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SUMMARY

Large-scale genomic studies have identified multiple
somatic aberrations in breast cancer, including
copy number alterations and point mutations. Still,
identifying causal variants and emergent vulnera-
bilities that arise as a consequence of genetic alter-
ations remain major challenges. We performed
whole-genome small hairpin RNA (shRNA) ‘‘dropout
screens’’ on 77 breast cancer cell lines. Using a hier-
archical linear regression algorithm to score our
screen results and integrate them with accompa-
nying detailed genetic and proteomic information,
we identify vulnerabilities in breast cancer, including
candidate ‘‘drivers,’’ and reveal general functional
genomic properties of cancer cells. Comparisons of
gene essentiality with drug sensitivity data suggest
potential resistance mechanisms, effects of existing
anti-cancer drugs, and opportunities for combination
therapy. Finally, we demonstrate the utility of this
large dataset by identifying BRD4 as a potential
target in luminal breast cancer and PIK3CA muta-
tions as a resistance determinant for BET-inhibitors.

INTRODUCTION

Breast cancer is the second leading cause of cancer death in

women. Better detection and therapy have led to >85% 5-year

survival, yet half of affected women die from their disease. This
outcome reflects incomplete understanding of the molecular

alterations, heterogeneity, and determinants of drug response

in breast tumors. Genetic and epigenetic abnormalities in breast

cancer have been defined, but identifying causal defects and

exploiting them for target discovery remain challenging.

‘‘Breast cancer’’ actually comprises molecular subtypes that

predict prognosis and drug response. Early profiling studies

identified ‘‘intrinsic subtypes’’: luminal A and B, basal-like

(basal), HER2+ and normal-like (Perou et al., 2000; Sørlie et al.,

2001). These were joined by a ‘‘claudin-low’’ subtype that, like

basal breast cancer, is typically estrogen receptor-negative

(ER�), progesterone receptor-negative (PR�), and HER2-nega-

tive (HER2�) (Hennessy et al., 2009; Prat et al., 2010). Basal

and luminal B tumors have the worst prognosis; claudin-low

tumors have intermediate outcome (Prat et al., 2010). Clinically,

intrinsic subtypes can be defined by the ‘‘PAM50’’ classifier

(Parker et al., 2009).

These molecular subtypes complement, but do not fully over-

lap, pathologic classification by ER, PR, andHER2 status (Parker

et al., 2009). Luminal tumors are typically ER+/PR+, and basal tu-

mors are usually ‘‘triple negative’’ (ER�, PR�, HER2�). Breast
cancer cell lines generally fall into four subtypes: basal A or B,

HER2+, and luminal (Neve et al., 2006; Prat et al., 2010). Basal

A lines resemble ‘‘basal’’ tumors; basal B lines are enriched for

claudin-low genes.

Recent large-scale RNA and proteomic profiling studies have

further divided luminal and ‘‘triple negative’’ breast cancer

(TNBC) into at least ten subtypes (Curtis et al., 2012; Lehmann

et al., 2011; Cancer Genome Atlas Network, 2012), and next-

generation sequencing (NGS) has identified multiple aberrations

in breast tumors (Banerji et al., 2012; Ellis et al., 2012; Shah et al.,
Cell 164, 293–309, January 14, 2016 ª2016 Elsevier Inc. 293

mailto:benjamin.neel@nyumc.org
http://dx.doi.org/10.1016/j.cell.2015.11.062
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2015.11.062&domain=pdf


(legend on next page)

294 Cell 164, 293–309, January 14, 2016 ª2016 Elsevier Inc.



2012; Stephens et al., 2012; Cancer Genome Atlas Network,

2012). Whether breast cancer lines represent these new cate-

gories and have mutational profiles like tumors remains

unresolved.

Moreover, genomics often cannot distinguish ‘‘passenger’’

mutations from ‘‘drivers’’ that promote tumorigenesis and might

be therapeutic targets. Highly recurrent defects (e.g., HER2

amplification) point to drivers and some have led to ‘‘targeted

therapies’’ (e.g., Trastuzumab). Many other abnormalities,

some clearly oncogenic, occur at low frequency, and some

drivers are difficult to target (e.g., MYC, RAS). However, the

collateral genotoxic, proteotoxic, and metabolic stresses

caused by the abnormal tumor genome can cause ‘‘emergent

dependencies,’’ potentially providing alternate therapeutic

options.

Functional genomics, partnered with genomic data, can iden-

tify targets coupled to biomarkers (Zender et al., 2008). Pooled

shRNA libraries enable genome-wide ‘‘drop-out’’ screens, which

can identify cancer drivers and context-dependent events.

Several groups have performed shRNA screens (Cheung et al.,

2011; Marcotte et al., 2012), but most surveyed relatively few

cell lines of the same cancer type and none represented the di-

versity of neoplasms such as breast cancer. Here, we report the

results of genome-wide shRNA screens of >75 breast cancer

lines with genomic, transcriptomic, and proteomic annotation.

Employing an improved statistical framework (siMEM), we pro-

vide an integrated map of subtype- and context-dependent es-

sentiality in breast cancer cells.

RESULTS

Breast Cancer Lines Are Reasonable Models
We performed genomic and proteomic analysis on 78 breast

cancer and four immortalized mammary cell lines (Table S1A).

Copy number abnormalities (CNAs) were similar (r = 0.7) in lines

and breast tumors, with all major CNAs represented (Figures 1A

and S1A). RNA sequencing (RNA-seq) and non-negative

matrix factorization (NMF) yielded seven clusters (Figures 1B

and S1B). Compared with the Neve classification (Neve et al.,

2006), we found four basal, two luminal/HER2�, and one mixed

cluster(s). The extra basal clusters mainly sub-divided the basal

A and B subtypes (Figures 1B and S1C) and resembled the addi-

tional subgroups seen in an extensive survey of TNBC (Lehmann

et al., 2011). Most luminal/HER2 cell lines fell into Clusters 6

and 7, which were distinguished by ERBB2 and ESR1 expres-

sion, respectively. The NMF clusters also related to specific

METABRIC ‘‘iClusters’’ (Curtis et al., 2012). Every iCluster was

present in the panel, although iClusters 2 and 7 each were repre-

sented by less than five lines (Figure S1C). Lines defined as

‘‘basal’’ by PAM50 generally fell into our basal clusters and those
Figure 1. Genomic/Proteomic Characterization

(A) CNA profiles of breast tumors (top) from TCGA and cell lines (bottom).

(B) NMF clustering of RNA-seq data for breast cancer lines. ESR1 (ER), ERBB2

Lines were assigned to published subtypes (colored boxes).

(C) NMF clustering of RPPA data.

(D) Frequency of indicated mutations in cell lines and tumors, grouped into basa

See also Figure S1 and Table S1.
of Lehmann (Lehmann et al., 2011), but PAM50-derived signa-

tures did not place luminal/HER2 lines into subgroups similar

to those seen by NMF or the Curtis classification.

The top 50% variable proteins by reverse-phase protein array

(RPPA) formed nine clusters by NMF (Figures 1C and S1D). With

few exceptions, RPPA-(R) and RNA clusters differed markedly.

Most (13/18) HER2+ lines fell into R-Cluster 9. R-Cluster 8 con-

sisted mainly of expression-derived Cluster 7 lines and was

driven by ERa, GATA3, and BCL2. Two small R-clusters were en-

riched for luminal/HER2 lines: R-Cluster 3 was mainly ER�/AR+

and featured high p-AKT (pT308 and pS473) and p-AMPKa

(pT172). R-Cluster 7 (three lines) was distinguished by high

G6PD, p-4EBP, and reactivity to a VHL antibody that cross-re-

acts with Epiplakin. The other R-clusters were enriched for basal

lines. R-Cluster-1 contained three of the four ‘‘normal breast’’

lines and was driven by NDRG1, MYC, TAZ, and p-YAP. R-Clus-

ter 2 also had high NDRG1, MYC, TAZ, and p-YAP, as well as

high PAI-1 and phospho- and total EGFR (Table S1B). R-Clus-

ter-4, the largest, was a default basal cluster.

Exome sequencing of genes mutated in R3% of breast tu-

mors in COSMIC and TCGA (Table S1C) showed that all frequent

somatic mutations in breast cancer were found in our cell line

panel. TP53 andPIK3CAmutations (23%and 26%, respectively,

in tumors) were seen in 63% and 33% of lines, respectively.

TP53 is mutated more often in TNBC/basal tumors (80% versus

26%) (Cancer Genome Atlas Network, 2012), but its mutation

frequency was similar in basal and luminal/HER2 lines. For

most genes, mutation rate and distribution were comparable in

tumors and lines (Figure 1D).

We also profiled microRNAs (miRNAs) by NanoString. ERa is

the major determinant of miRNA levels in breast tumors (Dvinge

et al., 2013; Riaz et al., 2013). Similarly, unsupervised clustering

revealed three miRNA groups in cell lines, two basal and one

luminal (Figure S1E). Overall, we conclude that a sufficiently large

cell line panel represents the genomic and proteomic landscape

of breast tumors and provides a reasonable template for identi-

fying context-dependent essential genes.

Improved Prediction of Gene Essentiality
To identify genes required for proliferation/survival (‘‘essentials’’),

we used pooled lentiviral shRNA dropout screens (Marcotte

et al., 2012). Nearly all (77/82) lines gave satisfactory data (Table

S1A). Using our earlier metric, zGARP, we scored 402 genes as

essential in at least 50% of lines (Table S2A). These included

most (261/297 and 218/291, respectively) genes defined earlier

as ‘‘general essential’’ or ‘‘core essential’’ in ovarian, pancreas,

and selected breast cancer lines (Hart et al., 2014; Marcotte

et al., 2012). Not surprisingly, genes annotated as having ‘‘house-

keeping’’ roles (e.g., translation, splicing, proteasome, cell cycle)

were prominent general essentials (Table S2B).
(HER2), PGR (PR), and AR (AR) expression are represented by black squares.

l and luminal/HER2 subtypes. Tumor data are from COSMIC.
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By contrast, neither zGARP, nor other algorithms (ATARIS

[Shao et al., 2013], RIGER [Barbie et al., 2009], RSA [König

et al., 2007]), identified known subtype-specific essential genes

from our large dataset. Such methods summarize replicate

shRNA measurements into single ‘‘hairpin’’ or ‘‘gene’’ scores,

which are compared between subtypes by t tests or similar sta-

tistics. This approach leads to loss of information about mea-

surement variance, limiting statistical power to detect biological

differences.

Hierarchical (‘‘mixed-effect’’) linear models allow systematic

measurement effects, such as hairpin differences or heteroge-

neous genetic contexts, to be specified and used in significance

calculations. Such a model could increase sensitivity for detect-

ing biological differences in screens by avoiding information

loss, while limiting false positives. We therefore developed

the small interfering RNA (siRNA)/shRNA mixed-effect model

(siMEM), which considers the level of each shRNA to be a regres-

sion function of its initial abundance, baseline trend in abun-

dance over time, and difference in abundance trend between

samples sharing a common feature (Figures 2A, S2A, and S2B;

Supplemental Experimental Procedures).

Using siMEM and previous metrics, we sought genes selec-

tively required in HER2+ lines (n = 17). Reassuringly, siMEM-de-

tected known HER2+-associated essentials (‘‘known positives’’),

such as ERBB2, its dimerization partner ERBB3, PI3K/mTOR

pathway members (PIK3CA, AKT1/2, RHEB, MTOR), CDC37

(encodes an ERBB2 co-chaperone), and two transcription fac-

tors (TFAP2C, YBX1) in the HER2 (ERBB2) pathway. Almost

none of these survived false discovery rate (FDR) correction us-

ing GARP or ATARIS (Figure 2B; Table S2C). Only siMEM pre-

dicted ‘‘known positives’’ from the data in our earlier screen

(Marcotte et al., 2012) and it greatly improved their prediction

rankings and p values (Figures 2C and S2C). When classes

(normal/HER2+) were shuffled randomly for each gene, siMEM

p values were close to the expected uniform distribution

(Figure S2D). Regression structures that ignored systematic

measurement effects produced many (incorrectly) significant

p values (Figures S2E and S2F). By contrast, siMEM produced

the best fit and ranking of known positives (Figures S2B, S2G,

and S2H). Finally, we applied siMEM and ATARIS to the ‘‘Achil-

les’’ dataset (Cheung et al., 2011): siMEM was better at predict-

ing BRAF, KRAS, or PIK3CA essentiality in cognate mutant cells

and in finding genes more essential with increased expression,

which are enriched for drivers (Figure 2D; also see below).

Breast- and Subtype-Specific Essential Genes
We focus here on gene essentiality relative to the Neve classifi-

cation, which most closely resembles clinical subtypes, but

Tables S3A–S3G provide essentiality data for each subtype in

Figures 1B and 1C. Comparing basal with luminal/HER2 cell
Figure 2. siMEM Overview

(A) Experimental scheme. Samples were hybridized to microarrays and dropout w

of initial measurement intensity, baseline trend, and difference in essentiality ass

(B) Volcano plot of zGARP (left) and siMEM (right) essentiality differences associ

(C) siMEM produces the best p values for known positives.

(D) BRAF, PIK3CA, or KRAS mutant versus normal and expression versus essen

See also Figure S2, Table S2, and Supplemental Experimental Procedures.
lines, we found 975 and 985 subtype-specific essentials

(FDR < 0.1), respectively (Figure 3A; Tables S3F and S3G). The

top luminal/HER2-essentials were FOXA1, a pioneer factor for

ERa (Lupien et al., 2008), SPDEF, which promotes luminal differ-

entiation and survival of ERa+ cells (Buchwalter et al., 2013),

CDK4 and CCND1, which form a complex targeted by Palboci-

clib in ER+ breast cancer (Dhillon, 2015), and TFAP2C, which di-

rects ERBB2 expression (Bosher et al., 1995). Other ‘‘expected’’

luminal/HER2-essential genes included PI3K/mTOR pathway

components (PIK3CA, PDPK1, AKT1/2, RHEB, MTOR) and

ER-interacting proteins/co-activators (KMT2D, EP300, GATA3,

KDM1A, DNM1L, NCOA2).

The top basal-selective essentials, PSMB3 and PSMA6,

encode proteasome subunits (Table S3F), a dependency seen

earlier (Petrocca et al., 2013). The next most essential basal-spe-

cific gene was ATP6V1B2, which encodes a component of

the vacuolar ATPase required for lysosomal acidification that is

the target of Bafilomycin A1 (BafA1). Notably, basal lines were

5-fold more sensitive and basal A lines were 7-fold more sensi-

tive to BafA1 than luminal/HER2 lines (Figures S3A and S3B).

Other genes reputedly more important in basal breast cancer

scored as ‘‘basal-essential,’’ including PLK1, EGFR, FZD7,

SLC7A11, CTNNB1, LRP5, FZD8, and TWIST2 (Jamdade

et al., 2015; Maire et al., 2013; Timmerman et al., 2013), but we

also saw other potential vulnerabilities (Table S3F).

We selected several subtype-specific genes for orthogonal

testing with siRNAs. Multiple basal-specific, luminal-specific,

and HER2-specific genes validated and demonstrated the pre-

dicted subtype preference (Figure 3B; Table S3L). Overall, the

validation rate was �70%, with most siRNAs showing >80%

knockdown (Figure 3C; data not shown).

The genomics of basal breast cancer and high-grade serous

ovarian cancer (HGSC) are very similar (Cancer Genome Atlas

Research Network, 2011; Cancer Genome Atlas Network,

2012). Remarkably, in a pairwise comparison with luminal-spe-

cific (this screen) or HGSC- or pancreatic cancer-specific essen-

tials (Marcotte et al., 2012), only 20 essential genes differed

between basal breast cancer andHGSC. By contrast, thousands

of differences were seen in all other comparisons (Figure S3C).

We analyzed subtype-specific essential gene sets for

preferred pathways and protein-protein interactions (PPIs) (Fig-

ures 3D and 3E; Tables S3H–S3K). As expected, HER2-specific

essential pathways included EGF, PI3K, and mTOR signaling.

Other functions important in this subtype included regulation of

eIF2, aerobic ATP synthesis/TCA cycle, chromatin-modifying

enzymes, ‘‘response to gamma radiation’’ (including YAP1,

ATR, and ATM), as well as an EP300/BRCA1 PPI sub-network

(Table S3J). EP300 is a BRCA1 co-activator (Pao et al., 2000),

and BRCA1 is phosphorylated via the PI3K/AKT pathway, which

also is required in HER2+ lines (Figure 2C; Tables S2C and S3B).
as quantified. Hierarchical linear regression summarizes data as a combination

ociated with changes in a genomic covariate (light blue versus dark blue).

ated with HER2+ lines. Dotted lines show FDR cut-off.

tiality analyses of the Achilles dataset (n = 102).
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Notably, ATM is essential for HER2+ tumors (Stagni et al., 2015)

and it also phosphorylates BRCA1 (Cortez et al., 1999; Gatei

et al., 2000). Preferential sensitivity to loss of DNA damage sen-

sors might explain the observed synergy of chemotherapy and

Trastuzumab.

Top enriched pathways and PPIs for basal A lines were domi-

nated by genes for splicing, the proteasome andmitosis (Figures

3D and 3E; Table S3H). Other required functions included the

COP9 signalosome (CSN) and a PPI sub-network defined by

CAND1/NEDD8 (Figure 3E). CSN and CAND1/NEDD8 regulate

SKP1/CUL1/F-box (SCF) complexes (Flick and Kaiser, 2013).

While the core SKP1/CUL1 complex showed no subtype speci-

ficity, several F-box genes were selectively essential in basal A

lines, including FBXW11/b-TrCP2 (Table S3B). FBXL6 and

FBXO15 were more essential in basal B or luminal/HER2 lines,

respectively (Table S3B; data not shown). Hence, F-box proteins

might impart subtype-specific functions to SKP1/CUL1.

Lack of functional annotation (<50% of genes annotated) re-

sulted in a relative paucity of basal B and luminal nodes when

compared to basal A- and HER2- nodes (>65% of genes anno-

tated, Figures S3D–S3F). Nevertheless, essential pathways and

PPI networks for luminal lines included epithelial development,

MDM2, PI3K, and hormone receptor (ESR1) signaling (Figures

3D and 3E). The latter two are targets of known drugs for luminal

breast cancer. Less expected ‘‘luminal-enriched’’ pathways/

PPIs included redox-related (SOD1, SOD2, ENOX1) and mito-

chondrial (e.g., electron transport chain, mitochondrial ribo-

some) proteins. By contrast, basal B-essentials were enriched

for genes related to polarity (PARD3, PAR3D), cell-cell junctions

and adhesion (CDH2, CLDN1, CLDN4, ITGA4, ITGAV, ITGB5),

embryonic development, organmorphogenesis, fatty acidmeta-

bolism, and T cell immunity (Figures 3D and 3E). Some of these

genes, such as SOX9 (Guo et al., 2012a), KLF4 (Yu et al., 2011),

and ALOX5AP (Kim et al., 2005), have reported roles in breast

cancer, although not specifically in basal B tumors.

cis- and trans-Essential Interactions with Common
CNAs
There are hundreds of CNAs in breast cancer (Curtis et al., 2012;

Cancer Genome Atlas Network, 2012), yet for most, the key

driver gene(s) is unclear. METABRIC defines 30 regions of

copy number gain and 15 deletions (Curtis et al., 2012). ISAR, be-

ing more sensitive for small amplicons, identifies 83 recurrent

CNAs (Sanchez-Garcia et al., 2014). We predicted significant

(FDR < 0.2) cis-essential genes (more essential in amplicon+

lines) for 9/83 ISAR regions. Four corresponded to genes in a

METABRIC amplicon (Figure S4A; Table S4A): EGFR (ISAR(I)-

34/METABRIC(M)-10), CCND1 (I-52/M-21), ERBB2 (I-70/M-35),
Figure 3. Subtype-Specific Essential Genes

(A) Volcano plot of basal-specific and luminal/HER2-specific essentials.

(B) Heatmap shows % proliferation-inhibition, compared to general essential RP

(C) Knockdown efficiency (by qRT-PCR) of siRNAs for genes in (B).

(D) Subtype-specific pathways. Each node represents a process; functionally sim

according to the subtype in which the process is enriched; processes enriched i

green, HER2+; blue, luminal.

(E) PPI networks for subtype-specific genes. Nodes represent genes and are mu

See also Figure S3 and Table S3.
and TFAP2C (I-81/M-42). The others were unique to ISAR-

defined regions (Table S4B):CTSS (I-6), ESR1 (I-30),RALGAPA1

(I-62), FOXA1 (I-63), and BCL2 (I-76).

Even for known drivers (or for deletions), targeting the key

gene can be difficult. ‘‘trans-Essential’’ genes can suggest alter-

native strategies. Combining all METABRIC regions, we identi-

fied 2,560 trans-essentials, an average of 58 per CNA (range

0–285; Figures 4A and S4A; Table S4A). Only 61 (�3%) trans-

essentials showed significantly increased or decreased expres-

sion in sensitive lines (Figure S4B and Supplemental Experi-

mental Procedures); hence, most would not be found by gene

expression surveys. Expected trans-essentials were seen for

the CCND1 (CDK4, USP18) (Guo et al., 2012b) and ERBB2

(ERBB3, CDC37, PIK3CA) amplicons and for CDKN2A deletions

(CCND1, CDK6) (Figures 2B and S4A; Table S4A). It can be diffi-

cult to know if a trans-essential is ‘‘expected’’ for deletions,

especially if the cognate tumor suppressor is undefined. Even

so, we saw intriguing associations with ‘‘druggable’’ targets for

region 27, containingRB1 (more sensitive toMAP2K2 depletion),

region 11 (more sensitive to TLK2, BRD4, or ACVR1B depletion),

and region 40 (more sensitive to PTK6 or MAP2K4 depletion)

(Table S4A).

METABRIC region 14 includes MYC, which is generally

deemed ‘‘undruggable.’’ Notably, MYC was the most essential

gene in region 14-amplified lines (Figure 4A), but was not differ-

entially essential by FDR, probably because of its requirement in

most tumor cells (Dang, 2012). Pathway analysis of the 91 region

14 trans-essentials (FDR < 0.2; Table S4A) revealed genes for

mitosis, DNA replication, and RNA metabolism (Table S4C), all

known MYC functions (Dang 2012). MYC transcriptional targets

(Figure 4B) and genes encoding MYC-interacting proteins (Table

S4D) also were strongly enriched: 46% of MYC trans-essential

genes were MYC transcriptional targets/interactors. We tested

two MYC trans-essentials potentially amenable to drug discov-

ery; indeed, amplified lines were preferentially sensitive to

MINK1 or USP5 depletion (Figure 4C). We also validated YAP1

and BRCA1 as trans-essential for METABRIC regions 35 (con-

tains ERBB2), and 36 (putative driver: ZNF652), respectively (Fig-

ures S4C and S4D).

HELIOS integrates CNA, expression, mutation, and essential-

ity into a single score that predicts cis-essential genes (Sanchez-

Garcia et al., 2014). The initial HELIOS report, using data from our

earlier screen, identified and validated ten potential drivers. Us-

ing our expanded dataset, the HELIOS score increased for most

known drivers and previously validated genes (Figure 4D; Table

S4E). We also tested two new predictions and found that ampli-

con+ lines were more sensitive to siRNA-mediated depletion

(Figure 4E).
L9 (100% inhibition), after pooled siRNA treatment (p values: one-sided t test).

ilar nodes are grouped and labeled by enriched function. Nodes are colored

n more than one subtype have multiple colors. Red, basal B; orange, basal A;

lti-colored if present in multiple subtypes; edges represent interactions.
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Functional Genomic Clustering Reveals Groups Not
Captured by Expression Profiling
Using NMF clustering, we grouped lines based on shared

dependencies (‘‘functional genomic clustering’’) (Marcotte

et al., 2012). Six ‘‘functional clusters’’ (fClusters) were

observed, two containing lines designated as basal by expres-

sion profiling (fCluster-4 and fCluster-5), two luminal/HER2

clusters (fCluster-2 and fCluster-6), and two (fCluster-1 and

fCluster-3) comprising a mix of basal and luminal/HER2 lines

(Figure 5A). Thus, as we saw earlier (Marcotte et al., 2012),

‘‘basal’’ and ‘‘luminal/HER2’’ lines have distinct patterns of

gene dependency. Yet, while there was little additional sepa-

ration in our earlier study, with our expanded panel, HER2

(mainly fCluster-2) and ER+ (fCluster-6) lines largely segre-

gated into distinct fClusters. Genes determining the ER+

(fCluster-6), HER2+ (fCluster-2), and basal (fCluster-4) clusters

(Table S5A) overlapped substantially with luminal-, HER2A-, or

basal- essential genes, respectively (Figure 3). fCluster-1 was

enriched for genes curated as H3K27-trimethylated, neuroac-

tive peptides, or as involved in cytokine-cytokine interac-

tions. fCluster-3 was enriched for annotations for cell cycle

(G1/S and mitosis), DNA replication, and immune system

genes, whereas fCluster-5 was enriched for genes involved

in the immune system, lipid metabolism, and NGF signaling

(Table S5A).

Drug Sensitivity and Gene Essentiality
We also compared gene essentiality and sensitivity data for

90 drugs tested against 84 breast cancer lines (Daemen

et al., 2013), most of which (69) were included in our panel. Us-

ing siMEM, we identified genes whose essentiality correlated

with sensitivity to mTOR/PI3K/ERBB2/AKT or EGFR/MEK/

ERK inhibitors. Hierarchical clustering revealed distinct posi-

tive (red) and negative (blue) correlation clusters associated

with drug sensitivity (Figure 5B; Supplemental Experimental

Procedures). Reassuringly, genes for PI3K/AKT pathway com-

ponents were required in lines sensitive to the cognate inhibi-

tors. Sensitivity also correlated with essentiality of the luminal

markers ESR1, FOXA1, and GATA3, consistent with the known

sensitivity of luminal tumors to these agents. Likewise, EGFR/

MEK/ERK inhibitor response correlated with sensitivity to

EGFR, GRB2, SOS1, MAPK1, MAPK3, or MAP2K1 depletion.

Interestingly, response to EGFR/MEK/ERK inhibitors corre-

lated with dependence on the NF-kB pathway: RELA, REL,

and NKAP were more essential in such cells. These results

comport with reports of NF-kB activation in response to

EGFR, RAS, RAF, or MEK activation (Pan and Lin, 2013) and
Figure 4. cis- and trans-Essential Genes for CNAs

(A) Heatmap showing 8q24 amplification (METABRIC-14, containingMYC) in cell l

for genes in the amplified region in amplicon+ lines. CIRCOS plot depicts top 20

(B) GSEA of trans-essential genes for MYC targets (FDR < 0.0001).

(C) Validation of 8q24 trans-essential genes with siRNAs. y axis, % maximum inh

(D) Correlation between published HELIOS scores (y axis) (Sanchez-Garcia et al.

deviate from earlier score and represent potential new amplified drivers.

(E) Validation of HELIOS genes with siRNAs. y axis, % maximum inhibition; bar gr

t test.

See also Figure S4 and Table S4.
suggest that NF-kB inhibitors might be effective in basal

breast cancer.

Drug sensitivity/essentiality comparisons also identified

negative regulatory/tumor suppressor pathways. For example,

PTEN was more essential in lines that were insensitive to

mTOR/PI3K/ERBB2/AKT or EGFR/MEK/ERK inhibitors, consis-

tent with the effects of PTEN deletion/inactivation (Worby and

Dixon, 2014). Likewise,MDM2 and TP53 essentiality were asso-

ciated with sensitivity or resistance to Nutlin-3A treatment,

respectively.

Unsupervised analysis of the whole gene essentiality/drug

sensitivity dataset revealed five clusters. Most drugs with a

similar mechanism of action fell into the same cluster, and

pathway analysis confirmed that essentiality clusters were en-

riched for genes implicated in the pathways targeted by their

respective agents (Figure S5A; Tables S5B and S5C). Unantici-

pated clusters also emerged. For example, sensitivity to 11

drugs, which included alkylating agents, topoisomerase inhibi-

tors, and cell cycle/cell cycle checkpoint inhibitors, correlated

with essentiality of genes ‘‘associated with the H3K27me3

mark’’ (e.g., PRDM13, NKX2-5, HOXC8, PAX7, HES2) and for

‘‘neuropeptides and neurotransmitter signaling’’ (Figures S5B,

box 2, S5C, and S5D). Notably, we had validated one of these

genes, HOXC8, in our siRNA assays (Figures 3B and 3C).

Screen/drug sensitivity datamight suggest drug combinations

to kill resistant cells and/or negative regulators associated with

drug resistance. For example, drugs targeting the PI3K/mTOR

pathway (Cluster-1) strongly anti-correlated withBCL2L1 essen-

tiality (i.e., cell lines resistant to PI3K/mTOR inhibitors required

BCL2L1). Interestingly, drug combinations targeting the PI3K/

mTOR pathway and BCL-XL are reported for several malig-

nancies (Muranen et al., 2012; Rahmani et al., 2013). Another

known combination predicted by our data is EGFR plus

HDAC inhibitors (Zhang et al., 2015). Suggested combinations

awaiting validation include RAF/MEK and CDK4 inhibitors,

EGFR inhibitors with Cluster-5 drugs, BET-Is with Cluster-4

drugs, especially epirubicin and vinorelbine, PLK1 inhibitors

with Nutlin-3A or PI3K/AKT inhibitors or Nutlin-3A with Cluster-5

drugs (Table S5B).

We also used DGIdb to identify essential genes that are poten-

tially ‘‘druggable’’ (Griffith et al., 2013). Genes for kinases, phos-

phatases, and histone modifying enzymes were the most

frequently essential, although other categories were represented

(Figure 5C; Table S5D). Inhibitors exist for only a small fraction of

most potential targets, especially the histone modifiers; a larger

percentage of essential kinases had a known inhibitor (Figures

5C, 5D, and S5E).
ines. Red, amplification; blue, deletion. Bar graph shows average zGARP score

significant genes (by siMEM) in amplicon+ versus amplicon� cells.

ibition; bar graphs, knockdown efficiency (by qRT-PCR) of siRNAs.

, 2014) and new scores (x axis) obtained using our screen data. Circled genes

aphs, knockdown efficiency of siRNAs. P values were calculated by one-sided
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Additional Functional Genomic Properties of Cancer
Cells
For most genes, essentiality decreased as expression increased

(Figure 6A, right); such genes are enriched for housekeeping

functions (Table S6A). A smaller set of genes became more

essential with increased expression (Figure 6A, left): 16 of the

20 top-ranked genes in this group are known drivers in breast

or other cancers (Table S6B). We suspected that other genes

whose essentiality increased with increased expression might

be drivers and tested several using siRNAs (Figures 6B and

S6A). Indeed, 11/20 (55%) were more essential in lines with

increased expression (R > 0.3). Genes more essential with

increased expression showed lower expression overall than

genes whose essentiality lessened with increased expression

(Figure S6B). The former were more variably expressed,

although, consistent with the behavior of known oncogenes

(e.g., ESR1, ERBB2).

‘‘CYCLOPS’’ (Nijhawan et al., 2012) and ‘‘GO’’ (Solimini et al.,

2012) genes show increased essentiality upon heterozygous

deletion of their cognate genomic regions. We identified 224

genes (FDR < 0.2) that were more essential with copy number

loss (Figure 6C; Table S6C); their essentiality also correlated

strongly with decrease in their expression (Figure 6D; Spearman

r = 0.74). These genes overlapped significantly with CYCLOPS

and GO genes, only five showed homozygous deletion in any

line, and their protein products were enriched for housekeeping

functions (Figure S6C; Table S6C; Supplemental Experimental

Procedures). Thus, our data validate the CYCLOPS/GO concept

and provide many other candidate members of this class of

genes.

PIK3CA Mutations Drive Resistance to BET-I
BRD4, encoding a BET bromodomain-containing co-activator

(Shi and Vakoc, 2014), was preferentially essential in luminal/

HER2 lines (Figure 7A; Table S3G). Moreover, luminal/HER2 lines

were more sensitive to BRD4 depletion by siRNAs (Figures 7B

and S7B), and expression of shRNA-resistant BRD4 cDNA

abrogated inhibition by BRD4 shRNA (Figure S7C).

We tested the BET domain inhibitor (BET-I) JQ1 on a subset of

our lines, expecting greater sensitivity in luminal/HER2 cells. Cell

line GI50s ranged from low nM (<100) to mM (>2.5), with lines that

showed high JQ1 sensitivity undergoing apoptosis, while resis-

tant lines had slower cell-cycle progression (Figures S7D–S7F).

However, many luminal/HER2 lines sensitive to BRD4 knock-

down were JQ1-resistant. By contrast, most basal lines that

were sensitive to BRD4 knockdown were JQ1-sensitive (Fig-

ure 7C; data not shown). In contrast to previous studies (Shi

and Vakoc, 2014), JQ1 sensitivity did not reflect impaired MYC
Figure 5. Screen Refines Classification and Pathway Identification

(A) NMF clustering of screen results (zGARP). ESR1, ERBB2, and PGR expressio

categories.

(B) Unsupervised analysis of essential genes implicated in PI3K/mTOR or EGFR/M

(this study) with sensitivity to drugs targeting these pathways (Daemen et al., 20

(C) Fraction of essential genes overlapping with reported ‘‘druggable’’ gene cate

(D) Top-ranked histone-modifying enzymes deemed essential in our screen, by b

represent 50% of lines in which the gene is essential.

See also Figure S5 and Table S5.
expression: sensitive and resistant cell lines displayed similar

decreases in MYC mRNA (Figure S7G), and exogenous MYC

did not convert JQ1-sensitive lines to JQ1-resistance (Figures

S7H and S7I).

Instead, integrative analysis revealed a strong correlation be-

tween JQ1 resistance and PIK3CAmutation (Figure 7C). Overex-

pression of wild-type or mutant PIK3CA conferred JQ1 resis-

tance on JQ1-sensitive SkBR3 cells (Figure 7D), establishing a

causal relationship between PI3K and resistance. Moreover,

A66, a PIK3CA-specific inhibitor, but not TGX-221 (PIK3CB-spe-

cific), increased the JQ1 sensitivity of resistant cells, as did the

mTOR inhibitors rapamycin or Torin (Figures 7E and 7F). The

one basal line (SUM159) sensitive to BRD4 depletion but JQ1-

resistant also has a PIK3CA mutation, and PIK3CA inhibitor

treatment sensitized these cells to JQ1 (Figure S7J). Finally,

combining JQ1 and Everolimus enhanced their respective anti-

tumor effects (Figure 7G). In concert, these data indicate that

BRD4 has bromodomain (BrD)-dependent and BrD-indepen-

dent effects in breast cancer cells and establishes PIK3CA

mutations as a BET-I resistance mechanism.

DISCUSSION

Most dropout screens analyze relatively few lines of any single

cancer histotype. By contrast, we provide gene essentiality

data for a large set of breast cancer lines with genomic, proteo-

mic, and drug response annotation, and an analytic tool, siMEM,

that more precisely measures differential essentiality. Our results

identify and provide initial validation of synthetic lethal relation-

ships with expression subtypes and CNAs, yield insight into

essential pathways that correlate with anti-cancer drug

response, and reveal general features of functional genomic

screens. Illustrating the utility of combining genomic/functional

genomic data, we identify and validate BRD4 as a luminal/

HER2-selective essential gene, uncover BET-independent re-

quirements for BRD4 in luminal/HER2 cells, and reveal PIK3CA

mutations as a potential resistance mechanism to BET-Is

in vitro and in vivo.

The breadth of our screen has several advantages. Many have

argued that breast cancer lines only partly reflect tumor hetero-

geneity (Hollestelle et al., 2010; Kao et al., 2009; Neve et al.,

2006). But there are at least ten breast cancer subtypes (Curtis

et al., 2012; Lehmann et al., 2011; Cancer Genome Atlas

Network, 2012); only a large panel could possibly represent

such heterogeneity (Figures 1 and S1). Our screen identified

nearly all known breast cancer drivers linked to the appropriate

biomarker (Figures 3A, 4A, and S4A). The increased power of

our dataset also revises the identification of putative targets of
n are shown by black squares. Colored boxes indicate major published sub-

EK/ERK pathways. Heatmap shows association of essentiality for each gene

13). The asterisk (*) indicates genes belonging to the NF-kB pathway.

gories or gene-drug interactions (DGIdb).

reast cancer subtype. *Reported gene-drug interaction in DGIdb. Black lines
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Figure 6. Additional Features of shRNA Screens

(A) Volcano plot of relationship between essentiality and gene expression. x axis, change in dropout rate per unit increase in expression log-FPKM; y axis, p value.

(B) Heatmap showing % inhibition of proliferation following knockdown by siRNA in cell lines. For each gene, the upper row (blue) represents maximum growth

inhibition, while the lower row (red) represents mRNA levels of the same gene in each line. R, Pearson correlation.

(C) Vulnerabilities associated with genomic loss (CYCLOPS genes).

(D) Strong agreement (Spearman r = 0.74, p value < 2.2 3 10�16) between genes more essential with heterozygous loss (FDR < 0.25) and genes whose

essentiality changes significantly with expression (FDR < 0.25).

See also Figure S6 and Table S6.
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some breast cancer amplicons and strengthens the identifica-

tion of others by HELIOS (Figure 4D; Table S4E). Thus, if enough

cell lines are tested, they provide valid surrogates for probing

core cancer cell properties, such as proliferation/survival.

Conventional algorithms for sh/siRNA screens generate

hairpin-level and/or gene-level scores that summarize multiple

measurements and fail to identify known differential essential

genes. By contrast, siMEM greatly improves detection of essen-

tials associatedwith CNAs, gene expression, somaticmutations,

or cancer subtype without increasing the false positive rate.

‘‘Hits’’ suggested by siMEM have a high validation rate (�60%–

70%) (Figures 3B and 6B), and an analogous approach can be

applied to any pooled screen (e.g., CRISPR/Cas9 screens).

Our screen identified ‘‘general’’ and ‘‘context-specific’’ essen-

tials. As expected, general essentials are enriched for house-

keeping functions, yet some show a gradient of essentiality

tied to specific genetic parameters. For example, specific

splicing factors (data not shown, but see Hsu et al., 2015) and

proteasome genes are preferentially required in basal lines

(Table S3F). A splicing inhibitor is in clinical trials (E7107;

NCT00459823), and several proteasome inhibitors are approved

drugs (Dou and Zonder, 2014) and could be repurposed for

breast cancer therapy.

Our data provide strong confirmation of earlier work suggest-

ing distinct subtype-specific vulnerabilities. The pivotal roles of

hormone receptors in luminal breast cancer, of ERBB2 signaling

in HER2+ disease, and of EGFR and WNT signaling in basal

breast cancer are confirmed by our screen hits (Figures 3A,

3D, and 3E; Tables S3F and S3G). We also identify several

‘‘druggable’’ targets, including EFNB3/EPHA4, MAP2K4,

MAPK13, and IL32, for basal breast cancer, the most lethal

form of the disease. How these genes promote basal breast can-

cer is unclear. EFNB3/EPHA4 are a ligand/receptor pair that pro-

motes neuronal proliferation and survival (Furne et al., 2009;

Takemoto et al., 2002). MAP2K4 phosphorylates and activates

MAPK13 (O’Callaghan et al., 2014); MAPK13 and IL32 are linked

to IL-1 signaling (Netea et al., 2005; Yousif et al., 2013),

which also is basal-specific in our screen. Basal A cells are pref-

erentially susceptible to CAND1-NEDD8 depletion. A NEDD8

inhibitor, MLN4924, is in phase 1 trials (NCT00677170,

NCT01862328); TNBC patients might benefit from this agent.

Basal B cell lines are claudin-low-like, represent a unique

TNBC subset, and have EMT-like, cancer stem cell-like, and
Figure 7. BRD4 Is Luminal-Essential, and PIK3CA Mutations Cause BE

(A) Box plot showing BRD4 dropout in each line, by subtype.

(B) BRD4 siRNAs confirm pooled screen results. Averages are maximum percen

(C) Effect of JQ1 on breast cancer lines. Table (inset) shows number of lines, group

mutated; WT, wild-type). Red shading shows lines with PIK3CA mutations. Muta

Sensitive lines have GI50 < 750 nM. *Lines with PTEN mutation/homozygous de

(D) WT or mutant PIK3CA (H1047R) renders JQ1-sensitive SkBr3 line resistant to J

the specific band.

(E) JQ1 cooperates with PIK3CA (A66; 1 mM), but not with PIK3CB (TGX; 1), inhibi

alone.

(F) JQ1 cooperates with mTOR inhibitors (rapamycin; 0.5 nM, Torin; 50 nM) to de

(G) JQ1 and Everolimus cooperatively inhibit xenograft growth. MCF7 cells (23 1

release estrogen pellet. When tumors were 53 5 mm (�21 days), mice were grou

(5 mg/kg/day by gavage), and (4) JQ1 + Everolimus daily. Tumors were measure

See also Figure S7.
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mammary stem cell-like gene signatures (Lim et al., 2010), like

those seen in chemotherapy-resistant cells (Creighton et al.,

2009). Basal B lines also showed unique essentialities: basal

B-essentials are enriched for motility, immune-related, develop-

mental and neuronal, and cell junction and adhesion genes,

several of which validate in siRNA experiments (Figure 3B). We

also find marked functional similarity between basal breast can-

cer and HGSC (Figure S3C). Our results and the shared geno-

mics of these tumors (Cancer Genome Atlas Research Network,

2011; Cancer Genome Atlas Network, 2012) argue for similar

treatment strategies and drug discovery efforts.

Consistent with earlier work (Davoli et al., 2013; Solimini et al.,

2012), our results suggest that for many amplicons, multiple

genes contribute to increased fitness. For some amplicons, no

clear cis-essential gene was identified. Failure to identify such

genes might be technical (e.g., insufficient amplicon+ lines).

More likely, these amplicons select for multiple weak drivers,

miRNAs/long non-coding RNAs (lncRNAs), or genes dispens-

able for proliferation/survival, but mediating other cancer hall-

marks. For other amplicons, the key gene(s) cannot be targeted

directly, nor can deleted tumor suppressor genes be restored.

‘‘trans-Essentials’’ provide insight into pathways perturbed by

CNAs and can suggest more tractable drug targets. For

example, METABRIC region 14, containing MYC, confers de-

pendency on a MYC-regulated functional network. Two genes

in this network, MINK1 and USP5, are potential drug targets

and validate by siRNA. Potentially druggable trans-associations

also exist for common deletions: e.g., RB1-deleted lines are

more sensitive toMAP2K2 depletion, whereasCDKN2A-deleted

lines rely more on KAT6B, ADRBK1, SYK, and DNMT3A.

As expected, genes encoding targets of known anti-cancer

drugs are more essential in lines sensitive to those agents. But

other genes, without known or obvious connections to the target

pathway, also show essentiality strongly correlated with specific

drug sensitivity. Also, gene essentiality can anti-correlate with

drug sensitivity. Such genes might mediate therapy resistance

and suggest potential combination strategies.

BRD4 was implicated in cancer by studies of NUTmidline car-

cinoma, which often harbors a BRD4-NUT translocation (French

et al., 2003). Subsequently, BRD4 emerged as a potential target

for many other neoplasms (Shi and Vakoc, 2014). We identified

BRD4 as more essential in luminal/HER2 lines (Figures 7A and

7B; Table S3G). In hematologic malignancies, BET-I sensitivity
T-I Resistance

t inhibition (p = 0.005, Student’s t test).

ed by JQ1 sensitivity (NS, non-sensitive; S, sensitive) and PIK3CA status (mut,

nt lines were more likely to be JQ1-resistant (p < 4.7 3 10�4, chi-square test).

letion.

Q1. Inset: immunoblot showing expression of PIK3CA-p110a. Arrow indicates

tors to decrease MCF7 and T47D proliferation. ‘‘0’’ JQ1 represents A66 or TGX

crease MCF7 proliferation. ‘‘0’’ represents rapamycin or Torin alone.

06) were injected into mammary fat pads of athymic nude mice bearing a slow

ped into: (1) control, (2) JQ1 (50 mg/kg/day intraperitoneally [IP]), (3) Everolimus

d with calipers every 3–4 days. P value, one-sided Student’s t test.



correlates with MYC downregulation and is antagonized by

exogenous MYC expression (Shi and Vakoc, 2014). Very

recently, mouse basal-like breast tumors caused by MYC over-

expression and mutant PIK3CA were found to be sensitive to

combined BET/PI3K inhibition, as was a human basal line,

SUM159 (Stratikopoulos et al., 2015). However, we saw no cor-

relation between JQ1 sensitivity and basalMYC levels or the abil-

ity of JQ1 to inhibit MYC expression. Nor does forced MYC

expression alter JQ1 sensitivity (Figures S7G–S7I).

Instead, using our genomic data, we found that PIK3CAmuta-

tions are biomarkers of BET-I resistance. Moreover, they are

functional biomarkers, as treating cell lines or xenografts with a

BET-I/mTOR inhibitor combination improves efficacy (Figures

7F and 7G). Our results have clear clinical implications, as Ever-

olimus is approved for ER+ breast cancer, and BET-Is are in clin-

ical trials.PIK3CAmutations aremost frequent in luminal tumors,

so such patients would likely benefit most from BET-I/mTOR-I

combinations. But our results and those of Stratikopoulos et al.

(2015) also suggest a role for BET-Is as single agents in basal tu-

mors. Surprisingly, and for unclear reasons, in basal lines, PTEN

mutation/homozygous deletion predicts BET-I sensitivity (Fig-

ure 7C; data not shown).

Finally, as breast cancer lines can be JQ1-insensitive, but

BRD4-dependent, BRD4 must have (a) BRD-independent func-

tion(s). Although the detailed mechanism is unclear, mutant

PIK3CA confers JQ1-resistance, so PI3K pathway activation

can selectively abrogate BRD-dependent, but not BRD-inde-

pendent functions of BRD4. Thus, our integrated functional

genomic approach not only can suggest new treatment strate-

gies for breast tumor subtypes, but also reveals new features

of breast cancer biology.
EXPERIMENTAL PROCEDURES

For additional details and computational methods, see Supplemental Experi-

mental Procedures.

Cell Lines

Cell lines were from the American Type Culture Collection (ATCC), Asterands,

Deutsche Sammlung von Mikroorganismen und Zellkultrenen GmbH (DSMZ),

or were available in-house (Table S1).

Genomics/Proteomics

SNP-Arrays

Genomic DNA was amplified with the Illumina Infinium Genotyping kit, hybrid-

ized to Human Omni-Quad Beadchips, and analyzed on an iScan (Illumina).

Data were quantified in GenomeStudio Version 2010.2 (Illumina) using Omni-

QuadMultiuse_Hmanifest (April 2011 release), containing data from Genome-

Build 37, Hg19.

RNA-Seq

RNA was reverse transcribed using the Illumina TruSeq Stranded mRNA kit.

Libraries were sized (Agilent Bioanalyzer), normalized, and pooled (six each),

and loaded onto an Illumina cBot. Paired-end sequencing (50 cycles) was per-

formed on an Illumina HiSeq 2000.

Targeted Sequencing

DNA for 126 genes (1.264 Mbp) mutated at R3% frequency in breast or

ovarian carcinoma was captured using Agilent SureSelect XT, loaded onto

the cBot, and subjected to paired-end sequencing (100 cycles).

miRNA

miRNA expression was assessed by using the nCounter Human V2 miRNA

Assay Kit (Cat# GXA-MIR2-48) and a NanoString counter.
RPPA

RPPAs were generated and analyzed as described (Tibes et al., 2006). For all

lines, fresh media was added at 80%–90% confluency, and cells were har-

vested 16 hr later.

shRNA/siRNA Experiments

Pooled screens with the TRC-II library were performed as described (Marcotte

et al., 2012). HCC712, ZR-75-30, MDA-MB-175VII, UACC812, and UACC3199

failed quality control. For validation, cells (1,000–3,000) seeded in 96-well

plates for 24 hr were transfected with Dharmacon SMARTPOOL siRNAs

(10 nM) using Lipofectamine RNAimax (Life Technologies). After 7 days, cells

were stained with Alamar blue (Life Technologies), which measures redox ac-

tivity and is as a surrogate for cell number. Percent maximum inhibition, cor-

rected for transfection efficiency, was determined using siRNAs for the general

essential RPL9.

Xenografts

MCF7 cells (53 106) were mixed 1:1 with growth factor-reduced Matrigel (BD

Biosciences) and injected into mammary fat pads of athymic nude mice

(Charles River). When tumorswere 53 5mm,micewere separated into control

and drug-treated groups. JQ1 was synthesized (Filippakopoulos et al., 2010).

Everolimus was purchased from Selleckchem.

RNA-seq and screen data are deposited in Gene Expression Omnibus

(GEO: GSE73526 and GEO: GSE74702). Genomics and proteomics data are

available at http://neellab.github.io/bfg/. All code is available upon request

from A.S. and siMEM code will be posted at http://neellab.github.io/simem/.

All animal studies were approved by the University Health Network Animal

Care Committee, under Animal Use Protocol (#1239).
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