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Glioblastoma (GBM) is an aggressive brain cancer with a poor survival rate. Despite hundreds of
clinical trials, there is no effective targeted therapy. Glioblastoma stem cells (GSCs) are an important
GBM model system. In culture, these cells form spatial structures that share morphological aspects
with their source tumors. We collected 17,000 phase-contrast images of 15 patient-derived GSC lines
growing to confluence. We find that GSCs grow in characteristic multicellular patterns depending on
their transcriptional state. Interpretable computer vision algorithms identified specific image features
that predict transcriptional state across multiple cell confluency levels. This relationship will be useful
in developing GSC screens where image features can be used to identify how GSC biology changes in
response to perturbations simply by imaging cultured cells on plates.

Glioblastoma (GBM) is a brain cancer with poor overall survival despite
extensive research and therapeutic testing'”. Standard of care has remained
unchanged, and newer therapeutic interventions have repeatedly failed in
clinical trials. Heterogeneity, both across individuals and within tumors,
including at the tumor-initiating glioblastoma stem cells (GSCs) level”®, may
explain why it has been challenging to target GBM. A landmark TCGA study
first identified that this heterogeneity has similarities to normal brain
development and can be categorized into different lineage-representing
groups of cells’. Single-cell gene expression experiments have since shown
that GBM and GSCs maintain neurodevelopmental and injury-response
hierarchies’>". Brain developmental and differentiated cell-types and cell-
states, such as the progenitor, astrocytic, oligodendrocytic and neuronal-like
cell types, are found in all GBM tissues, often with a mesenchymal lineage that
is transcriptionally similar to the astrocytic lineage™. Subsequently, studies
showed that injury-response signatures are found enriched in GSCs, sup-
porting the role of the reactivation of wound healing mechanisms in
progenitors™’. Ideally, improvements to GBM experimental model screening
technology could increase the chances and speed of finding new therapies'*"*.

Current high-throughput therapeutic screening technologies are
imaging-based, using either fluorescence or brightfield microscopy. Orga-
noids and two-dimensional (2D) cell culture models are widely used in high-
throughput screening experiments. These screening experiments capture
aspects of tissue-level cellular organization and are valuable in therapy
development and preclinical testing”’. An advantage of 2D cell culture
systems is that they can be easily imaged, capturing interesting aspects of
cellular organization, including cell shape, spatial relationships between
cells, and general properties of the patterns formed by cells on the plate.
They also ensure that every cell can be similarly influenced by media con-
ditions. Traditional image-based therapeutic screening methods applied to
cellular culture models generally extract few and relatively general pheno-
types, such as growth rate or expression of select protein markers, from
measured images'*"”. Circumventing these limitations, recent image ana-
lysis advances support extracting rich, multidimensional information from
single-cell images'®'*. However, most methods do not consider the orga-
nization of cells into multicellular structures and how these patterns relate to
the human tissues modeled by 2D cultures.
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To better understand the multicellular patterns present in GSC cul-
tures, we analyzed 17,000 phase-contrast microscopy images obtained from
15 patient-derived GSC cultures grown over 12-16 days. A set of 29 image
analysis features, calculated based on pixel distributions, was computed for
each image. Unsupervised analysis reveals that these features naturally
organize the GSCs along a spectrum that strongly correlates with a
neurodevelopmental-to-injury response gradient and multiple brain cell
type and inflammatory gene expression signatures**”'**. Further, specific
image features correlate with transcriptional states across multiple cell
confluency levels. This relationship will be useful in developing improved
GSC screens where we can identify how key aspects of GSC biology change
in response to perturbations by imaging cultured cells on plates.

Results

GSCs show diverse morphometric and multicellular patterns in

culture

To measure cell organization in 2D cell cultures, we used phase-contrast light
microscopy to image GSC cultures from 15 patients, from day 1 until con-
fluency (up to 16 days) at 4 or 12 h intervals. This resulted in a database of
17,601 images (Supplementary Fig. 1A), previously used only for overall cell
confluency measurements to develop controls in a chemical screen'”. How-
ever, we observed strong variation in intensities and spatial distributions of
pixels across time and confluency levels within these images, suggesting that
the images contain additional information related to the spatial organization
of the cells (Supplementary Fig. 1B). Manual inspection of image patterns
identified rich texture, directionality, cell shape and cell composition infor-
mation within the images. The most visually prominent pattern variation
appears from multicellular structure formation over different confluency
levels (Fig. 1 and Supplementary Fig. 1B). For example, we observed in some
samples (G564; Fig. 1A, G549, G799, G800; Supplementary Fig. 1B) that cells
have a tendency to align with their longitudinal axis against each other,
exhibiting anisotropy (a term used to describe directionality in patterning),
whereas in other samples we found isotropic (used to describe more uniform
orientation or aggregation) patterning of cell clusters (G523; Fig. 1A, G566,
G583, G729, G837, G851, G861, G876, G885, G895; Supplementary Fig, 1B).
Wealso observed differences in the spatial geometry of cells (how cells relate to
each other in space). For instance, cells from some patient samples (e.g., G837)
organize themselves in a 2D layer, exhibiting efficient space utilization with
little cell-cell overlap and no visible intercellular gaps (Fig. 1B). This appears to
be an inherent property of these cells and not due solely to confluency effects,
as the property is visible at multiple confluency levels. However, cells from
other samples, such as G876, grow in a largely overlapping manner, making
extensive membrane projections that overlap nearby cells (Fig. 1B).

To quantify these visual pattern descriptions, we used CellProfiler to
compute diverse pixel composition and pixel-pixel spatial relationship
features in an image'®. CellProfiler implements two classes of whole image
feature extraction algorithms: gray-level co-occurrence matrix (GLCM) and
granularity spectrum (Supplementary Notes 1 and 2, Materials and meth-
ods). Briefly, the GLCM is a symmetric frequency matrix derived from the
raw pixel matrix of an image and represents the frequency distribution of

pixel-pairs (Supplementary Note 1). From this frequency distribution,
descriptive (i.e., mean, variance, correlation) and spatial (i.e., homogeneity,
entropy, and contrast) patterns of pixel-pair relationships across an image
are calculated”’. We also included the granularity spectrum, which captures
the size range of structures in an image (Supplementary Note 2). This results
in a total of 29 features representing pixel distribution patterns within an
image. Plotting feature scores over time of cells growing on a 2D surface
quantifies the variation manually observed in the images (Supplementary
Fig. 2). For instance, examining a feature score plot for sample G566 (red
box in Supplementary Fig. 2), we can clearly observe that the “Granularity 1”
feature decreases over time, whereas “Granularity 7” increases over time,
suggesting that smaller structures decrease, whereas larger structural ele-
ments are being formed (as cells form collective clumps as they grow).
Overall, we observe a rich diversity of spatial pixel variation, accompanied
by multicellular patterns in our cell culture images.

Unsupervised factor analysis uncovers spatial patterns in GSC
images that correlate with gene expression signatures

We next asked if the multicellular patterns we observe in our images cor-
relate with known biological programs, such as cell type or state. To quantify
the pattern variation at multiple confluencies, we divided the data profiled
using CellProfiler into different cell densities. We binned these images over
nine confluency levels to capture the changes in multicellular organization
over varying cell densities as well as to ensure that technical plate effect was
minimized (materials and methods, Supplementary Fig. 3A). For each
image, we computed a feature vector using the 29 image features described
above, normalized by confluency level to control for cell density. We then
performed principal component analysis (PCA) over each confluency level.
We found that principal component one (PCl1) and two (PC2) carried the
bulk of the variance (43-63% total, across confluency levels) (Supplemen-
tary Fig. 3B). We next asked if the PCs correlate with known biological
signals. We analyzed bulk RNA-seq datasets matched with our 15 GSC
samples. We scored each RNA-seq sample using 111 gene signatures from
human fetal and adult brain cell types and GBM tissues from a range of
studies (Supplementary Table 1, Materials and methods™"”'*******%). To
correlate our image feature vectors captured by image, and our 111 gene
signature vectors calculated by transcriptome, we computed the mean PC
scores by sample for each principal component and confluency level
(materials and methods, Supplementary Fig. 3C). We then computed the
Pearson correlation coefficient for each averaged component with each of
the 111 gene signatures. Both PC1 and PC2 show biological correlation
across confluency levels, though PC2 has a more generalizable association
with gene expression (Fig. 2A, B, Supplementary Fig. 4, and Supplementary
Table 2). PC2 correlates with signatures representing OPCs, NSCs, neurons
and astrocytes, and anti-correlates with signatures representing microglia,
mesenchymal and injury response phenotypes (Fig. 2 and Supplementary
Table 2). Thus, GSCs in culture exhibit spatial patterning that correlates with
gene expression programs, with neurodevelopmental and mesenchymal/
injury-response biological programs showing distinct geometric patterns
well separated in PC space.

Fig. 1 | Diverse multicellular spatial patterningof A
patient-derived glioma stem-like cells in culture. Directionality
A, B Representative images of glioma stem-like cells Anisotropy
e . . . . G564, low density
exhibiting rich multicellular spatial patterning. Scale RNEmE N
representation = 50 microns for both x and y-axis
bars. A Cells in the left image show directional
packing (anisotropy) as compared to cells in the
right image which show cell aggregates packed in
more uniformly distributed orientations (isotropy).
B Cells in the left image show efficient space utili-
zation where cells organize themselves with cell
membranes aligned next to each other compared to
cells in the right image where packing and space
utilization results in overlapping cellular processes.
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We next interpreted the image features correlated with the neurodevelop-
mental and mesenchymal/injury-response transcriptional gradient. Overall,
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these image features show broad patterns that change with cell density (Sup-
plementary Fig. 5). For instance, granularity spectrum values increase as cell
density increases (Supplementary Fig. 5A). This trend is expected as at lower
cellular densities there are more single or smaller clusters of cells. The GLCM
derived image features show a more complex relationship with confluency
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Fig. 2 | Image analysis features correlate with gene signatures. A Heatmap of
correlation scores between image-derived mean-PC2 scores for 15 samples, from
each confluency level (columns) and GSVA scores for matched 15 samples for each
of the 111 gene signatures. Select gene signatures are labeled and colored by their
major biological category (magenta - neurodevelopmental/high PC2, blue -
mesenchymal-injury-response/low PC2). The nine confluency levels (columns) are
labeled as C1-C9 at the bottom of the heatmap. Heatmap is a z-normalized color
map for high and low Pearson correlation scores. B The column vectors from
heatmap in (A) plotted against gene signatures (one line plot per confluency level).
The y-axis represents the Pearson correlation between the mean-PC2 vectors for
15 samples and the GSVA scores derived from matched samples, for each of the 111
gene signatures from bulk gene expression datasets (x-axis of the heatmap in panel
(A). The x-axis represents 111 gene signatures used to compute the GSVA scores and

ordered by the correlation values (y-axis of the heatmap in panel A). Gene signatures
with statistically significant correlations (p < 0.05) are colored by the major biolo-
gical category they represent (magenta = neurodevelopmental and blue=-
mesenchymal, injury-response). C Images from the top and bottom 25% of PC2 are
represented by their sample count (C) and fraction (D). For panel (C) the y-axis
represents the number of images whereas in panel (D) the y-axis represents the
fraction of the number of images present in the top or bottom 25% of PC2 per sample
as a fraction of the total number of images per sample. For both (C, D), samples are
ordered by their mean-PC2 score along the x-axis and colored by the major biolo-
gical category (magenta = neurodevelopmental and blue = mesenchymal, injury-
response). For A, B, gene signatures: n =111 and confluency groups: n =9. For

C, D, sample size: n = 15 biologically independent samples.

levels, with some features positively or negatively correlated with cell density
and others showing a nonlinear relationship (Supplementary Fig. 5B, C).

These variations in image features were observed along PC2, dis-
tributing images along the neurodevelopmental-mesenchymal/injury-
response gradient (Fig. 3). Despite maintaining a consistent overall
correlation with the neurodevelopmental and mesenchymal/injury-
response gradient across confluency levels, the image features driving
PC2 variance change over cell growth phases, from low to mid to high
confluency (Fig. 3A). For instance, small granularity features are con-
sistently associated with lower cell densities (Fig. 3A). However, within
these lower cell densities, the PC2 loadings are higher for the low gran-
ularity features with respect to the neurodevelopmental GSC culture
images, indicating smaller structures within these images, in contrast to
images from the mesenchymal/injury response GSC culture images of
similar densities (Fig. 3A, Supplementary Fig. 6A, and Supplementary
Table 3). In contrast, PC2 loadings for the mid granularity features are
stronger in the low density mesenchymal/injury response GSC culture
images (Fig. 3A, Supplementary Fig. 6B, and Supplementary Table 3).
GLCM-derived features also show a clear biological association with the
neurodevelopmental-mesenchymal/injury-response  gradient. ~ For
instance, the informational measure features (IMC1 and IMC2), both
measuring the mutual information along the horizontal and vertical
image axes (Supplementary Note 1), are the strongest PC2 feature
loadings but exhibit varying influences at different confluencies and NIR
scores (Fig. 3A). IMC1 is strongly correlated with the mesenchymal/
injury response signatures at the low-mid confluency levels whereas
IMC2 exhibits a stronger correlation with the neurodevelopmental
samples at high confluency levels (Fig. 3B and Supplementary Table 3).
This reflects the symmetry of multicellular structures at two different
density ranges and shows how neurodevelopmental cell states grow in
more symmetric multicellular patterns than mesenchymal/injury-
response cell states. Another example is the inverse difference moment,
which measures homogeneity by penalizing high contrast areas. It is
associated with neurodevelopmental images at mid-high confluency
levels (Fig. 3A, C and Supplementary Table 3). The correlation feature,
measuring similarities in pixel neighborhood patterns in the image, is
also more strongly associated with neurodevelopmental images at mid
confluencies (Fig. 3D and Supplementary Table 3). Differences in pixel-
pair values along different axes and directions can be attributed to var-
iation in the sharp boundaries or the nature of pixel-intensity shifts that
form as cells meet each other along their membranes, overlap cellular
processes or exhibit anisotropy, forming variable local light-dark con-
trast patterns. The data indicates a more consistent cell population
patterning within the neurodevelopmental images compared to the
mesenchymal and injury-response samples and this may relate to con-
sistent overall cellular composition, resulting in cells maintaining similar
textures even as they grow into larger cellular networks. Overall, image
analysis features highlight organizational differences along the neuro-
developmental-to-mesenchymal/injury-response biological ~gradient
that are preserved despite the changing spatial organization patterns of
cells in culture during growth.

Predicting neurodevelopmental-injury response score from
image features

We next trained a predictive model to map GSCs along the
neurodevelopmental-injury response (NIR) transcriptional gradient using
only 2D culture image features. Pooling all confluency levels, after group-
wise feature normalization, we trained all image data points to predict the
first principal component after applying PCA to the 111 GSVA-derived
gene signature scores (Fig. 4A)*. We tried Ridge, Lasso and Elastic Net
regularized regression (Fig. 4B). The Lasso regularization model gave the
best overall performance (Fig. 4B) (R*=0.788, p value = 1e-05). We next
tested using the trained lasso model by predicting the NIR gradient for four
new samples that had matched phase-contrast image and bulk gene
expression data. While not significant, likely due to variation among a low
number of samples, model prediction was correlated with ground truth
values and agreed on the overall trend of high or low on the NIR gradient (R*
value of 0.288, p value = 0.464) (Fig. 4C). The features with the most weight
contribution in the Lasso model are Angular second moment, Granularity 5,
Granularity 6, and Contrast. These are similar to our PC2 loadings, averaged
across confluency levels. For example, the Angular second moment high-
lighted by our Lasso model with a positive weight is amongst the top five of
our averaged PC2 positive loadings (Supplementary Table 3) and the
granularity features dominating our Lasso regression model with negative
weights are amongst the PC2 negative loadings (Supplementary Table 3).
The Lasso model outperformed a targeted approach when training a linear
model on two top image-features (topmost and bottommost highest PC2
loaded features: Informational measure 1 and Granularity 13; R*=0.368, p
value = 0.0165) (Fig. 4D). Overall, phase-contrast image features can be used
as a predictive marker for GSC transcriptional state.

Discussion

Microscopic images of cells growing over time on 2D plates are a rich source
of biological information, but are traditionally used to extract single values,
such as cellular growth rate, for analysis. The multicellular spatial patterns
visible in these images are defined by cell-type orientation, space utilization,
cell contacts, and cell shape. Here, we show that these patterns vary along
temporal and biological axes. In particular, cultured glioblastoma stem cells
form patterns that strongly correlate with a transcriptomic gradient
expressing neurodevelopmental pathways on one side and mesenchymal
and injury-response/inflammation pathways on the other’. Mesenchymal/
injury response GSCs show increasingly more diverse multicellular patterns,
while neurodevelopmental samples exhibit more stable patterning as they
grow. Wealso find that spatial patterning varies with time and yet maintains
a strong correlation with the GSC transcriptomics gradient, suggesting that
as spatial structures evolve, they are constrained by underlying biological
programs.

A key open question is how single-cell morphometric features relate to
the higher-order multicellular patterns we studied. Is there more spatial
pattern information available at the multicellular level than can be discerned
from studying individual cells? Unfortunately, we couldn’t address this as
we had relatively few single-cell examples to study in our data. Further,
extracting high-quality single-cell shapes from multicellular neighborhoods
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Fig. 3 | Identifying image analysis features that best correlate with GSC neuro-

developmental/injury response transcriptomic gradient. A A heatmap of the PC2
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left). B-D Representative distribution plots of images grouped by sample with a line
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NIR gradient using image features for four independent samples not used to train the
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is challenging for various reasons, such as cellular overlap and difficulty
resolving extended cellular membrane protrusions from each other, even
when using expert manual annotation. Improved cell segmentation and
imaging methods, including those that consider more detailed time series to
resolve overlapping cells, cellular dyes and perhaps spatial transcriptomics,
will be required to extract enough single-cell images from multicellular
structures in 2D culture images to learn these multiscale relationships”.
Single-cell transcriptomics may provide more information, and can be
pseudobulked to compare with our work with bulk RNA-seq.

Extending our 2D study to other models, such as live and fixed tissue
slices imaged with diverse microscopy technologies, as well as three-
dimensional systems, such as organoids, is expected to provide richer
information than can be extracted from the brightfield phase-contrast
images we analyze here. However, our general analysis approach using
whole image-based features considering all structures in view should be
generally compatible with other imaging systems and models.

Our Lasso model can predict the transcriptional phenotype of GSCs
from phase-contrast image features. Predicting the phenotype of patient-
derived cell lines without the need for sequencing assays can facilitate high-
throughput screening and help identify, for example, chemical compounds
that perturb cells and their position on the neurodevelopmental-to-injury-
response gradient.

Ultimately, we hope that further study of relationships between images
and functional genomics data will identify gene expression programs that
are correlated with specific multicellular structures, extending our inter-
pretability capability to identify causal biological relationships directly from
cell images. This will be useful to improve our understanding of disease
models and develop new therapies that consider the architecture of growing
multicellular systems.

Materials and methods

Glioblastoma stem cell culture

Fresh tumor samples were obtained from patients during operative proce-
dures following informed consent. All experimental procedures were per-
formed in accordance with the Research Ethics Board at The Hospital for
Sick Children (REB1000025582 and REB0020010404), the University
Health Network, the University of Calgary Ethics Review Board and the
Health Research Ethics Board of Alberta, Cancer Committee and Arnie
Charbonneau Cancer Institute Research Ethics Board (REB HREBA-CC-
160762)*". All ethical regulations relevant to human research participants
were followed. Authentication of cell lines was done with PCR using a panel
of polymorphic markers. The lines were matching the patients they were
derived from. All lines were tested for mycoplasma contamination and were
found to be free of contamination. Adherent glioma stem cell (GSC) lines
were propagated in adherent format on tissue culture plates coated with
poly-L-ornithine and laminin. Cultures were maintained in serum-free
neural stem cell self-renewal medium composed of NeuroCult NS-A Basal
Medium supplemented with 2 mM L-glutamine, N2 and B27 supplements,
75 pg/mL bovine serum albumin, 10 ng/mL recombinant human epidermal
growth factor (EGF), 10 ng/mL basic fibroblast growth factor (FGF), and
2 pug/mL heparin. All experiments were performed using cells between
passages 8 and 12.

Phase-contrast imaging

The phase-contrast image data were collected using an established
protocol . Briefly, two thousand GSCs, maintained between passages 8 and
12, were plated adherently in 384-well CELLBIND plates (Corning) and
imaged using the Incucyte Zoom™ live cell imaging system (Essen Bios-
ciences). Cells were imaged with a Nikon 10x objective using phase-contrast
mode every 4-8 h until the experimental endpoint of a confluent plate
(12-16 days). Culture media was changed every 5 days. Images used in this
study were from wells grown untreated (stem cell media only) and are
1266 x 944 with a pixel size of 1.34 um/pixel. A total of n=17,601 images
were captured for the discovery analysis from n = 15 patient-derived GSCs.

For the validation cohort using regression analysis, n =4 patient-derived
GSCs were added, which resulted in a total of # = 6670 images.

Frame extraction before image analysis

Images were saved from the microscope as time-lapse videos (.mp4
video files), and openCV was used to extract image frames from those
videos. Each phase-contrast image was saved as a Tag Image File Format
(TIFF) file.

Whole image analysis—llastik and CellProfiler analysis pipeline
Mask generation with llastik. For each TIFF image, we used the ilas-
tik(v1.4.0) software (pixel classification module) to generate background
segmentation masks that exclude any “acellular” regions of the plate/
image during downstream computation®. Every second image until
t=24h and every sixth image thereafter until =168 h were used for
training. Each sample dataset was processed independently with its own
training run, to account for sample-level batch effects. Two classifiers,
background and foreground, were created within each Ilastik session to
separate plate pixels from cell pixels. A single colored stroke, with stroke
width ranging from 1 to 3, was used to mark the background/plate area
and a single stroke with a different color was used to mark the cell-
occupied regions. Any debris present was included as part of the fore-
ground. This process was repeated for a sampling of images (every
3rd-5th image). If necessary, training was continued using additional
unused images. Each image used in training only received 1-2 training
strokes per classifier group per image. After training, the ilastik pixel
classifier for each sample dataset was run on a computer cluster using all
images. The background and cell masks generated were used downstream
for image data extraction using CellProfiler’s built-in image analysis
algorithms"’.

Image preprocessing and image analysis. First, raw images were
screened using the CellProfiler(v4.0.7) “MeasurelmageQuality” module
to remove poor quality images™. After trying out several of the module’s
parameters, we found that the “PowerLogLogSlope” (PLLS) function was
sufficient to remove aberrant images”. The images removed by PLLS
were manually verified to ensure that they were low quality (e.g., blurry or
corrupted by noticeable artifacts, such as pipette plastic objects, well
bottom scratches) and no exceptions were found. After QC, 435 images
from G523, 1401 images from G549, 1449 images from G564, 456 images
from G566, 456 images from G583, 1433 images from G729, 1330 images
from G797, 892 images from G799, 1323 images from G800, 1417 images
from G837, 477 images from G851, 446 images from G861, 472 images
from G876, 530 images from G885, and 441 images from G895 were
retained for downstream analysis. For the validation set, post-QC pro-
cessing resulted in 456 images from G411, 333 images from G620, 493
images from G637, and 74 images from G683. The foreground masks,
representing cellular regions, were used to calculate the area of cells
occupying each image. Following this, the “MeasureTexture” and
“MeasureGranularity” modules were used to extract gray-level co-
occurrence matrix pixel-pair distributions and the granular or size dis-
tribution patterns from these images using 29 image analysis features,
with default settings (Supplementary Notes 1 and 2). The “Measure-
Granularity” algorithm uses 16 different pixel sizes of openings/closings
or structuring elements as its default. These were used to analyze the
granularity of each image and its relative size. The “MeasureTexture”
module measures the GLCM, which consists of 13 features, measuring
various aspects of pixel-pair spatial distribution patterns, using the gray
scale co-occurrence matrix. For the GLCM features, a scale factor from 0
to 3 was used. The scale factor refers to the directionality of the GLCM
matrices (“north”, “south”, “east”, “west” and is explained in Supple-
mentary Note 1). These four directions perfectly correlate with each
other; thus, we included only a single scale (direction = “east”) from our
data analysis (scale = 0 in CellProfiler).
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Whole image analysis —data analysis using R. All data processing and
statistical analyses were conducted in R (4.4.2) within an active renv
environment to support reproducibility. Major Bioconductor and CRAN
packages used BiocManager (1.30.25), SummarizedExperiment (1.36.0);
GSVA (2.0.6), and GSEABase (1.68.0) for gene-set variation analysis;
PCAtools (2.18.0) for principal-component computations and visuali-
zation; glmnet (4.1-8) for ridge and elastic-net regression; dplyr (1.1.4)
and tidyr (1.3.1) for data wrangling; reshape2 (1.4.4) for reshaping data
matrices; ggplot2 (3.5.1), ggpubr (0.6.0), and ggbiplot (0.6.2) for data
visualization and figure assembly; and pheatmap (1.0.12) for heatmap
generation. Each package version was recorded in the project’s renv.lock
file to support consistency across analyses.

Normalization. Image features were normalized by sample. The data
matrix is composed of rows representing individual images and columns
representing one of the 29 image features. Each feature vector or column
was multiplied by a diagonal matrix, where the diagonal represented the
scaling factor to transform each feature vector as a fraction of the max-
imum feature value.

Ic = diag(a, 85,25 ..., a) [f1, /5. f 3 ...fn]T

I =Image matrix, ¢ =image column, ag= maximum value of pixel
feature in each column c, f,, = feature vector

Following this, z-normalization was applied by row to obtain a nor-
malized feature vector for each image.Batch correction and data binning
into nine confluency levelsPrincipal component analysis (PCA) over all
images is strongly driven by the time-point at which the images were taken
and the sample (batch effect). To mitigate batch effects, we grouped the
images by time-point, to ensure that images from the same plate and time-
point were grouped together. Next, we formed batches of images based on
the mean total cell area per image while grouped by time-point for each
sample set to form different confluency levels. Altogether, we separated the
images into nine confluency levels (Supplementary Fig. 3A). The nine
confluency levels from C1 to C9 were composed of n images as follows: 487,
747,803, 868,822,802, 1104, 1302, and 5974. Some overlap between levels is
caused by technical or biological effects, such as variable sample seeding
density or larger cell size, but overall, the binning procedure was successful at
removing major technical effects.

Principal component analysis of whole image analysis. PCAtools
version 2.18.0 with default parameters was used for PCA dimensional
reduction of all images (operating on image features).

Bulk RNA-seq analysis

Bulk RNA sequencing data were previously generated from glioma stem-
like cell (GSC) cultures and analyzed using gene set variation analysis
(GSVA)*. GSC-relevant gene signatures were curated from Richards et al.
(Supplementary Table 4)*. Cells were maintained between passages 8 and 12
and cultured to ~70-80% confluency prior to collection for bulk RNA
sequencing. The details of library preparation, read alignment and other
preprocessing steps previously generated are outlined below as described in
the original publication®.

Library preparation and sequencing. Total RNA was isolated from
frozen GSC pellets using the AllPrep DNA/RNA Universal Kit (QIA-
GEN). Strand-specific RNA sequencing libraries were prepared from
500 ng of total RNA following poly(A) transcript enrichment using the
NEBNext Poly(A) mRNA magnetic isolation module (E7490L, New
England Biolabs). Libraries were quantified using the Qubit dsDNA High
Sensitivity Assay (Thermo Fisher Scientific). Cluster generation and
sequencing were performed on the Illumina HiSeq 2500 platform using
indexed lanes and v4 chemistry, in accordance with the manufacturer’s
protocols.

Read alignment and preprocessing. Strand-specific, paired-end 75 bp
reads were aligned to the human reference genome (hg38) using STAR
(v2.4.2a), with gene annotation based on the UCSC reference from the
MMumina iGenome resource. Raw gene-level counts were obtained from
the STAR ReadsPerGene output. Genes with fewer than five total counts
across all samples were excluded from downstream analyses.

Data transformation and pathway-level analysis. Normalization and
variance stabilization were performed using DESeq2 (v1.22.2), which was
also used to estimate sample-specific size factors. Batch correction was
applied to account for both technical and biologically relevant covariates
in the model”. GSVA (v1.30.0) was used to quantify pathway and gene
signature activity across samples™. Gene signatures were compiled from
multiple published sources capturing neural progenitor, neuronal, oli-
godendrocyte progenitor, oligodendrocyte, astrocytic, mesenchymal,
immune, tumor-associated, and injury-response/developmental
programs™*”'>**»*»>_Gene signatures showing downregulated patterns
were excluded to reduce redundancy with corresponding upregulated
signatures. After filtering, a total of 111 gene signatures were retained for
downstream analyses.

Pearson correlation analysis between the whole image and the
bulk RNA-seq datasets
For each confluency level, we computed the Pearson correlation coefficients
between the normalized image features and the 111 gene signatures
obtained from bulk RNA-seq. First, the mean PC scores were calculated for
each GSC for all 15 samples, resulting in a vector of 15 mean PC scores,
which were then correlated against each of the 111 gene signature vectors,
where each vector comprises the GSVA scores for a single unique signature
across 15 GSCs. PC signs were aligned to a common direction to support
meaningful biological comparisons across confluency levels and gene
signatures.

To obtain the top and bottom 25% images along PC1 and PC2, first, the
PCl and PC2 scores for all images were z-normalized by confluency levels.
Next, z-normalized matrices were concatenated to form a single dataframe
and ranked by PC2 scores. The top 25% and bottom 25% ranked images
were subsetted to calculate the proportion of sample contribution. Where
samples were indexed along the x-axis, order was determined by mean-PC2
score. P values obtained from the corr.test output were considered sig-
nificant when values fell below 0.01. The correlation coefficients and p values
can be found in Supplementary Table 5.

Linear regression modeling

Reduced gene signature dimensionality using principal component
analysis. To reduce dimensionality and identify dominant expression
patterns, principal component analysis (PCA) was applied to the GSVA
score matrix (described above) using base R’s prcomp() function. The
first principal component (PCl1), explaining the largest proportion of
variance, captured a neurodevelopmental-to-injury-response (NIR)
gradient, with high PCI scores aligning with neurodevelopmental phe-
notypes and low scores with mesenchymal and injury-response states
(Fig. 4A). PC1 was thus designated the “NIR gradient” for all subsequent
analyses.

Image feature aggregation. Phase-contrast image-derived features
were computed for each glioma stem cell (GSC) sample across multiple
confluency conditions. To obtain a single representative feature vector
per sample, features were averaged across all confluency levels (after
normalizing within confluency levels). This aggregation was applied to
both the original dataset and four additional GSC datasets containing
matched imaging and gene expression profiles.

Model training and prediction. Linear regression models were imple-
mented using base R’s Im() function, with the NIR gradient (PC1 scores)
as the response variable and image features as predictors. To account for
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potential multicollinearity and enable feature selection, three regularized
linear models—Ridge (alpha= 0), Lasso (alpha=1), and Elastic Net
(alpha = 0.5)—were trained using the glmnet package in R. All models
were trained on the original dataset of averaged image features (across
samples) and used to predict NIR scores in the four new GSC datasets.

Feature-reduced modeling. To assess the feasibility of using a small
feature set to predict NIR gradient position, a linear regression model was
constructed using only the two image features with the highest positive
and negative loadings on the second principal component (PC2) of the
feature matrix: Granularity 13 and Informational Measure 1 (Supple-
mentary Table 3).

Implementation. All data preprocessing, modeling, and visualization
steps were performed in R using base packages and glmnet. Model per-
formance was evaluated using R*> values and predicted-versus-
actual plots.

Statistics and reproducibility

Study design and replicates. The primary image dataset was generated
from 15 biologically independent patient-derived GSC lines (biological
replicates). For each line, longitudinal phase-contrast images were
acquired temporally from seeding to confluence, yielding 17,601 images
that constitute technical replicates (multiple time points over a single
field per line per well). For external evaluation of the imaging-to-
transcriptome mapping, four additional independent GSC samples with
matched imaging and gene expression were used. The images from these
four samples were acquired similarly to what was described before. Bulk
RNA-seq was performed once per biological replicate (n = 15), with four
additional biological samples (n = 4) for external evaluation.

Reproducibility. All pipelines (CellProfiler/ilastik settings and R analysis
scripts) are fully versioned and provided, enabling end-to-end repro-
duction from raw images/masks to figures and statistics.

Statistics. All statistical analyses were performed in R. Relationships
between image-derived features and gene expression data were evaluated
using simple linear regression and Pearson correlation. Model perfor-
mance and associations were reported as R and p values, with p < 0.01
considered statistically significant.

Inclusion and ethics statement

The study was designed to address biological and technical questions using
in vitro models. No human participants or animals were directly involved,
and no demographic, race, ethnicity, or other socially defined variables were
collected or analyzed. All analyses were conducted on de-identified data in
accordance with institutional and ethical guidelines.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

The Cellprofiler image feature output for each image, GSVA scores for 111
gene signatures from 15 matched bulk gene expression samples and all
images, Supplementary Tables 1-6 and related data can be found on
Zenodo’'. Source image for Fig. 1 and Supplementary Fig. 1 can be found in
the zipped folder deposited onto the Zenodo data repository, under the
subdirectory “datasets_final/datasets_images_ilastik_training and_manu-
script_figures/fig_original_images™'. Source data for Fig. 2C, D, Supple-
mentary Figs. 2, 3, and Supplementary Figs. 5, 6 can be obtained from the
following source subdirectory deposited onto the Zenodo data repository -
“datasets_final/manuscript_analysis_data/cellprofiler_output™'.  Source
data for Fig. 2A, B and Supplementary Fig. 4 can be accessed from Sup-
plementary Table 2. Source data for Fig. 3 can be accessed from

Supplementary Table 3. Source data for Fig. 4A can be accessed from
Supplementary Table 5, and Source data for Fig. 4B, C can be accessed from
Supplementary Table 6’ Previously published bulk RN A-seq data that were
re-analyzed in this study are available from the following sources:
EGAS00001003070 and EGAS00001004395 through the European
Genome-Phenome Archive repository in the form of FASTQ or BAM files.

Code availability

All code, CellProfiler pipelines, and ilastik pipelines used in the manuscript
are deposited on GitHub at the following link https://github.com/BaderLab/
phase_contrast_collective_organization_GSCs_incucyte_August2025. A
copy of all code used for analysis has been uploaded onto Zenodo and
represents the analysis version for the submission/preparation of this
manuscript’’. The gene set processing pipeline is publicly available at:
https://github.com/BaderLab/owen_su2cproj/blob/integrated_analyses/
RNA/preprocessing/preprocess_GeneSets.Rmd.
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