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Abstract

Accurate segmentation of cellular images remains an
elusive task due to the intrinsic variability in morphology
of biological structures. Complete manual segmentation is
unfeasible for large datasets, and while supervised meth-
ods have been proposed to automate segmentation, they
often rely on manually generated ground truths which are
especially challenging and time consuming to generate in
biology due to the requirement of domain expertise. Fur-
thermore, these methods have limited generalization capac-
ity, requiring additional manual labels to be generated for
each dataset and use case. We introduce MAESTER (Masked
AutoEncoder guided SegmenTation at pixEl Resolution), a
self-supervised method for accurate, subcellular structure
segmentation at pixel resolution. MAESTER treats segmen-
tation as a representation learning and clustering problem.
Specifically, MAESTER learns semantically meaningful to-
ken representations of multi-pixel image patches while si-
multaneously maintaining a sufficiently large field of view
for contextual learning. We also develop a cover-and-stride
inference strategy to achieve pixel-level subcellular struc-
ture segmentation. We evaluated MAESTER on a publicly
available volumetric electron microscopy (VEM) dataset of
primary mouse pancreatic islets β cells and achieved up-
wards of 29.1% improvement over state-of-the-art under
the same evaluation criteria. Furthermore, our results are
competitive against supervised methods trained on the same
tasks, closing the gap between self-supervised and super-
vised approaches. MAESTER shows promise for alleviating
the critical bottleneck of ground truth generation for imaging
related data analysis and thereby greatly increasing the rate
of biological discovery.

Code available at https : / / github . com /
bowang-lab/MAESTER

*Equal contribution
†Project lead
‡Co-senior author

1. Introduction

Imaging is widely used in biology to study the organi-
zation, morphology, and function of cells and subcellular
structures [13, 26, 28, 31, 32]. Segmentation of structures
and objects of interest in the acquired images is often crit-
ical for downstream analysis. Recent innovations in high
throughput imaging technology enables larger scale datasets
to be collected more quickly and cost efficiently [23, 24, 32].
Scalable and accurate segmentation hence becomes a crucial
bottleneck to overcome. For example, volumetric electron
microscopy (VEM) can generate terabytes of imaging data
in a single run, enabling biologists to uncover ultrastructural
features of cells at unprecedented resolution and scale in
3D [24]. Manual segmentation of such datasets are unfea-
sible and especially when substantial domain knowledge is
required for annotation of structures captured in the imaging
volume.

With recent advancements in the field of machine learn-
ing, automatic methods involving convolutional neural net-
works (CNNs) have been developed to aid the segmentation
process to great success [8, 18]. However, these methods
often require extensive manual labels to train in the first
place. Furthermore, supervised models often exhibit lim-
ited generalization capacity, necessitating additional ground
truth generation efforts for each new dataset or use case.
Presently, there is a dire need for a self-supervised segmenta-
tion method to bypass the initial bottleneck of manual label
generation, particularly when the cost and time of acquir-
ing training supervision far exceeds the capacity to generate
unlabelled data.

In addition to being self-supervised, the method needs to
incorporate a few inductive biases to tackle the challenges of
biological image segmentation. First, the texture of objects
from the same class often remains consistent, despite great
variability in shapes and sizes that cellular structures can
exhibit. Therefore, the model needs to learn semantically
meaningful representation of small image patches belonging
to each structure of interest and distinguish between different
textures. Second, the model needs to be capable of producing
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Figure 1. MAESTER achieves self-supervised representation learning and segmentation through: (a) patchifying large sample from EM
imaging (b) learning patch-level representation through predicting randomly masked region, (c) inferring the representation for the center
voxel of each patch, (d) showing the 3D-rendered volume of our MAESTER generated segmentation, (e) demonstrating cover-and-stride
strategy.

features that precisely correspond to small regions in the
original image. Not only will this increase the resolution of
the resulting segmentation, it will also allow the method to
take advantage of the locality assumption, which posits that
small groups of adjacent pixels are more likely to belong
to the same class. Third, the model needs to be context
aware. While distinguishing between multi-pixel patches of
images alone can achieve good segmentation results [5], we

hypothesize that including a greater field of view (FOV) as
context is crucial for better representation learning for the
purpose of subcellular structure segmentation.

Transformer based architectures have seen recent suc-
cesses in computer vision [3, 15, 29]. The token-wise rep-
resentation of image patches offers a natural way to inject
inductive bias into our self-supervised segmentation model.
We introduce MAESTER (Masked AutoEncoder guided Seg-
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menTation at pixEl Resolution), a self-supervised method
that can achieve accurate, pixel-level segmentation of sub-
cellular structures. MAESTER works in two stages. During
training, MAESTER takes as input a large FOV (F × F
pixels) containing ample local context which is further bro-
ken down into multi-pixel patches of size P × P pixels.
The choice of P is sufficiently small to allow each patch
to be treated as a single class under the locality assump-
tion while achieving higher spatial precision. The attention
mechanism of a vision transformer (ViT) [3] encoder then
allows information sharing between nearby patches. Fur-
thermore, taking inspiration from the Masked Autoencoder
(MAE) [6] learning paradigm, we incorporate the surrogate
task of multi-pixel patch masking and reconstruction via a
light weight ViT decoder for each sampled FOV of a given
image to simultaneously learn semantically meaningful to-
ken representations of all patches in the FOV. During infer-
ence, we deploy the trained encoder to generate millions
of representations of unlabelled image patches via a novel
cover-and-stride inference strategy. These representations
are then clustered to produce a desired number of classes for
self-supervised segmentation, leading to the final segmenta-
tion of the given VEM dataset.

To our knowledge, we are the first to use the transformer
architecture to incorporate the inductive biases needed for
self-supervised subcellular structure segmentation. We also
repurposed and optimized the MAE learning paradigm for
generating semantically relevant token representations of
multi-pixel sized image patches for classification into bio-
logically concordant clusters for segmentation rather than
for pretraining or representation learning at the image level.
Lastly, we introduce a cover-and-stride inference strategy
to achieve pixel level segmentation of the given biological
images. We tested MAESTER on the betaSeg dataset [20],
consisting of primary mouse pancreatic islets β cells and
yielded upwards of 29.1% increase in performance compared
to prior state-of-the-art [5]. We also benchmarked against
Segmenter [27] and vanilla ViT [3], two supervised seg-
mentation models with access to all ground truth labels in
addition to the raw images used to train MAESTER. We find
MAESTER achieved competitive results for the predomi-
nant classes, closing the gap between supervised and self-
supervised segmentation models. We believe MAESTER has
the potential to drastically speed up the experimental cycle
of biological imaging experiments by alleviating the critical
bottleneck of manual label generation and greatly increasing
the rate of scientific inquiry in cell biology.

2. Related Work

2.1. Self-supervised representation learning

Self-supervised representation learning in computer vi-
sion is a powerful way to learn and extract semantically

meaningful features from unlabelled images. This is espe-
cially important in the context of biology as manual labels
often require extensive domain knowledge and time to gener-
ate. Popular approaches for self-supervised learning involves
the optimization of one or more surrogate tasks. These could
include reconstruction, denoising, color augmentation and
rotation prediction [11,22,30,34]. More recently, contrastive
learning and diffusion based approaches achieved great re-
sults on a number of vision benchmarks [1, 4, 7, 9]. However,
many of these approaches were explored for the purpose of
self-supervised pretraining, in contrast to our work which di-
rectly leverages the semantically meaningful representations
that the models generate. Furthermore, our work focuses
on pixel level representation learning rather than generating
representations of entire images.

2.2. Transformer and masked autoencoder frame-
work in vision

The transformer is a powerful and expressive neural net-
work architecture built via the stacking of attention mod-
ules and multilayer perceptrons (MLP) [29]. Transformer in
combination with self-supervised learning has been widely
used in the field of natural language processing (NLP). For
example, BERT [2] was trained via the random masking
and prediction of words in sequence as a form of masked
language modeling (MLM). More recently, the transformer
architecture had also shown promise in the field of computer
vision (e.g. Vision transformer(ViT) [3, 15]) as consecutive
image patches can be converted into token embeddings syn-
onymous to words in a sentence.

The masked autoencoder (MAE) is a novel self-
supervised representation learning paradigm [6]. It has
achieved great results in self-supervised pretraining and im-
age level representation learning. For our work, we repur-
posed and optimized this framework to generate semanti-
cally relevant token representations of multi-pixel patches
and subsequently grouped them into biologically concordant
clusters for segmentation. Importantly, unlike CNNs and
many contrastive approaches, the MAE framework is able
to support the representation learning of extremely small
image patches to achieve precision while simultaneously
maintaining a sufficiently large field of view for contextual
learning and representation accuracy. This naturally makes
MAE an extremely suitable candidate for self-supervised
image segmentation in biology.

2.3. Biological image segmentation as a representa-
tion learning problem

Segmentation of objects contained in a given image with-
out manual labels remains a challenging task. One approach
is to divide the image into small enough patches where one
can assume that the entire patch belongs to one of the exist-
ing classes. This effectively turns the segmentation problem
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into a multi-class classification problem given features ex-
tracted from individual patches. Several existing methods
adopt this mindset to achieve self-supervised segmentation
such as JULE (microCT) and MoCo (MRI, CT) [7,14,19,33].
However, these approaches use output prediction as super-
visory signal to iteratively refine model prediction, which
may lead to the unwanted compounding of model biases and
mispredictions. Another study by Han et al. used a varia-
tional autoencoder and triplet loss to produce segmentations
at the pixel level [5]. However, dividing images into patches
as small as 8 × 8 pixels removes important local context
which we demonstrate is necessary for faithful representa-
tion learning particularly in the context of biology where
concepts such as shape, co-localization and structural hetero-
geneity etc. span multiple patches but are informative for the
representation learning task.

3. Method
3.1. Transformer backbone for precise, context

aware representation learning

Convolutional neural networks (CNNs) have long been
the predominant backbone of choice for many computer
vision tasks [10, 21, 25]. However, for the specific task of
representation learning of image patches for segmentation,
we argue that CNNs are inferior to transformers because it is
difficult for CNNs to simultaneously generate multiple rep-
resentations for spatially distinct subsections of the original
input image. As a consequence, CNNs are limited to either
choose a small field of view to generate representations of
each individual patch but give up greater local context, or to
choose a larger field of view to capture local context, but give
up the precision of the learned representation and greatly
increase inference time.

Recent works demonstrated the promise of using trans-
formers in vision for many classification tasks [3, 15]. Here,
we also demonstrate that the transformer architecture is a
natural way to achieve high precision and fidelity of learned
patch representations for the purpose of self-supervised seg-
mentation in biology. Specifically, we choose a small patch
size (P = 5 pixel) to learn spatially precise token represen-
tations of image patches while simultaneously maintaining
a sufficiently large field of view (F = 80 pixel). The at-
tention mechanism and positional embedding intrinsic to
the transformer enables context aware learning, producing
better token representations of each individual image patch
of the given field of view in parallel for a total of 16x16 (n)
representations generated per input field of view.

3.2. Learning semantically meaningful token rep-
resentations of image patches

As shown in Figure 1, we use Vision Transformer(ViT)
[3] to implement our strategy of fusing local and large-scale

features, and we introduce a surrogate task of patch recon-
struction inspired by the Masked Autoencoder(MAE) learn-
ing paradigm to extract semantically meaningful representa-
tions of each image patch. [6]

During the training stage, FOVs of size F × F are ran-
domly sampled from the training image volume which then
gets divided into non-overlapping n× n multi-pixel patches.
Then we randomly mask out some patches according to the
selected masking ratio. The unmasked patches are then in-
jected with positional embedding before being input into the
ViT encoder. The resulting embeddings of visible patches are
then passed to a separate, light weight ViT decoder where
learnable mask tokens are introduced as placeholders for the
original masked image patches for patch reconstruction. The
ViT decoder reconstructs masked out image patches by pre-
dicting the pixel intensities. Following MAE [6], our model
is trained via the mean squared error (MSE) loss between
the reconstructed image and the original image on masked
patches 1

D

∑D
i=1(xi − yi)

2 where D is the total number of
reconstructed pixels in the FOV.

3.3. Generating pixel level segmentation during in-
ference via cover-and-stride and clustering

During inference, the input FOVs are patchified and fed
into the trained ViT encoder without the random masking
operation which generates token representations of image
patches (n× n) in parallel. To achieve pixel level represen-
tation over the entire image, we introduce a cover-and-stride
inference strategy as shown in Figure 1(e). Due to the choice
of P being sufficiently small relative to the sizes of the bio-
logical structures, we were able to treat the resulting token
representations as a close proxy to the representation of the
center pixel of each multi-pixel patch to effectively increase
the resolution of the segmentation. To prevent potential edge
bias (i.e. when the patches away from the center of the field
of view are not exposed to sufficient local context), we only
store the representation generated from a fixed number of
patches (m×m) near the FOV center to generate the final
pixel level representation map. m is equal to 4 under our de-
fault settings, hence 16 token representations are generated
and stored simultaneously per input FOV. In order to accom-
modate this, cover-and-stride first takes single-pixel strides
to cover a given FOV center, producing a fully inferred area
with side length m× P , followed by bigger strides of size
m× P to go over the entire image. This process generates
and stores pixel level representations in parallel, resulting
in over 600 million pixel-wise token representations on the
betaSeg testing dataset. Due to practical considerations, we
randomly subset 500, 000 patches to compute k-mean [16]
centers for unsupervised label assignment, generating a pixel
level segmentation of the original image. We visualize the
resulting clusters via UMAP [17] using a further subset of
50, 000 image patches to demonstrate semantic separation
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config ViT encoder ViT decoder
embedding dimension 192 128
transformer layer 14 7
attention head 1 8
MLP ratio 2.0 2.0
positional embedding weight 0.08 1.0

Table 1. MAESTER implementation details under default settings.

of the learnt token representations into putative classes.

3.4. Method details and design decisions

Our choice of the encoder and decoder is loosely based on
the ViT-B architecture [3] while making some modifications
tailored to our specific purpose of representation learning for
segmentation. The default implementation parameters are
detailed in Table 1. Our modifications include: 1) limiting
the embedding dimensions to compensate for the smaller
vocabulary size of multipixel patches compared to larger
image patches, while still maintaining sufficient expressivity,
2) further reducing the depth and capacity of the decoder to
promotes more information to be encoded in the representa-
tion rather than the decoder and 3) introducing a weighted
positional embedding in the encoder to dampen its contri-
bution to the representations, preventing biased clustering
based on their relative positions in the FOV. More details are
discussed in 4.2 and supplementary materials.

4. Experiment
4.1. Data

OpenOrganelle [8] is an public collection of high-
resolution cell imaging datasets. Following existing work,
we tested our method on a primary mouse pancreatic islet
β cell dataset named “BetaSeg” in OpenOrganelle [8, 20].
The dataset was acquired via Focused Ion Beam Scanning
Electron Microscopy (FIB-SEM) on two pancreatic tissue
samples. Two groups were treated respectively with high-
dosage or low-dosage of glucose. We chose the high-dosage
group for comparison with existing works. Preprocessing
involved cropping cells from the tissue stack into separated
volumes and downsampling the resolution from 4 nm to 16
nm. The resulting dataset contains four cell volumes and
paired reference segmentations for each cell. The reference
segmentations were generated by human annotators or via
manual corrections of deep learning models [20].

Each reference segmentation includes binary segmenta-
tion masks of 7 subcellular structures, namely centrioles,
nucleus, plasma membrane, microtubules, golgi body, gran-
ules and mitochondria. We classify the remaining regions
of the cell into the unrecognized category. Thus, we have
8 total classes as the reference segmentation. Among these
8 categories, nucleus, granules, mitochondria and unrecog-

nized are the predominant classes. For evaluation, we train
our model on cell 1, 2, and 3. We hold out cell 4 for an
independent test set.

4.2. Hyperparameters

We chose an FOV size (F ) of 80× 80 pixels and a patch
size (P ) of 5 × 5 pixels, effectively patchifying the input
FOV into 16× 16 (n) multi-pixel patches. The physical size
of our FOV corresponds to a 1.28 micrometers squared area.
We chose this setting empirically based on our ablation re-
sults, which is in accordance with biological intuition as the
subcellular structures of interest are typically 1 micrometer
to 5 micrometer in size. At a field view of 1.28 micrometers,
our model can successfully capture object level information
while our small patch size enables spatially precise token
representations to be generated while also staying true to the
locality assumption of one class per patch. We learn a 192
dimension representation vector for each multi-pixel patch.
We adjust the positional encoding weight to 0.08 in the ViT
encoder to avoid positional bias in clustering. We keep the
central 4× 4 multi-pixel patches in the representation map.
We apply masking ratio at 0.5 for MAE to learn biological
context, discussed next.

4.3. Reconstruction analysis

Contrary to natural images which typically have multi-
ple channels and a large spatial redundancy, high resolution
electron microscopy images have only one channel and seem
to have significantly greater information density. We found
experimentally that using a high masking ratio such as 0.85
is not adequate for our specific use case. Considering this,
we set the masking ratio to 0.5 to retain sufficient informa-
tion for learning and reconstruction of multi-pixel patches
of a given FOV while simultaneously preventing the recon-
struction task becoming too trivial. As seen in Figure 2,
our method successfully reconstructs various cellular struc-
tures, even when substantial information is removed from
the original input image. This suggests that the represen-
tations learned by the model are semantically meaningful,
and likely encode higher level concepts that span multiple
patches such as shape and co-localization to inform nearby
patch reconstruction.

4.4. Evaluations

Since our model captures more implicit structure that is
not listed as an individual category in reference segmen-
tation, we perform a class merge to the prediction for fair
comparison. For example, our method detects transparent
vesicles as a distinct class, which is classified into the uncat-
egorized category in the reference segmentation. Therefore,
we merge the prediction of transparent vesicles into uncate-
gorized category for evaluation.
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Figure 2. Reconstruction results on the betaSeg testing dataset using a model trained at 50% masking ratio. The reconstructions were
performed at different masking ratios over 3 representative FOVs, demonstrating generalizability and encoding quality of the trained model.

We then generate a confusion matrix on the reference
segmentation versus our prediction CKPr×KRS

where KPr

and KRS are the number of classes of the prediction and
reference segmentations respectively. Following previous
work, we use the most predominant four classes namely the
nucleus, mitochondria, granules and unrecognized classes
(KRS = 4) in the reference segmentation and vary KPr

between 4-10 prior to class merging. We evaluate model
performance via the Dice Similarity Coefficient (DSC) based
on the resulting confusion matrix after class merging. We use
the Hungarian algorithm [12] to match the prediction labels
to the lowest cost category in the reference segmentation,
also following conventions of prior work [5].

4.5. Self-supervised segmentation

MAESTER is able to generate self-supervised segmenta-
tion of subcellular structures without any expert annotation.
As shown in Figure 3, the model archives precise, pixel
level segmentation on the betaSeg testing dataset. Details
regarding architectures and implementation can be found in
Supplementary Materials. MAESTER is able to accurately
classify the predominant subcellular structures in betaSeg,
namely nucleus, granules, mitochondria, and the unrecog-
nized category, which is mostly cytosol. It is worth noting
that the prior state-of-the-art method [5] often failed to dis-
tinguish between nucleus and cytosol. This is likely because
these two classes share textural similarities that could look
identical for a given multi-pixel patch. However, our model
is able to overcome this by incorporating greater local con-
text to distinguish between differences in arrangement of
these textural patterns and utilize object-level landmarks to
separate these two classes semantically in representation
space. The confusion matrix in Supplementary Figure 2 also

reflects this point.
Quantitatively, our method consistently outperforms pre-

vious work under the same evaluation setting. We test our
methods on k-means centers from 4 to 10. As shown in Ta-
ble 2, we achieve performance improvements ranging from
11.4% to 29.1% across different K.

4.6. Comparison with supervised baselines

We compare MAESTER (K = 6) with Segmenter [27]
and Vanilla ViT [3], two supervised baselines with full ac-
cess to paired ground truth labels in addition to the raw
images used to train MAESTER and find that the result-
ing DSC was somewhat competitive on 3 out of 4 major
classes. While there are more mispredictions by MAESTER,
the differences in performance could in part be attributed to
the inclusion vs. exclusion of boundary pixels in the refer-
ence segmentation. Furthermore, due to the lack of domain
knowledge, the remaining granules class, which consists of
a darker center and a surrounding white membrane bound
region, was near impossible to segment correctly as they
were regarded as semantically distinct by MAESTER. Rep-
resentations of the white portion of the granules are closer to
background than to its darker granule counterparts. Consider-
ing this, MAESTER closes the gap between supervised and
self-supervised segmentation models, especially when com-
pared with prior state of the art self-supervised segmentation
methods.

4.7. Ablations

From the result of various ablation studies summarized
in Table 4, we make a few interesting observations. Results
in 4a shows that larger FOV seems to always improve seg-
mentation performance given constant patch size, further
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Figure 3. Qualitative results on slice 627 of test cell stack. (a) Segmentation result generated by our method, (b) segmentation result adapted
from Han et al. [5] with color alignment, (c) reference segmentation, (d) raw image.

K Han et al. MAESTER (Ours) ↑ Improvement
4 0.625 0.696 11.4%
5 0.659 0.773 17.3%
6 0.647 0.787 21.6%
7 0.643 0.793 23.3%
8 0.560 0.723 29.1%
9 0.578 0.739 27.9%
10 0.567 0.708 24.9%

Table 2. DSC results comparison on the betaSeg testing dataset
across different number of K-means centers. 4 ≤ K ≤ 10. Han et
al. results are taken from the original manuscript [5].

Class MAESTER
(Ours)

Segmenter
(Supervised)

Vanilla ViT
(Supervised)

nucleus 0.950 0.990 0.981
granules 0.556 0.860 0.774
mitochondria 0.786 0.896 0.868
unrecognized 0.844 0.912 0.907

Table 3. DSC by class of MAESTER with K = 6 compared with
Segmenter [27] and Vanilla ViT [3], two supervised baselines with
complete access to paired ground truth labels in addition to all the
raw images used to train MAESTER.

providing evidence that local context is important for bet-
ter representation learning. 4b shows that masking ratio is
important for defining the balance between usefulness and
feasibility of the reconstruction task. A higher masking ratio
makes learning difficult when too much non-redundant infor-
mation is masked out whereas a low masking ratio trivializes
learning which results in non-informative representations.
4c demonstrates a speed-accuracy trade-off where keeping

representations of patches closer to the center of the FOV
generates better segmentation at the cost of inference speed.
4d depicts the trade off between precision and variability of
patches of different sizes. Smaller patches contain too little
information while larger patches no longer learn accurate rep-
resentations of the center pixel for inference, losing spatial
precision. 4e demonstrates that position conscious contex-
tual learning is important for model performance, supporting
our claim that MAESTER is learning and using higher level
concepts such as shape and co-localization to achieve bet-
ter segmentation performance. Lastly, 4f demonstrates the
performance boost afforded by our novel cover-and-stride
strategy. In particular, it shows that the multi-pixel patch
level representation we learn is a good proxy for pixel-level
representation of the center pixel in the patch for sufficiently
small patches.

5. Discussions and Conclusion
In this work, we present MAESTER, Masked AutoEn-

coder guided SegmenTation at pixEl Resolution for biolog-
ical images. MAESTER is capable of generating accurate,
pixel-level segmentations of subcellular structures in bio-
logical images, demonstrating its potential in alleviating the
critical bottleneck of manual ground truth generation in im-
age related biological experiments. MAESTER achieves this
by learning semantically meaningful, context aware token
representations of multi-pixel patches of a given image and
through a new cover-and-stride inference strategy and subse-
quent clustering, generating the final segmentation result.

Much of the improvement over prior state-of-the-art meth-
ods was made possible because we repurposed and optimized
the masked autoencoder (MAE) learning paradigm for self-
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K
8× 8

patches
12×12
patches

16×16
patches

4 0.601 0.664 0.696
5 0.531 0.667 0.773
6 0.621 0.666 0.787
7 0.635 0.697 0.793
8 0.557 0.679 0.723
9 0.604 0.695 0.739

10 0.578 0.644 0.708
(a) FOV. Larger FOV improves the seg-
mentation quality when the patch size is
kept constant.

K 0.25 0.5 0.85

4 0.671 0.696 0.710
5 0.697 0.773 0.801
6 0.685 0.787 0.721
7 0.667 0.793 0.722
8 0.687 0.723 0.694
9 0.673 0.739 0.691
10 0.676 0.708 0.658

(b) Masking Ratio. Masking ratio is im-
portant for learning biologically relevant
token representations.

K 4× 4 6× 6 8× 8

4 0.696 0.696 0.696
5 0.773 0.738 0.734
6 0.787 0.753 0.750
7 0.793 0.682 0.624
8 0.723 0.666 0.682
9 0.739 0.690 0.669
10 0.708 0.698 0.707

(c) Number of kept tokens (m × m)
per FOV during inference. Accuracy
of segmentation improves further when
m decreases. However, this is a trade off
between efficiency and accuracy.

K 3× 3 px 5× 5 px 7× 7 px 9× 9 px
4 0.439 0.696 0.800 0.745
5 0.405 0.773 0.740 0.705
6 0.371 0.787 0.731 0.688
7 0.341 0.793 0.708 0.672
8 0.320 0.723 0.706 0.664
9 0.315 0.739 0.700 0.643
10 0.307 0.708 0.696 0.636

(d) Patch Size. Smaller patch sizes con-
tain too little information while larger
patch sizes violate the locality assump-
tion.

K
w/

PosEmbed
w/o

PosEmbed
4 0.696 0.614
5 0.773 0.633
6 0.787 0.647
7 0.793 0.625
8 0.723 0.586
9 0.739 0.601

10 0.708 0.608

(e) Positional Embedding. Position-
conscious contextual learning is impor-
tant for model performance.

K Stride Only C & S
4 0.608 0.696
5 0.715 0.773
6 0.720 0.787
7 0.665 0.793
8 0.713 0.723
9 0.717 0.739

10 0.700 0.708
(f) Cover-and-Stride. Cover-and-Stride
(C&S) strategy improves segmentation
precision.

Table 4. MAESTER ablation experiments on test cell stack. We report DSC for 4 ≤ K ≤ 10. Default settings are marked in gray .

supervised segmentation rather than its original purpose of
pretraining or image-level representation learning. By drasti-
cally reducing the patch size to only a few pixels, we learn
spatially precise token representations of multi-pixel image
patches while staying true to the locality assumption which
allows us to more appropriately frame unsupervised segmen-
tation as a classification task compared to other methods
following a similar mindset. It is worth noting that without
spatial context and information sharing between patches, se-
lecting an extremely small patch size is not possible in the
first place due to the resulting lack of information contained
in individual multi-pixel patches.

It is also worth highlighting that although MAESTER
achieves high quality segmentation compared to the refer-
ence segmentation, we make the observation that the refer-
ence segmentation and current evaluation metrics are not
adequate for assessing MAESTER’s true capabilities in sub-
cellular structure recognition. For example, MAESTER sep-
arately classifies the outer membranes of organelles in con-
trast to the reference segmentation, which groups boundary
pixels with the unrecognized class, causing a drop in our
model performance. As inter-organelle membranes are nat-
urally delineated, MAESTER has the potential to achieve
unsupervised instance segmentation of organelle classes.

Nonetheless, due to the nature of self-supervised ap-
proaches, MAESTER does suffer from the lack of domain
knowledge. For example, granules of β cells are a class of

organelle consisting of two high contrast components - a
darker center and a surrounding white membrane bound
region. Without any biological background, MAESTER dis-
tinguishes these two semantically different areas as two sep-
arate classes, which contributes to the gap in performance
compared to supervised methods. Therefore, in the future,
we are interested in representing and incorporating domain
knowledge into our self-supervised segmentation algorithm
to further increase performance.

On the other hand, as the self-supervised segmentation re-
sults of MAESTER are competitive against supervised base-
lines for many predominant classes, we are also interested
to use the resulting segmentation as a weakly supervised
signal to train or finetune other models to further speed up
the experimental cycles of imaging experiments in biology.
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