s( )

W
 

The coefficient of linkage disequilibrium ′D  can be computed as: 

′D = 1
W

pApB + D( ) 1− t( ) 1− s( )
W

1− pA( ) 1− pB( ) + D⎡⎣ ⎤⎦ −
1− t
W

1− s
W

pA 1− pB( )− D⎡⎣ ⎤⎦ pB 1− pA( )− D⎡⎣ ⎤⎦

′D =
1− t( ) 1− s( )

W 2 D
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Therefore, if the population is initially in linkage equilibrium (D = 0), it will remain so 

( ′D  = 0) despite selection, under the assumption of the multiplicative (but not additive) mod-

el of genetic interactions.  
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