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Protein–protein interactions (PPIs), involved in many biological processes such as cellular signaling,
are ultimately encoded in the genome. Solving the problem of predicting protein interactions from
the genome sequence will lead to increased understanding of complex networks, evolution and
human disease. We can learn the relationship between genomes and networks by focusing on an
easily approachable subset of high-resolution protein interactions that are mediated by peptide rec-
ognition modules (PRMs) such as PDZ, WW and SH3 domains. This review focuses on computational
prediction and analysis of PRM-mediated networks and discusses sequence- and structure-based
interaction predictors, techniques and datasets for identifying physiologically relevant PPIs, and
interpreting high-resolution interaction networks in the context of evolution and human disease.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction interactome mapping and help elucidate many biological pro-
Eukaryotic signaling and gene regulatory networks are formed
by precisely controlled, specific protein–protein and protein–DNA
interactions that are ultimately encoded in the genome. Under-
standing how these networks are encoded in the genome will en-
able a number of scientific advances. We will be able to predict
biologically relevant protein interactions directly from the genome
and understand how genomic changes lead to modifications in
interaction networks, both over evolution and within a population
or individual organism. Further, we will be able to design new net-
works at the DNA level for synthesis and expression in an organ-
ism. Since cellular and physiological phenotypes are the product
of molecular interactions, understanding the link from genome to
network will help us predict phenotype from genotype.

A number of increasingly powerful experimental techniques
provide large datasets of genomes and molecular interaction net-
works, but many challenges remain before we can accurately relate
the two information types. Computational methods can help ad-
dress a number of these challenges. Primarily, methods can be
developed to accurately predict molecular interactions and their
binding sites directly from the genome. This will simplify protein
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cesses. Once the binding sites of interactions are known, we can
identify how changes at the DNA level affect those sites and thus
affect interactions, removing, adding or rewiring them. This review
focuses on protein–protein interactions (PPIs), but the ideas can
also be applied to other areas where protein domains bind short
linear motifs, such as protein–DNA interactions.

In general, predicting protein–protein interactions from the
genome is difficult, perhaps comparable to the protein fold
prediction problem. Even when three-dimensional protein struc-
tures are available, predicting their interactions is challenging,
especially if any conformational changes occur upon binding
[1]. However, important subclasses of interactions are suffi-
ciently simple to study using established computational tech-
niques, representing a good starting point to study the genome
to network relationship. The simplest types of protein–protein
interactions are those mediated by peptide recognition modules
(PRMs). PRMs are protein domains that, like Lego blocks, recog-
nize short, linear, specific, and characteristic amino acid motifs
(peptides) in other proteins. Such domains are reused in
different combinations in many proteins with different functions
[2–4]. PRMs are suitable for protein–protein interaction mapping
as they are widespread in eukaryotic genomes and are relatively
easy to detect through sequence similarity to known family
members [5–7]. PRMs and their binding partners can be deter-
mined with a wide range of high-throughput experimental
methods, such as phage display, peptide chips and yeast two-
hybrid [8–13]. Furthermore, PRMs are involved in important
biological processes including eukaryotic signaling systems and
lsevier B.V. All rights reserved.
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human disease. Consequently, several types of PRMs are rela-
tively well-studied and many associated datasets are available.

Prediction of PRM-mediated protein interactions from the gen-
ome involves multiple steps. Given the preferred binding motif for
a PRM, all proteins with the motif are potential binding partners. If
the putative binding site is accessible and the proteins are ex-
pressed at the same time and place in the cell, the interaction is
likely to be physiologically relevant. Thus, mapping the peptide
recognition preferences of all PRMs will enable us to predict pro-
tein interactions from the genome for a substantial subset of pro-
teins (for instance, over 850 human proteins have PDZ, SH3, SH2,
WW, and protein kinase domains according to the HPRD database
[14]). The following experimental and computational procedure
enables us to predict protein interaction networks from genome
sequence. First, a genome is sequenced, all genes are then identi-
fied using gene finding software and computationally translated
to proteins, followed by detection of PRMs in protein sequences.
Second, the binding specificity of each PRM is mapped experimen-
tally or predicted computationally, and the proteome is scanned
for potential interaction partners. Third, the resulting protein–pro-
tein interactions are scored for physiological relevance using mul-
tiple sources of evidence (e.g. co-expression, co-localization).
Finally, top candidates are experimentally tested using orthogonal
protein interaction mapping methods. The result of this procedure
is a high-confidence and high-resolution protein–protein interac-
tion network mediated by PRMs, with information on all PRM-re-
lated binding sites [8,10].

This network mapping procedure also enables us to identify
genome changes that cause corresponding network changes, an
important source of information about the genome–network rela-
tionship. Modifying a genome and observing the resulting network
changes, via study of binding site changes, would help us identify
network-encoding sections of the genome and decipher their
meaning. While large-scale experiments of this type are difficult,
abundant data about sequence evolution and population variation
are increasingly mapped by genome projects. Even though corre-
sponding protein interaction networks are often incomplete, these
can be constructed using the network mapping methodology de-
scribed above and then interpreted in the context of genomic
changes. This research will help us understand evolutionary pro-
cesses and also to predict the functional consequences of inherited
and somatic disease-associated mutations. For example, by com-
paring the genomes of a normal and a diseased individual, we
can pinpoint the mutations that cause permutations in signaling
pathways or protein complexes that may be involved in the disease
phenotype. This would, in turn, provide insights into the genetic
basis of specific diseases and new directions for treatment-seeking
research.

2. Peptide recognition module mediated interaction networks

An important part of solving the genome-to-network problem
involves the development of computational methods to predict
protein–protein interactions from the genome. This task is difficult
in general, but we can start by focusing on peptide recognition
modules. Dozens of PRMs are known, and a few abundant PRMs
with well-studied structures provide good starting points for net-
work prediction.

The PDZ domain is one of the simplest PRMs, since it often rec-
ognizes the C-terminal tails of other proteins, although other
binding modes are known [15]. PDZ domains are 80–90 amino
acids in length and fold into a compact structure containing 5–6
beta strands and 2 alpha helices. The binding pocket is formed
by the second beta strand, the second alpha helix, and a GLGF
Please cite this article in press as: Reimand, J., et al. Domain-mediated protein
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loop that preferentially binds a hydrophobic C-terminus. Proteins
with PDZ domains are often multi-domain adaptors that regulate
ion channels, localize signaling components to the membrane,
participate in cell polarity complexes (e.g. the tight junction),
and are involved in neural development. The WW domain is an-
other simple PRM with a short 30–40 amino acid length. Its bind-
ing mode is more complex than the C-terminal binding mode of
the PDZ domain, since it recognizes proline-rich motifs (e.g. PPXY)
in any accessible part of a protein [16,17]. WW domains have a
three-stranded anti-parallel beta sheet core and generally contain
two signature conserved tryptophan residues spaced approxi-
mately 20 residues apart. Proteins with WW domains are involved
in many signaling pathways, including those in growth control
and ubiquitin-mediated proteolysis. As a final PRM example,
SH3 domains are larger (�60 amino acids) and more complex
than WW domains, with multiple known binding modes, two of
which have the domain binding in opposite orientations at the
same binding site [18]. SH3 domains are composed of five beta
strands organized into two perpendicular beta sheets interrupted
by a 3-10 helix. They bind characteristic proline-rich motifs, but
can also bind proline-free motifs containing arginine or lysine
[10]. SH3 domains are abundant in eukaryotes and are involved
in a wide range of cellular processes, including actin cytoskeleton
regulation, cell signaling (e.g. receptor tyrosine kinase pathways)
and endocytosis.

PRM binding preferences have been mapped using a variety of
experimental methods, including phage display and peptide micro-
array experiments. In phage display experiments, a large-scale
combinatorial peptide library is presented to a given PRM on the
surface of phage particles, and bound peptides are identified by
sequencing the corresponding phage DNA [9,10,19]. To represent
an exhaustive set, extremely large libraries (up to approximately
10 billion peptides) can be created containing every possible bind-
ing target of up to a particular length; 1.3 billion peptides are
needed to cover all seven residues using 20 amino acids. Biased
phage libraries can be created by keeping select positions constant
to explore longer peptides. In protein microarray experiments,
purified domains are immobilised on a solid surface and probed
using fluorescently labeled peptides, allowing several hundred do-
mains to be tested for binding against thousands of peptides simul-
taneously [13,20,21]. For peptide chip experiments, synthesised
peptides are displayed on a protein cellulose membrane chip to do-
mains. These experiments are limited to libraries with sizes in the
thousands, so are often designed to use only peptides matching a
known binding motif for a given domain type [11,12,22,23]. Either
the domains or peptides are displayed on the chip, followed by
binding of the interaction partners [11–13]. In both peptide chip
and protein microarray experiments, binding is generally mea-
sured semi-quantitatively, for example using a colorimetric assay.
These techniques have been applied to detect interactions involv-
ing PRMs such as PDZ, SH2 and SH3 [9,10,18,21].

Domain–peptide interactions from published experiments for
PRMs, such as the SH3, WW and PDZ domains, can be found in
the Domino and PDZBase databases [24,25]. These interactions
can be combined with domain-mediated protein interactions de-
rived using techniques such as yeast two-hybrid to achieve higher
confidence protein interaction networks [8,10]. Protein–protein
interactions involving various domains from different organisms
can be obtained from interaction databases such as iRefIndex,
which consolidates PPIs from multiple interaction databases [26].
Combining all of this information with other evidence for physio-
logically relevant protein interactions, such as co-expression and
co-localization, further improves the confidence of a predicted
PRM-based protein interaction network.
interaction prediction: From genome to network. FEBS Lett. (2012), http://
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Overview of machine learning.

Machine learning refers to a family of computational methods
that can recognize complex patterns in a given dataset and
make decisions on previously unseen data. Binary classification
methods can discriminate between objects from two classes
using previously available information about those objects.
For instance, a predictor may decide if a given domain and
peptide pair will physically interact by analyzing the properties
of known interacting and non-interacting domain–peptide
interactions (e.g. primary, secondary or tertiary protein
structural features of interaction participants). Many types of
machine learning methods exist, some of which can also
perform quantitative, probabilistic, or multi-class predictions.
A machine learning-based predictor is given extensive training
data about objects with known classes such as known domain–
peptide interactions (positive examples) and non-interacting
domain–peptide pairs (negative examples). In a pre-processing
step, information about the objects is systematically repre-
sented as features. A predictor, such as a support vector
machine or Bayesian classifier, is then trained to learn how
and which features can best be used to discriminate the objects
into their correct classes. The goal of machine learning is then
to apply this discrimination process to classify previously
unseen objects. Therefore, predictors need to avoid over-fitting,
that is capturing features unique to the training data rather
than underlying general patterns.
Accurate and generalizable machine learning relies on the use
of relevant, diverse, and reliable training data. While positive
examples of domain–peptide interactions are often described
inthe literature, reliableevidenceofnon-occurringinteractions
is more difficult to compile. Therefore, various methods to
generate reliable artificial negative interactions are employed.
Evaluation of machine learning methods involves estimating a
predictor’s ability to extrapolate to new data. A basic tech-
nique for this is cross-validation, in which the training data
is randomly partitioned into several (e.g. ten) subsets of
equal size. For each subset, an independent predictor is
trained with the remainder of the data, and tested by classi-
fying the data in the subset. The performance of all predictors
is then averaged across all runs to achieve a general estimate
of performance on ‘unseen’ data. In the case of domain–pep-
tide interaction prediction, variations of cross-validation
may be used. For example, entire sets of interactions
involving specific domains or peptides may be held out for
testing to reduce the similarity between training and testing
data, which would otherwise produce inflated estimates of
performance. In addition to cross-validation, blind testing
on previously unseen data should be carried out to obtain
an unbiased measure of predictor performance.
Using the results from these validation strategies, statistics
such as the number of correctly predicted interactions (true
positives) and number of predicted positives that are actu-
ally negatives (false positives) can be calculated. By varying
the predictor’s discrimination score threshold (the minimum
predicted score that qualifies as a positive classification), a
plot of the true positive vs. false positive rates can be made.
The area under the receiver operating curve (AUROC) is a sin-
gle balanced measure that accounts for true and false posi-
tives and is commonly used to compare and evaluate
machine learning predictors, though other measures exist
[27,28]. Multiple other measures also exist to assess different
aspects of predictor performance.
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2.1. Computational prediction of domain–peptide interactions

The biological importance of PRMs, their recognition of short
simple linear motifs, and the availability of experimentally deter-
mined interaction data have prompted the development of do-
main–peptide interaction prediction methods by multiple groups.
Such methods are based on established bioinformatics, physical,
statistical and machine learning techniques, which have been suc-
cessfully used to accurately predict interactions for proteins con-
taining PRMs such as the PDZ, SH2, SH3 and protein serine–
threonine kinase domains [29–34]. Although the details of these
methods vary greatly, such predictors are built by following
several general steps that are summarized in Fig. 1. The following
discussion focuses on the computational prediction of PDZ do-
main–peptide interactions; however the methods presented are
applicable to other PRMs.

2.2. Sequence-based domain–peptide interaction prediction

A fast and simple method for predicting domain–peptide inter-
actions involves a position weight matrix (PWM) that captures a
domain’s binding preferences which is used to score a list of poten-
tial peptide binders. A PWM is constructed based on a set of verified
ligands and is a matrix of the probabilities of observing a particular
residue at a given ligand position. PWMs are commonly used to
compute a score indicating the binding preference of a domain for
a given peptide. Tonikian et al. used PWMs to predict human PDZ
interactions and to identify viral proteins that mimicked domain
specificities [9]. Stiffler et al. developed a variant of the PWM that
contained weights describing the relative preference of a PDZ
domain for amino acids at positions in the ligand compared to other
domains [21]. The inherent limitation of PWMs is their inability to
model dependencies between ligand residue positions. PWMs may
also perform poorly when there are too few experimentally deter-
mined peptide ligands available for a given protein. Furthermore,
the PWM model cannot easily consider additional biological infor-
mation to help reduce the number of false positives.

More sophisticated prediction methods use machine learning to
address the limitations of simple methods such as the PWM. For
example, Eo et al. used a support vector machine (SVM) to predict
PDZ domain interactions, limited to those involving G-coupled pro-
teins [35]. Chen et al. used a Bayesian model to predict interactions
for the entire PDZ domain family using data from a protein micro-
array experiment [34]. The authors demonstrated their model’s
ability to predict mouse PDZ domain–peptide interactions and, to
a lesser extent, interactions in other organisms. Our group devel-
oped a regression framework using positive (quantitative) and
negative (qualitative) mouse PDZ domain interaction data to pre-
dict PDZ domain–peptide binding affinity [36]. While these meth-
ods can predict PDZ domain interactions, their common limitation
is that they were trained and validated using limited interaction
data for only a subset of PDZ domains. Thus, it is unclear if these
can be used to predict interactions for all PDZ domains on a prote-
ome scale. To address this, our group trained an SVM using all the
high-throughput PDZ domain–peptide interaction data available at
the time for human and mouse. We used the predictor to scan the
proteomes of multiple organisms for PDZ-mediated interactions
and showed that it outperformed existing state-of-the-art se-
quence-based predictors for proteome scanning [33].

2.3. Structure-based domain–peptide interaction prediction

Structural features within the domain-binding pocket of a PRM
play an important role in determining binding specificity. There-
fore the use of domain structure features in training should result
in a predictor with improved performance and the ability to
interaction prediction: From genome to network. FEBS Lett. (2012), http://
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PFFeature Encoding Testing

Fig. 1. Construction of a domain–peptide interaction predictor. Training data involve known domain–peptide interaction pairs from experiments, as well as sequence and
structure information about domains from databases. Feature encoding is performed in order to transform the data into numeric values that best describe considered
information. These features may be sequence-based, describing the amino acids in a given sequence, or structure-based, describing the features involved in protein folding
and stability. The predictor is constructed with computational methods, such as a position weight matrix (PWM) or one of many machine learning algorithms. Predictor
performance is then evaluated with commonly used metrics (i.e. AUROC scores), different cross-validation strategies and blind testing.
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predict new interactions. For instance, Hue et al. used a SVM to
predict PPIs using a kernel derived from protein structure informa-
tion [37]. Other methods using structure information to predict do-
main–peptide interactions have also been developed. Sanchez et al.
used an empirical force field to calculate structure-based energy
functions for human SH2 domain interactions [38]. Fernandez-Bal-
lester et al. constructed PWMs of all possible SH3-ligand com-
plexes in yeast using homology modeling [39]. Smith et al. used
protein backbone sampling to predict binding specificity for 85 hu-
man PDZ domains [40]. Kaufmann et al. developed an optimised
energy function to predict the binding specificity of PDZ domain–
peptide interactions for 12 PDZ domains [41]. Finally, our group
trained an SVM using PDZ domain structure and peptide sequence
information. We used the predictor to perform proteome scanning
on multiple organisms for hundreds of PDZ domains [42].

2.4. Limitations of domain–peptide interaction prediction methods

Since sequence-based methods are trained using domain and
peptide sequence information only, their performance is known
to depend on the sequence similarity of a given domain to the do-
mains in the training set. We showed that the ability of our se-
quence-based predictor to correctly predict interactions for blind
test domains decreased as the domain’s similarity to the training
domains decreased. Furthermore, when the test domain was less
than 60% similar, the performance was comparable to a naïve near-
est neighbor predictor, whose prediction criteria are based solely on
sequence similarity between the domains and the peptides [33]. In
other related work, Shao et al. built a sequence-based predictor of
PDZ domain–peptide binding affinity. They also observed that the
average performance of their predictor depended on how similar
a test PDZ domain was to its closest training domain [36]. Thus, se-
quence-based predictors are in general more likely to correctly pre-
dict interactions for domains that are well-represented in the
training set in terms of sequence similarity. For structure-based
prediction methods, the main challenge is that three-dimensional
Please cite this article in press as: Reimand, J., et al. Domain-mediated protein
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structures are not available for most domains. However, structures
are often available for one or several domain family members. Since
PRMs are evolutionarily conserved, they show good sequence sim-
ilarity. It is therefore possible to use homology modeling and gener-
ate reliable structures for many PRMs that lack experimentally
determined structures. This will increase the number of structures
available for training and testing. For example, on average across
human, mouse, worm, and fly, PDZ domains are�60% pairwise sim-
ilar in sequence. We used homology modeling to generate 65 PDZ
domain structures to train our structure-based SVM domain–pep-
tide predictor. Since homology models may contain inaccuracies,
we limited the structural features to the binding site, which is more
conserved and therefore more reliably modeled in comparison to
regions such as loops. All models had greater than 50% sequence
similarity to their template structure (average 90%) [42]. At this
threshold, models are expected to have the correct fold with most
inaccuracies arising from structural variation in the templates and
incorrect reconstruction of loops [43,44].

Most machine learning methods require both positive and neg-
ative data for training. As the limited availability of negative inter-
action data is a problem, collections of random peptides or
permuted peptide sequences have been used to represent true neg-
ative interactions in training data. However, such approaches re-
sulted in lower predictor accuracy in comparison to training with
real negatives [45,46]. Randomly shuffling the interacting partners
or pairing partners that are known to be in different cellular com-
partments are also useful methods for creating negative samples.
Unfortunately, these methods create a constraint on the distribu-
tion of negatives and artificially influence the predictor to distin-
guish between positive and negative interactions. This leads to
biased estimates of predictor performance when cross-validation
is used [45]. Therefore the generation of biologically meaningful
artificial negative training data is not fully addressed currently. A
recent database archives negative protein–protein interaction data,
which may be generally useful for PPI prediction methods in the
future [47].
interaction prediction: From genome to network. FEBS Lett. (2012), http://
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Fig. 3. Linking genome sequences and protein interaction networks. The genome-to-network model involves four classes of analyses. First, comparison of two or more
genomes will reveal DNA and protein sequence differences between species (A), and sequence alignment algorithms are readily available. Second, analysis of PRMs and
protein sequences will enable construction of protein–protein interaction networks from genomes (B). Third, comparison of two or more protein–protein interaction
networks using network alignment algorithms (C) will enable investigation of the differences of interactomes across species. Finally, genome-to-network and network-to-
genome analyses (D) will allow us to interpret genome sequence changes in the context of interactomes, and vice versa.

Fig. 2. Prediction of physiologically relevant domain-mediated interactions. Besides domain–peptide interactions, additional data is required to predict high-confidence,
physiologically relevant domain–peptide interactions. Indirect evidence such as gene expression, protein function and sequence similarity can be used to identify in vivo
protein interactions. Numerous methods allow PPI prediction using single sources of evidence, while machine learning techniques such as naïve Bayes can be used to combine
multiple datasets to predict the biologically relevant domain–peptide mediated interactions.

J. Reimand et al. / FEBS Letters xxx (2012) xxx–xxx 5
2.5. Structure-based and sequence-based methods predict different
interactions

Predictors trained using different features produce different
predictions. We quantified this phenomenon for PDZ domains by
comparing the domain–peptide predictions from sequence-based
and structure-based predictors to known PDZ mediated PPIs [42].
By considering predictions from both methods, 11% of known
Please cite this article in press as: Reimand, J., et al. Domain-mediated protein
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PDZ-mediated PPIs were recovered. However, 72% of the results
were obtained by either the sequence-based or the structure-based
predictor. Our analysis showed that different sets of interactions
were found by the predictors, which can be attributed to the use
of different features for training. Therefore, to obtain the greatest
coverage of domain mediated PPIs, it is important to combine dif-
ferent feature encodings and presumably different prediction
methods.
interaction prediction: From genome to network. FEBS Lett. (2012), http://
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Fig. 4. PRM-mediated interaction network rewiring in human disease. Disease-related DNA mutations in critical protein regions related to PRM-mediated interactions can
cause multiple types of network rewiring resulting in altered pathways and phenotypes, broadly classified into three groups. Most mutations are expected to be loss-of-
function (A), e.g. in which important residues in peptide recognition modules or binding sites are mutated such that an interaction no longer occurs (red cross). In contrast,
gain-of-function mutations (B) e.g. are caused by mutations that introduce new binding sites, creating novel interactions between PRMs and target proteins (green edge). The
third class of ‘switch-of-function’ mutations (C) [143] e.g. covers modifications in PRMs or binding sites such that some interactions are introduced and others deleted,
resulting in network rewiring of multiple interactions.
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2.6. Improving domain–peptide interaction prediction methods

While current PRM interaction predictors perform reasonably
well, other domain features should be considered in the future. It
is known, for example, that the structural flexibility of the do-
main-binding pocket can contribute to a PDZ domain’s ability to
bind specific ligands [48–50]. Recently, a model of PDZ domain
backbone flexibility was used to successfully predict domain bind-
ing specificity for a subset of human PDZ domains [40]. Therefore,
domain backbone flexibility features may be used to train a predic-
tor with improved performance. Structure and sequence features
can also be combined with other features to build a single predic-
tor that utilizes all available types of information. Alternatively,
ensemble predictors may be developed which combine the results
of structure-based and sequence-based predictors. Molecular
dynamics algorithms for protein-peptide docking should also be
used. While these methods can produce highly quality docking
models [51,52], they may be computationally intensive or difficult
to apply to domains with no available structures. Since domains
may prefer to bind to more than one binding motif, a multiple
specificity model may prove useful. For instance, Gfeller et al. mod-
eled the multiple specificities of PDZ domains using several PWMs,
following the observation that ligand residue positions are often
significantly correlated [53]. Finally, while the discussed methods
help predict accurate in vitro domain–peptide interactions, addi-
tional incorporation of cellular context information is required
for predicting interactions that occur in vivo.
Please cite this article in press as: Reimand, J., et al. Domain-mediated protein
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3. Physiologically relevant PRM-mediated protein–protein
interactions

Proteins will only interact if they recognize each other, and are
temporally and spatially co-located in the cell. Domain–peptide
interaction predictors described above allow us to discover protein
pairs that recognize each other. Additional sources of evidence
must be considered to accurately score domain–peptide interac-
tions by their physiological relevance, such as the correlation of
the expression profiles of the corresponding genes, their involve-
ment in related biological processes, and their presence in the
same cellular compartment (Fig. 2). Gene expression profiles, cellu-
lar location of proteins, functional annotation (molecular function
and biological process), sequence signatures, literature references,
and known experimental interactions can be obtained from diverse
biological data sources and combined to predict physiologically
relevant protein interactions. A number of computational methods
have been developed for evaluating protein interactions using sin-
gle sources of evidence, while others combine multiple types of
knowledge using ensemble approaches. As domain-mediated net-
works are only now emerging, few methods have been developed
specifically for these data. However, the collection of methods
developed for analysing traditional protein–protein interaction
networks can be combined with sequence- and structure-based
domain–peptide interaction prediction methods discussed above
to define physiologically relevant high-resolution PRM-mediated
interaction networks.
interaction prediction: From genome to network. FEBS Lett. (2012), http://
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3.1. Cellular location, biological process, molecular function

Proteins are more likely to interact with each other when they
co-localize in the same cellular compartment or are part of the
same biological processes. Gene Ontology (GO) is a useful and pop-
ular taxonomy that contains a hierarchy of controlled terms
regarding cellular location, biological process and molecular func-
tion [54]. GO terms are used to annotate genes and proteins based
on experimental and computational evidence and literature cura-
tion. This resource can be used to quantify the functional relation-
ship between different proteins using a straightforward
comparison of associated annotations, that is, two proteins are re-
lated if they have many annotations in common. More elaborate
semantic similarity measures consider the entire GO hierarchy in
comparing two interacting proteins, that is, two proteins are re-
lated if they have many similar annotations in common. For in-
stance, two GO terms that are close in the hierarchy are similar.

Semantic similarity provides a quantitative measurement of the
likeness of concepts belonging to an ontology. In the context of
PPIs, higher semantic similarity scores between GO terms anno-
tated to a protein pair indicate a higher likelihood of these proteins
interacting in vivo. Guo et al. compared a number of network-based
and information content-based semantic similarity methods in dis-
tinguishing true and false human PPIs, and concluded that the
average (AVG) method by Resnik performed best in AUROC analy-
sis [55–58]. Xu et al. compared the AVG and maximum (MAX)
methods by Resnik to a number of semantic similarity methods
specifically developed for GO, and concluded that the MAX method
by Resnik outperforms others when considering the three ontolo-
gies of GO either individually or together [55,59–62]. More re-
cently, our group developed the Topological Clustering Semantic
Similarity (TCSS) method, which uses a novel normalization tech-
nique before computing similarity [63]. TCSS improves the perfor-
mance of PPI predictions in all three branches of GO compared to
other semantic similarity measures.

Prediction of protein–protein interactions using GO has several
limitations. Notably, GO annotations are often noisy, as more than
one third of all annotations and �75% of human gene annotations
are assigned using automated methods [64]. Such low-confidence
annotations, labeled as ’Inferred from Electronic Annotation’
(IEA), should be excluded from predictions when higher quality
annotations are available. Additionally, the structure of GO is often
unbalanced since some biological processes are studied more
extensively than others, leading to ascertainment biases in predict-
ing protein interactions. As semantic similarity measures use
knowledge structured in the form of ontologies, other ontologies
could be substituted for GO. Some describe highly structured bio-
logical pathway mechanisms, such as the BioPAX pathway repre-
sentation standard [65]. Large amounts of curated pathway data
are available in this format, such as from the Reactome pathway
database [66]. Further development of semantic similarity meth-
ods that consider such ontologies could improve PPI prediction.

3.2. Gene expression

Gene expression is a frequently used measure for assessing the
confidence and biological relevance of predictions from high-
throughput PPI experiments. As proteins must be expressed in or-
der to interact, interacting proteins should be co-expressed at the
same time and are likely to have similar gene expression profiles.
The association between protein interactions and correlated gene
expression profiles has been demonstrated in several studies. Co-
expressed genes in yeast and bacteriophage T7 were shown to be
enriched in protein interactions, and clusters of gene expression
profiles frequently contained interacting proteins in yeast [67].
Jansen et al. demonstrated a strong correlation between the gene
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expression profiles of yeast proteins involved in the same complex
[68]. Bhardwaj et al. compared the gene expression profiles of
interacting and random gene pairs in Escherichia coli, and con-
cluded that genes encoding for interacting proteins have a stronger
expression pattern correlation that is also more conserved than for
random protein pairs [69]. Consequently, PPI prediction methods
frequently use strong co-expression of genes as an evidence source
for protein interactions [70,71].

While gene expression data is a useful source of evidence, it has
a number of limitations. Adler et al. studied curated Reactome
pathways in the context of the human gene expression atlas, and
concluded that co-expression is sufficient for reconstructing path-
ways such as metabolism and translation, while dynamic signaling
processes are captured to a lesser extent [72]. Liu et al. noted that
six large protein complexes, including the ribosome, provided the
majority of the signal between expression correlation and protein
interactions in several gene expression datasets in yeast, while
many other protein complexes did not show an association [73].
Further, tissue-specific and developmental programs regulate gene
expression in multi-cellular organisms, meaning that the global co-
expression of potentially interacting proteins is not necessarily
informative of their co-expression in a given cellular state. Future
work to improve the confidence of co-expression data for high-res-
olution PRM-mediated interaction networks will involve novel
methods for determining global co-expression of genes, such as
MEM [74]. Emerging experimental and computational technolo-
gies (e.g. RNA-seq and the discovery of the alternative splicing code
[75]) will also help distinguish between multiple alternative tran-
scripts of a single gene, some of which include a PRM or ligand
while others do not.

3.3. Sequence signature

Protein interactions can also be predicted based on correlated
sequence motifs. These motifs are learned from existing PPIs using
only sequence data and characterize direct binding, but also could
be related to protein function, which is in turn predictive of PPIs
[76]. Methods based on information content analyze co-occurring
subsequences of proteins with experimentally verified interac-
tions, and use these patterns for predicting new interactions. Pitre
et al. developed the Protein–protein Interaction Prediction Engine
(PIPE), which finds co-occurrences of subsequences in pairs of pro-
teins with known interactions [77]. Sprinzak and Margalit identi-
fied over-represented sequence signatures in known PPIs and
then used this information for predicting novel interactions [78].
Najafabadi and Salavati introduced a method based on codon usage
as a predictor for PPIs [79].

Machine learning methods use sequence information regarding
a gold standard set of positive and negative PPIs to classify new
pairs of potentially interacting proteins. Various approaches
mainly differ in their encoding of sequence features and choice
of learning functions. For instance, Martin et al. encoded the se-
quence information for a protein pair by a product of signatures
[80], while Shen et al. proposed the use of conjoint triads, i.e., fre-
quencies of continuous subsequences of three residues [76]. Guo
et al. used the auto-correlation values of seven different physico-
chemical scales for protein sequences as protein interaction pre-
dictors [81]. Roy et al. explored the contribution of pure amino
acid composition for predicting protein interactions and concluded
that this simple feature outperforms domains and other sequence
features such as tuples and signature products [82].

A major limitation of sequence signatures for predicting protein
interactions is the generally weak correlation between sequence
and functional similarity. Limitations of these machine learning
methods are similar to the ones described above, notably including
the lack of well-defined true negative examples. For instance, Yu
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et al. evaluated the effect of positive-to-negative ratio in training
and test sets for SVM based methods and found that it had consid-
erable effect on classifier accuracy [83]. Lastly, use of sequence sig-
natures to refine high-resolution PRM-mediated interaction
networks must avoid duplicate counting of the domain-motif
interaction knowledge already used to generate the original
network.

3.4. Network topology

Much work has been done in defining the relationship between
PPI network topology and biological function, with the conclusion
that two proteins that have many shared neighbors in a PPI net-
work are more likely to interact [84]. The property of highly con-
nected components, i.e., network cohesiveness, in small-world
networks is often used to assess the confidence of predicted pro-
tein–protein interactions. Goldberg and Roth showed that true
interactions have higher neighborhood cohesiveness as compared
to false interactions [85]. Conversely, a predicted PPI is more likely
to be true if it shows a higher degree of neighborhood cohesive-
ness. Bader et al. proposed that interacting proteins with shared
interactors are more likely to be biologically relevant [86]. Yu
et al. predicted interactions in protein networks by completing
their partially connected components, applying the assumption
that proteins within the same protein cluster are likely to interact
with each other [87].

An important challenge for network-based protein interaction
predictors is the identification of appropriate topological clusters
in networks. Larger cluster sizes lead to an increased rate of false
positives, while overly small clusters have few positive predictions.
Clustering and cohesiveness analysis of PRM-mediated protein
interaction networks may require additional research, as their
topological properties may differ from traditional PPI networks. Fi-
nally, prediction of PRM-mediated protein interactions based on
known interactions will require careful filtering of data to avoid
duplicate counting of evidence.

3.5. Text mining

Text mining, the technique of automated information extraction
from literature, can also be used to predict PPIs. While text mining
is error-prone and unlikely to improve substantially in the near fu-
ture due to challenges in the computational analysis of natural lan-
guage, it has been shown to be useful in predicting protein–protein
interactions. For instance, scientific publications contain more ref-
erences to interacting proteins than expected, even if no previous
experimental evidence of their interaction exists [88].

The simplest way to extract PPIs from literature is to detect co-
occurring protein names and apply statistical methods to find sig-
nificantly frequent co-references [89]. More complex text mining
methods rely on natural language processing techniques that at-
tempt to parse the meaning of sentences in which the proteins of
interest are mentioned. For instance, Ramani et al. developed a text
mining pipeline of machine learning and natural language process-
ing methods to predict human protein–protein interactions from
MedLine abstracts, and recovered a network with comparable
accuracy to existing PPI networks [90]. The MedScan information
extraction system is a similar predictor that involves a natural lan-
guage parser for full sentences [91].

Automatic extraction of information from millions of scientific
publications is a computational challenge, since the complexity
of a natural language processing process is directly proportional
to predictor accuracy but inversely proportional to computational
efficiency. Purely statistical methods of interaction prediction are
sensitive to noise and indirect interactions, and are likely to miss
the meaning of negated interactions. Much work is currently being
Please cite this article in press as: Reimand, J., et al. Domain-mediated protein
dx.doi.org/10.1016/j.febslet.2012.04.027
done to improve text mining accuracy. For instance, the BioCre-
ative workshop promotes the development of text mining tools,
including protein name and PPI recognition [92].

3.6. Additional types of PPI evidence

Many sources of PPI evidence exist and not all can be covered
here in detail. We present a few additional useful ones below.

3.6.1. Evolutionary conservation
Protein interactions conserved across species are likely to be

biologically relevant and this information is predictive of true po-
sitive interactions. For example, the I2D database contains protein
interactions translated across species through orthology relations
[93]. Also, binding sites detected by PRM-focused methods are
more likely to be physiologically relevant if they are conserved
across species [94].

3.6.2. Correlated mutations
Evolutionary mutations within the binding sites of a PPI are

known to correlate, as significant mutations in one binding surface
must be compensated for by mutations in the other binding sur-
face to maintain binding [95,96]. Several methods allow detection
of correlated mutations in multiple sequence alignments of protein
orthologs with domains and motifs [97–99].

3.6.3. Protein binding specificity
Binding competition affects protein interactions in vivo [100].

Quantitative protein concentration and affinity data allows us to
assess competition, but these data are not readily available. How-
ever, an interaction between two proteins is less likely to compete
and thus more likely to be correctly predicted if it involves proteins
interacting with only each other and not with any other partners.

3.6.4. Surface accessibility
Predicted binding sites are more likely to be relevant if they are

accessible on the protein surface and thus available for binding.
Surface accessibility can be predicted computationally from pro-
tein structures using tools such as the Eukaryotic Linear Motif
(ELM) structure filter [101]. Amino acid sequence-based predictors
such as PHDacc are useful when no known protein structure is
available [102]. Linear motifs are known to cluster in disordered
regions, and disorder predictors, such as and GlobPlot and DISO-
PRED, have been shown to be highly informative for identifying
relevant PRM binding sites in proteins [94].

3.7. Combining PPI evidence sources using ensemble methods

We have discussed most PPI evidence sources as singular pre-
dictors, meaning that a single type of data is used to classify pro-
tein pairs as either interacting or non-interacting. In contrast,
ensemble approaches, generally using machine learning, combine
various lines of evidence into a single predictor, which generally
improves predictor performance substantially. As another advan-
tage, ensemble approaches can consider multiple weak evidence
sources that are individually insufficient for PPI prediction, but
are informative when combined with stronger evidence. Several
research groups have independently suggested the use of
ensemble methods for predicting protein interactions, though
data sources, techniques, and implementations vary widely
[70,71,86,103,104].

Bayesian integration is the most widely used ensemble tech-
nique for PPI prediction. Although other machine learning ap-
proaches have been used for this task, such as logistic regression,
random forests, decision trees, and support vector machines, Bayes-
ian integration remains the method of choice due to its simple
interaction prediction: From genome to network. FEBS Lett. (2012), http://
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probabilistic framework and ability to handle missing data. The
objective of a Bayesian PPI prediction model is to estimate the prob-
ability that a given protein pair interacts, given the biological evi-
dence supporting the interaction. For simplicity, a naïve Bayesian
model assumes complete independence between different evi-
dence sources. Jansen et al. proposed the use of Bayesian networks
on a fully dependent feature set of experimental PPI data and naive
integration of indirect evidence such as mRNA co-expression, bio-
logical function, and gene essentiality in S. cerevisiae [105]. Rhodes
et al. employed a similar but semi-naïve Bayesian strategy to com-
bine homologous PPI, gene co-expression, GO process, and domain-
based sequence evidence in human interaction networks, assuming
a certain level of dependence between different evidence sources
[71]. Scott and Barton extended the Bayesian probabilistic frame-
work for the prediction of human PPIs with more features, includ-
ing local network topology, co-expression, orthology to known
interacting proteins, sub-cellular localization, co-occurrence of do-
mains, and post-translational modifications [106]. Bayesian predic-
tors have been also applied in the context of domain-specific
interaction networks. Tonikian et al. used phage display, yeast
two-hybrid, and peptide array screening to independently identify
SH3 domain binding partners [8]. The authors then combined the
results of these complementary techniques using a Bayesian algo-
rithm to generate a high-confidence SH3-mediated interaction net-
work for yeast.
4. Mapping how sequence changes affect the network

Even if the possibility of mapping an entire interactome based
on genomic sequence is distant, progressive steps towards such a
goal would still provide scientific benefit. The combination of do-
main–peptide interaction prediction with additional biologically
relevant evidence sources will produce a high-confidence and
high-resolution PPI network (Fig. 3). This can be combined with
additional high-resolution data, such as binding sites from three-
dimensional protein structures accumulated in the Protein Data-
bank [107] to increase proteome coverage of the network [108].
The network and the genome to network mapping method can
then be used to predict the functional effect of evolutionary muta-
tions and sequence changes on the protein interactome. This
would enable us to better understand the relationship between
protein sequence and function, of which protein–protein interac-
tions are one component, and predict the functional consequences
of evolutionary or disease-associated mutations. We have excellent
computational tools to identify sequence changes, e.g., sequence
alignment algorithms, and similar tools such as network alignment
algorithms are needed for interactome analysis. The combination
of such tools will allow identification of modifications in sequences
and corresponding networks, and enable us to relate genome-level
changes to interaction networks.

4.1. Protein–protein interaction network alignment

As with gene and protein sequences, two or more interaction
networks can be aligned to one another for comparison to reveal
all conserved and altered interactions. PPI network alignments,
like sequence alignments, can also reveal functional similarity
and orthology between individual proteins. For instance, if the
interaction partners of two proteins in distinct species are
orthologous, the proteins are also likely to be orthologous. PPI
network alignments can also reveal similarity between larger
functional units, such as protein complexes and pathways
[109]. PPI network alignment algorithms must account for imper-
fect matches, just as sequence alignment algorithms allow
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mismatches and gaps, as PPI networks are known to rewire over
time [110,111].

As with sequence alignment, there are two distinct approaches
for PPI network alignment, local and global alignment. PathBLAST,
one of the first published PPI network alignment algorithms, iden-
tifies putative protein–protein interaction paths conserved be-
tween two species using a local approach [109,112].
Alternatively, global PPI network alignment methods attempt to
align all or most of the proteins in two or more networks. Unlike
local methods, global methods make no assumptions about the
size or shape of conserved protein interaction patterns, acting on
all proteins rather than small sub-networks. However, global
methods are likely to create more false positive matches than local
alignments, as many more interactions are aligned, even those
with weak evidence. Still, the IsoRank, GRAAL, and Graemlin fam-
ilies of global methods produce alignments with significant levels
of functional similarity between aligned proteins [113–115].

The local and global models of network alignment are similar
but perform different tasks. Local methods can be used to
identify conserved building blocks of biological systems such as
protein complexes and pathways, whereas global network align-
ment methods can be used to analyze the variations between
the entire interactomes of two or more species. This latter anal-
ysis is likely to reveal large-scale, topological trends that emerge
over evolutionary time, such as increasing network complexity
and redundancy [116]. Much work is still required to improve
network alignment methods and a number of concepts from
sequence alignment have not yet been extended to network
alignment. For instance, no network alignment algorithm
considers how gene or genome duplication events affect the
network, similar to sequence analysis identifying large-scale
genome duplication events [117]. Also, there are currently no
published computational methods that can align PRM-mediated
protein interactions, though existing algorithms are likely to be
adaptable.

4.2. Evolutionary analysis of network alignments

The study of PPI network alignments will improve understand-
ing of how both genomes and interactomes evolve. Network
changes, mediated by sequence changes, are selected for by their
phenotypic result. Therefore, investigating network-level proper-
ties of a protein can help explain protein evolution. For example,
central proteins with numerous interaction partners, known as
hubs, are generally more conserved at the sequence level
[118,119]. It has been speculated that mutations in hub proteins
are more likely to cause loss of interactions, thus disturbing the
proteins’ ability to function. However, there are many unsolved
problems in this area, such as the mechanisms behind the emer-
gence of hubs in PPI networks [120–122].

PPI network alignments between species will highlight the ex-
tent of conservation in different regions of the interactome over
evolutionary time. As genes encoding core cellular machinery are
often conserved across species, the corresponding interaction net-
works are also probably conserved. Other more dynamically evolv-
ing processes are likely to show divergence between the network
evolution rate and the mutation rate of the underlying protein se-
quences. Comparison of the SH3-mediated network of C. elegans
(unpublished data) with the yeast SH3 network [8] revealed an ex-
panded set of worm SH3 domains with conserved fundamental
roles already established in yeast, although interactions within
the network are heavily rewired. This observation indicates that
network alignment may identify functionally related proteins
based on their network location that cannot be easily identified
via sequence-based orthology methods.
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4.3. Evolution of domain specificity and domain–peptide interactions

Investigation of protein binding sites in a high-resolution PRM-
mediated interaction network will provide new insights into pro-
tein evolution, interaction and function. Kim et al. analyzed one
of the first high-resolution interaction networks, derived from pro-
tein 3D structures, and recognized that hub proteins with many
different binding interfaces evolve slower and are more likely to
be essential than hubs with few interfaces [123]. Such distinctions
can be observed only in high-resolution interaction networks. Even
removed from a network context, ligand information is highly
useful for evolutionary PPI studies. By identifying protein residues
targeted by PRMs, one can highlight functional regions that are
more likely to be sensitive to mutations. The fact that PRMs often
target disordered regions indicates that these regions are under
evolutionary constraints, even though this may not be obvious
from sequence analysis.

Further research will lead to improved understanding of the
function and evolution of different parts of the proteome
[124,125]. The study of high-resolution PRM-mediated interac-
tion network alignments will advance our understanding of the
role of sequence changes mediating network modifications. For
instance, a number of models have been proposed for network
evolution that explain the power law node degree distribution
observed in PPI networks, including the ‘‘preferential attach-
ment’’ hypothesis which states that new proteins will more
likely interact with proteins that already have many interactions
[126–130]. The tracing of the evolution of a domain’s specificity
and interactions would identify which of these models is more
likely correct. Additional unresolved problems include whether
highly connected domains slowly accumulate interactions over
time or suddenly gain multiple interactions with a single muta-
tion. Knowledge of how interactions are formed and destroyed
between proteins will lead to increased understanding of how
genes, complexes and pathways evolve. We now need high-res-
olution PPI networks, such as those mediated by PRMs, across
multiple species to enable research into these network evolution
problems.
5. PRM-mediated protein–protein interaction networks in
human disease

PRMs are central in cell signaling systems [3,4,15,18,131–134]
and have been implicated in numerous diseases [135–137]. For
instance, cell polarity disruption, due to perturbed PDZ and SH3
domains, is involved in tumor metastasis and various immune
deficiencies, while protein kinase and phosphosite mutations play
important roles as cancer drivers. Systematic analysis of high-
confidence, high-resolution protein interaction networks will
therefore help explain disease phenotypes and identify new
diagnostic and predictive biomarkers and new therapeutic targets
(Fig. 4).

5.1. Disease mutations and interaction network rewiring

DNA mutations underlie the majority of inherited human
disease. Monogenic diseases involve single gene variants and typi-
cally follow Mendelian rules of heritability, while complex diseases
such as diabetes and some types of mental illness, like schizophre-
nia, involve many disease predisposition genes. In contrast to dis-
ease caused by genetically inherited mutations, cancer is mostly
driven by sporadic, malignant mutations in somatic tissues, though
many predisposing genetic factors of cancer, such as BRCA1/2 muta-
tions, are known to exist [138]. Disease genes are tracked in the
OMIM cataloge of genetic disorders [139], disease mutations are
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stored in the Human Gene Mutation Database [140], and somatic
cancer mutations are collected in the COSMIC database [141].

Broadly, disease mutations are either loss-of-function or gain-
of-function depending on how the mutation affects the biochemi-
cal mechanism leading to the disease. In the context of high-reso-
lution protein interaction networks, the main focus of analysis
involves disease mutations that affect binding domains or ligands
and cause interaction rewiring. Point mutations (SNPs or SNVs)
are easiest to interpret when they affect single PRM binding sites
and ligands, as opposed to stop codon mutations and multi-amino
acid alterations, which are likely to alter whole protein regions
potentially containing multiple binding sites. There are three ef-
fects of mutations on network topology: they can disable pro-
tein–protein interactions due to reduced binding affinity of PRMs
or ligands, they can introduce new interactions between proteins
by strengthening binding affinity between binding interfaces, or
they can change existing interaction partners. Analysis of muta-
tions associated with human diseases in high-resolution protein
interaction networks will provide insight into the mechanism of
action of the mutation and its role in causing disease.

5.2. Interpretation of disease-association DNA mutations in protein
interaction networks

Functional interpretation of disease mutations attempts to link
disease phenotypes with their underlying genetic causes and bio-
chemical mechanisms. A number of criteria are used to identify
potentially disease-causing mutations. Protein coding mutations
can have diverse impacts, such as on the stability, expression, sub-
cellular location, and interactions of the protein. Disease-associ-
ated mutations are often considered to be more serious than
sequence variants frequently seen in the general population. Wang
and Moult compared disease mutations and common SNPs and
showed that 90% of disease mutations have a functional impact
on the protein and its stability, while most common SNPs are func-
tionally neutral [142].

Computational analysis of disease mutations and their func-
tional impact, based on many criteria, is an active field of research
(e.g. [143], reviewed in [144,145]). Several statistical and machine
learning methods have been developed that consider the physico-
chemical properties of amino acids, protein structure, sequence,
and conservation in evaluating the impact of mutations. Less work
has been done in evaluating disease mutations that specifically af-
fect protein binding. Schuster-Böckler and Bateman used homol-
ogy modeling of protein structures to define high-confidence
interaction interfaces and found numerous mutations that alter
these sites in human disease [146]. Teng et al. studied SNP-induced
electrochemical changes in protein interaction interfaces from 3D
structures and concluded that biochemical properties of involved
amino acids are not sufficient for functional predictions [147].
However, they also showed that SNPs associated with disease
and SNPs in highly conserved positions tend to create greater
changes in binding energy. These studies are limited due to the
small number of high-confidence protein structures, but high-res-
olution protein interaction networks with greater coverage will al-
low precise interpretation of many more human disease mutations
[108]. Mapping a large number of disease-associated mutations
and their network effects will also enable a better understanding
of the relationship between genomes and networks.

5.3. Domain-mediated protein interaction networks and cancer

Consideration of domain-mediated protein interaction net-
works in mutation analysis will help researchers better explain
mutations in complex diseases, such as cancer. Recent cancer
genomic projects map a variety of molecular profiles, including
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somatic DNA mutations, gene expression, DNA copy number and
methylation [148,149]. Such multidimensional datasets are useful
for integrated analysis of high-resolution protein interaction net-
works. For instance, the sequence- and structure-based predictors
described above could be used to assess the functional impact of
somatic mutations, or the gene expression and copy number aber-
ration data can be used to construct high-confidence networks rel-
evant to the particular cancer under study.

The collection of known somatic mutations in cancer is charac-
terized by a ‘long tail’: a few genes are mutated in numerous can-
cer samples and types, while hundreds of genes harbor rare
mutations observed only in a few samples. Consequently, research-
ers focus on frequently mutated genes, and less effort is directed to
genes with rare mutations that are more difficult to interpret.
High-resolution protein interaction network information will be
useful to identify rare mutations that affect binding sites in specific
signaling pathways. This analysis will provide a hypothesis about
the mechanism of action of a mutation, highlighting it as poten-
tially important for tumor development. Many known links exist
between important regulatory networks and domain-mediated
protein interactions affected by cancer mutations. For instance,
TP53 is the most frequently mutated gene in human cancers,
encoding the tumour-suppressing transcription factor that regu-
lates DNA damage response genes and apoptosis. TP53 is regulated
by various post-translational modifications, in particular phos-
phorylation by protein kinase domains. Several phosphorylation
sites are involved in the inhibition of TP53 and these are frequently
mutated in cancer [150]. This example demonstrates the link be-
tween transcriptional regulation and domain-mediated interaction
networks of post-translational modifications. The epidermal
growth factor receptor EGFR is another prominent example of a
cancer gene with well-described domain-specific mutations. The
active site of kinase domain EGFR is frequently mutated in lung
cancer, and these mutations, comprising 40–45% of patients with
EGFR mutations, are used as predictive clinical biomarkers of treat-
ment response [151]. As active site mutations directly determine
the kinase activity of EGFR, these will have an impact on down-
stream signaling and PRM-mediated interaction networks.

6. Conclusion

Understanding how networks are encoded in the genome will
help address numerous scientific problems. The approach of build-
ing high-confidence, high-resolution protein interaction networks
based on peptide recognition modules using computational and
experimental methods will provide a useful set of data covering
mainly eukaryotic cell signaling systems. We look forward to com-
bining this information with high-resolution networks derived
from other sources to eventually develop a complete high-resolu-
tion molecular interaction map of the cell. This map will be useful
for understanding how DNA mutations alter phenotype at the cel-
lular and organism levels.
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