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Single- Cell, Single- Nucleus, and 
Spatial RNA Sequencing of the Human 
Liver Identifies Cholangiocyte and 
Mesenchymal Heterogeneity
Tallulah S. Andrews,1* Jawairia Atif,1,2* Jeff C. Liu,3,4* Catia T. Perciani,1,2,5 Xue- Zhong Ma,1 Corneli eni,5 Michal Slyper,6 

Gökcen Eraslan,6 Asa Segerstolpe,6 Justin Manuel,1 Sai Chung,1 Erin Winter,1 Iulia Cirlan,7 Nicholas u, 7 Sandra Fischer,5 Orit 

Rozenblatt- Rosen,6# Aviv Regev,6,8,9,# Ian D. McGilvray,1 Gary D. Bader,3,4 and Sonya A. MacParland 1,2,5

The critical functions of the human liver are coordinated through the interactions of hepatic parenchymal and non- 

parenchymal cells. Recent advances in single- cell transcriptional approaches have enabled an examination of the human 

liver with unprecedented resolution.  However,  dissociation- related cell perturbation can limit the ability to fully capture 

the human liver’s parenchymal cell fraction, which limits the ability to comprehensively profile this organ.  Here,  we 

report the transcriptional landscape of 73,295 cells from the human liver using matched single- cell RNA sequencing 

(scRNA- seq) and single- nucleus RNA sequencing (snRNA- seq). The addition of snRNA- seq enabled the characteriza-

tion of interzonal hepatocytes at a single- cell resolution,  revealed the presence of rare subtypes of liver mesenchymal 

cells, and facilitated the detection of cholangiocyte progenitors that had only been observed during  differentiain vitro -

tion experiments.  However, T and B lymphocytes and natural killer cells were only distinguishable using scRNA- seq,  

highlighting the importance of applying both technologies to obtain a complete map of tissue- resident cell types.  We 

validated the distinct spatial distribution of the hepatocyte, cholangiocyte, and mesenchymal cell populations by an 

independent spatial transcriptomics data set and immunohistochemistry.  Our study provides a systematic Conclusion:

comparison of the transcriptomes captured by scRNA- seq and snRNA- seq and delivers a high- resolution map of the 

parenchymal cell populations in the healthy human liver. (Hepatology Communications  2021;0:1-20).

T he liver is an essential organ responsible  
for critical functions including lipid and  
glucose metabolism,  protein synthesis,  

bile secretion,  and immune functions.  Single-  
cell RNA sequencing (scRNA- seq) technologies  
enable the analysis of the transcriptome of indi-
vidual cells and have provided important insights 

regarding the development,(1)  physiology,( )2,3  and 
pathology( )4- 6  of the human liver.  These stud-
ies have shed light into previously inaccessible  
aspects of human liver physiology such as hepatic 
lobular zonation,  cell to cell interactions,  and  
immune cell phenotype and heterogeneity.
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Previously, we examined the cellular complexity of 
the human liver by scRNA- seq and identified 20 dis-
tinct cell clusters including two distinct populations 
of liver- resident macrophages with immunoregulatory 
and inflammatory properties.(2) An observation from 
this work was that enzymatic and mechanical dissocia-
tion of the human liver tissue significantly affected the 
composition of the liver map, in that hepatocytes were 
sensitive to dissociation- induced damage and cholan-
giocytes and liver mesenchymal cells such as hepatic 
stellate cells (HSCs) were not well- released by our 
dissociation technique.  For example,  cholangiocytes 
(i.e., parenchymal cells that form the bile duct and are 
expected to make up 3%- 5% of all liver cells)(7) consist 
of only 199 (0.64%) cells of our 8,444 cell scRNA- seq 
map. Capturing cholangiocyte heterogeneity is key to 
understanding the pathogenesis of cholangiopathies,  
such as primary sclerosing cholangitis, for which there 
are no curative therapeutic interventions.(8)

Single- nucleus RNA sequencing (snRNA- seq) 
is an approach that bypasses the cell dissociation 
step required for scRNA- seq by using detergents to 
release nuclei from intact cells. SnRNA- seq data are 
also compatible with snap- frozen samples that may 

be available from tissue archives.  Recently,  Slyper 
et al. (9)  assessed three different nuclei isolation pro-
tocols for snRNA- seq from frozen tissues that each 
used different detergent- based buffers:  Nonidet P40 
with salts and Tris (NST), Tween- 20 with salts and 
Tris (TST), and CHAPS with salts and Tris (CST). 
Here, we carried out matched snRNA- seq using these 
three protocols and scRNA- seq using our published 
experimental and analysis workflow(2) on four healthy 
human liver samples (Fig. 1A). Using multiple proto-
cols on the same samples enables us to evaluate the 
ability of these three snRNA- seq protocols to reduce 
dissociation- related effects compared with scRNA- 
seq protocols, contrast the expression profiles of cells 
measured with each protocol, and develop an approach 
to integrate the results into a single map that is more 
comprehensive than what is achieved with any indi-
vidual method.

Our work highlights cell- type composition dif-
ferences between snRNA- seq and scRNA- seq  
technologies as applied to human liver, and reveals 
cholangiocyte and liver mesenchymal cell subpopu-
lations specific to the snRNA- seq data,  previously  
not identified in single- cell transcriptomic studies.  
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DOI 10.1002/hep4.1854
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Combining results from both technologies cre-
ates a rich data set for the interpretation of human 
liver biology, and the identification of key cell- type 
defining marker genes across both technologies 
(Supporting Table S1).

Results

EXAMINING THE QUALITY OF 
LIVER MAPPING VIA SCRNA SEQ 
VERSUS SNRNA SEQ

Single- cell and single- nucleus transcriptomes  
were generated from four healthy human livers from 
neurologically deceased donors that were undergo-
ing transplantation into living recipients.  In total,  
29,432 single cells were captured from fresh liver  
dissociates and 43,863 single nuclei were captured 
from matched snap- frozen tissue and sequenced 
using the 10× Chromium platform.  These data 
underwent identical quality control processing, and 
the matched samples were systematically compared 
(Fig. 1A).

SnRNA- seq captured a greater diversity of genes 
than scRNA- seq (Fig.  1B).  These differences are 
largely due to the high proportion of unique molecular 
identifiers in scRNA- seq data that are derived from 
transcripts encoding ribosomal proteins and genes 
encoded in the mitochondrial genome, which are not 
present in snRNA- seq data (Supporting Table S2).  
Minimal differences were observed between different 
detergents used to extract nuclei (Supporting Table 
S3).  Furthermore,  snRNA- seq contained a signifi-
cantly higher proportion of ambient RNA than 
scRNA- seq for most samples,  estimated by SoupX 
(Supporting Fig. S1).

INTEGRATING SCRNA SEQ AND 
SNRNA SEQ MAPS

Using a typical computational processing pipe-
line,  scRNA- seq and snRNA- seq data do not clus-
ter together (Fig. 1C; Supporting Fig. S2), due to the 
systematic differences between RNA found in the 
nucleus versus the cytoplasm of cells. Additional tech-
nical confounding effects may be introduced during 
tissue processing and cell handling.  The scRNA- 
seq samples were derived from fresh tissue that was 

enzymatically and mechanically dissociated,  which 
may introduce stress responses in cells. In contrast, the 
snRNA- seq samples were extracted from flash- frozen 
tissue, which should be less impacted by dissociation- 
related stresses. In addition, we see significant batch 
effects between individual donors when using the 
same sequencing technology,  particularly in hepato-
cytes (Supporting Fig.  S2).  This may be related to 
environmental influences on liver metabolism and is 
consistent with our previously reported scRNA- seq 
liver map.(2)

However,  if samples are normalized and scaled 
individually before merging, cells and nuclei broadly 
cluster by cell type rather than by transcriptome map-
ping technology (Fig. 1C). However, significant dif-
ferences between technologies are still evident,  and 
the application of Harmony,(10)  a commonly used 
single- cell data integration method,  overcomes this 
and enables integration and co- clustering of scRNA- 
seq and snRNA- seq data (Fig. 1D).

SYSTEMATIC DIFFERENCES IN 
NUCLEAR AND WHOLE CELL 
TRANSCRIPTOMES

The necessity to scale data sets individually to 
enable scRNA- seq and snRNA- seq to be integrated 
demonstrates that there are significant systematic 
gene- expression differences between data generated 
by these technologies.  Examining these systemati-
cally differentially expressed genes revealed that both 
gene function and gene length were strongly associ-
ated with expression as measured by scRNA- seq or 
snRNA- seq (Supporting Figs.  S3 and S4).  Genes 
encoded by the mitochondrial genome and nuclear 
genes that encode mitochondrial proteins are more 
highly expressed in scRNA- seq (Supporting Fig. S3). 
Similarly,  mRNA encoding ribosome- related pro-
teins are more than four- fold more highly expressed 
in scRNA- seq than in snRNA- seq. This is expected, 
as mitochondria and ribosomes are prevalent in the 
cytoplasm in liver cells,  especially hepatocytes,  and 
cytoplasm is mostly missing from snRNA- seq mate-
rial input. In contrast, other “housekeeping” protein- 
coding genes(11) were equally expressed in snRNA- seq 
and scRNA- seq. In agreement with results from other 
tissues, (12,13)  long noncoding RNAs were 0.7- fold 
more highly expressed in snRNA- seq than scRNA- 
seq;  however,  this is not significantly different from 
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other non- housekeeping protein- coding genes, which 
were 0.8- fold more highly expressed in snRNA- seq 
(Supporting Fig. S3).

Aside from gene function, overall gene length had 
the strongest correlation with relative expression in 
snRNA- seq versus scRNA- seq (Supporting Fig. S4). 
Longer genes (>37 kb) were more highly expressed 
in snRNA- seq, and short genes (<15 kb) were more 
highly expressed in scRNA- seq (Supporting Fig. S4). 
This was true even after excluding ribosomal and 
mitochondrial- related genes.

CELLS OF THE HUMAN LIVER AS 
REVEALED BY SCRNA SEQ VERSUS 
SNRNA SEQ

After integration (see Methods), the data were 
clustered and annotated using known markers(2); 
the resulting map revealed all major known hepatic 
cell types (Fig. 1E- G). These cell types were rep-
resented in both scRNA- seq and snRNA- seq,  as  
well as in all samples (Supporting Figs.  S5 and 
S6) but were captured at different frequencies.  In  
particular,  scRNA- seq captured a higher propor-
tion of immune cells with 7% of all cells sequenced 
identified as lymphocytes and 9% identified as  
macrophages,  compared to snRNA- seq with 3% 
lymphocytes and 5% macrophages.  In contrast,  
snRNA- seq captured 50% more cholangiocytes 
and hepatic mesenchymal cells than scRNA- seq  
(Fig. 1F; Supporting Table S4). We obtained sim-
ilar percentages of liver sinusoidal endothelial cells 
(LSECs) and endothelial cells with both methods. 
However,  these frequencies depend on the deter-
gent used for the snRNA- seq.  CST and NST  
extracted a higher frequency of LSECs (25% and 
20%, respectively) and higher frequencies of mes-
enchymal cells (7% in CST and 12% in NST), but 
lower frequencies of hepatocytes.

HEPATOCYTES

Hepatocytes are the main parenchymal cell of 
the hepatic lobule and are responsible for most liver 
function. They exhibit functional zonation from the 
pericentral vein to the periportal region.  Recent 
work has demonstrated the importance of inter-
zonal hepatocytes for liver homeostasis and regener-
ation,( )14  but they have been difficult to identify due 
to a paucity of known markers.( )2,3  Subclustering 
our hepatocyte cluster revealed six distinct clus-
ters (Fig.  2A,B) sourced from both scRNA- seq 
and snRNA- seq (Fig.  2C),  and across all samples 
(Fig. 2D).  Correlating these clusters with zonated 
expression from microdissected regions of the liver  
lobules in mice( )15  enabled the annotation of three  
of these clusters as containing either pericentral or  
periportal hepatocytes (Fig. 2E). These annotations 
were confirmed using known pericentral marker 
genes (cytochrome P450 3A4 [ ],  alcoCYP3A4 -
hol dehydrogenase 4 [ADH4], glutamate- ammonia 
ligase [GLUL],  and butyrylcholinesterase [BCHE]) 
and periportal marker genes (histidine ammonia- 
lyase [ ],  carbamoyl- phosphate synthase 1 HAL
[CPS1], and 3- hydroxy- 3- methylglutaryl- CoA syn-
thase 1 [ ]) (Fig.  2F).  Of the remaining HMGCS1
three subclusters,  one was most strongly correlated  
with mouse layer 7; another was most strongly cor-
related with mouse layer 5,  suggesting these two 
clusters (IZ1 and IZ2) represent human interzonal  
hepatocytes (Fig.  2E).  We validated the putative 
interzonal hepatocyte identity by comparing it to 
bulk RNA- seq derived from human microdissected 
liver lobule regions, where these clusters correlated  
most strongly with interzonal layer 4 (Supporting 
Fig.  S7).(5)  Markers identified from these two 
clusters (histidine triad nucleotide binding pro-
tein 1 [ ], cytochrome C oxidase subunit 7C HINT1
[COX7C],  apolipoprotein C1 [ ],  fatty acid APOC1
binding protein 1,  liver [FABP1],  metallothionein 

FIG. 1.  Technical differences between scRNA- seq and snRNA- seq in profiling cells from the healthy human liver. (A) Overview of 
single- cell and single- nucleus isolation, data set integration, and analysis workflows. (B) Sensitivity of each approach as measured by the 
number of genes and transcripts identified in each cell/nucleus. (C) UMAP projection of cells derived from scRNA- seq and snRNA- seq 
merged (i) and then scaled individually before merging (ii). (D) UMAP projection of cells from scRNA- seq (pink) and snRNA- seq (blue) 
individually scaled before merging and then integrated using harmony. (E) UMAP plot showing the assigned identity for each cluster after 
scaling individually, merging and integrating. (F) Frequency of each major cell population in their source data set; error bars indicate 95% 
confidence intervals across samples. (G) Heatmap showing scaled mean expression of known marker genes in each cluster. Abbreviations: 
cvLSECS, central venous LSECs; GSVA, gene- set variation analysis; MT, proportion of RNA content derived from the mitochondiral 
genome; PCA, Principal Component Analysis; and UMAP, Uniform Manifold Approximation and Projection.
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2A [ ],  metallothionein 1G [ ],  and MT2A MT1G
ubiquinone oxidoreductase subunit B1 [NDUFB1]) 
were validated using spatial transcriptomics and 
immunohistochemistry,  where they exhibit clearly 
distinct expression patterns from either peripor-
tal or pericentral markers but remain ambiguous 
(Fig.2G- I; Supporting Figs. S8- S12).

The final cluster of albumin (ALB – ) expressing 
hepatocytes expressed periportal hepatocyte markers 
like serpin family A member 1 (SERPINA1),  trans-
thyretin ( ),  apolipoprotein A1 ( ),  and TTR APOA1
apolipoprotein C3 ( ).  However,  this cluster APOC3
did not correlate strongly with the periportal mouse 
sinusoid regions, nor did it express many other peri-
portal marker genes like , and HAL, CPS1 HMGCS1. 
Furthermore,  the expression profile correlated most 
strongly with the interzonal layer 4 of the human sinu-
soid, but did not correlate with any mouse zonation 
layer (top differentially expressed genes (DE):  ALB, 
SERPINA1 APOA1, , haptoglobin [ ], ferritin light HP
chain [ , serum amyloid A1 [ ], staFTL], APOC3 SAA1 -
bilin 1 [STAB1], TTR, beta- 2- microglobulin [B2M], 
and LIF receptor subunit alpha [LIFR]). These results 
suggest that this cluster may represent a human- 
specific interzonal hepatocyte cluster, but further work 
will be required to confirm this identity.

Hepatocytes as a whole were captured equally well 
in scRNA- seq and snRNA- seq (Supporting Table 
S2);  however, central venous (CV1) hepatocytes were 
almost twice as frequent (17% vs.  9%;  P < 10−30) in 
snRNA- seq than scRNA- seq (Fig. 2B,C; Supporting 
TablesS3 and S5). In contrast, interzonal hepatocytes 
were most frequent in scRNA- seq (15% and 9% vs.  
8% and 3%; P< 10−15). Despite these differences, we 
observe almost all hepatocyte- related pathways exhibit-
ing elevated expression in snRNA- seq- derived hepato-
cytes (Fig. 2J).  Several significant genes identified in 

CV1 hepatocytes by snRNA- seq were not identified 
by scRNA- seq (Fig. 2K), whereas the gene- expression 
patterns for periportal hepatocytes correlated signifi-
cantly across both technologies (Fig. 2L). The great-
est discordance exists for the interzonal hepatocytes in 
which many of the genes up- regulated in snRNA- seq 
are down- regulated in scRNA- seq (Fig.  2M).  This 
may reflect poor viability or disrupted cellular state 
within hepatocytes due to the dissociation( )16  required 
for scRNA- seq, which is not present when examining 
hepatocytes with snRNA- seq. Thus, snRNA- seq may 
provide a better characterization of hepatocytes than 
scRNA- seq, despite similar capture rates.

CHOLANGIOCYTES

Cholangiocytes are epithelial cells that line the 
bile ducts and generate 30% of the total bile vol-
ume.( )17  Our previous attempt to characterize these 
cells using exclusively scRNA- seq identified only a 
single population encompassing 1.4% (199 of 8,444) 
of the cells expressing cholangiocyte markers (epi-
thelial cell adhesion molecule [ ], SRY (sex  EPCAM
determining region Y)- box 9 [SOX9], and keratin 1 
[KRT1]).(2)

In this study, we found that snRNA- seq captured 
a higher proportion of KRT7 SOX9, ,  and annexin 
A4 (ANXA4) expressing cholangiocytes (3.4% vs.  
2.4%),  resulting in a total of 448 cholangiocyte- like 
cells (Fig.  1G;  Supporting Table S2).  Subclustering 
this KRT7+ SOX9+  population revealed six tran-
scriptionally distinct subpopulations (labeled Chol- 1 
to Chol- 6) (Fig. 3A).  We identified three asialogly-
coprotein receptor 1– positive ( +) hepatocyte- ASGR1
like clusters,  two typical cholangiocyte- like clusters 
(KRT7 KRT18, ,  and solute carrier family 4 member 
2 [SLC4A2] high), and a cluster of progenitors, 82% 

FIG. 2.  Hepatocyte populations in sample- matched scRNA- seq and snRNA- seq data are spatially resolved by spatial transcriptomics. 
(A) UMAP plot with the six major populations of hepatocytes split by protocol. (B) Stacked bar plot indicating the frequency of each 
population in either scRNA- seq or snRNA- seq data sets. Distribution of hepatocytes by protocol (C) or by donor sample (D) in the 
combined data set.  (E) Correlation of human hepatocyte clusters to known mouse liver sinusoid layers calculated using Spearman 
correlation. *** <0.001, ** <0.01, * <0.05. (F) Expression of known marker genes in hepatocyte subpopulations in the combined P P P
data set. Gene signature scores of the top 30 marker genes in clusters CV (G), PP2 (H), and IZ2 (I) across the spatial transcriptomics 
spots of a healthy human liver cryosection. ( J) Pathway enrichment analysis examining which cellular pathways are better represented 
by snRNA- seq (cyan) and scRNA- seq (pink) in the central venous, periportal, and interzonal hepatocyte populations. Circles (nodes) 
represent pathways, sized by the number of genes included in that pathway. Related pathways, indicated by light blue lines, are grouped 
into a theme (black circle) and labeled. Intra- pathway and inter- pathway relationships are shown in light blue and represent the number 
of genes shared between each pathway. Log2FC of significant genes (q- value<0.05) within either scRNA- seq (red) or snRNA- seq (blue) 
or both (black) for CV hepatocytes (K) (cluster CV), PP clusters (L) (clusters PP1 and PP2), and IZ clusters (M) (clusters IZ1 and IZ2). 
Abbreviations: IZ, interzonal; and PP, periportal.
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of which were derived from snRNA- seq (Fig. 3B- F;  
Supporting Table S6). These clusters were not specific 
to a particular sample or donor, indicating that they 
were not the result of batch effects or donor- specific 
variation (Fig.  3D).  Rather,  these clusters formed a 
branching trajectory extending from bipotent progen-
itors to both hepatocyte and cholangiocyte cell fates, 
as computed using both Slingshot(18)  and diffusion 
maps (Fig. 3G; Supporting Fig. S13).

At the most differentiated end of the cholangio-
cyte branch was the Chol- 4 population, which con-
tained mature cholangiocytes expressing differentiated 
cholangiocyte- associated markers (Top DE:  aqua-
porin 1 [AQP1], KRT8 KRT18 KRT7, , , defensin beta 
1 [ , polymeric immunoglobulin recepDEFB1], CD24 -
tor [ ],  and PIGR ANXA4) (Fig.  3E;  Supporting Fig. 
S14A), many of which are highly specific to human 
bile ducts (Supporting Fig.  S15A).( )19  Furthermore,  
classical cholangiocyte pathways, such as cell polarity, 
ion transport,  ABC transporters and many immune  
pathways, were enriched among the genes up- regulated 
in this cluster (Fig.  3F;  Supporting Fig.  S16).  Cells 
of this cluster were derived in equal measure from 
scRNA- seq and snRNA- seq,  and the significantly 
up- regulated markers,  including ,  secreted AQP1
phosphoprotein 1 [SPP1 DEFB1] and , were relatively 
consistent across both technologies (Supporting Fig. 
S17). Thus, mature cholangiocytes are well character-
ized by either snRNA- seq or scRNA- seq.

The less- differentiated cholangiocyte population  
(Chol- 5) was specific to snRNA- seq (177 nuclei vs. 
33 cells).  Cholangiocyte identity was confirmed by  
the expression of key transcription factors (hepato-
cyte nuclear factor- 1- beta [ ], one cut homeoHNF1B -
box 1 [ ], and ONECUT1 SOX9)  and the enrichment 
of WNT signaling,  ABC,  and ion transporters( )20  
(Supporting Fig.  S16).  We determined this cluster 

contained specifically small cholangiocytes on the 
basis of B- cell leukemia/lymphoma 2 ( ) expresBCL2 -
sion (Fig. 3E;  Supporting Fig. S14A), which is not 
expressed by large cholangiocytes.( )20  This was con-
firmed by noting bile- duct restricted expression of  
BCL2 by immunohistochemistry ( )19  (Supporting Fig. 
S15B). We note high expression of many stem- ness 
markers( )21  in this cluster,  which is consistent with 
previous reports of a less- differentiated phenotype  
of these cholangiocytes( )20  (Fig. 3E; Supporting Fig. 
S14A,B).  Markers of this cluster were identified 
using snRNA- seq ( ,  PPARG coactivator 1  CYP3A5
alpha [PPARGC1A], fragile histidine triad diadenos-
ine triphosphatase [ ], flavin containing dimethFHIT -
ylaniline monooxygenase 5 [ ],  tryptophan FMO5
2,3- dioxygenase [TDO2], and ); however, these SOX6
were not recapitulated in scRNA- seq,  subsequently 
reinforcing that this population can only be charac-
terized using snRNA- seq (Supporting Fig. S17).

At the far end of the opposite branch was Chol- 3, 
a population of central venous hepatocyte- like cells,  
expressing high levels of , glypican 6 (CYP3A4 GPC6), 
and aldehyde oxidase 1 ( ) (Supporting Figs. S9 AOX1
and S14C). These cells clustered together with chol-
angiocytes because of their high expression of many 
bile metabolism genes (i.e., ATP- binding cassette sub-
family A member 8 [ ,  hydroxyacid ABCA8], ABCA6
oxidase 1 [ , and HAO1], ABCA1 SLC27A2), indicating 
involvement in biliary function.  Interestingly,  these 
cells express hepatocyte nuclear factor 4 (HNF4a), 
which is first expressed in progenitor hepatocytes and 
is a central regulator of hepatocyte differentiation.(22)

Two additional hepatocyte- biased clusters, Chol- 2 
and Chol- 6,  expressed some typical cholangiocyte 
markers (KRT7 SOX9, , and ) but also expressed CD24
early hepatocyte lineage- defining transcription 
 factors (HNF4a, forkhead box A2 [FOXA2], prospero 

FIG. 3. Cholangiocyte- associated cells as revealed by snRNA- seq. (A) UMAP plot with the six major populations of cholangiocytes and 
progenitor cells identified in the combined data set split by protocol. (B) Frequency of each population in either scRNA- seq or snRNA- 
seq data sets. Distribution of each population by protocol (C) and by sample (D) in the combined data set. (E) Expression of known 
cholangiocyte, progenitor, and hepatocyte marker genes in each population. The size of the circle indicates the percentage of cells in each 
population expressing each gene. (F) Pairwise pathway analysis comparing cholangiocyte- like, progenitor- like, and mature hepatocyte- like 
cells from snRNA- seq (cyan) to those from scRNA- seq (pink). Circles (nodes) represent pathways, sized by the number of genes included 
in that pathway. Related pathways, indicated by light blue lines, are grouped into a theme (black circle) and labeled. Due to low cell 
number, similar clusters were combined for pathway analysis (see Supporting Fig. S15) for more details. (G) Color value in UMAP plot 
indicates distance along the cholangiocyte to bipotent progenitor cells to hepatocyte pseudo- time trajectory as inferred by Slingshot.(18) 
(H) UMAP of subclustered cholangiocyte- like populations from an independent scRNA- seq healthy human liver data set.(2) (I) Heatmap 
depicting the relative expression of cholangiocyte subpopulation- associated marker genes in cholangiocyte- like cells.(2)  ( J) Projection of 
cell- type annotations from the combined scRNA- seq and snRNA- seq cholangiocyte data set onto scRNA- seq data from MacParland et 
al.(2) using scmap- cell.(23)
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homeobox 1 [ , and PROX1], ONECUT1 ONECUT2), 
suggesting an intermediate or progenitor phenotype 
(Fig.  3E; Supporting Figs.  S14B- E and S18).  The  
highly expressed genes of both Chol- 6 and Chol- 2 
related to progenitor- associated markers,  such as 
FOXA2, fibroblast growth factor receptor 3 (FGFR3), 
hairy and enhancer of split- 1 [ ],  and jagged HES1
canonical notch ligand 1 ( ) (Fig. 3E; Supporting JAG1
Fig.  S14B,D). The key difference between the clus-
ters is the expression of proliferation- related genes in 
Chol- 6,  indicating that these cells were proliferative 
and non- proliferative hepatic progenitors.

At the root of these lineage- biased branches was 
a large cluster of bipotent progenitors (Chol- 1), con-
taining predominantly sequenced single nuclei (621 
nuclei vs. 134 cells) (Extended Table 6; Fig. 3C). This 
cluster did not express mature cholangiocyte markers, 
but rather a collection of many stem- like and pro-
genitor markers,  including pou class 5 homeobox 1 
(POU5F1), FOXO2,  runt- related transcription factor 
2 (RUNX2 SOX6 CD133), , ,  alanyl aminopeptidase,  
membrane ( ),  and  (Supporting Fig.  ANPEP SOX9
S14B- D). These characteristics of this cluster are con-
sistent with bipotent progenitors that have previously 
been observed only  (Supporting Fig. S14D).in vitro (3) 
Furthermore,  using pathway analysis,  we identify 
the NOTCH2 signaling pathway (notch receptor 2 
[NOTCH2], recombination signal binding protein for 
immunoglobulin kappa J region [ ], mastermind  RBPJ
like transcriptional coactivator 2 [MAML2], MAML3, 
MAML4)  as a key feature of these progenitor cells.  
Endoderm, cell cycle, and cell division pathways were 
enriched in this population relative to the other clus-
ters supporting a stem- like state (Supporting Figs.  
S16 and S18). Marker genes of Chol- 1 (i.e., FOXO3, 
GATA binding protein 6 [GATA6 FGFR3], ,  and 
ANPEP) were localized to bile ducts in both our spatial 

transcriptomics data and publicly available immuno-
histochemistry data, suggesting that these may be the 
progenitor niche (Supporting Figs. S19 and S20).( )19

Using the combined map presented here as a ref-
erence, we were able to use the automatic annotation 
tool scmap- cell (23)  to identify and label two distinct 
subsets of cholangiocytes that were unable to be 
detected in our previous map (Fig. 3H). We identified 
cells from both mature cholangiocytes (Chol- 4) and a 
small number of bipotent progenitors (Chol- 1), which 
could only be identified using the snRNA- seq data,  
demonstrating the utility of our combined scRNA- 
seq and snRNA- seq liver map (Fig. 3I,J).

LIVER MESENCHYMAL CELLS

Various mesenchymal cell populations such as 
HSCs, fibroblasts (FBs), and vascular smooth muscle 
cells (VSMCs) have been proposed as the source of 
pathogenic myofibroblasts,  that promote fibrosis fol-
lowing liver injury through the production of extra-
cellular matrix proteins.( )24  To design ideal antifibrotic 
therapies that specifically target myofibroblasts in 
disease,  the baseline cellular functions of these mes-
enchymal cells at homeostasis must be described.  
Previous single- cell studies that have focused on the 
heterogeneity in the mesenchyme,  specifically HSCs 
during disease or injury,  typically make use of addi-
tional cell- handling steps to enrich for these cells.( )4,25  
Subclustering our mesenchymal cell cluster revealed 
seven distinct populations (Mes1- 7) present in the 
healthy liver, of which only Mes1, 2, and 4 contained 
more than 10 cells captured with scRNA- seq,  and 
only Mes4 was approximately equally captured by 
both methodologies and in all samples (Fig.  4A- D; 
Supporting Table S7). Overall, mesenchymal cells con-
sisted of 2.5% of single nuclei, more than double their 

FIG. 4. Identification of HSCs, FBs, and VSMCs in the healthy human liver through scRNA- seq and snRNA- seq. (A) UMAP plots with 
the seven major clusters of mesenchymal cells in the combined data set, split by protocol. (B) Stacked bar plot indicating the frequency of 
each population in either scRNA- seq or snRNA- seq data sets. Distribution of each population by protocol (C) and by sample (D) in the 
combined data set. (E) Dot plot indicating the relative expression of known quiescent HSCs and myofibroblast- specific marker genes in 
each population. The size of the circle indicates the percentage of cells in each cluster expressing each gene. (F) Spearman correlation of 
transcriptional gene signatures from mouse HSCs, FBs and VSMCs, sourced from healthy and carbon tetrachloride– induced acute and 
chronically fibrotic livers (Dobie et al. 2019) to the human mesenchymal cells clusters from this study. (29)  **** <0.0001, ***P P<0.001, 
**P<0.01, * <0.05. (G) Pathway enrichment analysis examining what are the up- regulated (red) and down- regulated (cyan) biological P
pathways in each mesenchymal cell cluster in the combined scRNA- seq and snRNA- seq data set. Circles (nodes) represent pathways, 
sized by the number of genes included in that pathway. Related pathways, indicated by light blue lines, are grouped into a theme (black 
circle) and labeled. (H)- (M) Log2FC of significant genes (q- value<0.05) within either scRNA- seq (red) or snRNA- seq (blue) or both 
(black) for each cluster within the mesenchymal cell data set.
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1% of single cells captured (Fig. 4B). Using snRNA- 
seq, we reveal the transcriptome of VSMCs and FBs 
present in healthy livers at low frequencies (Fig. 4).

Under physiological conditions,  HSCs maintain 
a quiescent and non- proliferative phenotype and are 
localized between the layers of LSECs and hepato-
cytes in the space of Disse.( )2,26  Activated HSCs are 
thought to be the primary contributor to the myofi-
broblast pool in liver fibrosis and are characterized by 
the loss of retinol- bearing lipid droplets, the develop-
ment of a contractile phenotype, and the production 
of collagens and extracellular matrix remodeling pro-
teins.( )26- 28  Mes1, 5, and 7 expressed HSC- associated 
retinol storage genes (Fig.  4E),  while the rest 
expressed myofibroblast- associated genes. To further 
determine the cellular identity of these clusters,  we 
carried out a cross- species correlation analysis using 
previously published transcriptomic signatures of 
fluorescence- activated cell– sorted HSCs,  FBs,  and 
VSMCs from healthy and carbon tetrachloride– 
induced fibrotic mouse livers.( )29  The only mesenchy-
mal cluster to correlate strongly with the healthy and 
fibrotic HSC signatures was Mes1. Seventy percent  
of mesenchymal nuclei consisted of quiescent HSCs 
(Mes- 1 and Mes- 5) specializing in vitamin A stor-
age and metabolism, with high expression of RBP1, 
lecithin retinol acyltransferase ( ),  and phosLRAT -
phodiesterase 3B ( ) (Fig. 4F; Supporting Fig. PDE3B
S21A).( )30  Mes1 specifically expressed hepatocyte 
growth factor ( ),  which is a key growth factor HGF
in liver regeneration and hepatocyte differentiation  
and growth,  and displayed enrichment for neuronal 
pathways as expected.( )31  Mes5 expressed antigen 
presentation genes and showed an enrichment of 
pathways associated with both fat and water- soluble 
vitamins,  lipid transport,  and organic acid metabo-
lism (Fig. 4G; Supporting Fig. S21A). The presence 
of lipid metabolism and fibrin clot pathways and 
inflammation- associated genes indicate that these 
may represent activated HSCs (Fig. 4G; Supporting 
Fig.  S21A- C).  Mes7 is the smallest cluster of cells 
that express RBP1 HGF DCN, , LRAT and Decorin ( ), 
yet the presence of many lymphocyte- associated tran-
scripts suggests that they are likely to be doublets.

Mes2 and Mes4 transcriptomes from both scRNA- 
seq and snRNA- seq correlated well with mouse FB 
signatures,  whereas Mes3 and Mes6 correlated with 
VSMC signatures and not activated HSCs from 
the chronically fibrotic mouse liver (Fig.  4F).  These 

observations held true for both scRNA- seq and 
snRNA- seq. Mes2 cells were the second- most- frequent 
population in the data set (24% of nuclei).  They 
expressed more lipid- processing genes in comparison 
to Mes4 ( , and ), as well as an AOX1, PDE3D PDE4D
enrichment of the complement cascade pathways but 
lacked typical HSC markers and strong myofibroblast 
markers (Fig. 4F). Furthermore, this cluster also showed 
expression of cytokine and growth factor receptors, and 
angiogenic and proliferative factors (i.e., transforming  
growth factor beta 1 [ ],  transforming growth TGFB1
factor receptor type 2 [ ]), indicating that they TGFBR2
may be liver FBs (Supporting Fig. S21D,D).

The other three non- HSC Mes clusters consisted 
of only 10% of mesenchymal cell nuclei (112 of 1,069), 
and contained heterogeneous subsets of tissue remod-
eling cell types. Myofibroblasts typically arise following 
liver damage, in response to cytokines,  local damage,  
growth factors,  and fibrogenic signals.( )26,32  In con-
trast to Mes2, Mes4 had enriched pathways associated 
with inflammatory signaling, collagen production and 
matrix remodeling, and expressed high levels of fibro-
sis and myofibroblast- associated genes (Supporting 
Fig. S21B,D). Both Mes4 and Mes6 expressed several  
activation- associated genes [ ,  secreted protein ACTA2
acidic and cysteine rich (SPARC), transgelin (TAGLN), 
collagen type 1 alpha 1 chain (COL1A1), and TIMP  
metallopeptidase inhibitor 1 ( )],  and enriched TIMP1
pathways in both clusters included collagen forma-
tion,  extracellular matrix,  and integrin signaling (Fig.  
4E,F; Supporting Fig. S21B). Furthermore, Mes4 was 
enriched in senescence- related pathways and inflam-
matory genes (interleukin- 32 [ ],  colony stimuIL- 32 -
lating factor 1 [ ], TNF superfamily member 10 CSF1
[TNFSF10], C- C motif chemokine ligand 2 [CCL2], 
and IL6ST),  indicating a more activated FB pheno-
type (Supporting Fig. S21C). Mes6 expressed VSMC 
markers like calponin 2 ( ), myosin light chain 9 CNN2
(MYL9), TAGLN and ACTA2, high levels of fibrogenic 
growth factors, and was enriched in the contractile phe-
notype, suggesting a fibrogenic state of VSMCs (Fig. 
4G; Supporting Fig. S21D). Mes3 nuclei also express 
ACTA2, MYL9 TAGLN and , but not collagen or matrix 
remodelers or quiescent HSC genes. Instead, this clus-
ter is enriched for genes that support angiogenesis and 
local cell proliferation (apoptosis),  suggesting a less- 
activated VSMC state (Supporting Fig. S21D,E).

Spatial transcriptomics independently confirmed 
HSC gene expression (Mes1 and 5) to be higher and 
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dispersed throughout liver tissue, whereas VSMCs (Mes3 
and 6) and FBs (Mes2 and 4) were primarily located in 
periportal regions, as seen previously( )29  (Supporting Fig. 
S22). As most of these clusters were primarily identified 
in snRNA- seq data, most of the differentially expressed 
genes in the snRNA- seq data were not identified as sig-
nificant in the scRNA- seq samples (Fig. 4H- M), rein-
forcing the value of a combined approach in capturing  
liver mesenchymal cell heterogeneity.

LIVER ENDOTHELIAL CELLS

The endothelium of the liver vasculature is made 
up of LSECs and vascular endothelial cells.  LSEC 
populations were annotated using previously defined 
markers (Figs.  1G and 5A- E).(2)  Similar to hepato-
cytes,  central venous LSECs were more frequently 
captured with snRNA- seq (7.52%) than scRNA- seq 
(5.2%) (Fig.  5B- D),  whereas periportal LSECs and 
portal endothelial cells were present in similar fre-
quencies using either technology (ppLSECs:  1.15% 
in snRNA- seq and 1.32% in scRNA- seq; PortalEndo: 
0.76% and 0.63%, respectively) (Supporting Table S8). 
Markers and associated pathways of these populations 
were generally consistent across both technologies.  
Although gene- expression fold changes were typically 
smaller in snRNA- seq (Fig. 5F- I), this was particularly 
true for portal markers: von Willebrand factor (VWF), 
C- type lectin domain containing 14A (CLEC14A), 
inhibitor of DNA binding 1 ( ),  SPARC like ID1
1 (SPARCL1),  and connective tissue growth factor 
(CTGF) (Fig.  5E).  The central venous LSECs and 
portal endothelial- associated marker genes and gene 
signatures are distributed peri- centrally and peri- 
portally, respectively (Supporting Fig. S23). However, 
the expression of marker genes for periportal LSECs 
and the periportal LSEC gene signature was not well 
captured using the 10X Genomics Visium spatial 
gene- expression platform.

INTRAHEPATIC MONOCYTES/
MACROPHAGES

We previously characterized two populations of 
intrahepatic macrophages with distinct immunoreg-
ulatory and inflammatory properties.(2) We identified 
both of these populations in scRNA- seq and snRNA- 
seq;  however, we note a higher overall proportion of 
macrophages in snRNA- seq (7.4% of nuclei vs. 4.1% 

of cells) and a lower relative proportion of inflamma-
tory macrophages in snRNA- seq (46% vs. 59%) (Fig. 
6A- D;  Supporting Table S9).  Although snRNA- seq 
was more efficient at capturing non- inflammatory 
macrophages and their associated marker genes (Fig. 
6B,E), several marker genes for these populations are 
present in both snRNA- seq and scRNA- seq maps 
(CD68, protein tyrosine phosphatase receptor type C 
[PTPRC], and macrophage receptor with collagenous 
structure [MARCO]).  Meanwhile,  the markers used 
to describe inflammatory macrophages (lysozyme 
[LYZ], S100A8, and ) were better represented S100A9
by scRNA- seq (Fig.  6F).  Immune- associated path-
ways (interferon gamma [IFN ], leukocyte activation, 

phagocytosis, and bacterial response) were more highly 
expressed in snRNA- seq rather than scRNA- seq (Fig. 
6G), suggesting that macrophages may be dissociation- 
sensitive.  Spatial transcriptomics of healthy liver tis-
sue indicated that the non- inflammatory macrophage 
genes and gene signature were present in the peripor-
tal regions,  whereas the inflammatory macrophage 
genes and gene signature were expressed closer to the 
central vein (Supporting Fig. S24).

INTRAHEPATIC LYMPHOCYTE 
POPULATIONS

We previously observed that lymphocytes are  
well- detected after hepatic tissue disruption.(2) 
Major lymphocyte populations were captured by 
each protocol (Fig.  7A) and in each sample (Fig.  
7B);  lymphocytes comprise 5.2% of the scRNA-  
seq data set (1,524 of 29,432) but make up only 
1.8% of the snRNA- seq data set (804 of 43,863).  
All lymphocyte subpopulations were captured at  
higher frequency by scRNA- seq (Fig. 7C,D). B- cell 
populations in particular make up only 0.2% of 
the snRNA- seq data set, but are enriched almost 2 
times more in scRNA- seq data (0.5%) (Supporting 
Table S10).  In our examination of marker genes 
for each cluster present across both protocols (Fig. 
7E), IL7R and S100A4 serve as the best markers for 
resident memory T cells. The top marker genes for 
  T cells and natural killer (NK) have significant  
overlap.  Unfortunately,  B- cell receptor and T- cell 
receptor genes were not well- captured by snRNA- 
seq (Supporting Fig.  S25).  As such,  scRNA- seq 
captures transcripts that provide the resolution for 
differentiating distinct lymphocyte populations.
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Discussion
Comparing scRNA- seq and snRNA- seq protocols 

applied to four samples of healthy human liver revealed 
several significant differences.  Both techniques pro-
duced high- quality data that could elucidate the major 
cell classifications in the human liver. However, cell- type 
frequencies are distorted in scRNA- seq, primarily due  
to the resiliency of immune cells to tissue dissociation 
compared with parenchymal cells.  These differences 
affect the sensitivity of each method to delineate sub-
types of the respective cell types. SnRNA- seq enables  
the detection of many additional cell subtypes of chol-
angiocytes and mesenchymal cells,  which are difficult 
to distinguish using scRNA- seq. For example, the tran-
scriptional profile of small- duct cholangiocytes provided 
in this data set may act as a reference for assessing how 
cholangiocytes in small- duct cholangio- pathologies, like 
primary biliary cholangitis (PBC),  might differ tran-
scriptionally to those in the healthy liver. Furthermore, 
this platform could potentially allow for distinguishing 
differences in the cellular landscape of poorly under-
stood autoimmune liver diseases, such as differentiating 
between PBC and primary sclerosing cholangitis, which 
is a disease primarily affecting large bile ducts.

A complete characterization of the intrahepatic 
immune landscape is also crucial to understanding the 
pathogenesis of liver disease. Despite the advantages of 
nuclei profiling, many important markers of immune 
cells were completely absent from snRNA- seq data.  
For instance,  none of the T- cell or B- cell receptor 
components were detected in our snRNA- seq sam-
ples.  Thus, we recommend that studies investigating 
intrahepatic immune populations use scRNA- seq.

The ability of snRNA- seq to overcome the limitations 
associated with tissue dissociation and to capture paren-
chymal cells in high resolution opens an avenue for a 
detailed examination of the interplay between parenchy-
mal cells and non- parenchymal cells in health and dis-
ease. Additionally, the ability to perform snRNA- seq in 
frozen tissues can enable the examination of biobanked 

samples with single- cell resolution. Taken together, we  
have shown that single- cell and single- nucleus RNA- 
seq generate high- quality data from normal liver sam-
ples, with snRNA- seq allowing for better examination 
of rare liver stromal cells including FBs,  HSCs and 
VSMCs, and parenchymal cells such as cholangiocytes. 
This combined data set enables a complex examination 
of parenchymal cell complexity and provides a founda-
tion for single- cell liver disease studies.

Materials and Methods

PREPARATION OF FRESH TISSUE 
HOMOGENATES AND NUCLEI 
FROM SNAP FROZEN HUMAN 
LIVER TISSUE

Human liver tissue from the caudate lobe was 
obtained from neurologically deceased donor liver 
acceptable for liver transplantation.  Samples were 
collected with institutional ethics approval from the 
University Health Network (REB# 14- 7425- AE).  
A 3- mm- cubed fragment of tissue was preserved for  
snRNA- seq by snap freezing in liquid nitrogen. Within 
a 3- mm- cubed segment of tissue, we would expect two 
to three lobules would be assessed, and the presence of 
all cell clusters in all populations in our analysis sug-
gests the relative homogeneity of liver cell compositions 
between individuals.  Single- cell suspensions of fresh 
human liver were generated as previously described(2) 
the two- step collagenase perfusion protocol (https://
doi.org/10.17504/ proto cols.io.m9sc96e). Samples with 
paired snap- frozen tissues (frozen in liquid nitrogen 
at the time of dissociation within 1 hour of caudate 
lobe removal from the donor organ) were selected for 
scRNA- seq and snRNA- seq.  Nuclei were extracted 
from snap- frozen tissues within 2 years of snap freez-
ing.  Single- nucleus extraction from frozen tissue was  
performed as previously described.(9)  The full descrip-
tion of processing is found in the extended methods.

FIG. 5. Analysis of LSECs in the combined scRNA- seq and snRNA- seq data set. (a) UMAP plots with the three major endothelial cell 
populations in the combined data set split by protocol. (B) Frequency of each population in either scRNA- seq or snRNA- seq data sets. 
Distribution of each population by protocol (C) and by sample (D) in the combined data set. (E) Dot plot indicating the relative expression 
of known LSEC marker genes in each population by protocol. The size of the circle indicates the percentage of cells in each population 
expressing each gene. (F) Pathway enrichment analysis examining which cellular pathways are better represented by snRNA- seq (cyan) and 
scRNA- seq (pink) in each of the LSEC subpopulations. Circles (nodes) represent pathways, sized by the number of genes included in that 
pathway. Related pathways, indicated by light blue lines, are grouped into a theme (black circle) and labeled. (G),(I) Log2FC of significant 
genes (q- value<0.05) within either scRNA- seq (red) or snRNA- seq (blue) or both (black) for each cluster within the LSEC data set.
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SAMPLE PROCESSING, 
COMPLEMENTARY DNA LIBRARY 
PREPARATION, SEQUENCING, 
AND DATA PROCESSING

Single cell samples were prepared as out-
lined by the 10x Genomics Single- Cell 3  v2 and 

3’  v3 Reagent Kit user guides and as described 
 previously.(2)  Single- cell data were processed using 
10x Cell Ranger software version 3.01,  mapping 
reads to the GRCh38 human genome.  Single-  
nucleus data were processed using Cell Ranger 
version 3,  and reads were mapped to a modified 
transcriptome based on GRCh38,  which included 

FIG. 6. Analysis of liver- resident macrophages in the combined scRNA- seq and snRNA- seq data set. (A) UMAP plots depicting the 
clustering of inflammatory and non- inflammatory macrophages in the combined data set split by protocol. (B) Stacked bar plot indicating 
the frequency of each population in either scRNA- seq or snRNA- seq data sets. Distribution of each population by protocol (C) and 
by sample (D) in the combined data set. (E) Dot plot indicating the relative expression of known inflammatory and non- inflammatory 
macrophage marker genes in each cluster by protocol. The size of the circle indicates the percentage of cells in each population expressing 
each gene. (F) Log2FC of significant genes (5% false discovery rate) within either scRNA- seq (red) or snRNA- seq (blue) or both (black) 
for each cluster within the macrophage populations; nonsignificant shown in gray. (G) Pairwise pathway enrichment analysis comparing 
snRNA- seq to scRNA- seq in each macrophage subpopulation. Pathways enriched in snRNA- sq are labeled in cyan,  and pathways 
enriched in scRNA- seq are indicated in pink. Circles (nodes) represent pathways, sized by the number of genes included in that pathway. 
Related pathways, indicated by light blue lines, are grouped into a theme (black circle) and labeled. Abbreviation: Macs, macrophages.
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intronic regions to ensure quantification of reads  
derived from immature, unspliced messenger RNA 
(mRNA) present in the nucleus.  The full descrip-
tion of 10x sample and data processing is found in 
the extended methods.

DATA INTEGRATION AND 
CLUSTERING

The data were integrated using default param-
eters of Harmony, (10)  then clustered using Seurat’s 

FIG. 7. Liver- resident lymphocytes are enriched in scRNA- seq data sets. (A) UMAP plots depicting the clustering of various lymphocyte 
subpopulations in the combined data set split by protocol. (B) Frequency of each population in either scRNA- seq or snRNA- seq data sets. 
Distribution of each population by protocol (C) and by sample (D) in the combined data set. (E) Heat map showing the most significantly 
up- regulated genes per cluster. Abbreviations: ab, alpha- beta; and gd, gamma- delta.
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SNN- Louvain clustering algorithm.(33) The data were 
clustered using 30 sets of parameters,  and the most 
consistent clusterings were identified using apclus-
ter(34) on the cluster– cluster distance matrix calculated 
using the Variation of Information criterion.(35)  The 
full description of data integration and clustering can 
be found in the extended methods.

GENE TYPE AND GENE LENGTH 
BIASES BETWEEN SCRNA SEQ 
AND SNRNA SEQ DATA

A total of 3,804 housekeeping genes were obtained 
from the literature.( )11  Long noncoding RNAs and 
protein coding gene lists were obtained from Ensembl. 
Nuclear- encoded mitochondrial proteins were obtained 
from MitoCarta3.0.( )36  Ribosomal genes were obtained 
from the Ribosomal Protein Gene database.( )37  Transcript 
GC content, microRNA binding sites, transcript length, 
untranslated region lengths,  and intron length were 
obtained from Ensembl Biomart. Log- fold changes of  
mean expression across all cell types in scRNA- seq and 
snRNA- seq were calculated across all samples.

PATHWAY ENRICHMENT, 
CORRELATION, AND TRAJECTORY 
INFERENCE ANALYSIS

Pathway enrichment analysis was performed as 
previously described(2)  with the addition of a dissoci-
ation signature to the pathway gene- set database.( )16  
Slingshot (v1.8.0) was used to infer the pseudo- time 
based on the Harmony embedding matrix of cells.  
Lineages were calculated using the Slingshot Uniform 
Manifold Approximation and Projection (UMAP) 
embedding protocol.( )18  Diffusion maps( )38  (destiny,  
v3.1.1) were computed with both the raw counts 
matrix and the principal component analysis loadings. 
Spearman’s rank correlation coefficient was calculated 
on each pair of outputs of these analyses and plotted  
using corrplot (v0.84).  The full description of this 
analysis is found in the extended methods.

VALIDATION OF ZONATED GENE 
SIGNATURES USING SPATIAL 
TRANSCRIPTOMICS

Healthy human liver tissue was embedded in opti-
mal cutting temperature, frozen, and cryosectioned with 

16- um thickness at −10ºC (cryostar NX70 HOMP).  
Sections were placed on a chilled Visium Tissue 
Optimization Slide (10x Genomics) and processed fol-
lowing the Visium Spatial Gene Expression User Guide. 
Tissue was permeabilized for 12 minutes, based on an 
initial optimizations trial and libraries were prepared 
according to the Visium Spatial Gene Expression User 
Guide. Samples were sequenced on a NovaSeq 6000.

VISIUM SPATIAL TRANSCRIPTOMICS

The Visium spatial transcriptomic data were 
sequenced to a depth of 167,400,637 reads,  a sat-
uration of 77%.  These reads were mapped to the 
GRCh38 human genome and expression was quan-
tified with the spaceranger- 1.1.0.  Further processing 
and visualization were performed with Seurat (version 
3.2.1). The full description of Visium data processing 
is found in the extended methods.

VALIDATION OF ZONATED 
PROTEIN EXPRESSION VIA THE 
HUMAN PROTEIN ATLAS

Immunostaining images were obtained from 
the Human Protein Atlas (https://www.prote inatl 
as.org).(19) Lobule annotation was confirmed by a liver 
pathologist (C. Thoeni).
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under accession: GSE185477; count- matrices and fully 
processed data are available via figshare (https://figsh 
are.com/proje cts/Human_Liver_SC_vs_SN_paper/ 
98981) and Dropbox (https://www.dropb ox.com/
sh/sso15 ehqmr rh6mk/ AACKH OsSlZ W0_Zy9cb 
CkOmM fa?dl=0). Code used in the analysis is available 
on github: https://github.com/tallu landr ews/Liver_sc_
sn_paper_scripts. Spatial transcriptomics data visual-
ization tool is available at https://macpa rland lab.shiny 
apps.io/healt hyliv ermap spati algui/
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