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Abstract

Motivation: The explosive increase of biomedical literature has made information extraction an
increasingly important tool for biomedical research. A fundamental task is the recognition of biomedical
named entities in text (BNER) such as genes/proteins, diseases, and species. Recently, a domain-
independent method based on deep learning and statistical word embeddings, called long short-term
memory network-conditional random field (LSTM-CRF), has been shown to outperform state-of-the-
art entity-specific BNER tools. However, this method is dependent on gold-standard corpora (GSCs)
consisting of hand-labeled entities, which tend to be small but highly reliable. An alternative to GSCs are
silver-standard corpora (SSCs), which are generated by harmonizing the annotations made by several
automatic annotation systems. SSCs typically contain more noise than GSCs but have the advantage of
containing many more training examples. Ideally, these corpora could be combined to achieve the benefits
of both, which is an opportunity for transfer learning. In this work, we analyze to what extent transfer
learning improves upon state-of-the-art results for BNER.

Results: We demonstrate that transferring a deep neural network (DNN) trained on a large, noisy SSC to
a smaller, but more reliable GSC significantly improves upon state-of-the-art results for BNER. Compared
to a state-of-the-art baseline evaluated on 23 GSCs covering four different entity classes, transfer learning
results in an average reduction in error of approximately 11%. We found transfer learning to be especially
beneficial for target data sets with a small number of labels (approximately 6000 or less).

Availability and implementation: Source code for the LSTM-CRF is available at
https://github.com/Franck-Dernoncourt/NeuroNER/ and links to the corpora are available at
https://github.com/BaderLab/Transfer-Learning-BNER-Bioinformatics-2018/.

Contact: john.giorgi@utoronto.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction structured information from this growing amount of raw text for use
in computational data analysis. Text-mining has already proven useful
for many types of large-scale biomedical data analysis, such as network
biology (Zhou et al., 2014; Al-Aamri et al., 2017), gene prioritization
(Aerts et al., 2006), drug repositioning (Wang and Zhang, 2013; Rastegar-

The large quantity of biological information deposited in literature
every day leads to information overload for biomedical researchers.
In 2016 alone, there were 869,666 citations indexed in MEDLINE

(https://www.nlm.nih.gov/bsd/index_stats_comp.html), which is greater
Mojarad et al., 2015), and the creation of curated databases (Li et al.,

2015). A fundamental task in biomedical information extraction is the
recognition of biomedical named entities in text (biomedical named entity

than one paper per minute. Ideally, efficient, accurate text-mining and
information extraction tools and methods could be used to help unlock

recognition, BNER) such as genes and
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gene products, diseases, and species. Biomedical named entities have
several characteristics that make their recognition in text particularly
challenging (Campos et al., 2012), including the sharing of head nouns
(e.g. "91 and 84 kDa proteins" refers to "91 kDa protein" and "84 kDa
protein"), several spelling forms per entity (e.g. "N-acetylcysteine", "N-
acetyl-cysteine", and "NAcetylCysteine") and ambiguous abbreviations
(e.g. "TCF" may refer to "T cell factor" or to "Tissue Culture Fluid").
Until recently, state-of-the-art BNER tools have relied on hand-crafted
features to capture the characteristics of different entity classes. This
process of feature engineering, i.e. finding the set of features that best helps
discern entities of a specific type from other tokens (or other entity classes),
incurs extensive trial-and-error experiments. On top of this costly process,
high-quality BNER tools typically employ entity-specific modules, such
as whitelist and blacklist dictionaries, which are difficult to build and
maintain. Defining these steps currently takes the majority of time and
cost when developing BNER tools (Leser and Hakenberg, 2005) and
leads to highly specialized solutions that cannot be ported to domains
(or even entity types) other than the ones they were designed for. Very
recently, however, a domain-independent method based on deep learning
and statistical word embeddings, called long short-term memory network-
conditional random field (LSTM-CRF), has been shown to outperform
state-of-the-art entity-specific BNER tools (Habibi et al., 2017). However,
supervised, deep neural network (DNN) based approaches to BNER
depend on large amounts of high quality, manually annotated data in the
form of gold standard corpora (GSCs). The creation of a GSC is laborious:
annotation guidelines must be established, domain experts must be trained,
the annotation process is time-consuming and annotation disagreements
must be resolved. As a consequence, GSCs in the biomedical domain tend
to be small and focus on specific subdomains.

Silver-standard corpora (SSCs) represent an alternative that tend to be
much larger, but of lower quality. SSCs are generated by using multiple,
existing named entity taggers to annotate a large, unlabeled corpus. The
heterogeneous results are automatically integrated, yielding a consensus-
based, machine-generated ground truth. Compared to the generation of
GSCs, this procedure is inexpensive, fast, and results in very large training
datasets. The Collaborative Annotation of a Large Biomedical Corpus
(CALBC) project sought to replace GSCs with SSCs, which would be
much larger, more broadly scoped and more diversely annotated (Rebholz-
Schuhmann et al., 2010). However, Chowdhury and Lavelli (2011) found
that a gene name recognition system trained on an initial version of the
CALBC SSC performed worse than when trained on a BioCreative GSC.
While SSCs have not proven to be viable replacements for GSCs, at least
for the task of BNER, they do have the advantage of containing many
more training examples (often in excess of 100 times more). This presents
a unique transfer learning opportunity.

Transfer learning aims to perform a task on a "target" dataset using
knowledge learned from a "source" dataset (Pan and Yang, 2010; Li, 2012;
Weiss et al., 2016). For DNNG, transfer learning is typically implemented
by using some or all of the learned parameters of a DNN pre-trained
on a source dataset to initialize training for a second DNN to be trained
on a target dataset. Ideally, transfer learning improves generalization of
the model, reduces training times on the target dataset, and reduces the
amount of labeled data needed to obtain high performance. The idea
has been successfully applied to many fields, such as speech recognition
(Wang and Zheng, 2015), finance (Stamate et al., 2015) and computer
vision (Zeiler and Fergus, 2013; Yosinski et al., 2014; Oquab et al.,
2014). Despite its popularity, few studies have been performed on transfer
learning for DNN-based models in the field of natural language processing
(NLP). For example, Mou et al. (2016) focused on transfer learning with
convolutional neural networks (CNN) for sentence classification. To the
best of our knowledge, there exists only one study which has analyzed
transfer learning for DNN-based models in the context of NER (Lee et al.,

2017), and no study which has analyzed transfer learning for DNN-based
approaches to BNER.

In this work, we analyze to what extent transfer learning on a source
SSC to a target GSC improves performance on GSCs covering four
different biomedical entity classes: chemicals, diseases, species and
genes/proteins. We also identify the nature of these improvements and
the scenarios where transfer learning offers the biggest advantages. The
primary motivation for transfer learning from a SSC to a GSC is that
we are able to expose the DNN to a large number of training examples
(from the SSC) while minimizing the impact of noise in the SSC on model
performance by also training on the GSC.

2 Materials and methods

The following sections present a technical explanation of the DNN
architecture used in this study and in prior work (Habibi et al., 2017).
We first briefly describe LSTM, a specific kind of DNN, and then discuss
the architecture of the hybrid LSTM-CRF model. We also describe the
corpora used for evaluation and details regarding text pre-processing and
evaluation metrics.

2.1 LSTM-CRF

Recurrent neural networks (RNNs) are popular for sequence labeling
tasks, due to their ability to use previous information in a sequence for
processing of current input. Although RNNs can, in theory, learn long-
range dependencies, they fail to do so in practice and tend to be biased
towards their most recent inputs in the sequence (Bengio et al., 1994).
An LSTM is a specific RNN architecture which mitigates this issue by
keeping a memory cell that serves as a summary of the preceding elements
of an input sequence and is able to model dependencies between sequence
elements even if they are far apart (Hochreiter and Schmidhuber, 1997).
The inputto an LSTM unitis a sequence of vectors x1, z2, ..., 1 of length
T, for which it produces an output sequence of vectors hi, ha,...hp of
equal length by applying a non-linear transformation learned during the
training phase. Each h; is called the activation of the LSTM at token ¢,
where a token is an instance of a sequence of characters in a document that
are grouped together as a useful semantic unit for processing. The formula
to compute one activation of an LSTM unit in the LSTM-CRF model is
provided below (Lample et al., 2016):

it = o(Waime + Whihe—1 + Wejep—1 + ;)
ct = (1 —it) @ ce—1 + it © tanh(Wyezt + Whehi—1 + be)
ot = o(Waomt + Whoht—1 + Weoct + bo)
hit = ot © tanh(ct)

where all W's and bs are trainable parameters, o(-) and tanh(-) denote
the element-wise sigmoid and hyperbolic tangent activation functions, and
© is the element-wise product. Such an LSTM-layer processes the input
in one direction and thus can only encode dependencies on elements that
came earlier in the sequence. As aremedy for this problem, another LSTM-
layer which processes input in the reverse direction is commonly used,
which allows detecting dependencies on elements later in the text. The
resulting DNN is called a bi-directional LSTM (Graves and Schmidhuber,
2005). The representation of a word using this model is obtained by
concatenating its left and right context representations, hy = [h¢; he].
These representations effectively encode a representation of a word in
context. Finally, a sequential conditional random field (Lafferty et al.,
2001) receives as input the scores output by the bi-directional LSTM to
jointly model tagging decisions. LSTM-CRF (Lample et al., 2016) is a
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Fig. 1. Architecture of the hybrid long short-term memory network-conditional random
field (LSTM-CRF) model for named entity recognition (NER). Here, z; is the itP token
in the input sequence, x;; is the jth character of the 4*" token, £() is the number of
characters in the it token and e; is the character-enhanced token embedding of the it
token. For transfer learning experiments, we train the parameters of the model on a source
dataset, and transfer all of the parameters to initialize the model for training on a target
dataset.

domain-independent NER method which does not rely on any language-
specific knowledge or resources, such as dictionaries. In this study, we
used NeuroNER (Dernoncourt et al., 2017b), a named entity recognizer
based on a bi-directional LSTM-CREF architecture. The major components
of the LSTM-CRF model for sequence tagging are described below:

1. Token embedding layer maps each token in the input sequence to a
token embedding.

2. Character embedding layer maps each character in the input
sequence to a character embedding.

3. Character Bi-LSTM layer takes as input character embeddings and
outputs a single, character-level representation vector that summarizes
the information from the sequence of characters in the corresponding
token.

4. Token Bi-LSTM layer takes as input a sequence of character-
enhanced token vectors, which are formed by concatenating the
outputs of the token embedding layer and the character Bi-LSTM
layer.

5. Label prediction layer using a fully-connected neural network, maps
the output from the token Bi-LSTM layer to a sequence of vectors
containing the probability of each label for each corresponding token.

6. Label sequence optimization layer using a CRF, outputs the
most likely sequence of predicted labels based on the sequence of
probability vectors from the previous layer.

Figure 1 illustrates the DNN architecture. All layers of the network are
learned jointly. A detailed description of the architecture is explained in
Dernoncourt et al. (2017a).

2.1.1 Training

The network was trained using the back-propagation algorithm to update
the parameters on every training example, one at a time, using stochastic
gradient descent. For regularization, dropout was applied before the token
Bi-LSTM layer, and early stopping was used on the validation set with a
patience of 10 epochs, i.e., the model stopped training if performance did
not improve on the validation set for 10 consecutive epochs. While training
on the source datasets, the learning rate was set to 0.0005, gradient clipping
to 5.0 and the dropout rate to 0.8. These hyperparameters were chosen to
discourage convergence of the network on the source dataset, such that
further learning could occur on the target dataset. While training on the
target datasets, the learning rate was increased to 0.005, and the dropout
rate lowered to 0.5. These are the default hyperparameters of NeuroNER
and give good performance on most NER tasks. Additionally, Lample et al.
(2016) showed a dropout rate of 0.5 to be optimal for the task of NER.

2.2 Gold standard corpora

We performed our evaluations on four entity types: chemicals, diseases,
species and genes/proteins. We used 23 datasets (i.e., GSCs), each
containing hand-labeled annotations for one of these entity types, such
as the "CDR" corpus for chemicals (Li et al., 2016), "NCBI Disease"
for disease names (Dogan et al., 2014), "S800" for species (Pafilis et al.,
2013) and "DECA" for genes/proteins (Wang et al., 2010). Table 1 lists
all corpora and their characteristics, like the number of sentences, tokens
and annotated entities per entity class (measured after text pre-processing
as described in Section 2.6).

2.3 Silver standard corpora

We collected 50,000 abstracts (from a total of 174,999) at random from
the CALBC-SSC-III-Small corpus (Kafkas et al., 2012) for each of the
four entity types it annotates: chemicals and drugs (CHED), diseases
(DISO), living beings (LIVB), and, genes/proteins (PRGE). These SSCs
served as the source datasets for each transfer learning experiment we
performed. For each SSC, any document that appeared in at least one of the
GSCs annotated for the same entity type was excluded to avoid possible
circularity in performance testing (e.g., if a document with PubMed ID
130845 was found in a GSC annotated for genes/proteins, it was excluded
from the PRGE SSC). In an effort to reduce noise in the SSCs, a selection
of entities present but not annotated in any of the GSCs of the same entity
type were removed from the SSCs. For example, certain text spans such
proteins”, and "animals" are annotated in the SSCs but not
annotated in any of the GSCs of the same entity type, and so were removed

"o

as "genes",
from the SSCs (see Supplementary Material).

2.4 Word embeddings

We utilized statistical word embedding techniques to capture functional
(i.e., semantic and syntactic) similarity of words based on their surrounding
words. Word embeddings are pre-trained using large unlabeled datasets
typically based on token co-occurrences (Collobert et al., 2011; Mikolov
et al., 2013; Pennington et al., 2014). The learned vectors, or word
embeddings, encode many linguistic regularities and patterns, some of
which can be represented as linear translations. In the canonical example,
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the resulting vector for vec("king") — vec("man") + vec("woman") is
closest to the vector associated with "queen", i.e., vec("queen"). We
used the Wiki-PubMed-PMC model, trained on a combination of PubMed
abstracts (nearly 23 million abstracts) and PubMedCentral (PMC) articles
(nearly 700,000 full-text articles) plus approximately four million English
Wikipedia articles, and therefore mixes domain-specific texts with domain-
independent ones. The model was created by Pyysalo et al. (2013) using
Google’s word2vec (Mikolov et al., 2013). We chose this model to be
consistent with Habibi et al., 2017, who showed it to be optimal for the
task of BNER and who we compare to.

2.5 Character embeddings

The token-based word embeddings introduced above effectively capture
distributional similarities of words (where does the word tend to
occur in a corpus?) but are less effective at capturing orthographic
similarities (what does the word look like?). In addition, token-based word
embeddings cannot account for out-of-vocabulary tokens and misspellings.
Character-based word representation models (Ling et al., 2015) offer
a solution to these problems by using each individual character of a
token to generate the token vector representation. Character-based word
embeddings encode sub-token patterns such as morphemes (e.g. suffixes
and prefixes), morphological inflections (e.g. number and tense) and
other information not contained in the token-based word embeddings.
The LSTM-CREF architecture used in this study combines character-based
word representations with token-based word representations, allowing the
model to learn distributional and orthographic features of words. Character
embeddings are initialized randomly and learned jointly with the other
parameters of the DNN.

2.6 Text pre-processing

All corpora were first converted to the Brat standoff format
(http://brat.nlplab.org/standoff.html). In this format, annotations are stored
separately from the annotated document text. Thus, for each text document
in the corpus, there is a corresponding annotation file. The two files are
associated by the file naming convention that their base name (file name
without suffix) is the same. All annotations follow the same basic structure:
each line contains one annotation, and each annotation has an identifier
that appears first on the line, separated from the rest of the annotation by
a single tab character.

2.7 Evaluation metrics

We randomly divided each GSC into three disjoint subsets. 60% of the
samples were used for training, 10% as the development set for the training
of methods, and 30% for the final evaluation. We compared all methods
in terms of precision, recall, and Fl-score on the test sets. Precision
is computed as the percentage of predicted labels that are gold labels
(i.e., labels that appear in the GSC), recall as the percentage of gold
labels that are correctly predicted, and Fl-score as the harmonic mean
of precision and recall. A predicted label is considered correct if and only
if it exactly matches a gold label. NeuroNER uses the conlleval script
from the CoNLL-2000 shared task to compute all performance metrics
(https://www.clips.uantwerpen.be/conl12000/chunking/output.html).

For a single performance metric across all corpora, we compute the
average percent reduction in error, which in our case is the average
reduction in Fl-score error due to transfer learning (TL) relative to the
baseline:

FlrL — Flpaseline
100 — Flpaseline

* 100

Table 2. Macro-averaged performance values in terms of precision, recall and Fl-score
for baseline (B) and transfer learning (TL) over the corpora per each entity type. Baseline
values are derived from training on the target dataset only, while transfer learning values
are derived by training on the source dataset followed by training on the target dataset. The
macro average is computed by averaging the performance scores obtained by the classifiers

for each corpus of a given entity class. Bold: best scores.

Precision (%) Recall (%) F1-score (%)

B TL B TL B TL
Chemicals 87.10 87.05 89.19 8947 88.08 88.21
Diseases 80.41 8141 81.13 8246 80.73  82.09
Species 84.18 8452 8444 90.12 8420 87.01

Genes/proteins  82.09  83.38  80.85 83.08 81.20 83.09

3 Results

We assessed the effect of transfer learning on the performance of a
state-of-the-art method for BNER (LSTM-CRF) on 23 different datasets
covering four different types of biomedical entity classes. We applied
transfer learning by training all parameters of the DNN on a source dataset
(CALBC-SSC-III) for a particular entity type (e.g. genes/proteins) and
used the same DNN to retrain on a target dataset (i.e. a GSC) of the same
entity type. Results were compared to training the model only on the target
dataset using the same word embeddings (baseline).

3.1 Quantifying the impact of transfer learning

In this experiment, we determine whether transfer learning improves on
state-of-the-art results for BNER. Table 2 compares the macro-averaged
performance metrics of the model trained only on the target dataset (i.e., the
baseline) against the model trained on the source dataset followed by the
target dataset for 23 evaluation sets; exact precision, recall and F1-scores
are given in Appendix A. Transfer learning improves the average F1-scores
over the baseline for each of the four entity classes, leading to an average
reduction in error of 11.28% across the GSCs. On corpora annotated
for diseases, species, and genes/proteins, transfer learning (on average)
improved both precision and recall, leading to sizable improvements in F1-
score. For corpora annotated for chemicals, transfer learning (on average)
slightly increased recall at the cost of precision for a small increase in F1-
score. More generally, transfer learning appears to be especially effective
on corpora with a small number of labels. For example, transfer learning
led to a 9.69% improvement in F1-score on the test set of the CellFinder
corpus annotated for genes/proteins — the eighth smallest corpus overall
by number of labels. Conversely, the only GSC for which transfer learning
worsened the performance compared to the baseline was the BioSemantics
corpora, the largest GSC used in this study.

3.2 Learning curve for select evaluation sets

Figure 2 compares learning curves for the baseline model against the model
trained with transfer learning on select GSCs, one for each entity class. The
number of training examples used as the target training set is reported as a
percent of the overall GSC size (e.g., for a GSC of 100 documents, a target
train set size of 60% corresponds to 60 documents). The performance
improvement due to transfer learning is especially pronounced when a
small number of labels are used as the target training set. For example,
on the miRNA corpus annotated for diseases, performing transfer learning
and using 10% of examples as the train set leads to similar performance
as using approximately 28% of examples as the train set when not using
transfer learning. The performance gains from transfer learning diminish
as the number of training examples used for the target training set increases.
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Fig. 4. Venn diagrams demonstrating the area of overlap among the true-positive (TP),
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false-negative (FN), and false-positive (FP) sets of the baseline (B) and transfer learning

(TL) methods per entity class.
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These results suggest that transfer learning is especially beneficial for
datasets with a small number of labels. Figure 3 more precisely captures
this trend. Large improvements in F1-score are observed for corpora with
up to approximately 6000 total annotations, with improvement quickly
tailing off afterward. Indeed, all corpora for which transfer learning led
to a statistically significant (p < 0.05) improvement in Fl-score have
6000 annotations or less (see Appendix A). Therefore, it appears that
the expected performance improvements derived from transfer learning
are largest when the number of annotations in the target dataset is
approximately 6000 or less.

3.3 Error analysis

We compared the errors made by the baseline and transfer learning
classifiers by computing intersections of true-positives (TPs), false-
negatives (FNs) and false-positives (FPs) per entity type (Figure 4).
In general, there is broad agreement for baseline and transfer learning
classifiers, especially for TPs, with different strengths per entity type. For
diseases, transfer learning has a negligible impact on the number of TPs
and FNs but leads to a sizable decrease in the number of FPs, thereby
increasing precision. For species and genes/proteins, transfer learning
decreases the number of FNs but increases the number of FPs and TPs —
trading precision for recall. Interestingly, the pattern of TPs, FPs, and FNs
for chemical entities appears to disagree with the pattern in performance
metrics observed at the macro-level (Table 2). However, because the
decrease in FPs and TPs is roughly equal in magnitude to the increase
in FNs, the net effect is the nearly identical performance metrics of the
baseline and transfer learning method for chemical entities that we observe
at the macro-level.

4 Discussion

In this study, we demonstrated that transfer learning from large SSCs
(source) to smaller GSCs (target) improves performance over training
solely on the GSCs for BNER. This is the first study of the effect of transfer
learning for BNER. On average, transfer learning leads to improvements
in Fl-score over a state-of-the-art baseline, especially for smaller GSCs,
though the nature and degree of these improvements vary per entity type
(Table 2).

The effect of transfer learning is most pronounced when the target
train set size is small, with improvements diminishing as the training
set size grows (Figure 2). Significant improvements in performance were
observed only for corpora with 6000 total annotations or less (Figure 3).
We conclude that the representations learned from the source dataset are
effectively transferred and exploited for the target dataset; when transfer
learning is adopted, fewer annotations are needed to achieve the same
level of performance as when the source dataset is not used. Thus, our
results suggest that researchers and text-mining practitioners can make
use of transfer learning to reduce the number of hand-labeled annotations
necessary to obtain high performance for BNER. We also suggest that
transfer learning is likely to be a valuable tool for existing GSCs with a
small number of labels.

Transfer learning had little impact on performance for chemical GSCs.
This is likely explained by the much larger size of these corpora, which
have a median number of annotations ten times that of the next largest set of
corpora (diseases). We suspect that relatively large corpora contain enough
training examples for the model to generalize well, in which case we
would not expect transfer learning to improve model performance. Indeed,
the largest corpora in our study, the BioSemantics corpora (annotated
for chemical entities), was the only corpora for which transfer learning
worsened performance over the baseline. With 386,110 total annotations
(almost double the sum total of annotations in the remaining 22 GSCs) the

BioSemantics corpus is an extreme outlier. To create such a large GSC,
documents were first pre-annotated and made available to four independent
annotator groups each consisting of two to ten annotators (Akhondi et al.,
2014). This is a much larger annotation effort than usual and is not realistic
for the creation of typical GSCs in most contexts. Another possibility is
that chemical entities are easier to identify in text.

BNER has recently made substantial advances in performance with
the application of deep learning (Habibi e al., 2017). We show that
transfer learning is a valuable addition to this method. However, there
are opportunities to further optimize this approach, for instance, by
determining the optimal size of the source dataset, developing robust
methods of filtering noise from the source dataset, and extensive
hyperparameter tuning (Young et al., 2015; Reimers and Gurevych, 2017).

4.1 Related work

Lee et al. (2017) performed a similar set of experiments, transferring an
LSTM-CREF based NER model from a large labeled dataset to a smaller
dataset for the task of de-identification of protected health information
(PHI) from electronic health records (EHR). It was demonstrated that
transfer learning improves the performance over state-of-the-art results,
and may be especially beneficial for a target dataset with a small number
of labels. Our results confirm these findings in the context of BNER. The
study also explored the importance of each layer of the DNN in transfer
learning. They found that transferring a few lower layers is almost as
efficient as transferring all layers, which supports the common hypothesis
that higher layers of DNN architectures contain the parameters that are
more specific to the task and dataset used for training. We performed a
similar experiment (see Supplementary Figure 1) with similar results.

A recent study has sought to adopt multi-task learning for the task
of BNER (Crichton et al., 2017). While transfer learning and multi-task
learning are different, they are both forms of inductive transfer that are
often employed for similar reasons. At a high-level, multi-task learning
(Caruana, 1993) is a machine learning method in which multiple learning
tasks are solved at the same time. This is in contrast to transfer learning,
where we typically transfer some knowledge learned from one task or
domain to another. In the classification context, multi-task learning is used
to improve the performance of multiple classification tasks by learning
them jointly. The idea is that by sharing representations between tasks,
we can exploit commonalities, leading to improved learning efficiency
and prediction accuracy for the task-specific models, when compared
to training the models separately (Thrun, 1996; Caruana, 1998; Baxter
et al., 2000). Crichton et al. (2017) demonstrated that a neural network
multi-task model outperforms a comparable single-task model, on average,
for the task of BNER. Perhaps most interestingly, it was found that the
performance improvements due to multi-task learning diminish as the size
of the datasets grows — something we found to be true of transfer learning
as well. Together, our results suggest that there is promise in the idea of
sharing information between tasks and between datasets for biomedical
text-mining, and may help overcome the limitations of training DNN's on
small biomedical GSCs. Future work could evaluate the combination of
multi-task and transfer learning to see if they are complementary and can
further improve performance.

5 Conclusion

In this work, we have studied transfer learning with DNNs for BNER
(specifically LSTM-CRF) by transferring parameters learned on large,
noisy SSC for fine-tuning on smaller, but more reliable GSC. We
demonstrated that compared to a state-of-the-art baseline evaluated on
23 GSCs, transfer learning results in an average reduction in error
of approximately 11%. The largest performance improvements were
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observed for GSCs with a small number of labels (on the order of 6000
or less). Our results suggest that researchers and text-mining practitioners
can make use of transfer learning to reduce the number of hand-labeled
annotations necessary to obtain high performance for BNER. We also
suggest that transfer learning is likely to be a valuable tool for existing
GSC with a small number of labels. We hope this study will increase
interest in the development of large, broadly-scoped SSCs for the training
of supervised biomedical information extraction methods.
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