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Abstract 

Many protein-protein interactions, especially those involved in eukaryotic signalling, are 

mediated by PDZ domains through the recognition of hydrophobic C-termini.  The availability of 

experimental PDZ interaction data sets have led to the construction of computational methods to 

predict PDZ domain-peptide interactions.  Such predictors are ideally suited to predict 

interactions in single organisms or for limited subsets of PDZ domains.  As a result, the goal of 

my thesis has been to build general predictors that can be used to scan the proteomes of multiple 

organisms for ligands for almost all PDZ domains from select model organisms.  A framework 

consisting of four steps: data collection, feature encoding, predictor training and evaluation was 

developed and applied for all predictors built in this thesis. 

The first predictor utilized PDZ domain-peptide sequence information from two interaction data 

sets obtained from high throughput protein microarray and phage display experiments in mouse 

and human, respectively.  The second predictor used PDZ domain structure and peptide sequence 

information.  I showed that these predictors are complementary to each other, are capable of 

predicting unseen interactions and can be used for the purposes of proteome scanning in human, 

worm and fly.  As both positive and negative interactions are required for building a successful 
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predictor, a major obstacle I addressed was the generation of artificial negative interactions for 

training.  In particular, I used position weight matrices to generate such negatives for the positive 

only phage display data and used a semi-supervised learning approach to overcome the problem 

of over-prediction (i.e. prediction of too many positives).  These predictors are available as a 

community web resource: http://webservice.baderlab.org/domains/POW.  Finally, a Bayesian 

integration method combining information from different biological evidence sources was used 

to filter the human proteome scanning predictions from both predictors.  This resulted in the 

construction of a comprehensive physiologically relevant high confidence PDZ mediated 

protein-protein interaction network in human. 
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1 Introduction 

1.1 Protein-protein interaction network mapping across the 
proteome 

The human genome contains approximately 23,000 protein-coding genes, which through 

alternative splicing can direct the synthesis of thousands of different proteins (Flicek et al. 2012). 

The majority of these proteins interact with other proteins to coordinate a variety of cellular 

processes including DNA replication, cell cycle control, and signal transduction. The ability to 

detect these interactions enables the assembly of protein interaction networks, which can be used 

to better understand how such biological processes are organized. Rewired networks can also be 

used to study genetic disorders caused by the abolishment of existing interactions or 

establishment of aberrant ones by mutant proteins (Pawson and Nash 2003). To understand how 

the genome encodes and how genomic changes may affect the underlying interaction network, 

correctly detecting protein-protein interactions (PPIs) directly from the proteome is necessary.  

Such methods must be both accurate and precise to avoid generating too many false positive hits 

given the large number of possible interactors in a typical eukaryotic proteome. 

1.1.1 Experimental and computational methods for studying PPIs 

Various experimental methods can be used to detect PPIs in vivo and in vitro (Phizicky and 

Fields 1995).  The two-hybrid screen is an example of an in vivo method that involves detecting 

reporter gene expression by transcription factor binding onto an upstream activating sequence.  

In this method, one protein is fused to the transcription factor’s DNA binding domain and the 

other to the transcriptional promoter domain. If the proteins interact, a functional transcription 

factor is created and results in the expression of the reporter gene. Co-immunoprecipitation (Co-

IP), phage display and protein microarrays are examples of in vitro methods.  Co-IP uses an 

antibody to immunoprecipitate a target antigen and also co-precipitate any other bound proteins 

within a sample such as a cell lysate.  This is followed by mass spectrometry to identify the 

bound proteins.  Phage display experiments successively select for partners that are displayed on 

the surface of phage that interact with proteins immobilized on a solid surface.  Protein 

microarrays use labeled proteins to probe for interacting proteins immobilized on a microarray 

with binding measured semi-quantitatively using a colourimetric assay. The main advantage of 
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in vivo methods like the two-hybrid screen is that the detection of interactions takes place within 

the native environment of the cell resulting in more biologically meaningful interactions. 

However, in vitro methods such as phage display or protein microarray can be used in high 

throughput studies as large random libraries or sets of peptides can be used for selection or 

screening. 

Computational methods to predict PPIs have also been developed and can provide additional 

evidence for experimental results, provide new insights by combining results from different 

experiments or prioritize experiments by predicting which proteins are likely binders among a 

large number of possible binders.  Such methods fall into a range of categories from physics to 

statistics-based methods.  Physics-based methods such as protein docking algorithms use 

geometric and steric considerations to fit two proteins of known structure into a bound complex.  

Specifically, docking proteins where the models differ significantly from the bound structure is 

particularly difficult for current algorithms (i.e. proteins that undergo large conformational 

changes or the use of inaccurate homology models built from distantly related templates) 

(Lensink and Wodak 2010).  Statistical methods such as simple sequence-based methods include 

position weight matrices (PWMs). Given a set of verified ligands, a PWM is matrix of 

probabilities of observing a particular residue at a given ligand position. PWMs can be used to 

compute a score indicating the binding preference of a domain for a given peptide.  More 

sophisticated methods employ algorithms from an area of Computer Science called machine 

learning.   Machine learning refers to a family of computational methods that recognize complex 

patterns in a given dataset in order to make decisions on new unseen data.  For PPI prediction, 

patterns can be extracted from structure, sequence and other relevant data to train a predictor that 

will predict if two given proteins will interact.  Many different algorithms have been used to 

predict PPIs including Bayesian methods, neural networks and support vector machines (SVMs) 

(Bock and Gough 2001; Jansen et al. 2003; Ferraro et al. 2006). 

1.1.2 Challenges faced by existing methods  

While experimental methods in general can detect PPIs, they face many challenges, such as the 

proteins may be limited to those that stably fold in a bacteria host, the interaction sites may be 

blocked by tagging or fusion to another protein, or the binding conditions may be artificially 

imposed by the investigator.  High rates of false positives are also a concern since the detected 
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interactions may be indirect or may never occur in vivo.  As a result, the authenticity of putative 

interactions from experiments must be substantiated using additional techniques. 

Although computational methods can correctly predict PPIs, they also face several challenges.  

For physics-based methods, the structures of the proteins are often unavailable or protein 

flexibility is not considered.  Simple methods like PWMs can only represent short binding motifs 

and often do not account for interdependencies between residues and positions. They may also 

perform poorly when there are too few experimentally determined binders available for a given 

protein.  Furthermore, such a simple model does not allow for the incorporation of additional 

biological information such as the gene expression or cellular location of protein pairs to help 

reduce the number of false positives.  Machine learning methods also face certain drawbacks.  

For example, most machine learning methods require both positive and negative data for 

training.  Therefore, the limited availability of negative interaction data is a common problem, 

although a recent database has begun to archive such data (Smialowski et al. 2010).  Methods 

which are typically used include shuffled or random ligand sequences. However, the use of such 

negatives for training results in predictors with lower accuracy when real negatives are used for 

testing (Lo et al. 2005; Ben-Hur and Noble 2006).  Other methods include randomly shuffling 

the interacting partners or pairing partners which are known to not be in the same cellular 

compartment.  However, these methods create a constraint on the distribution of negatives and 

make it easier for the predictor to distinguish between positive and negative interactions.  This 

leads to biased estimates of predictor performance when cross validation is used to assess 

predictor performance (Ben-Hur and Noble 2006).  Due to these challenges, the computational 

prediction of PPIs is a difficult problem that is not fully addressed by any existing method.  

1.2 Peptide recognition modules mediating protein-protein 
interactions  

Many PPIs in eukaryotic signalling systems are mediated by protein recognition modules 

(PRMs).  PRMs are evolutionarily conserved protein domains that fold independently and are 

organized in different ways to form larger proteins.  PRMs have important roles in signal 

transduction including the assembly of multiprotein complexes, subcellular localization of 

regulatory proteins and recognition of protein post-translational modifications (Pawson and Nash 
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2003).  These processes are facilitated by PRM-target binding via the recognition of short linear 

target motifs. 

1.2.1 WW and SH3 domains  

Many PRMs are known and differ by the set of motifs that they recognize. For example, WW 

and SH3 domains, bind proline-rich motifs. The WW domain is a short PRM consisting of 

approximately 40 amino acid residues.  These domains fold into a triple stranded beta sheet and 

contain two tryptophan residues spaced approximately 20 residues apart from each other.  WW 

domains bind short proline motifs (e.g. PPXP, PPLP) and are involved in a variety of processes 

including receptor signalling and cytoskeleton regulation (Ingham et al. 2005).  SH3 domains 

consist of approximately 60 amino acids and fold into a beta-barrel structure composed of five to 

six anti-parallel beta strands.  In general, these domains also bind to proline-rich motifs (e.g. 

PXXP) (Tong et al. 2002) which can be accommodated in the SH3 binding site in two possible 

orientations.  Nonconventional motifs that contain arginine or lysine have also been observed 

and bind in a proline-independent manner (e.g. RKXXPXXP) (Kang et al. 2000).  SH3 domains 

are involved in tyrosine kinase signalling, cytoskeletal organization and cell polarization 

(Pawson and Nash 2003). 

1.2.2 PDZ domains 

The PSD95/DlgA/Zo-1 (PDZ) domain is named after the post synaptic density protein (PSD95), 

Drosophila discs large tumor suppressor (Dlg1), and zonula occludens-1 protein (zo-1), which 

were the first proteins discovered to share the domain.  It is an example of a PRM that is found in 

increasing abundance in yeast to metazoans with over 250 encoded in the human genome 

(Ponting 1997). PDZ domains mediate numerous important biological processes, such as ion 

channel regulation, cell polarity determination and neural development. They are generally found 

in eukaryotic signalling pathways, often in scaffolding proteins that are responsible for 

regulating the assembly and localization of intracellular protein complexes to specialized sites in 

the cell, especially at membranes (Pawson and Nash 2003).  Disruption of PDZ domain mediated 

interactions is associated with diseases such as cancer, cystic fibrosis and schizophrenia (Moyer 

et al. 1999; Dev 2004; Doorbar 2006).   
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The PDZ domain is approximately 80-90 amino acids long and folds into a globular structure 

consisting of six β strands and two α helices (Figure 1-1). 

 

Figure 1-1  3D structure of a bound PDZ domain.  A bound peptide is shown in blue, α helices 

are shown in purple and β strands are shown in yellow. PDB: 1N7F. 

Domains bind C-termini with canonical interactions occurring between C-terminal target side 

chains and a hydrophobic binding pocket formed between domain β2 strand and α2 helix. PDZ 

domains bind their targets with affinities in the micromolar range through the recognition of 

short linear motifs.  Early peptide library screens grouped their binding specificity into two 

classes, where class I domains prefer to bind the motif X[T/S]XΦ and class II domains prefer to 

bind the motif XΦXΦ (where X is any amino acid and Φ is a hydrophobe) (Songyang et al. 

1997). More recent studies have found that the PDZ domain can be specific up to seven residues 

and recognize more than these two classes (Zhang et al. 2006; Tonikian et al. 2008).   

1.3 Mapping PDZ domain mediated protein-protein interactions 

PDZ domain-peptide interactions have been mapped using a variety of experimental methods.  

The biological importance of PDZ domains, their simple modes of target and the availability of 

experimental data sets have also prompted the development of computational methods to predict 

PDZ domain-peptide interactions by multiple groups. 
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1.3.1 Experimental methods 

In phage display experiments, a large-scale combinatorial peptide library is presented to a given 

PDZ domain and bound peptides are identified by sequencing the corresponding phage DNA 

(Sidhu et al. 2003; Tonikian et al. 2008) . To represent an exhaustive set, extremely large 

libraries can be created containing every possible binding target.  For example, 1.3 billion 

peptides are needed to cover all seven residues using 20 amino acids. In protein microarray 

experiments, purified domains are immobilized on a solid surface and probed using fluorescently 

labelled peptides, allowing several hundred domains to be tested for binding against hundreds of 

peptides simultaneously (MacBeath and Schreiber 2000; Hu et al. 2004; Stiffler et al. 2007).  For 

peptide chip experiments, synthesised peptides are displayed to domains on a protein cellulose 

membrane chip. These experiments are limited to libraries with sizes in the thousands, so are 

often designed to use only peptides matching a known binding motif for a given domain type 

(Landgraf et al. 2004; Wiedemann et al. 2004; Wu et al. 2007; Huang et al. 2008). Either the 

domains or peptides are displayed on the chip, followed by binding of the interaction partners 

(Hu et al. 2004; Landgraf et al. 2004; Wiedemann et al. 2004). Binding is generally measured 

semi-quantitatively using a colourimetric assay. High throughput yeast two-hybrid interaction 

arrays are constructed by taking a collection of yeast strains, each expressing a domain prey, and 

spotting them on a solid surface.  These domains are probed by adding a vector expressing a 

ligand of interest to each strain (Tonikian et al. 2009; Lenfant et al. 2010).  

Quantitative measurements of the strength of PDZ domain-peptide binding can be obtained using 

methods such as fluorescence polarization or surface plasmon resonance assays. Fluorescence 

polarization experiments are performed in solution and involve exciting fluorescently labelled 

domains with polarized light.  When excited, larger bound domains rotate slower resulting in 

higher fluorescence polarization compared to smaller unbound domains. Analysis of saturation 

curves produced by fixing ligand and varying ligand concentrations is used to compute the 

binding constant (Kd) for a given domain-ligand pair (Hu et al. 2004; Stiffler et al. 2007). In 

surface plasmon resonance experiments, polarized light is used to strike an electrically 

conducting metal surface between a glass sensor surface and a buffer.  The angle of reflected 

light is detected by a sensorgram and changes as domains, which are immobilized on the sensor 

surface, interact with ligands. The Kd for a domain-ligand pair may be computed using the 

measured association and dissociation rates at different domain concentration (Fournane et al. 
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2011). These techniques have been applied to detect interactions involving PRMs such as PDZ, 

SH2 and SH3 domains (Pawson et al. 2001; Tong et al. 2002; Hu et al. 2004; Stiffler et al. 2007; 

Tonikian et al. 2008). 

1.3.2 Computational methods 

Computational methods to predict PDZ domain-peptide interactions are based on established 

bioinformatics, statistical and machine learning techniques.  These methods have been used to 

successfully predict interactions for proteins containing PRMs such as the SH2, SH3 and protein 

serine–threonine kinase domains (Yaffe et al. 2001; Brinkworth et al. 2003; Lehrach et al. 2006; 

Chen et al. 2008; Wunderlich and Mirny 2009). 

1.3.2.1 Sequence-based methods 

The position weight matrix (PWM) is a fast and simple method that captures a domain’s binding 

preferences and can be used to score a list of potential peptide binders. A PWM is constructed 

based on a set of verified ligands and is a matrix of the probabilities of observing a particular 

residue at a given ligand position. PWMs are commonly used to compute a score indicating the 

binding preference of a domain for a given peptide. Tonikian et al. used PWMs to predict human 

PDZ interactions and to identify viral proteins that mimicked domain specificities (Tonikian et 

al. 2008). Stiffler et al. developed a variant of the PWM that contained weights describing the 

relative preference of a PDZ domain for amino acids at positions in the ligand compared to other 

domains (Stiffler et al. 2007). The inherent limitation of PWMs is their inability to model 

dependencies between ligand residue positions. PWMs may also perform poorly when there are 

too few experimentally determined peptide ligands available for a given protein. Furthermore, 

the PWM model cannot easily consider additional biological information to help reduce the 

number of false positives. 

Other more sophisticated methods have also been used to build predictors of sequence-based 

PDZ domain-peptide interactions.  These predictors learn patterns from the primary amino acid 

sequences of the domains and peptides of interacting and non-interacting interactions. Eo et al. 

used a support vector machine (SVM) to predict such interactions, although limited to those 

involving G-coupled proteins (Eo et al. 2009). Chen et al. used a Bayesian method to predict 

interactions for the entire PDZ domain family using data from a protein microarray experiment 
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(Chen et al. 2008). The authors demonstrated their model’s ability to predict mouse PDZ 

domain-peptide interactions and, to a lesser extent, interactions in other organisms. Shao et al. 

developed a regression framework using positive (quantitative) and negative (qualitative) mouse 

PDZ domain interaction data to predict PDZ domain-peptide binding affinity (Shao et al. 2011). 

While these methods can predict PDZ domain interactions, their common limitation is that they 

were trained and validated using limited interaction data for only a subset of PDZ domains. 

Thus, it is unclear if these can be used to predict interactions for the hundreds of PDZ domains 

that may exist in a given eukaryotic proteome.  

1.3.2.2 Structure-based methods 

Structural features within the domain-binding pocket of the PDZ domain play an important role 

in determining binding specificity (Skelton et al. 2003; Appleton et al. 2006; Chen et al. 2007). 

Since domain structure features capture different information about binding compared to 

sequence features, training with such features should result in a predictor that is complementary 

to sequence-based predictors. In particular, structure-based predictors would be less dependent 

on sequence similarity and would predict additional interactions not predicted by sequence-based 

predictors. Structure-based predictors have been developed to more generally predict PPIs and 

domain-peptide interactions mediating PPIs.  For instance, Hue et al. used a SVM to predict PPIs 

using a kernel derived from protein structure information (Hue et al. 2010). Other methods using 

structure information to predict domain-peptide interactions have also been developed. Sanchez 

et al. used an empirical force field to calculate structure-based energy functions for human SH2 

domain interactions (Sanchez et al. 2008). Fernandez-Ballester et al. constructed positional 

matrices of all possible SH3-ligand complexes in yeast using homology modelling (Fernandez-

Ballester et al. 2009). Smith et al. used protein backbone sampling to predict binding specificity 

for 85 human PDZ domains (Smith and Kortemme 2010). Kaufmann et al. developed an 

optimised energy function to predict the binding specificity of PDZ domain-peptide interactions 

for 12 PDZ domains (Kaufmann et al. 2011).  

1.3.2.3 Integration methods 

Bayesian integration is a widely used method for estimating the probability of interaction for a 

given PPI based on diverse data sources.  It is often used due to its simple probabilistic 

framework and ability to handle missing data.  Jansen et al. used Bayesian networks on a feature 
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set of experimental PPI data and genomic features such as, mRNA co-expression, biological 

function, and essentiality in yeast (Jansen et al. 2003). Rhodes et al. used a semi-naive Bayesian 

classifier to combine homologous PPI, gene expression, GO process and domain based sequence 

information in humans (Rhodes et al. 2005). Scott and Barton extended the probabilistic 

framework for the prediction of human PPIs to include local network topology, co-expression, 

orthology to known interacting proteins, sub-cellular localization, co-occurrence of domains and 

post-translational modifications (Scott and Barton 2007). Patil and Nakamura used a naïve Bayes 

classifier to assign reliability to the PPIs in yeast determined by high-throughput experiments 

(Patil and Nakamura 2005). Li et al. closely followed the work of Rhodes et al. and used a naïve 

Bayes classifier to combine different types of indirect biological features (Li et al. 2008). 

 

1.4 Machine learning framework for PDZ domain-peptide 
interaction prediction 

Many existing predictors use machine learning to address the limitations of simple methods such 

as the PWM.  In general, these methods are often binary classifiers that discriminate between 

objects from two classes using previously available information about those objects. For 

instance, a predictor may decide if a given PDZ domain and peptide pair will physically interact 

by analyzing the properties of known interacting and non-interacting PDZ interactions (e.g. 

primary, secondary or tertiary protein structural features of interactors). Although many types of 

machine learning methods exist, some of which can also perform quantitative, probabilistic, or 

multi-class predictions, the construction of a successful predictor follows the same general steps 

outlined below. 

1.4.1 Data Collection 

Extensive training data about known domain-peptide interactions (positive examples) and non-

interacting domain-peptide pairs (negative examples) are collected from available sources. For 

PDZ domain-peptide interaction prediction, high throughput interaction data sets from mouse 

protein microarray and human phage display experiments have frequently been used for training 

(Stiffler et al. 2007; Tonikian et al. 2008).  An important difference between these two data sets 

is that the protein microarray interactions involve genomic peptides while the phage display 

interactions may involve non-genomic peptides.  Therefore, additional filtering to enrich for 
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genomic peptides in non-genomic phage display data sets is required if the intended application 

is proteome scanning (Hui and Bader 2010).  Recently, another data set for fly from a yeast two-

hybrid study has also become available and may also be suitable for training (Lenfant et al. 

2010).   

Smaller data sets are useful for blind testing (i.e. testing using examples not used for training) in 

order to obtain unbiased assessments of predictor performance.  Positive interactions for mouse, 

fly, and worm from protein microarray experiments and negative interactions for human from 

manual literature curation are available (Chen et al. 2008; Luck et al. 2011).  Curated interactions 

in databases can also be used such as the interactions in Domino and PDZBase databases 

(Beuming et al. 2005; Ceol et al. 2007). Protein-protein interactions involving various domains 

and organisms can be obtained from interaction databases such as iRefIndex (Razick et al. 2008), 

which is a database consolidating PPIs from different databases including BIND (Bader et al. 

2001), BioGRID (Stark et al. 2011), CORUM (Ruepp et al. 2010), DIP (Salwinski et al. 2004), 

HPRD (Mishra et al. 2006), IntAct (Aranda et al. 2010) and MINT (Ceol et al. 2010) 

While positive examples of domain-peptide interactions are often described in the literature, 

reliable evidence of negative interactions is more difficult to compile.  For example, phage 

display data only consists of positive interactions, therefore methods (i.e. random or shuffling) 

must be used to generate artificial negative interactions if this data set is to be used for training.  

Although the methods described earlier such as randomly pairing interactions or shuffling 

peptides have been used for this purpose, methods to generate more biologically meaninful 

negatives may be more appropriate.  I developed such a method (discussed in Chapter 2) which 

uses PWMs to generate artificial negatives (PWM negatives) using known binding information. 

For structure-based predictors, PDZ domain structures can be collected from the Protein Data 

Bank (Berman et al. 2000) or homology modelled using a variety of tools found at Protein Model 

Portal, which is a website providing access to structure models generated by different protein 

structure resources (Arnold et al. 2009).  The quality of the homology models is estimated by 

computing the number of identical residues between the target and template sequence (i.e. 

template sequence identity). It has been shown that target-template sequence identity is 

positively correlated with model quality.  In particular, state-of-the-art algorithms can always 

build high quality models (RMSD < 2 Å) if the target-template sequence identity is higher than 
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35-40%. Furthermore, there is no significant variation in model quality for targets with sequence 

similarity between 40-70%. If the similarity is 35%, there is no correlation (Fischer 2006; Zhang 

2009).  Models with greater than 50% sequence similarity to their template structure are 

expected to have the correct fold with most inaccuracies arising from structural variation in 

templates and incorrect reconstruction of loops. The QMEAN score can also be used and is a 

scoring function measuring multiple geometrical aspects of protein structure including torsion 

angle potential, secondary structure-specific interaction potentials and solvation exposure 

potential (Benkert et al. 2008).  This score ranges from zero to one with scores closer to one 

indicating more reliable models.  Structure-related information can then be extracted from the 

structures and include information such as solvent accessibility, hydrogen bonding patterns, 

electrostatic potential energies and hydrophobicity values along a protein’s surface. 

1.4.2 Feature Encoding Methods 

In a pre-processing step, information describing the interactions is systematically represented as 

vectors of numeric features.  This may simply be a sparse binary vector of ones and zeros 

indicating whether or not a feature is present in a given interaction pair.  For example, to encode 

an amino acid sequence of length five, each residue in the string is represented using a binary 

vector of length 20 with each bit corresponding to the presence of an amino acid type (1 = 

present, 0 = not present).  The vectors are then concatenated to form a final feature vector of 

length 100.  This can be done for both domain and peptide sequences and the two vector 

concatenated to form the final feature vector.  A more informative representation which also 

captures which domain and peptide residues are in contact is the ‘contact map’ encoding first 

described by Chen et al.  A contact map contains information about contacting residues in the 

domain binding site and peptide derived from a protein structure of a PDZ domain complexed 

with a peptide ligand (Chen et al. 2008).  In total, 16 domain binding site positions found to be in 

contact (< 5.0 Å) with the last five peptide positions were used, based on the three dimensional 

structure of the mouse α1-syntrophin PDZ domain in complex with a heptapeptide. This 

corresponded to 38 contacting domain and peptide position pairs. Each amino acid residue pair is 

numerically encoded as a binary vector of length 400 representing a 20 x 20 binary matrix to 

capture all possible amino acid pairs. The final encoding consists of a binary vector of size 

15200 (38 x 400). Contact maps for other domains are constructed via a multiple sequence 

alignment.  Variations of the contact map can also be created by including fewer or more 
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contacting residue positions.   Predictor overfitting may be a concern when such high 

dimensionality vectors are used for training and therefore it is important select methods such as 

support vectors machines which have a built in regularization strategy to help avoid this 

problem.   

Non binary information such as structure-based features (i.e. electrostatic potentials, accessible 

volume) can also be encoded using dense vector encodings.  For example, this may involve 

filling a vector with numeric values describing the features in each cell for each domain position 

and concatenating all vectors to form the final feature vector.   Peptide information can be 

encoded using the binary sparse encoding described previously.  Domain structure and peptide 

sequence vectors are then concatenated to form the final feature vector. 

Finally, feature values may need to be scaled to fall in the range of 0 and 1.0 (or -1 and 1) to 

avoid feature values with greater numeric ranges from dominating those with smaller numeric 

ranges and to avoid numerical difficulties during predictor training.  This is necessary when 

using methods such as support vector machines. 

1.4.3 Machine Learning 

In this thesis, the PDZ domain-peptide interaction prediction problem is treated as a binary  

classification problem (i.e. binds or does not bind).  This is a simplification of the real system 

because PDZ domains bind their targets at different strengths typically in the micromolar range, 

where affinity is described by the Kd for example.   However, in order to build a quantitative 

predictor capable of predicting domain-peptide binding strength, training data which includes 

binding affinity information is required for both positive and negative interactions.  

Unfortunately, this information is not available in many data sets.  Therefore, in order to train 

with all interaction data available, I focus on the simpler version of the problem by predicting if a 

given PDZ domain interacts with a given peptide. 

1.4.3.1 Support Vector Machine 

The support vector machine is a binary machine learning classifier (i.e. yes or no predictions) 

and was therefore selected as the method of choice to model the problem of PDZ domain-peptide 

interaction prediction (Figure 1-2).   
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Figure 1-2  Illustration of support vector machine binary classification in 2D.  Interaction data is 

represented in 2D (i.e. two features only) with the red and green points corresponding to positive 

and negative feature encoded interactions respectively. The SVM tries to optimally separate the 

two classes.  While there are many separating hyperplanes (black lines), the SVM finds the one 

with the maximum margin (dotted blue lines).  The predictions or class membership of any given 

point is calculated using a decision function f(x).  If f(x) is greater than or equal to 0, the 

predicted class is positive.  If f(x) is less than 0, predicted class is negative. 

Specifically, given interaction training data consisting of m examples (x1,y1),…,(xm,ym) where xi 

is a feature vector for domain i and peptide i and y is a class label such that yi = {-1, +1}, the 

SVM assigns a class label of +1 if a given interaction feature vector encodes a positive 

interaction or -1 otherwise (Cristianini and Shawe-Taylor 2000). The decision function is 

evaluated to assign the binary label: 

   Eq. 1.1 

where sgn(0) = +1, otherwise -1. The weight vector w and bias term b describe a maximum 

margin hyperplane (w,b) that separates positive and negative training examples. For such a 

hyperplane: 

   Eq. 1.2 

where the αi’s are positive real numbers that maximize the following objective function: 
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    Eq. 1.3
 

 

where K(xi,xj) can be thought of as describing the similarity between two feature vectors, and C 

is a cost parameter that penalizes training errors. The radial basis function (RBF) kernel was used 

and is defined as: 

   Eq. 1.4 

A grid search was used to find locally optimal values for γ and C (Hsu et al. 2010). Instead of 

explicitly balancing the positive and negative training examples, weighted costs were used 

according to C+ = (n+/n-) C-, where n+ is the number of positive training interactions and n- is the 

number of negative training interactions. 

1.4.3.2 Naïve Bayesian Integration 

In order to determine if a predicted PDZ protein-protein interaction pair is likely to be 

physiologically relevant, a Bayesian protein-protein interaction prediction model is used.  This 

method estimates the probability that a protein pair interacts given the biological evidence in 

support of that interaction.  A näive Bayesian model simplifies this problem by assuming 

complete independence between different types of biological evidence. In this thesis, a protein 

pair is described by a set of features: X1 = gene expression, X2 = cellular component, X3 = 

molecular function, X4 = biological process, X5 = sequence signature, X6 = binding site 

conservation.  A näive Bayes protein-protein interaction prediction model is then defined as: 

 

                 
    

Eq.4.1 

where P(Y) is the class prior probability and P(Xi |Y) is the class-conditional probability. The 

model is trained on the gold standard training set consisting of positive and negative PPIs. 
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1.4.4 Predictor Performance Evaluation 

Various methods can be used to assess predictor performance.  Typically, cross validation 

methods are used to obtain an estimate of performance with more rigorous blind testing 

performed using unbiased test examples that were not used for predictor training.  A summary of 

predictor performance can be visualized by plotting receiver operating characteristic (ROC) 

curves and precision/recall (PR) curves and a single numeric value representing overall 

performance may be obtained by computing the area under these curves (AUCs).  In the case of 

domain-peptide binding performance, a domain’s predicted and known binding preferences can 

be visualized and compared using sequence logos to gain a more general idea of predictor 

performance.  

1.4.4.1 Cross Validation and Blind Testing 

Predictor performance can be estimated using various cross validation strategies.  A common 

strategy is ten fold cross validation.  This involves partitioning the training data into ten 

randomly selected interaction sets, independently holding out each set for testing against a 

predictor trained using the remainder of the data, and computing average performance across all 

ten runs.  Other variations of cross validation designed to estimate predictor performance when 

specific sets of domains and/or peptides are held out involve holding out 12% of the domains, 

8% of the peptides and both 12% of the domains and 8% of the peptides, testing on the rest and 

repeating this ten times (Chen et al. 2008).  Blind testing should also be performed to obtain an 

unbiased measure of predictor performance using unseen test data (i.e. data not used for 

training).   

1.4.4.2 ROC and PR Curves 

The overall performance from these testing strategies is summarized by computing the area 

under the ROC and PR curves (Figure 1-3).  Although ROC curves are insensitive to class 

distribution changes (i.e. proportion of positives versus negatives changes), PR curves are not 

(Fawcett 2006).  Therefore both curves and AUC scores should be used to provide a more 

accurate assessment of predictor performance. 
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Figure 1-3  ROC and PR curve examples.  (Left) Different ROC curves are plotted with the red 

curve representing perfect predictor performance (i.e. always correctly discriminates between 

positive and negatives), blue curve representing typical predictor performance (i.e. most of the 

time correctly discriminates between positives and negatives) and the green curve representing 

random predictor performance (i.e. randomly discriminates between positives and negatives).  

(Right) Different PR curves are plotted with the red, blue and green curves representing perfect, 

typical and random predictor performance.  Area under the curves for typical predictor 

performance are highlighted with light blue shading. 

For both curves, predictions are first sorted by decision value (high to low).  The ROC curve 

measures the predictor’s true positive rate (TPR) versus false positive rate (FPR) on the set of 

ordered predictions as the decision value is relaxed (i.e decreased).  The curve will be increasing 

(i.e. TPR increases faster than FPR) with the area under the curve typically ranging between 0.5 

and 1.0.  The closer to 1.0, the better the performance with a perfect predictor having an ROC 

AUC of 1.0. Random predictor performance will yield a diagonal curve with AUC of 0.5.  

Statistically, the ROC AUC is the probability that the predictor correctly ranks a randomly 

chosen positive example higher than a randomly chosen negative example and is equivalent to 

the Wilcoxon statistic (Fawcett 2006).  In general, predictors can be compared via their ROC 

AUCs (i.e. high ROC AUC predictors are better than lower ROC AUC predictors), however the 

shape of the curve should be considered because it is possible for a high ROC AUC predictor to 

perform worse in a specific region of the ROC space compared to a low ROC AUC predictor 

(Fawcett 2006). 
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Similarly, precision/recall curves measure the precision versus recall tradeoff as the decision 

value is relaxed. The shape of this curve will typically be decreasing (i.e. precision falls and 

recall increases).  In general, the area under this curve ranges between a value representing 

random performance (i.e. number positives/number of examples) to 1.0.  The higher the AUC 

score the better the performance with a perfect predictor having a PR AUC of 1.0.  

Individual statistics may also be computed to measure predictor performance including: 

• Sensitivity or Recall: TP/(TP+FN) 

• Specificity: TN/(TN+FP) 

• Precision (PR): TP/(TP + FP) 

• F1 Measure: 2 (Precision x Recall) / (Precision + Recall) 

where TP is the number of true positives, FP is the number of false positives, TN is the number 

of true negatives, FP is the number of false positives.  

1.4.4.3 Sequence Logos 

For a given domain, its binding specificity can be graphically represented using a sequence logo 

(Figure 1-4).  

 

Figure 1-4  Example of a sequence logo for ERBB2IP-1 PDZ domain. 

Such a logo helps to visualize the preference of specific residues at different positions of the 

ligand.  These are useful to gain an overall idea of the agreement between predicted and known 

binding preferences for a given domain.  A list of binders is required to create the logo.  At each 

position, the frequency of a residue is depicted by the height of the amino acid character 
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representing it.  Residues are stacked on top of each other with the heights of each stack being 

proportional to the information content (Shannon entropy) measured in bits.  

1.5 Thesis Rationale 

Protein-protein interactions are involved in almost all biological processes and have been 

experimentally detected using a variety of methods. Because it is often difficult to determine 

these interactions experimentally and due to the availability of large high throughput interaction 

data sets currently available, computational interaction prediction methods have been developed.  

Physics-based methods rely on accurate three dimensional structures of both proteins which are 

not always available.  Often, features of both structures such as surface complementarity or 

protein structural flexibility are not adequately modelled.  Some simple statistics-based methods 

can only handle short sequences and cannot incorporate additional biological information.  

Furthermore, the lack of adequate negative interaction data for predictor training is a problem, 

especially for statistics based methods.  As a result, the computational prediction of protein-

protein interactions in general is a problem that is not fully addressed by any existing method. 

However, the ability to accurately predict protein-protein interactions directly from the proteome 

would enable the assembly of more comprehensive protein interaction networks. These networks 

could be analyzed to provide insight on the extent to which cellular proteins are connected, how 

different biological pathways may be linked and how the underlying cellular processes are 

organized.  Fortunately, many protein interactions, such as those mediated by PRMs like PDZ 

domains, bind their targets through short simple linear motifs. Therefore, in most cases where 

proteins are not well-ordered, the problem of predicting PRM-mediated PPIs is easier to solve as 

factors that make the prediction of PPIs difficult (i.e. induced fit, flexibility of large protein 

molecules) need not be modelled in the ligand.  This would allow a large subset of interactions to 

be accurately predicted and is a feasible start to solving the more general problem of protein-

protein interaction prediction. 

My thesis focuses on the computational prediction of PDZ mediated protein-protein interactions.  

PDZ domains are an ideal model to study this problem because their modes of target recognition 

are one of the simplest, they have important biological roles and many experimental data sets are 

available.  I will present two predictors (i.e. sequence-based and structure-based) that I built to 

scan the proteomes of different organisms for interactors of PDZ domains.  Using additional 
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biological evidence, I identified a subset of physiologically relevant and high confidence 

interactions from sequence-based and structure-based predictions.  These interactions were used 

to construct the most comprehensive physiologically relevant PDZ mediated protein-protein 

interaction network in human to date.  
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Chapter 2  

Predicting PDZ Mediated Protein-Protein Interactions From 

Sequence 

 

 

 

 

 

This  work  was  published  in  BMC Bioinformatics,  11:507:    Hui, S., Bader, GD.  (2010),  
Proteome scanning to predict PDZ domain interactions using support vector machines. 
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22 

 

2 Predicting PDZ mediated protein-protein interactions 
from sequence 

2.1 Introduction 

The biological importance of PDZ domains, their simple modes of target recognition and the 

availability of experimentally determined interactions have prompted the development of PDZ 

domain interaction prediction methods by multiple groups.  Such methods are based on 

established techniques, which have been used with success to predict interactions for SH2 and 

SH3 domains, protein serine–threonine kinases and major histocompatibility complex molecules 

(Yaffe et al. 2001; Donnes and Elofsson 2002; Brinkworth et al. 2003; Lehrach et al. 2006; 

Wunderlich and Mirny 2009).  A practical application of a reliable PDZ domain interaction 

predictor would be to use it to scan the proteomes of organisms for potential binders of PDZ 

domains. The results would help direct future experiments to increase the coverage of current 

PDZ domain interaction networks and expand our knowledge of the roles that PDZ domains play 

in different biological processes. I developed a primary sequence based predictor of genomic 

interactions involving PDZ domain family members using a support vector machine.  Domain-

peptide interaction sequence information was represented using a contact map feature encoding 

which captures sequence information between contacting domain and peptide residues within the 

domain binding site.  Unlike published predictors, the predictor is trained using data from two 

independent high throughput studies using protein microarray and phage display technologies, 

which makes it more general. Since the phage display data consists of only positive interactions, 

I developed a method to generate artificial negative interactions from data consisting of only 

positive interactions. This method is expected to generate more biologically meaningful 

negatives for training compared to other commonly used methods that use randomization or 

shuffling. Through independent testing with published genomic data sets, I demonstrated the 

predictor’s ability to accurately predict interactions in multiple organisms (Chen et al. 2008). I 

then used the predictor to scan human, worm and fly proteomes to predict binders for different 

PDZ domains. These predictions were validated using known genomic interactions from 

PDZBase and protein microarray experiments (Beuming et al. 2005; Chen et al. 2008). Finally a 

comparison of proteome scanning performance, which depends on minimizing the number of 

false positives generated, showed the predictor’s improved accuracy and precision compared to 

published predictors. Predicted interactions matched many known protein-protein interactions 
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and were enriched in known and novel biological processes, suggesting that many more 

predictions are likely to be correct. 

2.2 Results 

2.2.1 The predictor achieves high cross validation results 

The predictor achieved high AUC scores from multiple cross validation testing. The highest 

ROC and PR AUCs of 0.939 and 0.896 respectively were obtained when 10% of interactions 

were held out for testing. For tests that involved holding out all interactions for a given domain, 

the AUC scores were lower. In particular, the leave-12%-of-domains-out test yielded ROC and 

PR AUC scores of 0.851 and 0.764 and the leave-12%-domain-and-8%-peptides-out test yielded 

ROC and PR AUC scores of 0.87 and 0.794. Finally, the leave-8%-peptides-out test yielded 

higher ROC and PR AUCs of 0.893 and 0.838 (Figure 2-1).  

 

Figure 2-1  Predictor performance estimation using cross validation.  Predictor performance 

measured using ten fold (red), leave-12%-of-domains-out (blue), leave-8%-of-peptides-out 

(green), leave-12%-of-domains-and-8%-of-peptides-out (black) cross validation. 

 

!
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2.2.2 Predictor performance depends on nearest neighbour training 
domain sequence similarity 

The lower AUC results for leave-domain-out cross validation strategies suggests that the 

predictor’s performance for a given test domain depends on its level of similarity to the training 

domains. To determine the level of dependency I performed leave-one-domain-out cross 

validation and divided the AUC scores according to the binding site similarity of the held out 

domain to that of its nearest training neighbour.  The similarity between two binding site 

sequences a and b was computed as:  

  Eq. 2.1

 

where match is 1 if ai=bi and n is the length of the sequences.  This was repeated using a simple 

nearest neighbour predictor (NN) and the results were compared. The nearest neighbour 

predictor determines whether a given interaction is positive or negative using a nearest neighbour 

criterion. The nearest neighbour criterion is evaluated by computing the similarity between a test 

interaction and all other training interactions (where interactions are represented as a domain 

binding site–peptide sequence pair). The training interaction with the lowest distance is then set 

to be the test interaction’s nearest neighbour. Thus, if the nearest neighbour is a positive 

interaction, the test interaction is predicted to be positive, otherwise it is predicted to be negative. 

In total, interactions for 82 mouse domains from protein microarray and 20 human domains from 

phage display were used to build the NN predictor. 

The results showed that, indeed, the predictor achieves higher performance for domains that are 

more similar to the training set.  In particular, the predictor was on average better than the 

nearest neighbour method for testing domains with over 60% sequence similarity to their nearest 

training neighbour (Figure 2-2 Top Row). Presumably, this means the predictor learned non-

trivial patterns in the data features instead of simply identifying similarities in the sequences as 

the NN predictor did. For tested peptides, this dependence was not as apparent, which indicates 

that the predictor’s performance is more dependent on domain sequence similarity than peptide 

sequence similarity (Figure 2-2 Bottom Row). 
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Figure 2-2  Predictor performance dependence on testing and nearest training neighbour 

sequence similarity. (Top Row) Using leave-one-domain-out cross validation, domain specific 

ROC and PR AUC scores for predictor (blue) and nearest neighbour predictor (black) were 

grouped according to a given testing domain's similarity to its nearest training neighbour. 

(Bottom Row) The same was done for peptides using leave-one-peptide-out cross validation. The 

similarity between two domains was calculated as the percentage of matched residues between 

their binding site sequences. The similarity between two peptides was calculated as the 

percentage of matched residues. Numbers in parentheses indicate the number of domains or 

peptides in each boxplot. 

!
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2.2.3 Evaluating predictor performance using a series of independent 
tests across organisms 

The choice of data and methods for three major parameters affecting predictor performance were  

validated: training data, feature encoding and artificial negatives. Each parameter was examined 

independently by comparing the predictor to other SVMs built using different values for the 

parameter of interest while holding the other two parameter values fixed. Predictor performance 

was assessed using data for mouse, worm and fly from independent protein microarray 

experiments, which all contain positive and negative interactions (Chen et al. 2008)  (Table 2-1). 

  Domains Interactions 

Organism Source # Pos # Neg # Pos # Neg 

Fly Protein microarray 7 7 34 106 

Worm Protein microarray 6 6 59 88 

Mouse Protein microarray 11 19 52 74 

Human PDZBase 13 - 38 - 

Table 2-1 Summary of data for independent genomic testing and prediction validation. 

2.2.3.1 Training with both mouse protein microarray and human 
genomic-like phage display data improves predictor performance 

I first validated the use of mouse protein microarray and human genomic-like phage display data 

for training. The predictor was compared to other SVMs built using data from single 

experimental data types (mouse/protein microarray or human/phage display), both experimental 

data types (mouse/protein microarray and human/phage display) and both experimental data 

types but with human phage display data enriched in genomic-like or non genomic-like 

interactions. For all predictors, contact map features were used to encode the data and PWMs 

were used to generate artificial negatives. A comparison of predictor performance showed that 

the SVM built using mouse and human genomic-like data for training was better than the other 

SVMs for the worm and fly tests (Figure 2-3 Top Row). All predictors had lower scores for the 

mouse test. To explain the latter observation, for each test I computed the binding site similarity 

of each testing domain to its nearest training neighbour. I found that the mouse domains were on 

average 65% similar to their nearest training neighbours, while the worm and fly testing domains 

were on average 80% and 87% similar to their nearest training neighbours respectively. 
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Therefore, the observed pattern of performance was consistent with the earlier finding that 

predictor performance decreased as the similarity between testing domains to their nearest 

training neighbours decreased. These results validate the use of both mouse protein microarray 

and human genomic-like phage display interactions for predictor training. 

 
!
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Figure 2-3  Comparison of independent genomic test performance of different SVMs.  Blue x 

denotes data or method used by the final predictor in all panels while circles denote all other 

predictors. (Top Row) A comparison of predictors trained using data from one experiment: 

mouse from Chen et al. (magenta) or human from Tonikian et al. (light blue), from two 

experiments: mouse and human (green) and from two experiments with data enriched in 

genomic-like or non genomic-like human data: mouse and genomic-like human (blue) and 

mouse and non genomic-like human (red). (Middle Row) A comparison of predictors trained 

using data encoded using different feature encodings: binary sequences (red), physicochemical 

properties (green), contact map (blue). (Bottom Row) A comparison of predictors trained using 

different methods for generating artificial negatives for phage display: random peptides (red), 

shuffled peptides (green), randomly selected peptides (magenta), PWM selected peptides (blue). 

One hundred different predictors trained using different random, shuffled and randomly selected 

peptides were built. 

2.2.3.2 Contact map feature encoding is better compared to other 
sequence based feature encoding strategies 

I next validated the choice of using the contact map feature encoding. The predictor was 

compared to SVMs built using binary sequence or physicochemical property-based encodings. 

All predictors used mouse protein microarray and human genomic-like training data and PWMs 

to generate artificial negatives. For the binary sequence encoding, binary vectors were created 

using a vector of length 20 with each element representing an amino acid and initially set to zero. 

A single residue was represented by a one in the position representing that residue. A binary 

vector was created for each residue in a domain-peptide interaction pair, with the final vector of 

length 20 amino acids x (length of domain binding site sequence + length of the peptide 

sequence). For physicochemical features, a vector of five real numbers describing over 500 

different physicochemical properties for each amino acid residue was created for a domain-

peptide interaction sequence (Atchley et al. 2005). Thus, final vectors were of length 5 x (length 

of the domain binding site sequence + length of the peptide sequence). The predictor 

performance comparison showed that except for the mouse test, the SVM trained using contact 

map feature encoded data had the highest scores (Figure 2-3 Middle Row). I again attributed the 

lower performance on the mouse test to the dissimilarity of the test domains to the training 

domains. Predictors with better mouse test performance did not generalize to the worm or fly 
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tests, supporting the conclusion that the mouse test is not ideal. These results indicate that the 

contact map feature encoding for predictor training is better compared to binary and 

physicochemical property based encodings. 

2.2.3.3 The use of PWMs is a valid method for generating artificial 
negatives  

Finally, I validated the use of PWMs for generating artificial negatives for the phage display 

training data (i.e. PWM negatives). The predictor was compared to other SVMs built using 

random, shuffled, and randomly selected artificial negatives. All predictors used mouse protein 

microarray and human genomic-enriched phage display training data encoded using contact map 

features. Random negatives were created using random residues concatenated into peptides of 

length five. Shuffled negatives were created by shuffling residues in the positive peptides. 

Randomly selected negatives were created by randomly selecting peptides from the same set of 

peptides used to select negatives in the PWM method. I created 100 different artificial negative 

data sets from the phage display data and measured the mean predictor performance. Over all the 

tests, the average predictor ROC and PR AUC scores were 0.71 and 0.60, respectively, which 

were slightly higher than the overall average ROC and PR scores for the other predictors (Figure 

2-3 Bottom Row). Specifically, the average ROC and PR scores were 0.70 and 0.58 for random 

negatives, 0.70 and 0.59 for shuffled negatives and 0.69 and 0.58 for randomly selected 

negatives. Although the scores were similar for all predictors within each test, the average ROC 

and PR scores for mouse, worm and fly tests showed that all predictors performed poorly for the 

mouse test but were better for the worm test. For the fly test however the predictor using PWM 

negatives was in general better. This suggests that the PWM negatives are a reasonable choice 

for artificial training negatives with its importance for improving predictor performance more 

evident in cases where the testing domain is highly similar to the training domains. 

2.2.4 Proteome scanning predictions are validated by known PDZ 
domain peptide interactions in human, worm and fly 

The predictor was used to scan the human proteome (defined by genome assembly 

Ensembl:GRCh37.56) (Hubbard et al. 2009) to predict binders for 13 human PDZ domains with 

available validation data in PDZBase (Beuming et al. 2005). In total, 41,193 unique transcript 

tails of length five, out of 77,748 transcripts corresponding to 23,675 genes from the human 
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proteome, were scanned. I also scanned the worm and fly proteomes (defined respectively by 

genome assemblies Ensembl:WS200.56 and Ensembl:BDGP5.13.56) (Hubbard et al. 2009) for 

binders for six and seven PDZ domains respectively, with known genomic interactions (Chen et 

al. 2008). For worm, 19,864 unique transcript tails of length five, out of 27,533 transcripts 

corresponding to 20,158 genes, were scanned. For fly, 14,691 unique transcript tails of length 

five, out of 21,309 transcripts corresponding to 14,076 genes, were scanned.  In all cases, very 

few known genomic interactions per domain (on average 2.2 human, 4.2 worm and 9.8 fly) were 

available for validation of the domains tested making accurate assessment of predictor 

performance difficult.  Furthermore, blind negative interactions were unavailable and therefore 

false positive rates could not be computed.  Nonetheless, the results reported here serve as a 

reasonable performance estimate. 

For human, over 65% (19 out of 29) of PDZBase human interactions were correctly predicted. 

Although two domains, MAGI2-2 and MAGI3-1 had no interactions correctly predicted, these 

domains had only one known interaction each. Two other domains (PDZK1-1 and SNTG1-1) 

also had only one known interaction each however the predictor correctly identified the single 

interaction for these domains. Further experimental validation and more detailed literature 

searches should be carried out to obtain a more reliable assessment of predictor performance for 

these domains. Finally for domain MLLT4-1, only one out of six known interactions was 

predicted, however compared to the other domains tested, this domain was the most dissimilar to 

its nearest training neighbour with a sequence similarity of 68%. It also had no homologs in the 

training data making it a challenging test case.  Please see Appendix A, Table A-1 for detailed 

results.   

For worm and fly, 25% (15 out of 60) and 37% (11 out of 30) of protein microarray interactions 

respectively were correctly predicted. Although this is much lower than the human proteome 

scanning result, the false positive rates are both quite low at approximately 4%. In particular, in 

worm and fly, none of the known interactions were predicted for DSH-1 despite it having a 

reasonable number of known interactions (11 and three respectively) and being very similar to its 

nearest training neighbour (over 0.8). In fly, there were no predictions for PAR6-1 even though it 

too was very similar to its nearest training neighbour (1.0). Through further analysis, I found that 

in each case, the nearest training neighbours DSH-1 and PAR6B-1 in mouse had only three and 

two training interactions respectively. This suggests the possibility that predictor performance 
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might also depend on the abundance of nearest neighbour training data. However, a single 

exception to this is that the predictor did not predict any known interactions for PATJ-2, which 

had a reasonable amount of validation data (seven interactions) and was very similar to its 

nearest training neighbour (over 0.81), which also had adequate data (16 interactions). Please see 

Appendix A, Table A-2, Table A-3 for detailed results.  Thus, in general, the predictor is more 

likely to correctly predict interactions for domains that are well represented in the training data in 

terms of sequence similarity and interaction abundance. 

2.2.5 Predicted binding specificities are consistent with experimentally 
determined binding specificities 

Since known interactions are limited, I compared the predicted specificities (from proteome 

scanning) and experimental binding specificities (from phage display) for a subset of PDZ 

domains to determine if the predicted and experimental interactors were consistent at a high 

level. Only human domains that had adequate genomic-like binders from phage display 

experiments (ten or more), were used to create PWMs to summarize their binding specificities 

for comparison. These were then graphically represented as sequence logos. For worm and fly, 

PWMs were created for five and three domains, respectively, that had five or more binders 

determined from protein microarray experiments. I then created PWMs using the corresponding 

predicted binders and computed the similarity between the predicted and experimentally 

determined binding specificities. The similarity between two PWMs a and b (i.e. binding 

specificities) was determined using the following: 

  Eq. 2.2 

  Eq. 2.3 

where n is the number of columns in the PWM. This metric is normalized such that 0 represents 

perfectly similar PWMs and 1.0 represents perfectly dissimilar PWMs. The similarity between 

two PWMs is therefore 1 minus the distance. 

The average PWM similarity was 0.67 and the predicted binding specificities corresponded to 

known PDZ domain binding classes I and II (Figure 2-4). Two domains (DSH-1 from worm, 
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PATJ-2 from fly) had binding specificity similarities much lower than the average (less than 

0.6), however these results were not unexpected, given the poor results for these two domains 

shown above. 

 

Figure 2-4 Comparison of predicted and experimental binding specificities. A comparison of 

phage display determined and predicted PDZ domain binding specificities for the last five 

terminal binding positions visualized as sequence logos. For human, only domains with ten or 

more peptides from phage display experiments (Tonikian et al. 2008) were compared. For worm 

and fly, domains with an adequate (five or more) number of peptides from protein microarray 

experiments (Chen et al. 2008) were compared. 

Although the experimental and predicted binding specificities were generally consistent, there 

were some discrepancies. For example the human phage display sequence logos show a clear 

preference for T at p-2 and V at p0 while this preference is not as strong for the predicted 

sequence logos. This is because phage display experiments only find optimal binders. However, 

such binders may not exist in the proteome, leading to the domain preferring a less optimal 

binder. This may be biologically advantageous as weak binders may allow for easier interaction 

regulation. To determine whether this was the case in the data, I scanned the human proteome 

!



33 

 

with the optimal phage display PWMs and created genomic sequence logos with the top 1% of 

binders. The predicted sequence logos were all more similar to the genomic phage display 

sequences logos than they were to the optimal phage display sequence logos (Figure 2-5). 

Therefore, some discrepancies between experiment and predicted logos are not unexpected. 

Overall, these results show that the predicted binding specificities are generally consistent with 

those that are experimentally determined. 

 

Figure 2-5  Comparison of optimal and genomic phage display binding specificities.  Optimal 

and genomic phage display sequence logos were compared to the corresponding predicted SVM 

sequence logos for the last five terminal binding positions.  Only four human PDZ domains with 

enough genomic-like binders from Figure 2-4 were compared. 

2.2.6 Many predictions correspond to known PPIs involving PDZ domain 
containing proteins 

To provide additional support for the predictions, I calculated how many corresponded to known 

PPIs. Specifically, I scanned the human proteome for potential binders for 213 human PDZ 

domains with known PPIs in the iRefIndex database (Razick et al. 2008). If the protein 

containing the given domain was found to interact with another protein whose C-terminal tail 

matched the predicted binder, the prediction was considered to correspond to a known PPI. The 

predictor successfully predicted interactions corresponding to known PPIs for 75 of the 213 PDZ 

domains with an average of 19% of known PPIs successfully predicted per domain (see 

Domain
Name

NN
Sim

Optimal Genomic SVM
Predicted

Optimal
Profile
Sim

Genomic
Profile
Sim

DLG1-2
Human

1 0.751 0.886

DLG3-2
Human

1 0.682 0.86

MLLT4-1
Human

0.69 0.62 0.624

PDZK1-1
Human

0.81 0.691 0.851
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Appendix A, Table A-4, Table A-5 for detailed results). The number of PPIs successfully 

predicted per domain was significant (p < 0.05) for all but 19 domains. Significance testing was 

performed using Fisher’s exact test, which asked whether the observed number of PPIs predicted 

for a given domain could be achieved at random.  Since many PDZ domain containing proteins 

may contain multiple PDZ domains, it is not possible to uniquely assign a PPI to a PDZ domain. 

This could result in erroneous false negative or true positive statistics for the above tests, thus 

they should be regarded as a rough estimate of predictor performance. There were not enough 

PPI data in iRefIndex to carry out the same analysis for worm and fly domains.  

2.2.7 The predictor is better at proteome scanning compared to other 
sequence based predictors 

Cross validation and a series of independent tests show that the predictor can accurately predict 

PDZ domain-peptide interactions, however, a major issue with most predictors used to scan a 

proteome is the generation of too many false positives. Therefore, I compared the proteome 

scanning performance of the predictor and other published prediction methods - the multidomain 

selectivity model (MDSM) by Stiffler et al. and the additive model by Chen et al., which are both 

state-of-the art and trained using mouse protein microarray data in their original publications 

(Stiffler et al. 2007; Chen et al. 2008).  For the MDSM model, the binding preference of a given 

peptide was computed using the model parameters corresponding to its nearest model domain as 

determined by the Hamming distance between the binding site sequences. A given peptide is 

predicted to be positive if the binding preference score is greater than a predetermined threshold 

(i.e. parameter m = 5 according to the original publication). In total 74 mouse PDZ domains were 

modelled.  For the additive model, I used the model parameters as specified in the tutorial 

provided in the supplemental material of the original publication (Chen et al. 2008). The value of 

tau used was -0.3978. In total, 82 mouse domains from the Stiffler et al. protein microarray 

experiment were used for training in the original publication.  PWMs representing the baseline 

for comparison were built per domain using their known binders and represented their binding 

preferences. Thus the cells of the position weight matrices contain the log probability of each 

residue at each of the positions in the binding peptide.  The peptides in the phage display library 

were constructed using a NNK codon set (where N represents a 25% mix each of adenine, 

thymine, guanine, and cytosine nucleotides; and K represents a 50% mix each of thymine and 

guanine nucleotides). As a result, some amino acids occur more frequently than others.  This bias 
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was corrected for by dividing the PWM residue frequencies by their expected frequencies using 

the NNK codon set  (Skelton et al. 2003).  To avoid negative infinity values in the PWM, any 

residues with a frequency of zero were assigned the pseudocount of 0.01. The binding preference 

of a domain for a given peptide sequence was then computed by summing the weights in the 

matrix corresponding to each residue and position in the given sequence. If the score was above 

a specified cut off, the peptide is predicted to bind otherwise it is predicted to not bind. Using the 

nearest neighbour PWM of a given test domain (as determined by binding site sequence 

similarity), a list of peptides was evaluated and ordered in descending order by PWM score. The 

top 1% of this ordered list was then predicted to be binders. In total, interactions for 82 mouse 

domains from protein microarray and 20 human domains from phage display experiments were 

used to build the PWMs. 

I used the F1 measure to compare predictor performance since it summarizes the precision/recall 

performance of a predictor and is used in document retrieval where the recovery of relevant 

documents from a large number of possibilities is critical. For all predictors, the majority of F1 

measures are low (less than 0.1). This is likely due to the high level of incompleteness in the 

benchmark used to validate the predictions. However, the results show that the predictor 

achieves a higher average F1 measure (0.037) than the other predictors demonstrating its 

improved accuracy and precision. In comparison, the average F1 measures were 0.02, 0.005 and 

0.016 for the MDSM, additive model and PWM predictor respectively. For fly and worm 

domains, the false positive rate (FPR) was approximately 4% and over four times lower than the 

FPRs of the other predictors (Figure 2-6).  
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Figure 2-6  Comparison of proteome scanning performances for SVM and other published 

predictors.  A comparison of predictor performance evaluated using F1 measures and FPRs for 

13 human (blue), six worm (green) and seven fly (black) PDZ domains. Three different 

predictors were compared: MDSM, additive model and a PWM predictor. PDZBase interactions 

were used to validate human predictions. Protein microarray interactions from Chen et al. were 

used to validate fly and worm predictions. The median is denoted by the red circle. No FPRs 

were calculated for human predictions since there are no negative human validation interaction 

data. MDSM and the additive model were trained in their original publications using mouse 

protein microarray data only. The PWM predictor was trained using the same mouse and human 

data as the predictor.  

The performance of the MDSM and the predictor was close and the predictor’s improved 

performance may be due to its use of a larger training data set (both phage display and 

microarray). To more directly compare these two predictors, I trained an SVM with only mouse 

microarray data and compared the performance. The results show that no predictor method is 

clearly better than the other. The MDSM's performance is not consistent as shown by the fly test 

results, which has similar testing and training data sets, and is expected to be an easy test (Figure 

2-7). 

!



37 

 

 

Figure 2-7 Comparison of MDSM and SVM predictor performance.  MDSM and SVM 

performance were evaluated using F1 measures and FPRs for 13 human (blue), six worm (green) 

and seven fly (black) PDZ domains.  The median is denoted by the red circle. No FPRs were 

calculated for human predictions since there are no negative human validation interaction data.  

Both predictors were trained using microarray data only. 

On the other hand, the performance of the SVM trained only using microarray data is more 

consistent, but has a higher FPR compared to the MDSM.  These results suggest that the 

predictor performance improvement is likely due to the use of more training data. It may be 

possible to modify the MDSM method to accept phage display data as training, though the SVM 

method naturally accepts this data without method modification – a clear advantage in terms of 

flexibility. Overall, these results demonstrate the predictor’s improved performance over other 

published predictors for proteome scanning of PDZ domain interactions. 

2.2.8 Predicted interactions highlight PDZ domain involvement in 
different biological processes 

To demonstrate how the predictions can be used to further our understanding of PDZ domains 

and the biological processes they mediate, I performed GO biological process term enrichment 
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analysis of the predicted binders in human using the BiNGO (Biological Network Gene 

Ontology tool) software library (Maere et al. 2005). The hypergeometric test was used to 

compute a p-value assessing the GO term enrichment for a given set of predicted target genes. 

Multiple testing correction was performed using the Benjamini and Hochberg False Discovery 

Rate (FDR) correction. Almost all PDZ domain target lists were statistically enriched (p < 0.05) 

for known PDZ domain processes such as ‘ion transport’ and ‘localization’ (see Appendix A, 

Table A-6 for detailed results). Interestingly, the biological process ‘photoreceptor cell 

maintenance’ was found enriched only among the predicted genes for the PDZ domain 

containing protein PDZK1-1. These genes include those that encode proteins associated with 

Usher (USH1G, USH2A) and Bardet-Biedl syndromes (BBS10); both are genetic human 

diseases of the cilia with wide ranging symptoms including retinal degeneration (Eley et al. 

2005).   Although disruption of PDZ mediated interactions are known for Usher syndrome, such 

a disruption involving PDZK1-1 has not been reported for either.  Since the validity of the 

predicted binders is supported by the successful prediction of known interactions in PDZBase 

and iRefIndex (1 out of 1 and 4 out of 24 respectively), with experimental validation, these 

potential PDZ domain mediated interactions may provide further insight into the molecular 

mechanisms underlying Usher and Bardet-Biedl syndromes. There was not enough information 

to perform the analysis with worm and fly targets.   

2.3 Discussion 

I have presented a predictor, which can be used to more accurately and precisely scan proteomes 

of organisms for potential binders of PDZ domains. The results of this predictor can help 

prioritize biological experiments. In addition, these interactions can also be used as input to 

computational methods aiming to predict likely physiologically relevant interactions by 

including multiple lines of evidence, such as co-expression and binding site conservation (Jansen 

et al. 2003; Li et al. 2008). In both cases the predictions will be useful for substantially reducing 

the number of candidates that need to be considered for more focused analyses.  Given the 

success of the proteome scanning results I also expect the predictor to perform well in organisms 

which are closely related to human, mouse, worm and fly. 

An interesting result from my work is that binding site sequence information at contacting 

positions in the domain was the most effective feature encoding method among the ones I tried. 
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The poor performance obtained by the other encoding methods (flatly representing binary 

sequences or physicochemical properties) suggest that by explicitly encoding contacting domain 

and peptide position pairs, sequence information need only be used to obtain good predictor 

performance. While I showed that this results in a predictor that relies to some degree on binding 

site sequence similarity, I also showed that this dependence only exists for the domain and not 

the peptide. I established a sequence similarity threshold of 60% for testing domains, which may 

act as a rough indicator of the limits of the predictor and can be used to identify poorly 

represented PDZ domains in current data sets. 

The use of PWMs to generate artificial negatives was motivated by previous work that showed 

the importance of training with artificial negatives, which resemble real negative interactions. In 

one study, predictors were trained using random and shuffled negatives to show that this resulted 

in predictors with lower accuracy when real sequences were used for testing (Lo et al. 2005; 

Ben-Hur and Noble 2006). In other work, artificial negatives were generated by pairing proteins 

with different co-localizations or randomly pairing proteins known to not interact. It was shown 

that this created a constraint on the distribution of the negatives making it easier for the predictor 

to distinguish between positive and negative interactions. This led to biased estimates of 

predictor performance when cross validation was used (Ben-Hur and Noble 2006). Since the 

PWM negatives were selected from peptides involved in real positive interactions, they are 

biological sequences and their distribution is expected to be closer to biologically meaningful 

interactions. This may result in a more realistic learning problem for the predictor and may 

reduce the bias in predictor accuracy estimation and benefit predictor performance in practice. 

However, PWMs may have high false positive rates due to limitations such as their inability to 

model dependencies between ligand positions. These shortcomings may be responsible for the 

modest improvement in independent testing performance between predictors trained using PWM 

generated and other negatives. 

Although many of the proteome scanning predictions were validated using known interactions, 

the lack of a complete benchmark of genomic PDZ domain interactions contributes to the low F1 

measures (most are less than 0.1). This may be addressed to some degree by using more 

validation data from experiments or literature searches, which I expect to help improve the 

accuracy of the F1 and FPR measurements. In the case of two fly domains LAP4-2 and LAP4-3, 

the SVM did achieve higher F1 measures of 0.17 and 0.25 respectively. The predictor predicted 
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many known interactions but also predicted a very small number of fly proteins as potential 

binders (34 and 8 respectively). In general, the predictor made far less positive predictions than 

the other predictors, which raises the question of whether the predictor is simply more 

conservative (by making fewer predictions) or actually more precise (by making fewer and more 

accurate predictions) compared to other predictors. Again, this cannot be fully answered without 

more validation data, however the predictor’s higher F1 and lower FPR scores are strong 

evidence supporting the latter case. 

In genomic tests, predictor performance was consistently poor for the mouse test, which 

consisted of domains that were highly dissimilar to the training domains. Based on the finding 

that predictor performance depends on the similarity between testing and training domains, this 

result was not unexpected. However, even if the similarity between testing and training domains 

is high, predictor performance can still be poor. This was discovered while scanning the fly 

proteome for binders of PATJ-2. I found that the nearest training neighbour for this domain 

according to binding site sequence similarity did not correspond to its known human homolog, 

which was present in the training data. This highlighted a limitation generally faced by sequence 

based predictors: if the training domains best representing a given testing domain do not share 

similar sequence features, the correct binding specificity may not be properly learned. This may 

occur for two domains with structurally or physicochemically similar binding sites encoded with 

very different amino acid sequences. This may be the reason for the predictor’s inability to 

predict any known interactions for PATJ-2. Exploring structural domain features useful for 

predictor training may determine if this is the case. 

While the predictor performs better than published methods for proteome scanning, it can clearly 

be improved. One way to do this is to consider additional relevant features, such as information 

related to protein structure. For example, it has been shown that thermodynamic features of PDZ 

domain binding can vary considerably across PDZ domains and even for the same PDZ domain 

bound to different ligands (Fuentes et al. 2004; Basdevant et al. 2006). These features as well as 

other structure-related features such as electrostatic or hydrophobic contributions between 

contacting residues may be used to help improve SVM performance. Another approach would be 

to use an SVM with a structure based kernel for PDZ domains. Indeed, recent work showed that 

an SVM using a structure based kernel was successful in the more general problem of predicting 

protein-protein interactions (Hue et al. 2010). The main challenge for both these approaches is 



41 

 

that 3D structures are not available for the majority of PDZ domains and homology modelling 

would be needed to increase the number of domains available for training and testing. A 

structure-based approach may also be used to generate more accurate biologically meaningful 

artificial negatives for training. Thus, until larger training datasets are available, a combination of 

strategies may be required to predict PDZ domain interactions, involving both sequence and 

structure-based methods, to maximize coverage and prediction performance. Nonetheless, here I 

have shown that sequence similarity is an important feature for accurately predicting PDZ 

domain interactions and it will be interesting to see how general this feature is for other domains. 

2.4 Methods 

2.4.1 PDZ domain-peptide interaction training data 

The predictor was trained using data from mouse protein microarray and human phage display 

experiments (Stiffler et al. 2007; Tonikian et al. 2008). Interactions were collected in the form of 

domain-peptide sequence pairs, where domains were represented by their binding site and 

peptides were five residues in length. For both mouse and human PDZ domains, those whose 

binding site did not align well with other PDZ domains were omitted. Human domains that 

lacked adequate data (less than ten interactions), or were difficult to generate artificial negative 

interactions for, were also not used. This left 82 out of 85 mouse and 31 out of 54 human PDZ 

domains. Since phage display data may contain non-genomic interactions, I filtered the human 

phage display data to create a data set enriched in genomic-like interactions. First, an interaction 

was considered to be genomic-like if the last four residues of the interacting peptide matched a 

human protein tail (defined by genome assembly Ensembl:GRCh37.56), otherwise it was defined 

as non genomic-like. Then, domains were categorized as genomic-like, non genomic-like, dual 

or non-specific, depending on the number of unique genomic-like or non genomic-like 

interacting peptides they bound to (Table 2-2).  

Category # Unique 
genomic-like 

peptides 

# Unique non 
genomic-like 

peptides 

Genomic-like ≥ 10 < 10 

Non genomic-like < 10 ≥ 10 

Dual ≥ 10 ≥ 10 

Non specific < 10 < 10 
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Table 2-2 Domain category definitions based on the number of unique genomic-like and non 

genomic-like peptides. 

To enrich for genomic-like interactions I did not use any data from non genomic-like domains 

and removed all non genomic-like interactions from the dual domains. Domains with less than 

ten unique genomic-like peptides after this filtering were not used. Finally, data from genomic-

like and non specific domains (that had a combined total of ten or more peptides) were used 

without any filtering. This resulted in a small number of non genomic-like interactions being 

included, but allowed us to increase the amount of phage display data usable for training. In 

total, data for 20 human and 82 mouse domains were used for training (Table 2-3).   

  Domains Interactions 

Organism Source # Pos # Neg # Pos # Neg 

Mouse Protein microarray 82 72 643 1324 

Human Phage display 20 - 363 - 

Human Artificial negatives - 20 - 745 

 Total 102 92 1006 2069 

Table 2-3 Summary of domain-peptide interaction data used for training. 

2.4.2 Artificial negative interactions for phage display  

In order to train an effective binary predictor both positive and negative interaction data were 

required.  Therefore, I generated artificial negative interactions for the human phage display data 

since they only contained positive interactions. Based on previous research the proper selection 

of artificial negatives is important for successful predictor training and evaluation (Lo et al. 

2005; Ben-Hur and Noble 2006). Random and shuffled peptide sequences have been commonly 

used, but since these negatives do not resemble real sequences, they have been shown to produce 

predictors with lower accuracy when predicting real negative interactions (Lo et al. 2005). I 

generated artificial negative interactions for training based on positive interactors (peptide 

ligands) modelled using PWMs. Therefore a PWM for a given PDZ domain was used to select 

likely negative interactors for that domain from a set of unique real interactors for all domains.  

Specifically, all unique peptides from the positive training interactions were put into a list to 

create a pool of peptides. Given a domain with a corresponding set of positive peptide sequences 
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(representing positive interactions determined from phage display), the following steps were 

taken to select artificial negatives: 

Step 1: A PWM was built using the positive peptide sequences and the minimum PWM score 

amongst the positive peptides was set to be the cutoff. 

Step 2: All unique peptides in the pool were scored with the PWM from Step 1 and sorted in 

descending order according to PWM score. Walking down the sorted list, peptides were selected 

based on two criteria: 

1. Low scoring: the PWM score must be lower than the cutoff  

2. Low redundancy: The similarity of the peptide to peptides already selected must be 

below the redundancy threshold (must have less than three residues in common with 

negative peptides already selected).  

For the 20 human phage display domains, a total of 745 artificial negative interactions were 

generated.  

When selecting negative peptides in Step 2, only peptides with less than three residues in 

common with those already selected were used. I optimized this redundancy threshold by 

building different SVMs trained using artificial negatives selected using different redundancy 

thresholds (i.e. 1,2,3,4,5). For example, using a low threshold (less than one residue in common) 

would allow fewer but a more diverse set of negatives to be selected than using a higher 

threshold (less than five in common) which would allow a greater number but an overall less 

diverse set of negatives to be selected. The predictor with the highest ROC and PR AUCs was 

used and corresponded to a redundancy threshold of three (Figure 2-8). 
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Figure 2-8  Selecting peptide data redundancy threshold.  (Top Row) ROC AUC comparison for 

predictors trained using data with different levels of peptide redundancy. (Bottom Row) PR AUC 

comparison for predictors trained using data with different levels of peptide redundancy. Black 

coloured bars indicate the number used for the final predictor. 

2.4.3 Primary sequence based feature encoding 

Domain-peptide interactions were encoded as a vectors of numeric values representing features 

of a positive or negative interactions. Interacting domain-peptide residue pairs were encoded 

using the ‘contact map’ encoding method (Chen et al. 2008). Contact maps for other domains 

were constructed via a multiple sequence alignment. 

2.4.4 Optimization of SVM parameters 

The RBF kernel parameter γ and the SVM cost parameter C were optimized by performing a 

coarse two dimensional grid search over combinations of C ={2,4,6,8,10} and γ = {2,4,6,8,10}, 

with a finer grid search over combinations of C = {2,3,4,5,6} and γ = {3,4,5}. A ten fold cross 

validation using the training data was performed to evaluate the average ROC AUC score for 
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each combination of γ and C. The parameters values yielding the predictor with the highest ROC 

AUC score were used. LibSVM was used to build the SVMs (Chang and Lin 2011). 
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Chapter 3  

Predicting PDZ Mediated Protein-Protein Interactions From 

Structure 
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3 Predicting PDZ mediated protein-protein interactions 
from structure 

3.1 Introduction 

In the previous chapter, I presented a sequence-based predictor to scan proteomes of multiple 

organisms for binders of PDZ domains. Although this predictor is more accurate and precise at 

proteome scanning compared to previous sequence-based predictors, like others, it performs 

better for domains that are similar in sequence to those in the training set. It is known that 

structure features within the domain binding pocket play important roles in determining binding 

specificity (Skelton et al. 2003; Appleton et al. 2006; Chen et al. 2007). Since domain structure 

features capture different information about binding compared to sequence features, I 

hypothesized that training with such features would result in a predictor that is complementary to 

the sequence-based predictor. In particular, such a predictor would be less dependent on 

sequence similarity and would predict additional interactions not predicted by the sequence-

based predictor. This would expand the coverage of PDZ domain C-terminal peptide interactions 

that can currently be predicted by sequence-based predictors alone. 

In this chapter, I present a structure-based predictor for PDZ domain-peptide interactions that can 

be used for proteome scanning. This predictor uses a variety of structure features that are known 

to play roles in protein structure stability and facilitating PPIs.  Through leave-12%-of-domains-

out cross validation, I show that the structure-based predictor depends less on training-testing 

domain sequence similarity compared to the sequence-based predictor presented in the last 

chapter.  Based on human proteome scanning results, I also show that the structure-based 

predictions correspond to known experimentally determined PDZ domain-peptide interactions 

and known PPIs involving PDZ domain containing proteins. Many of the structure-based 

predictions correspond to known PPIs not previously predicted by the sequence-based predictor 

(48% increase), confirming that the structure-based predictor finds different interactions than the 

sequence-based predictor. Using predictions from both methods, I created a functional map of all 

predicted human PDZ mediated PPIs and identify ‘xenobiotic metabolism’ as a novel biological 

process enriched in PDZ interactors. 
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Finally, an online resource was created called POW! PDZ domain-peptide interaction prediction 

website (http://webservice.baderlab.org/domains/POW), which enables users to run the 

sequence-based and structure-based predictors online for human, mouse, fly and worm. 

3.2 Results 

3.2.1 The structure-based predictor achieves high cross validation 
results 

To estimate the generality of the predictor, I ran multiple cross validation tests and computed the 

ROC and PR AUCs to compare the performance. The predictor achieves high AUC scores 

compared to random performance AUCs over all cross validation strategies. In particular the ten 

fold cross validation ROC and PR AUCs were 0.96 and 0.936, respectively (random ROC AUC 

0.5, PR AUC 0.253). The leave-8%-of-peptides-out cross validation ROC and PR AUCs were 

0.935 and 0.909 respectively (random ROC AUC 0.5, PR AUC 0.358).  The leave-12%-of-

domains-and-8%-of-peptides-out cross validation out ROC and PR AUCs were 0.927 and 0.886 

respectively (random ROC AUC 0.5, PR AUC 0.347).  Finally, slightly lower AUCs were 

obtained for the leave-12%-of-domains-out cross validations, which achieved 0.872  and 0.785 

respectively (random ROC AUC 0.5, PR AUC 0.33) (Figure 3-1). 
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Figure 3-1  Predictor performance estimation using cross validation.  Predictor performance 

measured using ten fold (red), leave-12%-of-domains-out (blue), leave-8%-of-peptides-out 

(green), leave-12%-of-domains-and-8%-of-peptides-out (black) cross validation. 

Like the previous sequence-based predictor, the cross validation results were lower for strategies 

that involved leaving sets of domains out. A one-tailed t-test showed that the mean AUC scores 

were significantly higher for the structure-based predictor compared to those of the sequence-

based predictor (p-value < 0.025) (Table 3-1).   
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(95% CI) (0.919~ 0.934) (0.862~0.877) (0.875~0.896) (0.783~0.804) 

Table 3-1  Comparison of structure-based and sequence-based predictor cross validation results.  

Structure-based predictor achieves significantly better cross validation results than the sequence-

based predictor. 

3.2.2 The structure-based predictor successfully predicts a limited 
number of interactions in different organisms 

Blind testing was performed to obtain an unbiased measure of predictor performance and to 

estimate if the predictor could correctly predict interactions in other organisms not represented in 

the training set (such as fly and worm). I used interaction data for 13 mouse, seven worm and six 

fly PDZ domains with interactions from previous protein microarray experiments which were not 

previously used for training (Chen et al. 2008) (Table 3-2).  

  Domain Interactions 

Organism Source # Pos # Neg # Pos # Neg 

Mouse Protein microarray 8 13 32 36 

Worm Protein microarray 6 7 59 88 

Fly Protein microarray 6 6 34 106 

Table 3-2 Summary of domain-peptide interaction data used for blind testing. 

Homology models were generated by SWISS-MODEL and have at least 40% sequence identity 

to their template structures and no binding site gaps. The average template sequence similarity 

was 92%, 61% and 61% for mouse, worm and fly domains, respectively. An NMR structure was 

available for one fly domain (PAR6-1) and the first model was used (1RY4 A). One mouse 

domain (CHAPSYN-110-1) was removed from the test set because its performance was 

consistently poor for both sequence-based and structure-based predictors (see Appendix B, 

Table B-2 for details on blind testing domains). 

The blind test results show that the structure-based predictor is able to correctly predict many 

unseen interactions in fly, worm and mouse (Figure 3-2). 
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Figure 3-2  Blind testing performance results for mouse, worm and fly. ROC and 

Precision/Recall curves were computed for mouse (magenta), worm (green) and fly (black) blind 

tests. Test data was obtained from published protein microarray experiments (Chen et al. 2008). 

Number of PDZ domains tested is noted in parentheses. 

However, compared to the sequence-based predictor, the structure-based predictor performance 

is similar for mouse (Table 3-3), but somewhat worse for worm and fly blind tests. Since the 

domains in the worm and fly test sets are very similar to the training set domains and based on 

findings from the previous chapter it is not unexpected that the sequence-based predictor would 

perform well if not better for these two test cases.  However, since these data sets are small, 

additional data is required to accurately compare predictor performance. 

 ROC AUC PR AUC 

 Structure Sequence Structure Sequence 

Mouse  0.718 0.709 0.685 0.723 

Worm 0.668 0.718 0.611 0.663 

Fly 0.726 0.799 0.448 0.591 

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ROC AUC

FPR

T
P
R

0.718 Mouse Orphan (13)

0.668 Worm (7)

0.726 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Precision Recall AUC

RECALL

P
R
E
C
IS
IO
N

0.685 Mouse Orphan (13)

0.611 Worm (7)

0.448 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ROC AUC

FPR

T
P
R

0.718 Mouse Orphan (13)

0.668 Worm (7)

0.726 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Precision Recall AUC

RECALL
P
R
E
C
IS
IO
N

0.685 Mouse Orphan (13)

0.611 Worm (7)

0.448 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ROC AUC

FPR

T
P
R

0.718 Mouse Orphan (13)

0.668 Worm (7)

0.726 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Precision Recall AUC

RECALL
P
R
E
C
IS
IO
N

0.685 Mouse Orphan (13)

0.611 Worm (7)

0.448 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ROC AUC

FPR

T
P
R

0.718 Mouse Orphan (13)

0.668 Worm (7)

0.726 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Precision Recall AUC

RECALL

P
R
E
C
IS
IO
N

0.685 Mouse Orphan (13)

0.611 Worm (7)

0.448 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ROC AUC

FPR

T
P
R

0.718 Mouse Orphan (13)

0.668 Worm (7)

0.726 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Precision Recall AUC

RECALL

P
R
E
C
IS
IO
N

0.685 Mouse Orphan (13)

0.611 Worm (7)

0.448 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ROC AUC

FPR

T
P
R

0.718 Mouse Orphan (13)

0.668 Worm (7)

0.726 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Precision Recall AUC

RECALL

P
R
E
C
IS
IO
N

0.685 Mouse Orphan (13)

0.611 Worm (7)

0.448 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ROC AUC

FPR

T
P
R

0.718 Mouse Orphan (13)

0.668 Worm (7)

0.726 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Precision Recall AUC

RECALL

P
R
E
C
IS
IO
N

0.685 Mouse Orphan (13)

0.611 Worm (7)

0.448 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ROC AUC

FPR

T
P
R

0.718 Mouse Orphan (13)

0.668 Worm (7)

0.726 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Precision Recall AUC

RECALL

P
R
E
C
IS
IO
N

0.685 Mouse Orphan (13)

0.611 Worm (7)

0.448 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ROC AUC

FPR

T
P
R

0.718 Mouse Orphan (13)

0.668 Worm (7)

0.726 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Precision Recall AUC

RECALL

P
R
E
C
IS
IO
N

0.685 Mouse Orphan (13)

0.611 Worm (7)

0.448 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ROC AUC

FPR

T
P
R

0.718 Mouse Orphan (13)

0.668 Worm (7)

0.726 Fly (6)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Precision Recall AUC

RECALL

P
R
E
C
IS
IO
N

0.685 Mouse Orphan (13)

0.611 Worm (7)

0.448 Fly (6)



52 

 

Table 3-3 Comparison of structure-based and sequence-based predictor blind testing 

performance. 

3.2.3 The structure-based predictor is less dependent on training-testing 
domain sequence similarity  

The performance of the previous sequence-based predictor depends on how similar in binding 

site sequence a given testing domain is to its nearest training domain.  In particular, as the 

domain binding site sequence similarity decreases so does the predictor’s average performance 

until it is comparable to that of a naïve nearest neighbour sequence predictor. To more rigorously 

compare structure-based and sequence-based predictor performance as training-testing domain 

sequence similarity varies, I performed a leave-12%-of-domains-out cross validation with 

domain sequence similarity-based training set filtering for each predictor.  For each fold, 12% of 

domains and their interactions were held out, and of the remaining domains, only those and their 

corresponding interactions were retained for training if the domain sequence similarity was less 

than a given threshold for all testing domains.  All training sets had no more than 500 

interactions.  Ten folds were executed and repeated ten times for a total of 100 runs.  For each 

run, the ROC and PR AUCs were computed and plotted as box plots according to the similarity 

threshold (Figure 3-3).   
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Figure 3-3 Predictor performance dependence on training-testing domain sequence similarity.  

Leave-12%-of-domains-out cross validation was performed with domains retained for training in 

each fold if their sequence similarity to all testing domains was less than a given threshold. This 

was performed for structure-based (blue) and sequence-based predictors (magenta). ROC and PR 

AUC scores were computed for each run and displayed in box plots according to training-testing 

domain sequence similarity threshold (top left and right). Based on significance testing using a 

one-tailed t-test, the mean structure-based predictor ROC and PR AUC scores are significantly 

higher than the sequence-based predictors scores when training-testing domain sequence 

similarity is < 0.7 (p-value < 0.029).  The mean AUC scores for structure-based (blue) and 

sequence-based (magenta) predictors are plotted against sequence similarity threshold (bottom 

left and right). 

A one-tailed t-test showed that the mean ROC and PR AUC scores were significantly higher for 

the structure-based predictor when training-testing domain sequence similarity is < 0.7 (p-value 

< 0.029). These results show that on average, the structure-based predictor is less dependent on 

training-testing domain sequence similarity compared to the sequence-based predictor at lower 

similarity thresholds. 
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3.2.4 Structure-based predictions are validated by known PDZ domain-
peptide interactions 

The predictor was used to scan the human C-terminal proteome (defined by genome assembly 

Ensembl:GRCh37.64) for binders of 45 PDZ domains with known interactions in PDZBase that I 

could obtain structures and compute features for. For each domain, this involved scanning 

43,827 unique C-termini of length five (including splice variants). Structures for these domains 

were obtained from the PDB or were homology modelled and at least 35% sequence similar 

(average over 80%) to their template structures.  The minimum QMEAN score for these models 

is 0.36 (average 0.78).  Please see Appendix B, Table B-3 for details about domains used for 

scanning. 

The structure-based predictor has a true positive rate (TPR) of 0.36 and precision of 0.0033 and 

correctly predicted interactions for 22 of the 45 domains. For these domains approximately 73% 

of known PDZ domain-peptide interactions in PDZBase, an independent data source not used for 

training, were predicted (see Appendix B, Table B-4 for detailed results). The sequence-based 

predictor had a higher TPR of 0.46 and correctly predicted interactions for 28 out of 45 domains. 

For these domains, 65% of known PDZ interactions were predicted and the precision was 

0.0024. Although the sequence-based predictor has a higher TPR, its precision and coverage of 

known PDZ domains is lower. This is likely because the sequence-based predictor predicts on 

average more interactions per domains than the structure-based predictor (average 426.89 and 

239.71 per domain respectively). The low precision for both predictors is due to the few known 

interactions per domain that are available from PDZBase (average 2.2 interactions per domain). 

I also tested the false positive rate of the predictor using two real negative data sets for human, 

which were used in a recent study (Luck et al. 2011) to benchmark another sequence-based 

predictor (Chen et al. 2008). The first data set consists of 466 experimentally validated negative 

interactions involving peptides that contain a PDZ binding motif found from the literature. The 

second data set consists of 133 negative literature-described interactions involving peptides with 

a non-binding PDZ motif caused by a mutation. The structure-based predictor made predictions 

for 410 negative interactions from the first data set and 126 negative interactions from the second 

data set, which resulted in an FPR of 0.145 and 0.0, respectively. The sequence-based predictor 

had a FPR of 0.09 and 0.0, and made predictions for 421 and 128 negative interactions for the 

first and second data sets, respectively. Compared to the structure-based and sequence-based 
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predictors, the Chen et al. sequence-based predictor has a much higher FPR of 0.482 and 0.256 

for the first and second data sets, respectively (see Appendix B, Table B-8, Table B-9 for 

detailed results). 

3.2.5 Many structure-based predictions correspond to known PDZ 
domain containing protein-protein interactions 

To determine how many structure-based predicted interactions correspond to known PPIs, I 

scanned the human proteome to predict interactions for 218 human PDZ domains with known 

PPIs (that I could obtain structures and compute structure features for). Known PPIs were 

retrieved from iRefIndex (Razick et al. 2008). In total, 61 XRAY and nine NMR structures (only 

the first models used) were obtained from the PDB and 148 homology models were created.  All 

models had a template sequence similarity of at least 22% (average 72%) and QMEAN score of 

at least 0.36 (average 0.78) Please see Appendix B, Table B-3 for details about domains used 

for scanning. 

In total, 88 domains had predicted interactions that corresponded to known PPIs, with an average 

of greater than 21% of known PPIs being correctly predicted per domain. The number of PPIs 

successfully predicted per domain was significant (p-value < 0.05, Fisher’s exact test) for all but 

ten domains. A caveat of this result is that PDZ domain containing proteins may contain multiple 

PDZ domains and other domains, so it is not possible to uniquely assign a PPI to a PDZ domain. 

This could result in erroneous false negative or true positive statistics for the above tests. 

However, the results still serve as an estimate of predictor performance and show that the 

predictor is able to predict many known human PPIs. 

3.2.6 The structure-based predictor is complementary to the sequence-
based predictor 

I also compared the structure-based predictor’s proteome scanning predictions to the ones 

obtained using the sequence-based predictor. In total, the results for 221 domains where both 

predictors were able to make predictions were compared. A total of 172 out of 925 known PPIs 

were predicted using both methods, 68 were unique to the sequence predictor and 56 were 

unique to the structure-based predictor (Figure 3-4). Thus the sequence and structure-based 

predictors both predict unique and known PPIs and are complementary.  
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Figure 3-4  Summary of predictions for domains with hits validated by known PPIs. (A) 

Breakdown of the number of proteome scanning predictions per domain made by the structure-

based predictor only (blue), sequence-based predictor only (pink), and both predictors (yellow). 
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iRefIndex are shown. (B) Pie chart of the number of validated hits predicted by the structure-

based predictor only (blue), sequence-based predictor only (pink), both predictors (yellow). 

To better understand how unique predictions are made, I compared the results in more detail. 

The unique structure based predictions arise for different reasons. Some domains (43 domains) 

are more challenging for the sequence-based predictor, which returns a low number of hits per 

domain (ten or less) with none corresponding to known PPIs (e.g. APBA1-1, CNKSR2-1, IL16-

1, IL16-3) (Table 3-4).  

Domain Name #P #TP 
#Pred. 
Struct. 

#Pred. 
Seq. 

#Pred. 
Both 

#TP 
Struct. 

#TP 
Seq. 

#TP 
Both 

APBA1-1 7 0 9 1 0 0 0 0 

ARHGEF11-1 11 1 273 0 0 1 0 0 

CNKSR2-1 8 0 16 8 0 0 0 0 

DLG1-1 23 11 283 127 173 2 0 9 

DLG1-2 23 12 117 246 162 3 1 8 

DLG5-3 2 0 2 239 0 0 0 0 

IL16-1 5 1 621 0 6 1 0 0 

IL16-3 5 0 80 0 5 0 0 0 

MLLT4-1 19 0 8 47 0 0 0 0 

MPDZ-6 13 0 1 339 0 0 0 0 

MPDZ-8 13 0 4 75 1 0 0 0 

MPDZ-12 13 4 437 3 2 4 0 0 

MPP3-1 7 1 5 30 0 0 1 0 

MPP6-1 16 1 302 3 0 1 0 0 

PDZD2-3 1 0 671 0 0 0 0 0 

PDZD2-5 1 0 316 0 2 0 0 0 

RAPGEF6-1 4 0 1529 0 5 0 0 0 

SCRIB-3 14 3 344 0 0 3 0 0 

Table 3-4  Subset of validation results for human PDZ domain proteome scanning predictions 

against known interactions in iRefIndex.  Details for all domains scanned are found in Appendix 

B, Table B-9. 
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The structure predictor fares better for nine of these domains (ARHGEF11-1, IL16-1, IL16-3, 

MPDZ-12, MPP6-1, PDZD2-3, PDZD2-5, RAPGEF6-1, SCRIB-3) and is able to predict many 

more hits per domain (on average approximately 510 hits) with on average approximately three 

known hits per domain.  On the other hand, the structure-based predictor has difficulty predicting 

hits for 19 domains (e.g. DLG5-3, MPDZ-6, MPDZ-8), of which four are better predicted by the 

sequence-based predictor (MLLT4-1, MPDZ-8, MPP3-1, PDZD2-2; average 383 hits) with on 

average one known PPI hit per domain.  In another scenario, two domains may have identical 

binding sites at the sequence level (e.g. DLG1-1 and DLG2-1), but have different structure 

features. The sequence-based predictor cannot distinguish between the two domains in this case, 

even though the domains may actually bind different targets. While the structure-based predictor 

uses features corresponding to ten core positions, these features are computed by considering the 

entire domain structure. Therefore, even if two domains have the same binding site residues, the 

resulting features will be different if their whole domain structures are different. The structure-

based predictor’s ability to distinguish between domains with highly similar binding site 

sequences is one reason why it, in some cases, predicts different interactions than the sequence-

based predictor. Overall, these results demonstrate situations where the structure-based predictor 

can be used to make predictions for domains that otherwise could not be easily predicted by the 

sequence-based predictor and thus shows that the methods are complementary. 

3.2.7 Structure-based predicted binding specificities recapitulate 
experimental binding specificities 

Since validation data is limited, I more generally assessed the results of proteome scanning by 

comparing predicted binding specificities to those known from phage display. I constructed 

position weight matrices to summarize the domain’s amino acid binding preference at each 

position in the ligand, using all predicted interacting peptides from C-terminal proteome 

scanning. Sequence logos were then used to visually represent the binding specificities. In total, 

26 domains could be compared (had > 4 genomic peptides from phage display experiments), 

covering known PDZ domain binding classes I and II (see Appendix B, Figure B-1 for all 

logos). 

For several domains, the structure-based predicted binding specificity is more similar to the 

phage display determined binding specificity than the sequence-based predicted binding 

specificity, and better recapitulates the preference of residues at specific positions (Figure 3-5). 
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Figure 3-5  Comparison of a subset of predicted and phage display determined PDZ domain 

binding specificities. Phage display determined and predicted PDZ domain binding specificities 

for the last five terminal binding positions were visualized as sequence logos. The binding 

specificity similarity between two domains was computed using the normalized Euclidean 

distance between their corresponding position weight matrices (Eq. 2.3). Non-genomic phage 

display peptides were removed from the set of binders for each domain. Only domains with four 
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or more peptides after this filter were used to create sequence logos describing the domain’s 

binding specificity. Based on a previously established protocol, a peptide was considered to be 

genomic if the last four residues could be found in a proteomic tail, otherwise it was considered 

to be non genomic. Numbers in bold indicate which similarity (sequence or structure) is higher 

(i.e. which predicted logo is closer to the experimental logo). 

For example, the structure-based method better predicts the preference for polar residues at 

position -4 and a Thr or Ser at position -1 for TIAM2-1, for hydrophobic Val residue at position 

0 for ERBB2IP-1 and for hydrophilic residues such as Gly or Thr at position -2 for DVL2-1 

(position numbering counted backwards from the zero C-terminal position) (Figure 3-5 Rows 1-

3).  

Three domains, APBA3-1, TJP1-3 and TJP2-3 had both structure-based and sequence-based 

predicted binding specificity similarities much lower than the average (0.5 or less) (Figure 3-5 

Rows 4-5). This seems to be caused by poor representation of these domains in the training set. 

More validation data should be used to more reliably compare the binding specificities for these 

domains in the future. Furthermore, since phage display experiments select optimal binders and 

cellular interactions may not be optimal (e.g. to aid interaction regulation), some differences 

between phage display and proteome scanning-based profiles are expected. In general, the 

similarity between the structure-based predicted and experimentally determined binding 

specificities is high (0.636). 

3.2.8 Predicted binding specificities are supported by known structural 
determinants of PDZ domain binding specificity 

As noted above, there are many cases where the structure-based predicted binding specificity is 

closer to the experimental binding specificity than the sequence-based predicted binding 

specificity. For some examples, the structure-based predicted binding specificity better predicts 

the experimental binding specificity at certain positions. To examine if this is caused by specific 

structural features used by the structure-based predictor, I searched the literature to find known 

structure determinants influencing these specific amino acid preferences and compared them to 

the results. For MLLT4-1, the structure-based predictions indicate a preference for a hydrophilic 

Thr residue at position -2 (Figure 3-6 Row 1). The preference for a hydrophilic Thr residue at 

position -2 is explained by the findings of Chen et al. (Chen et al. 2007). Their work showed that 
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the Thr preference at position -2 is due to its interaction with Gln at position α2-1 of the domain, 

which forms a hydrophilic binding site pocket at position -2. This preference is reflected in the 

structure-based predicted binding specificity, whereas a completely different preference for a 

hydrophobic Ile residue at this position is predicted by the sequence-based predictor. The domain 

TJP1-1 is another example where the predicted structure and sequence-based binding 

specificities are very different (Figure 3-6 Row 2). Appleton et al., showed that this domain has 

a bi-specific preference for Trp or Tyr at position -1 (Appleton et al. 2006). The Trp preference 

is accommodated through main chain interactions with β2 and β3 strands, while the Tyr 

preference is accomplished through hydrogen bonding with Asp at position β3-5 of the domain. 

The bi-specific preference for a Trp or Tyr at position -1 is reflected in the structure-based 

binding specificity, while only a preference for Tyr is indicated in the sequence-based binding 

specificity. Finally, the predicted binding specificities for domain DVL2-1 are very different 

(Figure 3-6 Row 3). Zhang et al. found that the -2 binding site of the domain actually 

accommodates a Gly-Tyr pair (Zhang et al. 2006). The preference for a Gly at position -2 is 

reflected in the predicted structure-based binding specificity whereas there is no obvious 

preference in the predicted sequence-based binding specificity. Since the binding specificities for 

these examples are determined by specific domain structure features, this helps explain why the 

structure-based predictor can better predict their binding preferences than the sequence-based 

predictor. 

Predicted Logo (Sequence) Predicted Logo (Structure) 
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Figure 3-6 Comparison of a subset of sequence-based and structure-based predicted PDZ 

domain binding specificities. 

3.2.9 A functional map of PDZ domain biology highlights PDZ 
involvement in a variety of biological processes 

To identify gene functions better predicted by sequence or structure-based methods, I performed 

GO-based gene function enrichment analysis on all predicted PDZ targets. The results were 

visualized using an enrichment map, which groups related gene function terms to ease 

identification of functional themes (Figure 3-7).  
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Figure 3-7 A functional map of predicted PDZ domain biology. An enrichment analysis of the 

GO biological process terms associated with the predicted PDZ targets for each of the domains 

from structure-based and sequence-based human proteome scanning was performed. The results 

were visualized as a network where the nodes represent gene-sets. The colour of the node border 

represents the number of domains that the gene-set was seen enriched for, among the structure-

based predictions. The colour of the node centre represents number of domains that the gene-set 

was seen enriched for, among the sequence-based predictions. Edges represent the overlap 

between two connected gene-sets with the thickness corresponding to the number of genes 

overlapping.  

Enrichment results from both sequence and structure-based predictions were plotted on the same 

map to ease identification of overlapping or unique themes, with sequence-based enrichment 

scores corresponding to node centre colour and structure-based scores corresponding to node 

border colour. For example, a number of themes are enriched in targets from both methods, such 

as ‘photoreceptor cell maintenance, ‘hippo signalling’ and ‘cell junction assembly’ (i.e. node 

centre and border are red). Other themes are only enriched in sequence-based (i.e. border is grey, 

node centre is red) or structure-based targets (i.e. border is red, node centre is grey). For 

example, ‘neuron projection morphogenesis’, ‘regulation of cytokinesis’, and ‘innate immune 

response signalling’ themes contain terms only enriched in structure-based predictions, while 

‘actin movement’, ‘membrane fusion’ and ‘nuclear transport’ are enriched only in sequence-

based targets.  

I also compared the themes from the predictions to those from 1249 known PDZ mediated PPIs 

in the iRefIndex database. Some themes were enriched only in known targets (e.g. ‘DNA 

damage checkpoint’, ‘negative regulation of angiogenesis’), however many known themes were 

covered by the predictors (e.g. ‘cell junction assembly’, ‘ion homeostasis’, ‘neural 

development’). I identified the theme ‘xenobiotic metabolic process’ (enriched in both sequence-

based and structure-based predictions) to be novel as it did not correspond to any themes seen in 

the known interaction network and did not have any PDZ interactions reported in the literature 

(based on a manual search). For this theme, both predictors predicted PDZ domain interactions 

with enzymes that are important for catalyzing foreign compounds in the xenobiotic metabolism 

pathway. For example the sequence-based predictor predicted the domain DVL1L1-1 to interact 

with cytochrome P450 (HGNC:CYP19A1) and dimethylaniline monooxygenase (HGNC:FMO1) 
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(Eling and Curtis 1992; Omiecinski et al. 2011), FRMPD4-1 to interact with various glutathione 

S-transferases (e.g. HGNC:GSTA1, GSTA2, GSTA3), MAST4-1 to interact with prostaglandin 

G/H synthase (HGNC:PTGS1). The domains SDCBP-1, SDCBP2-1 were predicted by the 

structure-based predictor to interact with bisphosphate nucleotidase (HGNC:BPNT1). The 

domains CAR14-1, CNKRS2-1, CNKRS3-1, SNX27-1, WHRN2-1 and the domains DLG4-2, 

GRIP1-1, MAGI2-6, MPDZ-1, TJP2-3 and TJP3-3 were predicted by the sequence-based and 

structure-based predictors respectively to interact with various sulfotransferases (e.g. 

HGNC:SULT1C2, SULT4A1, SULT1B1, SULT1E1, SULT1A1, SULT1A2, SULT1A4) 

(Figure 3-8). 

 

Figure 3-8  A network view of predicted novel PDZ interactions in xenobiotic metabolism.  PDZ 

domains are shown as blue nodes and labelled using their gene names. Protein targets are shown 

as pink nodes and labelled using their HGNC gene symbols. Blue edges represent structure-

Xenobiotic Metabolic Process Innate Immune Response Signalling 

CLEC7A

RPS6KA3GPS1

PDZK1-1

RPS6KA2

COLEC12

RPS6KA1

SH2D3C

MAP2K3

MAPKAPK2

SHANK2-1
PDLIM5-1

MAP4K1
MAPK14

GSTA2

GSTA1 GSTA3

FRMPD4-1

FMO1

DVL1L1-1

GSTA5

CYP19A1

TJP3-3

CNKSR3-1

DLG4-2

SULT4A1

SULT1E1

SULT1B1

TJP2-3

CAR14-1

CNKSR2-1

GRIP1-1
MPDZ-1

SNX27-1

WHRN-2

SULT1C2

MAST4-1

BPNT1

MAGI2-6

SULT1A2

SULT1A4
SULT1A1

PTGS1

SDCBP2-1

SDCBP-1



66 

 

based only predicted interactions. Green edges represent sequence-based only predicted 

interactions. Only interactions involving proteins with GO annotations are presented. 

In some cases, although the themes were also enriched in the iRefIndex map, only limited 

information about PDZ domain involvement in the associated process was found in the literature. 

These themes represent opportunities for the predictions to shed light on the role of PDZ 

domains where little is currently known. One example is ‘wound healing’, where both predictors 

predicted PDZ domains to interact with proteins involved in different stages of wound healing. 

These included platelet activators and aggregators (e.g. HGNC:CD9 (Zhang et al. 2012), 

P2RY12 (Klepeis et al. 2004)), growth factor receptors (e.g. HGNC:PDGFRA (Lynch et al. 

1987), TGFBR1 (Liu et al. 2011), HGF (Bevan et al. 2004)), plasma membrane calcium-

transporting ATPases (e.g. HGNC:ATP2B1, ATP2B2, ATP2B3, ATP2B4 (Talarico 2010)), 

calcium-activated potassium channels (e.g. HGNC:KCNMA1, KCNMB2 (Becchetti and 

Arcangeli 2010)), fibrinogen (HGNC:FGG) (Laurens et al. 2006), coagulation factors (e.g. 

HGNC:F8, F11 (Inbal and Dardik 2006)), immune system proteins such as chemokines (e.g. 

HGNC:CXCR1, CXCR2, CCL19 (Gillitzer and Goebeler 2001)), tumour necrosis factors (e.g. 

HGNC:TNFAIP6, TNF (Barrientos et al. 2008)) and inhibitor of nuclear factor kappa-β kinase 

(HGNC:IKBKB) (Barrientos et al. 2008)). 

Finally, the predictions also suggested additional targets for well studied processes that are 

known to involve PDZ domains. For ‘Wnt signalling’, both predictors predicted known 

interactions between the domain MAGI3-2 and Frizzled-4 and 7 as well as domains DLG4-1,2 

and Frizzled-1,2,4 and 7 (Wawrzak et al. 2009). However, several other PDZ domains were also 

predicted to interact with Frizzled family members. Some examples include AHNAK2-1, 

CAR14-1, CNKSR2-1 (structure-based) and MPDZ-13, PDZRN4-1, SYNJ2BP-1 (sequence-

based) which are all predicted to interact with one or more Frizzled family members 

(HGNC:FZD1, FZD2, FZD4, FZD7, FZD10). Interactions which may negatively regulate Wnt 

signalling were also predicted and involve F-box-like proteins (HGNC:TBL1X, TBL1XR1 

(Lagna et al. 1999)) and human colorectal mutant cancer protein (HGNC:MCC) (Fukuyama et 

al. 2008). 

Many functional themes identified consist of different enriched terms containing multiple 

proteins, predicted to interact with several PDZ domains. These patterns involve many protein 
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targets and are unlikely to occur by chance. Thus, this functional analysis provides additional 

validation of the prediction methods and highlights novel PDZ interactors involved in a variety 

of biological processes. 

3.3 Discussion 

I have presented a structure-based predictor of PDZ domain-peptide interactions that can be used 

to scan C-terminal proteomes to predict PDZ domain mediated PPIs. This predictor utilizes 

domain structure features derived from the whole domain, focusing on a core peptide-binding 

site defined by ten highly conserved amino acid positions. Combined with the use of 

experimentally determined and computationally generated training negative interactions, the 

predictor achieves high cross validation results and is expected to generalize well to unseen 

interactions in practice. Compared to the previous sequence-based predictor, the structure-based 

predictor is less dependent on training-testing domain sequence similarity and predicts many new 

validated interactions in human. As a result, the structure-based predictor is complementary to 

the sequence-based predictor and both should be used to identify candidates for further 

biological experiments and to expand our knowledge of PDZ domain mediated PPIs. 

An important technical result of this work is the use of computationally generated negatives to 

supplement training and reduce over-prediction (i.e. prediction of too many positives). I showed 

that the negative interactions in current experimental data sets do not adequately cover the 

negative interaction proteome space resulting in a predictor that returns many hits that are likely 

false positives. While this problem is more apparent for the structure-based predictor, it also 

affects the sequence-based predictor, as there are several domains where sequence-based 

proteome scanning predicts thousands of hits, and likely affects other sequence-based predictors. 

Since additional experimentally determined negatives for training are limited, using 

computationally generated negatives is required. While PWMs can be used to computationally 

generate such negatives as discussed in the previous chapter, such methods do not model 

dependencies between ligand positions and depend on a user defined cutoff to discriminate 

between positives and negatives. Here, I use a semi-supervised learning approach utilizing an 

SVM to generate additional negatives, since SVMs can better address the limitations faced by 

PWMs. As a result, the proteome scanning performance was improved by reducing the number 

of false positive hits that would otherwise be returned. As this problem is not unique to the 
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structure-based predictor, training with additional negatives is likely to benefit other predictors 

as well. 

Comparing proteome scanning hits to known PPIs, there is only a moderate overlap in hits 

predicted by both the structure-based and sequence-based predictor. While this suggests that the 

predictors are complementary and thus should both be used, there are cases when using either the 

structure-based or sequence-based predictor to find interactors may be more appropriate. For 

example, when the training-testing domain sequence similarity is < 0.7, the structure-based 

predictor may be more useful, since its performance is less dependent on sequence similarity at 

lower similarity levels. In fact, when the sequence similarity is very low the sequence-based 

predictor may fail to return any predictions. For other domains, a reliable structure may not be 

obtained or modelled, or the required structure features cannot be successfully generated. In this 

case, the sequence-based predictor may be the only predictor that can be used. However, for the 

majority of cases, both predictors should be used to find as many hits as possible for a given 

domain. 

Although PDZ domains can recognize motifs internal to a protein, most data is available for C-

terminal binding, thus both the structure-based and sequence-based predictors have been trained 

using this data and are best suited for the prediction of such interactions. Although other similar 

methods exist on the web, they can only predict that a protein containing a PDZ domain interacts 

with another protein (Szklarczyk et al. 2011) or are best suited for interactions between PDZ 

domains and specific types of proteins (e.g. membrane proteins) (Bhardwaj et al. 2007). Thus, I 

expect the website will be useful to biologists in helping to further map the many processes 

mediated by PDZ domains. 

While the current structure-based predictor performs well, other domain structure related features 

should be considered in the future. For example, it is known that the structural flexibility of the 

PDZ domain binding pocket can contribute to the domain’s ability to bind specific ligands 

(Zhang et al. 2006; Chen et al. 2007). Recently, a model of PDZ domain backbone flexibility 

was used to successfully predict domain binding specificity, but for a subset of human PDZ 

domains (Smith and Kortemme 2010). Thus, domain backbone flexibility features should be 

considered as they may help to improve predictor performance. Another structure related feature, 

which should also be considered, is binding pocket geometry and shape. Although I explored the 
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use of 3D-Zernike shape descriptors (La et al. 2009), their use did not benefit the predictor. 

However, there are other shape descriptors such as real spherical harmonic coefficients that 

could be investigated that may improve predictor performance (Morris et al. 2005). Although I 

have built an entirely structure-based predictor, additional features including sequence features 

can be combined to build a single predictor that utilizes all available types of information. 

Finally, since the predictor predicts in vitro interactions, incorporating contextual information 

such as co-expression and protein location will help to build a more physiologically relevant map 

of PDZ domain mediated protein-protein interactions. 

3.4 Methods 

3.4.1 Domain binding site definition 

A number of positions in the PDZ domain that are in close contact with the peptide are important 

for binding (Chen et al. 2008; Tonikian et al. 2008).  For this work, I defined the binding site 

using ten domain binding site positions (core positions) that are in close contact with the peptide 

ligand (< 4.5 Å) across nine PDZ domain structures. In total, 218 out of 267 human PDZ 

domains could be used because they don’t have gaps in their binding sites based on a PDZ 

family multiple sequence alignment (eight structures), and I could obtain structures and compute 

features for them (41 structures). For mouse, fly and worm, respectively, 178 of 237, 85 of 117 

and 64 of 81 known PDZ domains are supported with 11, 14 and seven of the remaining domains 

containing gaps. All PDZ domains were defined by HMMER 3.0 (Eddy 2011) against UniProt 

defined PDZ proteins as of Apr 2012. Overall, the structure-based predictor supports the 

majority of PDZ domains (i.e. 82%, 74%, 73% and 79% of known PDZ domains) for human, 

mouse, fly and worm, respectively. 

Although previous studies used a binding site definition of 16 domain positions (a superset of the 

ten used here), these positions were identified from only a single PDZ domain-peptide complex 

structure (Chen et al. 2008) and many domains contain gaps using this larger binding site 

definition (based on a multiple sequence alignment with other PDZ domains).   To justify the use 

of using the smaller ten-position binding site definition, I used the results of different cross 

validation strategies to compare two predictors built using training sets defined using the 

different binding site definitions.  Using the 16-position binding site definition, 556 positive and 

1167 negative interactions corresponding to 58 domains were used for training.  The cross 
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validation AUC scores for the ten-position domain binding site definition was higher across all 

strategies.  This indicates that the information in the smaller binding site definition is adequate to 

achieve good predictor results and it was not necessary to train with additional features from the 

16 binding site positions.  Since the ten positions are also based on multiple PDZ domain 

structures, these positions likely capture more general features about PDZ domain binding 

compared to the 16 positions which were derived from a single structure and may contain noise 

when applied to other PDZ domains.  Finally, using the minimum number of features for training 

helps to prevent the predictor from becoming overfit and further supports the use of the smaller 

binding site definition (Table 3-5). 

 ROC AUC PR AUC 

 10 positions 16 positions 10 positions 16 positions 

10 Fold 0.96 0.936 0.936 0.894 

Domain 0.872 0.840 0.785 0.708 

Peptide 0.935 0.907 0.909 0.844 

Domain+Peptide 0.927 0.925 0.886 0.878 

Table 3-5 Cross validation results for predictors trained using a ten-position vs. a 16-position 

domain binding site definition. 

3.4.2 Domain structure data 

The initial set of PDZ domain structures consists of one NMR and 17 X-ray structures for human 

collected from the Protein Data Bank (PDB) (Berman et al. 2000) with corresponding interaction 

data from phage display or protein microarray experiments (Stiffler et al. 2007; Tonikian et al. 

2008). Five NMR structures were collected from the PDB for mouse. For NMR structures, only 

the first model was used. Homology models were used to increase the number of structures 

available for domain structure feature encoding. In total, 11 human and 54 mouse PDZ domain 

models were modelled by SWISS-MODEL (Arnold et al. 2006) (downloaded Feb-Sep 2011) 

through the Protein Model Portal, which is a website providing access to structure models 

generated by different protein structure resources (Arnold et al. 2009).  All training models have 

greater than 50% sequence similarity to their template structure (average 90%). The minimum 

QMEAN score for the training models is 0.520 (average 0.836).  Please see Appendix B, Table 

B-1 for details on all training domains. 
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3.4.3 Domain-peptide interaction data 

PDZ domain-peptide interactions were collected from published high throughput phage display 

and protein microarray experiments for human and mouse, respectively (Stiffler et al. 2007; 

Tonikian et al. 2008). Since the phage display data consisted of only positive interactions (of 

which many could be non-genomic, meaning not similar to any genomic peptide), I used the 

protocol described in the previous chapter to filter the interactions for genomic interactions and 

to generate additional negative interactions. A minor modification of this procedure was adopted 

to allow for the inclusion of additional class II type PDZ domains to increase coverage of the 

PDZ family – the minimum number of genomic peptides required for inclusion was relaxed from 

ten to four. Only domains with both positive and negative interaction data were used for 

predictor training. 

3.4.4 Domain structure feature encoding 

Structure features across the entire PDZ domain structure were computed and values 

corresponding to the ten core binding site positions were extracted from the larger list of features 

computed for all domain positions. Four types of structure features involved in protein folding 

and stability were computed to describe the PDZ domain structure (Figure 3-9).  

 

Figure 3-9  3D structure of a complexed PDZ domain in complex with a peptide.  The ten core 

domain binding sites are highlighted in blue and the bound peptide is in orange. PDB:2OQS 

(NMR first model). 
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In total, the PDZ domain structure as defined by the core positions was represented by a vector 

of length 240 features. Each value in the feature vector was scaled to lie between 0 and 1. Details 

regarding software parameters used to compute the following structure features are available in 

Appendix B. 

3.4.4.1 Solvent accessibility, hydrogen bonding and positive phi angle 
properties 

The first feature type consists of five values describing protein structure and were computed 

using the JOY web server (Mizuguchi et al. 1998). Solvent accessibility indicates whether the 

protein surface in the area at the given core residue position is available to interact with ligands. 

Therefore, the first value indicates whether a given residue is solvent accessible or inaccessible. 

Patterns of hydrogen bonding are important in forming protein secondary and tertiary structure 

and are known to be important for canonical C-terminal peptide binding to the PDZ domain. The 

next three values indicate if there is a residue side chain hydrogen bonded to a main chain amide, 

carbonyl or another side chain. Finally, since positive main chain phi angles may restrict what 

types of residues may be accommodated at a given position, the last value indicates if the residue 

has a positive phi angle. These binary features (i.e. absence is 0, presence is 1) were computed 

for each core residue position resulting in a binary vector of length 50 (5 features x 10 core 

positions). 

3.4.4.2 Solvent accessible area 

The second feature type is a single value indicating how much surface (i.e. area) for a core 

residue is available for binding to a ligand residue. This feature was computed using the SURFV 

software (Sridharan et al. 1992) for each residue resulting in a numeric vector of length 10 (1 

feature x 10 core positions). 

3.4.4.3 Electrostatic potential and hydrophobicity 

Protein-protein interactions are facilitated by the electrostatic and hydrophobic complementarity 

of molecular surfaces. Therefore, the third and fourth feature types describe the electrostatic 

potential and hydrophobicity along the surface of the domain. At each core residue position, nine 

values were sampled from the surface resulting in a total of 90 electrostatic and 90 
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hydrophobicity values (9 features x 10 core positions). These features were generated by the 

VASCo software (Steinkellner et al. 2009). 

Three-dimensional geometric descriptors were investigated but were not included because they 

resulted in inferior cross validation performance (Figure 3-10).  

 

Figure 3-10 Cross validation results for structure-based predictors trained using different 

combinations of structure features. Initially, five types of structure features were considered for 

feature encoding: Joy (solvent accessibility, hydrogen bonding), Surfv (solvent accessible area), 

VASCo (electrostatics), VASCo (hydrophobicity) and 3D Zernike descriptors (structure shape). 

Five predictors were trained with all but one of the feature sets and the performance for multiple 

cross validation strategies was measured. For all strategies except for the leave-12%-of-domains-

out, the performance across all predictors is comparable. For the strategy that involved leaving 

sets of domains out, the performance improves only if the 3D Zernike descriptors are not used. 

Therefore, the final domain structure feature encoding did not include these features. 
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3.4.5 Peptide sequence feature encoding 

Peptides were encoded using a sparse binary vector encoding with each residue in the peptide of 

length five represented using a binary vector of length 20. The vectors were concatenated to form 

the final feature vector of length 100. 

3.4.6 Semi supervised negative training set expansion 

An initial predictor was built using the data for 88 PDZ domains described above. A preliminary 

assessment of the predictor’s proteome scanning performance was performed by scanning the 

human proteome (defined by genome assembly Ensembl:37.64) for each domain in the training 

set. This initial predictor returned a large number of hits (1000 or more) for over half of the 

domains with an average number of predictions returned per domain of over 2000. (Figure 3-11 

Left boxplot).  

 

Figure 3-11 Number of hits returned by different structure-based predictors during negative 

training set expansion.  (Left Boxplot) An initial predictor was built using all available training 

data corresponding to 88 PDZ domains. When proteome scanning was performed for only the 

training domains, the predictor returned a large number of hits (1000 or more) for over half of 

the domains. In general, the mean number of predictions returned per domain was over 2000.  

(Middle Boxplot) Additional negative training data was generated by using an SVM to scan a 

pool of proteomic human or mouse peptides. The resulting predictor predicted 1000 or more hits 

for 18% of training domains with a mean number of predictions returned per domain of 685.  
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(Right Boxplot) For five domains, the predictor still predicted over 2000 interactions and I 

considered these to be outliers and removed these domains from the training set. The final 

predictor uses training data for 83 PDZ domains. The average number of predictions per training 

domain returned by the final predictor was 406  

Since previous phage display experiments detected fewer than a hundred binders per domain 

among billions of random peptides, the majority of these initial predictions are likely false 

positives. I surmised that the initial negative training data did not adequately cover the negative 

proteomic interaction space. Therefore, I used a semi-supervised learning approach similar to a 

method previously used to expand negative training data sets when there are no negatives 

initially available (Wang et al. 2006).  This predictor was used to scan the human proteome for 

interactors of training domains as I did for the initial predictor.  I found that adding negatives 

reduced the number of hits returned per domain.  Specifically, when I used this predictor to scan 

the human proteome for interactors of training domains, fewer domains (16 out of 88 domain or 

18%) still had 1000 or more predicted hits. For all but one domain, which had no change, the 

number of predictions returned per domain was lower than before, with an average number of 

predictions returned per domain of approximately 685 (Figure 3-11 Middle Boxplot). However, 

for five domains, the predictor still predicted over 2000 interactions. These were considered to be 

outliers and removed these domains from the training set. The above steps were repeated to train 

the final predictor using a total of 942 positive and 1843 negative interactions involving 83 PDZ 

domains and 872 peptides.  A final scan for only training domains, revealed that the final 

predictor predicted 1000 or more hits for only five out of 83 domains (approximately 6% of 

training domains). The average number of predictions per domain returned by the final predictor 

was approximately 400 (Figure 3-11 Right Boxplot). I did not remove any more domains from 

the training set to avoid removing too many positive interactions from the data set.  The final 

predictor was trained using a total of 942 positive and 1843 negative interactions involving 83 

PDZ domains and 872 peptides (Table 3-6).   

  Domain Interactions 

Organism Source # Pos # Neg # Pos # Neg 

Mouse Protein microarray 58 53 527 1026 

Mouse SVM Negatives - 24 - 210 

Human Phage Display 25 - 415 - 
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Human PWM Negatives - 25 - 407 

Human SVM Negatives - 20 - 200 

 Totals 83 - 942 1843 

Table 3-6 Summary of domain-peptide interaction data used for training.  PWM negatives are 

artificial negative interactions generated using PWMs are described in Chapter 2. 

3.4.7 Functional enrichment analysis 

A gene function enrichment analysis was performed on the predicted sequence-based and 

structure-based gene interactors using GO biological process terms (Ashburner et al. 2000). The 

BiNGO (Biological Network Gene Ontology tool) software library (Maere et al. 2005) was used 

to determine the enriched terms. The hypergeometric test was used to compute a p-value 

assessing the GO term enrichment for a given set of predicted genes. Multiple testing correction 

was performed using the Benjamini and Hochberg False Discovery Rate correction. GO v1.2 

(downloaded Dec 7, 2011) and human GO annotations (downloaded Dec 7, 2011) were used. 

Only gene-sets with between five and 300 genes were used from the GO ontology (defined by 

the GMT file dated Dec 6, 2011). A list of enriched terms (p-value < 0.05 and FDR < 0.1) with 

more than one gene interactor and associated with more than two domains were retained. To 

better interpret the structure-based and sequence-based enrichment results, I created an 

enrichment map, a network-based visual representation of enriched terms that groups similar 

terms and eases identification of functional themes. The Enrichment Map Cytoscape plugin 

software to create the enrichment map (Shannon et al. 2003; Merico et al. 2010), using the 

parameters p-value < 0.05, FDR Q value < 0.1 and “Jaccard + overlap similarity” cutoff = 0.517. 
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Chapter 4  

Predicting Physiologically Revelant PDZ Mediated Protein-Protein 

Interactions in Human 

 

 

 

 

 

This chapter is the basis of a manuscript which will be submitted for publication: Hui, S., Jain, 
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protein-protein interactions in human.  
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4 Predicting physiologically relevant PDZ mediated 
protein-protein interactions in human 

4.1 Introduction 

Although computational predictors (including the ones presented in the previous chapters) can be 

used to predict PDZ domain-peptide interactions, these interactions may not be physiologically 

relevant (i.e. occur in the cell) resulting in a potentially large number of false positives.  It is well 

known that protein-protein interactions are influenced by different cellular constraints. For 

example, for an interaction to take place both the proteins should have correlated gene 

expression profiles, be part of same biological process and be present in the same cellular 

compartment. Therefore, information about proteins obtained from diverse biological data 

sources such as gene expression profiles, cellular location of proteins, functional annotation 

(molecular function and biological process), sequence signatures, literature, known experimental 

interactions can be used to identify physiologically relevant interactions among a given set of 

predicted interactions. These different biological data sources can then be combined using 

machine learning approaches to classify protein pairs as interacting or non-interacting.  

In this chapter, a Bayesian integration system was used to combine gene expression profiles, 

gene function similarity (molecular function, biological process), cellular location information, 

sequence signatures and binding site conservation to compute the probability that a given 

predicted protein-protein interaction is physiologically relevant.  Using the sequence and 

structure-based predicted interactions as input, the result is a set of high confidence and 

physiologically relevant PDZ mediated PPIs representing a 97% reduction in the number of 

initial predictions.  These interactions were used to build a high confidence and physiologically 

relevant PDZ mediated PPI network in human.   PDZ domain target function was characterized, 

by performing a gene function enrichment analysis and showed that the interactors are enriched 

in known and novel PDZ mediated biological processes.  Finally, several novel interactions 

involving the Frizzled-7 G protein-coupled receptor protein were verified using membrane yeast 

two-hybrid assay (MYTH). 
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4.2 Results 

4.2.1 Bayesian integration system achieves high cross validation results 

We used ten fold cross validation to estimate the performance of the Bayesian integration 

system. The system achieves high ROC and PR AUC scores of 0.83 and 0.82 respectively and is 

estimated to perform well in practice (Figure 4-1). 

 

Figure 4-1  Bayesian integration performance estimation using ten fold cross validation. 

To determine the contribution of each biological evidence source to the integration system, we 

repeated the ten fold cross validation using a predictor built with all evidence sources except one.  

The results show that only by using all sources may the highest ROC and PR AUCs (0.83 and 

0.82 respectively) be achieved (Figure 4-2). 
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Figure 4-2  Ten fold cross validation results for predictors built using all evidence sources 

except one.  BS = binding site conservation, CC = cellular component, BP = biological process, 

MF = molecular function, EX = expression correlation, SS = sequence signature. 

4.2.2 Bayesian integration system substantially reduces the number of 
initial predictions 

The sequence-based and structure-based predictors were used to scan the human proteome for 

interactions for 222 and 215 PDZ domains, respectively.   In total, there were 106,792 unique 

interactions made by either the sequence-based or structure-based predictor.  This initial set was 

used as input into the Bayesian integration system to yield a set of 7,185 predictions with scores 

above or equal to a cutoff set to be 0.5. To obtain a final set of high confidence predictions, only 

interactions with scores 0.9 or above and predicted by both predictors were selected from this 

set.  This cutoff was chosen based on cross validation results which showed that at this threshold, 

the estimated true positive rate is 0.65 while the false positive rate is 0.097 (Figure 4-1).  The 
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number of unique interactions in the final high confidence set was 3,380 involving 127 PDZ 

domains and is a 97% reduction in the number of initial interactions. 

A subset of predictions that could be verified as true or false positives according to PDZBase 

(Beuming et al. 2005) and Luck et al. (Luck et al. 2011) were used to estimate if more true 

positive or more false positive interactions were filtered out by the integration system.  Ideally, 

the latter is desired as this indicates that the system produces a better quality set of predictions by 

filtering out more incorrect false positive predictions.  The number of true and false positives 

present in the set of interactions before Bayesian integration (i.e. 106,792 interactions) was 51 

and 68 respectively.  After integration and high confidence filtering (i.e. 3,380), the number of 

true and false positives was 28 and 14 respectively.  Therefore, of the interactions that were 

filtered out, 79% or 54 interactions were false positives while 45% or 23 were true positives 

(Figure 4-3).  

 

Figure 4-3  Number of true and false positives filtered out using Bayesian integration.  The 

number of true and false positives in the set of 106,792 initial predictions (blue and pink).  The 

number of true and false positives in retained interactions (i.e. not filtered) was 3,380 (blue).  

The number of true and false positives in filtered interactions was 103,412 (pink). 
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Although a larger set of known interactions should be used for more rigorously verification, this 

result suggests that the integration system removes more false positives than true positives. 

4.2.3 Bayesian integration system should be trained using real negative 
interactions 

Blind tests for human were carried out to obtain an unbiased measure of the performance of the 

integration system.  Positive interactions were obtained from PDZBase (Beuming et al. 2005) 

and negative interactions were obtained from Luck et al. and were manually curated from the 

literature (Luck et al. 2011).  In total, 51 domains and 50 positive and 68 negative interactions in 

human were used for blind testing.  The predictor achieved ROC and PR AUC scores of 0.568 

and 0.497 respectively (Figure 4-4). 

 

Figure 4-4  Blind testing performance for the Bayesian integration system in human. 

The low scores are due to the integration system scoring many negative test interactions as 

positive interactions.  These results suggest that the system is not able to correctly predict 

negative interactions as well as it can positive interactions.  This is likely due to the fact that the 

Bayesian system was trained using randomly paired proteins as negative interactions.  It is  

expected that training the system with more biologically meaningful real negative interactions 
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will improve blind testing performance and the system’s ability to correctly predict negative 

interactions. 

4.2.4 Construction of a physiologically relevant PDZ mediated protein-
protein interaction network in human 

A high confidence physiologically relevant PDZ mediated protein-protein interaction network 

was constructed using the Bayesian integrated interactions (score >= 0.9) (Figure 4-5).   

 

Figure 4-5  Physiologically relevant high confidence protein-protein interaction network in 

human.  The network consists of 127 domains 773 proteins and 3,380 edges.  To ease 
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identification of structure in the network, the clusterMaker Cytoscape plugin (Morris et al. 2011) 

was used to layout the network. The MCL algorithm was used to organize domains (i.e. pink 

nodes) into clusters (i.e. nodes connected by darker green edges) connected to interacting 

proteins (i.e. purple nodes) and to visualize inter-connected clusters (i.e. lighter green edges). 

Yellow nodes highlight domains discussed in the main text.  All nodes and edges are depicted in 

the network. 

Several large clusters are clearly visible and suggest examples of promiscuous PDZ domains (i.e. 

domains which are connected to over 50 binding partners) and may be associated with different 

functional roles.  For example, one of the largest clusters is centered around SHANK3-1 which is 

connected to 189 partners. Although a large number of interactors are predicted to interact with 

this domain, these interactions are likely regulated or occur in different cellular locations to 

fulfill different biological processes.  This is suggested by the different functional enrichments 

represented among the predicted targets which are varied and include ‘ion transport’, 

‘neurogenesis’, ‘photoreceptor cell maintenance’ and ‘actin filament organization’ (p-value < 

0.05).   In contrast, the network is dominated by many small clusters (i.e. domains which are 

connected to 10 or less binding partners) which may indicate more selective domains with more 

specific biological functions.  For example, ARHGAP21-1 is connected to six binding partners 

with the majority of functions enriched in the regulation of GTPase activity (p-value < 0.05).  In 

general, the node degree distribution follows a power law distribution (p > 0.272, K-S test) and 

the average node degree is 26.7. 

The network also shows a large number of inter-cluster edges (i.e. edges that connect many 

domains to the same binding partners).  This suggests a potentially high degree of cross-

selectivity which is a well-studied characteristic of PDZ domains. Over 990 domain pairs have 

high binding overlap scores of over 0.25, where overlap is computed as the intersection of 

interactions / union of interactions for domain pairs with a union of 10 or more interactions. 

 These include related domains such as the DLG1,2,3,4-3 domains which have a high average 

binding site sequence similarity (> 0.921) and high average overlap score of 0.614. This type of 

group appears as multiple pink nodes within the same cluster.  On the other hand, the domain 

pair RGS12-1 and MAST2-1 which are unrelated domains, have a low binding site sequence 

similarity of 0.438, but have an overlap score of 0.307.  These domains are depicted as nodes in 

different clusters.  The binding preferences of these examples were visualized as sequence logos 
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and show that these domains bind similar class I targets (similarity is > 0.83) (Figure 4-6 First 

and Second Columns). 

 

Figure 4-6  Binding specificities of PDZ domains with high and low degrees of target overlap. 

In contrast, some clusters have less overlap and suggest cases where cross-selectivity may be 

minimized.  For example, MPDZ-1,2,3,4,5,9,10,13 domains have an average overlap of 0.03 and 

bind different targets (Figure 4-6 Third Column).  As these are domains on the same multiple 

PDZ containing protein (MPDZ), this may enable multiple binding partners to interact 

simultaneously and efficiently during protein complex assembly. 

As I have shown here, network visualization can be used to highlight specific interactions for 

more detailed study to further our understanding of different properties of PDZ domains (i.e. 
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promiscuity vs. selectivity, cross-selectivity).  Although the network is constructed using high 

confidence predicted interactions, experimental validation to verify and support any findings is 

required.   

4.2.5 Predicted PDZ targets are enriched in known and novel biological 
functions 

To determine biological processes which are enriched among the predicted PDZ binding targets, 

an enrichment map was created using the high confidence physiologically relevant predictions 

(Figure 4-7).   
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Figure 4-7  A functional map of physiologically relevant PDZ domain biology. An enrichment 

analysis of the GO biological process terms associated with the predicted targets for each of the 

Neural 

Development 

Response to 

Growth Factor 

Stimulus 

Growth Factor 

Receptor Signalling 

Regulation of 

Kinase Activity 

Mesenchymal 

to Epithelial 

Transition 

Bone 

Mineralization 

Regulation of 

Skeletal Muscle 

Differentiation 

Odontogenesis 

Regulation of 

Muscle 

Contraction 

Wnt  

Signalling 

Regulation of 

GTPase Activity 

Learning, Memory, 

Sensory Perception 

Innate Immune 

Signalling 

Regulation of 

GTPase Signalling 

Fatty Acid 

Metabolism 

Regulation of 

Cytoskeleton 

Organization 
Embryonic Limb 

Development 

Phospholipase 

Activity 

Actin Filament 

Organization 

Reproductive 

Structure 

Development 

Response to 

Radiation Response to 

Inorganic 

Substance 

G-Protein 

Signalling 

Neuron 

Recognition 

Blood Vessel 

Development 

Organ 

Development 

Muscle 

Structure 

Development 

Glutamate 

Signalling 

Integrin-

Mediated 

Signalling 

Ephrin  

Receptor 

Signalling 

Hippo 

Signalling 

Photoreceptor  

Cell Maintenance 

Inositol Lipid-

Mediated  

Signalling 

Regulation  

of Cell  

Growth 

Wound 

Healing 

Cell Junction 

Assembly 

Cell Adhesion 

White Blood Cell 

Differentiation 

Regulation of 

Protein Transport 

Ion Transport 

Ion  

Homeostasis 

Neurotransmitter 

Transport 

Phospholipid 

Transport 

Regulation of 

Leukocyte Proliferation 

Anion 

Transport 

Fibroblast 

Proliferation 

Regulation of 

Phosphorylation 

Peptidyl Serine/

Peptidyl Tyrosine 

Phosphorylation 

Dephosphorylation Deacetylation 

Cellular Component 

Morphogensis 

NODE 

EDGE 

Predicted (outer) 

Known (inner) 

Number of domains with this term 
none high 

Amount of gene overlap 
low 

high 

small large 

Gene-set size Enriched functional term 



88 

 

domains after Bayesian integration was performed (score  >= 0.9). The results were visualized as 

a network where the nodes represent gene-sets. The colour of the node border represents the 

number of domains that the gene-set was seen enriched for, among predicted targets. The colour 

of the node centre represents the number of domains that the gene-set was seen enriched for 

among known targets. Edges represent the overlap between two connected gene-sets with the 

thickness corresponding to the number of genes overlapping.  Blue circled clusters represent new 

themes not seen in the previous enrichment map (Figure 3-7) or in iRefIndex. 

In this map, I also compared the enrichments to those obtained from known PDZ domain 

interactors found in the iRefIndex database (Razick et al. 2008).  Therefore, nodes represent 

enriched terms and edges connect terms with overlapping genes.  Node borders are coloured 

according to whether or not the term was seen enriched among predicted interactors (grey means 

term is not enriched, red means term is enriched), while node center colourings correspond to 

enrichment seen among known interactors.  Functional themes are clusters of related terms and 

are circled for easy identification.  In order to visualize enrichment with respect to predicted 

interactors, nodes with enrichment seen only for known interactors were not included. 

Several biological processes known to involve PDZ domains (i.e. neural development, cell 

junction assembly, ion transport) are enriched among predicted and known targets (nodes with 

red borders and centers).  This map was compared to the previous enrichment map (Figure 3-7) 

which was created using the full set of interactions before Bayesian integration.  In general, 

many of the terms in the previous map are still present after filtering including those related to 

‘white blood cell differentiation’, ‘innate immune response signalling’ and ‘fatty acid 

metabolism.  However, some themes are no longer present such as ‘xenobiotic metabolism’, 

‘vacuole assembly’ and ‘regulation of cytokinesis’. Missing themes are those that may not be 

physiologically relevant because they consist of targets that are low confidence or are predicted 

to bind PDZ domains only in vitro.  Finally, several new themes (i.e. not seen in the previous 

map) emerge as a result of Bayesian integration.  This is due to the large reduction in the number 

of predicted interactors per domain (i.e. sampling size) as a result of filtering which increases the 

statistical power of enrichments that were previously too weak to pass significance testing. 

 Some examples of these themes are highlighted as blue coloured clusters and include ‘regulation 

of phospholipase activity’, ‘ephrin receptor signalling’, ‘bone mineralization’ and are also not 

enriched among known interactors in iRefIndex.  Many novel (i.e. not found in the literature or 
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in iRefIndex) interactions are predicted.  For example, for ‘ephrin receptor signalling’, PDZ 

domains INADL-5, 9 and MPDZ-11 are predicted to interact with ephrin type-A receptor 7 

(HGNC:EPHA7) (Pasquale 1997).  For ‘bone mineralization’, several domains including DLG1-

1, LIN7A-1, MAGI1-6 are predicted to interact with activin receptor type-2A (HGNC: 

ACVR2A) (Ebisawa et al. 1999).  For ‘regulation of phospholipase activity’, domains 

DLG1,2,4-3 are predicted to interact with endothelin-1 receptor (HGNC: EDNRA) (Ambar and 

Sokolovsky 1993). 

4.2.6 Novel PDZ mediated interactions are experimentally validated 

Frizzled receptors are a subset of the G protein-coupled receptor family and are involved in 

mediating Wnt signalling pathways which are responsible for establishing basic developmental 

processes in the embryo and tissue homeostasis of organs in the adult (Schulte and Bryja 2007). 

In mammals, there are ten different Frizzled proteins.  Eight contain C-terminal PDZ binding 

motifs and have been shown to interact with PDZ domains of other proteins (Wawrzak et al. 

2009).  For example, interactions between Frizzled-1,2,4,7 proteins and Disheveled PDZ 

domains are important for proper Wnt signalling function in Xenopus (Umbhauer et al. 2000; 

Wong et al. 2003).  Frizzled-4,5,7,8 have also been shown to interact with MAGI3 in mouse to 

mediate ciliogenesis and non canonical Wnt signalling (Yao et al. 2004).  Finally Frizzled-

1,2,4,7 are also known to interact with DLG4-1 and 2 to facilitate clustering of adenomatous 

polyposis coli proteins (Hering and Sheng 2002). 

Many interactions involving Frizzled-7 (FZD7) were predicted of which several are known 

including those between Frizzled-7 and domains in the PSD-95 family of proteins and the 

MAGI3-2 domain (Yao et al. 2004).  We selected five novel PDZ interactions involving 

Frizzled-7 and experimentally validated them using membrane yeast two-hybrid (Figure 4-8). 
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Figure 4-8  Membrane yeast two-hybrid validation of novel PDZ interactions involving 

Frizzled-7 (FZD7).  The bait (FZD7) construct and prey construct (NubI or NubG version) were 

cotransformed into yeast cells (S. cerevisiae NMY51). NubI version of prey is used as expression 

control. Prey OST1 is used as negative control. 

Two confirmed interactions involve Scribble (SCRIB-2, SCRIB-4) which, along with Frizzled, is 

a core component functioning within the planar cell polarity pathway (McNeill 2010). Two other 

confirmed interactions involve PAR3B and SNTB2 proteins which may play a role in the proper 

formation of renal epithelial tight junctions and neuromuscular junctions respectively (Lumeng 

et al. 1999; Gao et al. 2002).  Interestingly, Frizzled expression has been reported in renal and 

skeletal muscle cells (Janssens et al. 2004; Korkut and Budnik 2009).  Since PDZ proteins often 

function as scaffolding proteins, these interactions suggest novel PDZ interactions with Frizzled-

7 to organize protein complexes to facilitate proper cell polarity and formation of cell junctions. 

4.3 Discussion 

In this chapter, I have presented a Bayesian integration system which assigns confidence scores 

to interactions in a given set of PDZ mediated PPIs based on different lines of biological 

evidence.  Using this system, a set of previously predicted PDZ domain-peptide interactions in 

human was substantially reduced by 97%.  Blind testing using a limited number of interactions 

suggests that the interactions removed are mostly false positives resulting in a higher quality set 

of predictions.    

Other Bayesian methods exist that integrate biological evidence from different sources to score 

protein interactions (Li et al. 2008), however, our method consists of several improvements.  For 

FZD7 SCRIB-1 

FZD7 SCRIB-2 

FZD7 SCRIB-4 

FZD7 SNTB2-1 

FZD7 OST1 

FZD7 PARD3B-2 

NubI NubG NubI NubG NubI NubG bait prey 

-WL -WLAH -WLAH + X-gal 
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example, compared to existing methods, our system uses more gene expression data sets and this 

has been shown to improve predictor performance (Jain 2011).  We also use gene function 

similarity to determine whether two proteins are annotated to similar GO terms.  This 

measurement has also been shown to be better than the ones used by other methods which 

merely assess similarity using the intersection of terms between proteins (Jain and Bader 2010). 

Although the method works well, the evidence sources used have limitations and therefore, false 

positives, although reduced, may still exist.  For example, two proteins may be annotated to the 

same GO cellular component (or have a high semantic similarity score for cellular component), 

but this does not necessarily mean that they are interacting.  Similarly, even though two proteins 

are found to be co-expressed they may not interact in vivo since other factors such as protein 

concentration also affect whether two proteins will interact.  Despite these limitations, using 

multiple lines of evidence in combination helps to improve predictor performance and addresses 

the limitations faced when using only single sources of evidences. 

A large number of predictions were filtered out by the Bayesian integration system and our use 

of a strict cutoff score.  Many of these predictions may actually be filtered out because the 

Bayesian system does not compute a score for them due to a lack of information for one or both 

proteins involved in the interactions. As more information about proteins is available and used 

for training, the more accurate and comprehensive the system will be.   

Although a use-only-one-evidence-source cross validation strategy was performed to determine 

the importance of individual evidence sources, more rigorous approaches such as an all-but-one-

evidence-source could be implemented to determine such importance.  These strategies would 

enable the identification of uninformative or deleterious evidence sources (i.e. if the AUC scores 

do not change or are negatively affected).  These evidence sources could then be eliminated from 

the set of sources used for training. 

Since the integration system uses GO biological process as a predictive feature, the functional 

enrichment map analysis of predicted and known targets may contain biased enrichments (i.e. 

terms that are not actually significantly enriched).  In the future, this may be addressed by testing 

each “enriched” term against a null distribution of p-values computed using permutation testing.  

This test would involve the following steps.  First, a null distribution of p-values is created by 

randomly selecting a set of predicted PDZ domain-peptide interactions involving n targets (or 
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genes).  All GO terms for the genes in this random set are tested for enrichment and the one with 

the highest p-value is added to the null distribution.  This is repeated m times (e.g. m = 10,000).  

Multiple null distributions are created one for each size n represented in the original enrichment 

map.  Next, “enriched” terms from the original enrichment map are retained if its associated p-

value is more significant than 95% of the ones in the corresponding null distribution.  This would 

create a final enrichment map containing terms that are significantly enriched according to strict 

permutation testing.  Finally, since GO process is used as a predictive feature in the integration 

system, the results of any enrichment analysis including the enrichment map in this chapter 

should be used only to compare enrichments between predicted and known targets and not as a 

means to validate predicted targets. 

The integration system simply filters whether or not a given protein-protein interaction is 

physiologically relevant given a set of input interactions.  It does not predict whether a PPI is 

mediated by a PDZ domain.  Whether or not a PPI is mediated by a specific domain is 

determined by the set of input predictions obtained from other methods (i.e. SVM, PWMs etc).  

Therefore, instead of using a gold set consisting of PPIs where at least one partner contains a 

PDZ domain, future versions of the predictor should be trained using all protein-protein 

interactions available in databases such as iRefIndex. This would create a more general filtering 

system at the protein level and align better with the purpose of the system which is simply to 

identify if a given PPI in general is physiologically relevant.   

More specifically, the features used for training the predictor are also only relevant for proteins 

in general.  Therefore, potential problems for example, with sequence signature features 

identifying domain correlations in interacting or non-interacting proteins that do not involve PDZ 

domains, should not be an issue.  Again, whether or not a PPI is mediated by PDZ domains is 

determined a priori by other predictors. 

Since the Bayesian system was trained using randomly paired negative human interactions, the 

the predictor’s performance may improve if real biologically relevant negative interactions were 

used for training and may improve the system’s ability to correctly predict blind negative 

interactions.  
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4.4 Methods 

4.4.1 SVM prediction of PDZ mediated protein-protein interactions 

Prediction of PDZ domain-peptide interactions were performed using the sequence-based and 

structure-based predictors described in the previous chapters.  These predictors were trained 

using experimentally determined PDZ domain-peptide interactions from high throughput protein 

microarray and phage display experiments for mouse and human, respectively (Stiffler et al. 

2007; Tonikian et al. 2008).  For the sequence-based predictor, residue information at contacting 

positions in the domain binding site and peptide were obtained from a PDZ domain structure 

complexed with a peptide ligand.  For the structure-based predictor, domain structure features 

were mined from the binding sites (consensus site determined from nine PDZ complex 

structures) of PDZ domain structures (i.e. experimental structures or homology models).  

Features used include factors known to facilitate protein folding and stability such as 

electrostatics, hydrophobicity, solvent accessibility, patterns of hydrogen bonding and the 

presence of phi torsion angles.  Amino acid sequence features were used for the peptide.  The 

predictors were used to scan the human proteome (defined by genome assembly 

Ensembl:GRCh37.64) for targets of hundreds of PDZ domains. 

4.4.2 Gold standard training set 

A gold standard training set was created using 1322 known interactions involving at least one 

PDZ containing protein from iRefIndex (Razick et al. 2008).   Although such interactions may 

contain PDZ domains, it is not known whether or not the interactions are actually mediated by  

PDZ domains.  This constraint should be eliminated to create a gold set for training a system that 

is suitable for filtering protein-protein interactions in general – not just ones mediated by PDZ 

domains (please see Discussion).  A negative interaction set of equal size was created by 

randomly pairing proteins from the known interaction set and ensuring that they did not 

correspond to known positive interactions. 

4.4.3 Bayesian integration of biological evidences  

4.4.3.1 Cellular location, biological process, molecular function              

The GO is a popular taxonomy of controlled biological terms that can be used to assess the 

functional relationship between different proteins (Ashburner et al. 2000). GO organizes 
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knowledge of cellular location, biological process, and molecular function of different proteins in 

three orthogonal ontologies. The strength of the relationship between proteins annotated to these 

ontologies can be quantified using semantic similarity. A high semantic similarity value between 

two proteins indicates that they participate in similar pathways or cellular components and are 

thus more likely to physically interact in the cell than randomly selected proteins. The 

Topological Clustering Semantic Similarity (TCSS) metric was used to compute the semantic 

similarity between GO terms annotated to proteins in the predicted protein interaction dataset 

(Jain and Bader 2010).     

4.4.3.2 Gene Expression 

If two or more genes are similarly expressed over multiple conditions in a gene expression 

experiment, they are more likely to be related in function. Multiple studies have shown that a 

strong correlation exists between gene expression profiles of interacting protein pairs when 

compared to random pairs (Ge et al. 2001; Grigoriev 2001; Jansen et al. 2002; Bhardwaj and Lu 

2005). Therefore, high correlation between gene expression profiles of interacting proteins 

provides evidence in support of that interaction. Gene expression profiles from 117 studies were 

downloaded from the GeneMANIA gene function prediction website (www.genemania.org) 

(Mostafavi et al. 2008) and an average Pearson correlation was calculated using Fisher's z 

transformation (Faller 1981). 

4.4.3.3 Sequence signature 

Regions or sites of interest in a protein sequence (i.e. sequence signatures) can be used to predict 

novel interactions between two proteins (Shen et al. 2008).  Such regions may correspond to 

short sequence motifs, binding sites, enzyme active sites or other local secondary structure.  In 

particular, protein interactions have been predicted in the past by identifying pairs of domains 

enriched among a set of known interacting proteins (Ng et al. 2003; Betel et al. 2004; Rhodes et 

al. 2005).   

We use the information content (IC) score as defined below to determine co-occurring domains 

within proteins with experimentally verified interactions.   

 Eq. 4.1 
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where in the verified protein-protein interaction set, pij is the probability of seeing domain i in 

one protein and domain j in the other protein, pi is the probability of seeing domain i, pi is the 

probability of seeing domain j.  Protein A is predicted to interact with protein B if IC(A,B) is 

above a given threshold.  Information about domains for a given protein was obtained from the 

Protein Domains section, Domains subsection in Ensembl (defined by genome assembly 

Ensembl:GRCh37.62) using BioMart.  Domains were indentified by their InterPro PFAM IDs. 

4.4.3.4 Binding site conservation 

The more conserved a binding site is, the more functionally relevant it is.  Therefore, the 

conservation score for a given PDZ target was computed by finding a given protein's ortholog 

among mouse, worm and fly proteomes.  Orthology information was downloaded from 

Ensembl’s BioMart (June 2012).  If the ortholog existed, the score was determined by computing 

the Hamming distance between the ortholog’s last five residues with the given protein’s last five 

residues (score between 0 and 1.0).  This was done for all mouse, worm and fly orthologs and the 

maximum score was reported.  If there were no orthologs, the score was set to be -1. 

4.4.4 Protein-protein interaction network 

The clusterMaker Cytoscape plugin was used to layout and determine highly connected nodes in 

the protein-protein interaction network (Morris et al. 2011).  Network interactions indicated with 

edge attribute values of one were input into the MCL clustering algorithm.  Default clustering 

parameters were used (weak edge pruning = 10E-15, number of iterations = 16, max residual 

value = 0.001, max number of threads = 0).  Inter-cluster edges were restored after the network 

was automatically laid out.  Nodes representing protein interactors were coloured purple, nodes 

representing domains were coloured pink.  Edges connecting intra-cluster nodes (i.e. edges 

forming a cluster) were coloured a more opaque shade of green than edges connecting inter-

cluster nodes (i.e. edges connecting clusters). 

4.4.5 Membrane Yeast Two-Hybrid Assay 

MYTH assay was performed as described previously (Snider et al. 2010). Briefly, FZD-7 cDNAs 

were cloned to bait vector pTMBVa by gap repair. Prey cDNAs were cloned to pGPR3N by 

Gateway LR cloning. A pair of bait and prey vectors were cotransformed into NMY51 yeast 

cells, and the yeast cells were grown on SD-WL plates.  After colony formation, three 
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independent colonies from each assay were picked and grown on SD - WLAH or SD – WLAH + 

X-gal plates. Positive interactions were counted as those that could grow on SD - WLAH or SD 

– WLAH + X-gal plate. NubI version of preys were used as expression control. 
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Chapter 5 

Summary And Future Directions 
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5 Summary and future directions 

5.1 Thesis Summary 

My thesis focuses on building computational predictors of PDZ domain-peptide interactions for 

the purposes of proteome scanning.  These predictors were trained using high throughput 

interaction data from mouse and human with additional biological evidence sources added in a 

second stage to identify physiologically relevant interactions.  A machine learning framework to 

build the predictors was established and followed throughout the thesis.  The main components 

of the framework were data collection, feature encoding, predictor construction and performance 

evaluation.  By following this framework, the predictors could be systematically and efficiently 

built and enabled easier evaluation and comparison of predictor performance.  

In Chapter 2, I presented a sequence-based PDZ domain-peptide interaction predictor which was 

built using a support vector machine.  This predictor was trained using protein microarray data in 

mouse and phage display data in human.  In order to use the phage display data for training, 

which only contained positive interactions, I developed a novel method to generate artificial 

negative interactions using position weight matrices. Using cross-validation and a series of 

independent tests, I showed that the predictor successfully predicted interactions in different 

organisms (i.e. mouse, worm and fly).  I then used the predictor to scan the proteomes of human, 

worm and fly to predict binders for several PDZ domains. Predictions were validated using 

known genomic interactions and published protein microarray experiments.  Based on the 

results, novel PDZ interactions potentially associated with Usher and Bardet-Biedl syndromes 

were predicted.  A comparison of performance measures for the predictor and other existing 

sequence-based predictors demonstrated the predictor’s improved accuracy and precision at 

proteome scanning. 

In Chapter 3, I presented a structure-based predictor of PDZ domain-peptide interactions.  Since 

domain structure is known to influence binding specificity I hypothesized that structural 

information could be used to predict new interactions not predicted by the sequence-based 

predictor presented in Chapter 2. A technical result of this work was the use of a semi supervised 

predictor to computationally generate artificial negatives to supplement training and reduce the 

problem of over-prediction (i.e. prediction of too many positive interactions per domain). This 
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predictor was also used to scan the human proteome for ligands of hundreds of PDZ domains. By 

comparing the structure-based predictions to the sequence-based proteome scanning predictions, 

I showed that indeed the structure-based predictor is complementary to the sequence-based 

predictor, finding unique known and novel protein-protein interactions.  Furthermore, I showed 

that the structure-based predictor is also less dependent on training-testing domain sequence 

similarity. A functional enrichment analysis of the sequence and structure-based predicted PDZ 

targets was used to create a map of PDZ domain biology. This map highlighted PDZ domain 

involvement in diverse biological processes, some only found by the structure-based predictor. 

Based on this analysis, novel PDZ domain involvement in ‘xenobiotic metabolism’ was 

identified and new interactions for other processes including ‘wound healing’ and ‘Wnt 

signalling’ were suggested.  An online resource (http://webservice.baderlab.org/domains/POW) 

was made to enable users to access the two predictors. 

In Chapter 4, I presented a Bayesian integration system to combine gene expression, gene 

function similarity (molecular function, biological process, cellular component), sequence 

signatures and binding site conservation information to score the PDZ domain-peptide 

interactions predicted by the sequence-based and structure-based predictors.  The result was a set 

of high confidence and physiologically relevant interactions representing a substantial reduction 

in the number of initial predictions.  A comparison of predictor performance measures showed 

that the integration system mainly filtered out false positives resulting in a set of higher quality 

predictions.  Using this reduced set of interactions I created a high confidence and 

physiologically relevant PDZ interaction map for human.  The PDZ domain targets were 

analyzed, by performing an enrichment analysis which showed that the targets were enriched in 

known and novel PDZ mediated biological processes.   

 

5.2 Future Directions 

5.2.1 Proteome scanning for other domains 

The PDZ domain is one of many known PRMs and has been the focus of this thesis because of 

its simple mode of target recognition and availability of high throughput experimental interaction 

data.  Data sets are now available for other PRMs including WW, SH3 and SH2 domains and 

have resulted in the development of predictors for these domains as well.  As discussed in this 
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thesis, such predictors should be built using all available data for training and should utilize a 

variety of different features (not just sequence information) in order to build predictors which 

have the greatest coverage, accuracy and can be used for the purposes of proteome scanning in 

multiple organisms.  As more data sets are published, this will enable the construction of 

multiple predictors each capable of predicting interactions for a family of domains.  Not only 

does this depend on the availability of experimentally determined interactions but the availability 

of other types of data which can be used for training, including solved protein structures and 

cellular contextual information about protein interactions.  As more predictors are built, we can 

start to obtain a more complete picture of the cellular interactome mediated by PRMs. 

5.2.2 Predictor training using additional features 

Sequence and structure-based information have been the main source of features for predictor 

training in this thesis.  However, the use of different and complementary features for training 

will result in a predictor that is capable of identifying new interactions compared to the ones 

predicted by existing methods.  This would help to further expand the current coverage of 

interactions and to strengthen confidence in current predictions.  For instance, protein backbone 

flexibility has been shown to produce a predictor that is capable of predicting interactions for a 

subset of PDZ domains (Smith and Kortemme 2010) and should be considered as an additional 

structure-related feature that can be explored for predictor training.  Binding pocket geometry 

and shape is another feature which could also be used.  Although this was explored in the form 

of 3D-Zernike descriptors (La et al. 2009) in Chapter 3, it was shown not to benefit the structure-

based predictor.  However, other shape descriptors can be investigated such as real spherical 

harmonic coefficients (Morris et al. 2005) to see if they improve predictor performance. 

Extending these types of features to other domains or incorporating them as additional features 

for PDZ interaction prediction will improve predictor performance and coverage. 

The addition of other biological sources of evidence would benefit the Bayesian integration 

system discussed in Chapter 4.  These would include information from network topology 

analysis (based on the principle that two proteins that have many shared neighbors in a protein-

protein interaction network are more likely to interact) and text mining (interaction information 

automatically extracted from the literature).  Ideally information about the abundance or 

concentrations of proteins within the cell would also be available and used. 
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5.2.3 Mapping changes in PDZ mediated interaction networks 

Another useful future direction for this work is to study PDZ mediated network rewiring caused 

by evolutionary or disease-related mutations.  Kim et al., studied the changes in C-terminal 

binding sequence of PDZ targets from PDZBase and phage display experiments and suggested 

rewiring of PDZ domain-peptide interactions as a mechanism for the development of new 

protein functions in human (Kim et al. 2012).  Ideally, PDZ interaction networks across different 

organisms could be aligned to provide insight into the function and evolution of different parts of 

the proteome involving domain containing proteins.  Since the predictors presented here can 

perform proteome scanning for PDZ domains in multiple organisms (human, mouse, worm and 

fly), it is now possible to construct such networks for PDZ proteins and further enable the study 

of network evolution with methods such as network alignment algorithms. 

Studying disease-related mutations and their rewiring effects on underlying domain mediated 

interaction networks can help to study the functional impact of such changes.  For example, point 

mutations in phosphorylation sites on cancer genes and their effects on the post translational 

modifications by protein kinase domains were recently studied (Reimand and Bader 2012).  

Information about disease genes, disease mutations including cancer mutations are available in 

various databases (Hamosh et al. 2005; Stenson et al. 2009; Forbes et al. 2011) and can be used 

to identify disease-related mutations in PDZ proteins in specific-disease pathways.  Predictors 

can then be used to determine changes in binding targets thus highlighting candidates for further 

study.  Since the predictors discussed here are suitable for proteome scanning for unmutated 

PDZ domains, additional work needs to be performed to assess their ability to accurately predict 

interactions for mutated PDZ domains. However, if possible this type of analysis can shed more 

light on known and new roles of PDZ domains in disease.  
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A. Detailed summary of proteome scanning results 

The following is a summary of the results of proteome scanning in different organisms using the 

SVM, MDSM, additive model and PWM predictor. Method is the name of the predictor used, 

Domain is the name of the domain that the proteome is being scanned for, NN Sim is the 

similarity of the scanning domain to its nearest training neighbour, Num predicted is the number 

of positive predictions made by the predictor, #TP is the number of positive predictions validated 

to be positive, #FP is the number of positive predictions that were validated to be negative, 

#Valid Positives is the number of positive validation interactions, #Valid Negatives is the 

number of negative validation interactions. Only validation interactions involving genomic 

peptides (as defined by the Ensembl genome assemblies) were used. 

Human 
The human proteome was scanned to predict interactions for 13 human PDZ domains with 

available interactions from PDZBase (Beuming et al. 2005). In total, 41,193 unique transcript 

tails of length five out of 77,748 transcripts corresponding to 23,675 genes from the human 

proteome were scanned (defined by Ensembl:GRCh37.56 genome assembly). 

Table A-1  Summary of human proteome scanning results for SVM and other predictors. 

Method Domain NN Sim Num 
Predicted 

#TP #FP #Valid 
Positives 

#Valid 
Negatives 

SVM DLG1-1 1.0 283 2 0 2 0 

SVM DLG1-2 1.0 389 3 0 3 0 

SVM MPDZ-10 1.0 199 3 0 4 0 

SVM ERBB2IP-1 1.0 83 2 0 2 0 

SVM DLG3-2 1.0 389 1 0 2 0 

SVM LIN7B-1 1.0 422 1 0 2 0 

SVM DLG4-1 0.9375 223 2 0 2 0 

SVM DLG4-2 0.9375 294 2 0 2 0 

SVM PDZK1-1 0.8125 551 1 0 1 0 

SVM MLLT4-1 0.6875 36 1 0 6 0 

SVM MAGI3-1 1.0 1185 0 0 1 0 

SVM MAGI2-2 1.0 694 0 0 1 0 

SVM SNTG1-1 1.0 680 1 0 1 0 

Method Domain NN Sim Num #TP #FP #Valid #Valid 
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Predicted Positives Negatives 

MDSM DLG1-1 1.0 269 2 0 2 0 

MDSM DLG1-2 0.875 269 3 0 3 0 

MDSM MPDZ-10 1.0 2534 1 0 4 0 

MDSM ERBB2IP-1 1.0 825 0 0 2 0 

MDSM DLG3-2 0.875 269 1 0 2 0 

MDSM LIN7B-1 1.0 165 2 0 2 0 

MDSM DLG4-1 0.9375 269 2 0 2 0 

MDSM DLG4-2 0.8125 269 2 0 2 0 

MDSM PDZK1-1 0.9375 11 0 0 1 0 

MDSM MLLT4-1 0.6875 285 1 0 6 0 

MDSM MAGI3-1 0.6875 1070 0 0 1 0 

MDSM MAGI2-2 0.75 1070 0 0 1 0 

MDSM SNTG1-1 0.875 613 1 0 1 0 

Method Domain NN Sim Num 
Predicted 

#TP #FP #Valid 
Positives 

#Valid 
Negatives 

Additive DLG1-1 1.0 2094 2 0 2 0 

Additive DLG1-2 1.0 2241 3 0 3 0 

Additive MPDZ-10 1.0 52 0 0 4 0 

Additive ERBB2IP-1 1.0 395 0 0 2 0 

Additive DLG3-2 1.0 2241 1 0 2 0 

Additive LIN7B-1 1.0 2734 1 0 2 0 

Additive DLG4-1 0.9375 1960 2 0 2 0 

Additive DLG4-2 0.9375 2041 2 0 2 0 

Additive PDZK1-1 0.8125 0 0 0 1 0 

Additive MLLT4-1 0.6875 93 1 0 6 0 

Additive MAGI3-1 1.0 1846 0 0 1 0 

Additive MAGI2-2 1.0 2406 1 0 1 0 

Additive SNTG1-1 1.0 1723 1 0 1 0 

Method Domain NN Sim Num 
Predicted 

#TP #FP #Valid 
Positives 

#Valid 
Negatives 

PWM DLG1-1 1.0 412 1 0 2 0 

PWM DLG1-2 1.0 412 3 0 3 0 

PWM MPDZ-10 1.0 412 4 0 4 0 

PWM ERBB2IP-1 1.0 412 2 0 2 0 

PWM DLG3-2 1.0 412 1 0 2 0 

PWM LIN7B-1 1.0 412 2 0 2 0 
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PWM DLG4-1 0.9375 412 1 0 2 0 

PWM DLG4-2 0.9375 412 2 0 2 0 

PWM PDZK1-1 0.8125 412 1 0 1 0 

PWM MLLT4-1 0.6875 412 2 0 6 0 

PWM MAGI3-1 1.0 412 0 0 1 0 

PWM MAGI2-2 1.0 412 0 0 1 0 

PWM SNTG1-1 1.0 412 1 0 1 0 

Worm 
The worm proteome was scanned to predict interactions for 6 worm PDZ domains with positive 

and negative interactions from protein microarray experiments (Chen et al. 2008). In total, 

19,864 unique transcript tails of length five out of 27,533 transcripts corresponding to 20,158 

genes in the worm proteome were scanned (defined by genome assembly Ensembl:WS200.56). 

Table A-2  Summary of worm proteome scanning results for SVM and other predictors. 

Method Domain NN Sim Num 
Predicted 

#TP #FP #Valid 
Positives 

#Valid 
Negatives 

SVM DLG1-1 0.8125 44 1 1 4 18 

SVM DLG1-3 0.9375 87 4 1 7 15 

SVM DSH-1 0.8125 14 0 0 11 4 

SVM LIN7-1 1.0 159 3 1 11 11 

SVM MPZ1-6 0.6875 144 4 0 18 4 

SVM STN2-1 0.8125 256 3 0 8 14 

Method Domain NN Sim Num 
Predicted 

#TP #FP #Valid 
Positives 

#Valid 
Negatives 

MDSM DLG1-1 0.75 110 1 1 4 18 

MDSM DLG1-3 0.9375 168 4 1 7 15 

MDSM DSH-1 0.8125 2598 3 0 11 4 

MDSM LIN7-1 1.0 61 1 0 11 11 

MDSM MPZ1-6 0.6875 85 0 0 18 4 

MDSM STN2-1 0.8125 200 3 1 8 14 

Method Domain NN Sim Num 
Predicted 

#TP #FP #Valid 
Positives 

#Valid 
Negatives 

Additive DLG1-1 0.8125 730 2 4 4 18 

Additive DLG1-3 0.9375 864 4 3 7 15 

Additive DSH-1 0.8125 79 0 0 11 4 

Additive LIN7-1 1.0 1177 7 2 11 11 
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Additive MPZ1-6 0.6875 713 3 0 18 4 

Additive STN2-1 0.8125 1086 4 2 8 14 

Method Domain NN Sim Num 
Predicted 

#TP #FP #Valid 
Positives 

#Valid 
Negatives 

PWM DLG1-1 0.8125 199 2 4 4 18 

PWM DLG1-3 0.9375 199 1 2 7 15 

PWM DSH-1 0.8125 199 1 0 11 4 

PWM LIN7-1 1.0 199 3 2 11 11 

PWM MPZ1-6 0.6875 199 3 1 18 4 

PWM STN2-1 0.8125 199 4 2 8 14 

Fly 
The fly proteome was scanned to predict interactions for 7 fly PDZ domains with positive and 

negative interactions from protein microarray experiments (Chen et al. 2008). In total, 14,691 

unique transcript tails of length five out of 21,309 transcripts corresponding to 20,158 genes 

were scanned (defined by genome assembly Ensembl:BDGP5.13.56). 

Table A-3 Summary of fly proteome scanning results for SVM and other predictors. 

Method Domain NN Sim Num 
Predicted 

#TP #FP #Valid 
Positives 

#Valid 
Negatives 

SVM MAGI-4 0.8125 92 2 3 2 17 

SVM DLG1-1 0.9375 112 4 0 4 15 

SVM DSH-1 0.9375 49 0 0 3 16 

SVM LAP4-2 0.875 30 3 1 5 14 

SVM LAP4-3 0.75 8 2 0 8 11 

SVM PAR6-1 1.0 0 0 0 1 18 

SVM PATJ-2 0.8125 184 0 0 7 12 

Method Domain NN Sim Num 
Predicted 

#TP #FP #Valid 
Positives 

#Valid 
Negatives 

MDSM MAGI-4 0.8125 192 0 0 2 17 

MDSM DLG1-1 0.9375 76 2 2 4 15 

MDSM DSH-1 0.9375 1641 2 3 3 16 

MDSM LAP4-2 0.875 8 0 0 5 14 

MDSM LAP4-3 0.75 95 4 1 8 11 

MDSM PAR6-1 1.0 3 0 0 1 18 

MDSM PATJ-2 0.625 5 1 0 7 12 

Method Domain NN Sim Num #TP #FP #Valid #Valid 
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Predicted Positives Negatives 

Additive MAGI-4 0.8125 843 2 6 2 17 

Additive DLG1-1 0.9375 849 4 3 4 15 

Additive DSH-1 0.9375 98 0 0 3 16 

Additive LAP4-2 0.875 307 4 1 5 14 

Additive LAP4-3 0.75 300 3 0 8 11 

Additive PAR6-1 1.0 18 0 0 1 18 

Additive PATJ-2 0.625 30 0 0 7 12 

Method Domain NN Sim Num 
Predicted 

#TP #FP #Valid 
Positives 

#Valid 
Negatives 

PWM MAGI-4 0.8125 147 0 3 2 17 

PWM DLG1-1 0.9375 147 4 2 4 15 

PWM DSH-1 0.9375 147 1 3 3 16 

PWM LAP4-2 0.875 147 5 3 5 14 

PWM LAP4-3 0.75 147 4 2 8 11 

PWM PAR6-1 1.0 147 0 0 1 18 

PWM PATJ-2 0.8125 147 0 1 7 12 

 

B. Protein-protein interaction evidence to support PDZ domain 
peptide predictions 

Physical human protein-protein interactions (PPIs) were collected from the iRefIndex database 

(Razick et al. 2008). Only interactions annotated with UniProt ids from UniProtKB/Swiss-Prot 

were used (since the corresponding sequences were manually annotated and reviewed).  A PPI 

was counted as corresponding to a domain peptide interaction prediction if the protein containing 

the domain was found in iRefIndex to interact with the protein containing the peptide. To test the 

significance of the number of predictions found to be in iRefIndex for a given domain, a Fisher’s 

exact test was performed and asked whether the observed number predictions could be achieved 

at random.  In total, 213 human PDZ domains with PPIs in iRefIndex were analyzed.  The SVM 

predicted interactions for 192 domains with 75 domains having predictions corresponding to at 

least one iRefIndex interaction.  The SVM did not make predictions for the remaining 21 

domains. 

Table A-4  Identities of human PDZ domains in iRefIndex. The identities of the 75 human PDZ 

domains whose proteome predictions correspond to at least one protein-protein interaction from 
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iRefIndex are listed.  UniProt Domain Name is the name of the domain using the UniProt protein 

name.  UniProt Domain Sequence Positions are the start and end positions of the domain 

sequence along the UniProt protein sequence.  UniProt ID is the identifier of the UniProt protein.  

Tonikian Domain Name is the name of the domain used in Tonikian et al. 

UniProt 
Domain 
Name 

UniProt 

Domain 
Sequence 

Positions 

UniProt 
ID 

Tonikian 
Domain 
Name 

UniProt 
Domain 
Name 

UniProt 

Domain 
Sequence 

Positions 

UniProt 
ID 

Tonikian 
Domain 
Name 

ARHGC-1 72-151 Q9NZN5  NHRF2-1 11-90 Q15599  

GIPC1-1 133-213 O14908  PARD3-3 590-680 Q8TEW0 PARD3-3 

LIN7B-1 93-175 Q9HAP6  MPDZ-4 565-630 O75970 MPDZ-4 

MAGI2-1 17-101 Q86UL8  MPDZ-7 1151-1239 O75970 MPDZ-7 

MAGI2-2 426-510 Q86UL8  MPDZ-10 1629-1708 O75970 MPDZ-10 

MAGI2-4 778-860 Q86UL8  MPDZ-13 1959-2038 O75970 MPDZ-13 

MAGI2-5 920-1010 Q86UL8  NHRF2-2 151-227 Q15599 SLC9A3R2-2 

MAGI2-3 605-683 Q86UL8  DLG4-3 313-390 P78352 DLG4-3 

MAGI2-6 1147-1229 Q86UL8  MPDZ-2 257-333 O75970 MPDZ-2 

MAST2-1 967-1055 Q9Y2H9  SCRIB-4 1110-1194 Q14160  

MPP3-1 137-212 Q13368  ZO2-1 33-120 Q9UDY2  

NHRF1-1 14-94 O14745  DLG1-1 224-307 Q12959 DLG1-1 

NHRF1-2 154-234 O14745  DLG1-2 319-402 Q12959 DLG1-2 

NHRF3-2 134-215 Q5T2W1  DLG1-3 466-543 Q12959 DLG1-3 

NHRF3-4 378-458 Q5T2W1  DLG3-2 226-309 Q92796 DLG3-2 

NHRF3-3 243-323 Q5T2W1  MAGI1-2 472-554 Q96QZ7  

NHRF4-1 115-196 Q86UT5  MAGI1-3 634-719 Q96QZ7 MAGI1-2 

NHRF4-3 329-412 Q86UT5  MAGI1-4 813-895 Q96QZ7  

PDLI1-1 3-85 O00151  MAGI1-6 1124-1206 Q96QZ7  

PDZ11-1 47-129 Q5EBL8  MAGI3-4 751-831 Q5TCQ9 MAGI3-3 

PDZD2-2 334-419 O15018  MAGI3-5 876-963 Q5TCQ9  

PTN3-1 510-582 P26045  MAGI3-5 1046-1128 Q5TCQ9  

RGS12-1 22-98 O14924  PTN13-2 368-1449 Q12923 PTPN13-2 

RGS3-1 299-376 P49796  SCRIB-1 728-811 Q14160 SCRIB-1 

SHAN1-1 663-757 Q9Y566  SCRIB-2 862-947 Q14160 SCRIB-2 

SHAN2-1 247-341 Q9UPX8  SCRIB-3 1004-1093 Q14160  

SNTB1-1 112-195 Q13884  DLG2-2 193-279 Q15700  

SNTB2-1 115-198 Q13425  DLG2-1 98-184 Q15700  
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SNTG1-1 57-140 Q9NSN8  DLG2-3 421-501 Q15700  

SNTG2-1 73-156 Q9NY99  LAP2-1 1323-1406 Q96RT1 ERBB2IP-1 

SYJ2B-1 13-100 P57105  LRRC7-1 1448-1531 Q96NW7 LRRC7-1 

APBA3-2 485-560 O96018  CSKP-1 490-566 O14936 CASK-1 

DLG3-1 130-217 Q92796  AFAD-1 1009-1087 P55196 MLLT4-1 

DLG3-3 379-465 Q92796  SNTA1-1 87-166 Q13424 SNTA1-1 

DLG4-2 160-246 P78352  MAGI3-2 435-517 Q5TCQ9  

DLG4-1 65-151 P78352  MAGI3-3 603-679 Q5TCQ9  

INADL-8 1437-1520 Q8NI35  NHRF3-1 9-86 Q5T2W1 PDZK1-1 

MPDZ-8 1350-1433 O75970  NHRF2-1 11-90 Q15599  

Table A-5  Number of predicted interactions that correspond to protein-protein interactions in 

iRefIndex. UniProt Domain Name is the name of the domain using the UniProt protein name. 

UniProt 
Domain 
Name 

# 
iRefIndex 

PPIs 
predicted 

# 
iRefIndex 

PPIs 

p-value UniProt 
Domain 
Name 

# 
iRefIndex 

PPIs 
predicted 

# 
iRefIndex 

PPIs 

p-value 

ARHGC-1 1 14 0.566 NHRF2-1 12 44 2.48e-12 

GIPC1-1 4 42 7.76e-06 PARD3-3 1 26 0.0311 

LIN7B-1 1 11 0.107 MPDZ-4 2 9 0.0081 

MAGI2-1 1 10 0.124 MPDZ-7 1 9 0.027 

MAGI2-2 2 10 0.0117 MPDZ-10 4 9 6.53e-08 

MAGI2-4 1 10 0.0325 MPDZ-13 1 9 0.0137 

MAGI2-5 1 10 0.0344 NHRF2-2 15 44 2.33e-11 

MAGI2-3 1 10 0.122 DLG4-3 13 130 1.41e-10 

MAGI2-6 1 10 0.0952 MPDZ-2 1 9 0.0591 

MAST2-1 2 6 0.0017 SCRIB-4 1 11 0.0534 

MPP3-1 1 1 0.000631 ZO2-1 1 11 0.0844 

NHRF1-1 15 57 7.45e-15 DLG1-1 13 83 1.98e-14 

NHRF1-2 24 57 1.74e-14 DLG1-2 14 83 5.21e-14 

NHRF3-2 1 24 0.0763 DLG1-3 10 83 3.09e-09 

NHRF3-4 3 24 0.00141 DLG3-2 9 48 6.6e-10 

NHRF3-3 8 24 3.08e-06 MAGI1-2 4 24 0.00014 

NHRF4-1 1 5 0.0408 MAGI1-3 3 24 0.000176 

NHRF4-3 3 5 0.000206 MAGI1-4 2 24 0.000724 

PDLI1-1 1 14 0.0748 MAGI1-6 6 24 4.54e-05 

PDZ11-1 1 4 0.0307 MAGI3-4 1 12 0.0426 
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PDZD2-2 1 5 0.123 MAGI3-5 1 12 0.0256 

PTN3-1 1 5 0.0861 MAGI3-6 1 12 0.31 

RGS12-1 4 19 0.000715 PTN13-2 1 23 0.111 

RGS3-1 3 11 0.026 SCRIB-1 1 11 0.0357 

SHAN1-1 2 21 0.0913 SCRIB-2 1 11 0.0292 

SHAN2-1 1 13 0.364 SCRIB-3 1 11 0.161 

SNTB1-1 4 14 9.74e-06 DLG2-2 8 41 4.28e-09 

SNTB2-1 3 20 0.00105 DLG2-1 8 41 3.53e-10 

SNTG1-1 1 12 0.181 DLG2-3 6 41 1.46e-06 

SNTG2-1 1 1 0.0114 LAP2-1 2 33 0.00203 

SYJ2B-1 3 5 5.71e-05 LRRC7-1 2 13 0.000731 

APBA3-2 1 7 0.00289 CSKP-1 3 53 0.0396 

DLG3-1 9 48 3.98e-11 AFAD-1 1 58 0.0495 

DLG3-3 7 48 1.95e-07 SNTA1-1 4 28 9.53e-05 

DLG4-2 14 130 2.88e-11 MAGI3-2 5 12 1.31e-05 

DLG4-1 13 130 7.37e-12 MAGI3-3 1 12 0.0199 

INADL-8 1 15 0.0653 NHRF3-1 4 24 0.000272 

MPDZ-8 1 9 0.0141        

 

C. GO biological process term enrichment 

GO biological process term enrichment analysis was performed to determine statistically 

overrepresented annotations in the genes of predicted binders for the PDZ domains used in 

proteome scanning tests.  The hypergeometric test was used to compute a p-value to assess GO 

term enrichment for a set of predicted genes.  Since this results in testing the significance of all 

GO terms in the given set of genes in a single analysis, multiple testing correction was performed 

using the Benjamini and Hochberg False Discovery Rate (FDR) correction with a significance 

level of 0.05.  The BiNGO (Biological Network Gene Ontology tool) (Maere et al. 2005) 

software library was used. Only manually annotated GO terms were used. 

Table A-6  Enriched GO biological process terms in genes of predicted binders.  GO ID is the 

GO process term identifier, p-value is the hypergeometric test statistic corrected for multiple 

testing, Description is the GO term description.  GO terms are ordered by increasing p-value.  
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Only GO terms with p < 0.05 are displayed.  Domains with no terms satisfying this cutoff are 

indicated by an asterisk and only the top 10 GO terms are displayed. 

DLG1­2  DLG1­2 

GO ID p-value Description GO ID p-value Description 

6813 2.658E-3 potassium ion transport 6811 2.774E-4 ion transport 

30001 2.658E-3 metal ion transport 6813 2.167E-3 potassium ion transport 

6811 3.062E-3 ion transport 6812 5.264E-3 cation transport 

6812 3.481E-3 cation transport 30001 5.264E-3 metal ion transport 

15672 8.531E-3 monovalent inorganic 
cation transport 

6810 1.151E-2 transport 

      15672 1.685E-2 monovalent inorganic 
cation transport 

      51234 2.034E-2 establishment of 
localization 

DLG3-2  DLG4-1 

GO ID p-value Description GO ID p-value Description 

6811 2.774E-4 ion transport 6813 2.658E-3 potassium ion transport 

6813 2.167E-3 potassium ion transport 30001 2.658E-3 metal ion transport 

6812 5.264E-3 cation transport 6811 3.062E-3 ion transport 

30001 5.264E-3 metal ion transport 6812 3.481E-3 cation transport 

6810 1.151E-2 transport     

15672 1.685E-2 monovalent inorganic 
cation transport 

    

51234 2.034E-2 establishment of 
localization 

    

DLG4-2  ERBB2IP-1 * 

GO ID p-value Description GO ID p-value Description 

6811 2.774E-4 ion transport 32581 2.557E-1 ER-dependent peroxisome 
biogenesis 

6813 2.167E-3 potassium ion transport 16557 2.557E-1 peroxisome membrane 
biogenesis 

6812 5.264E-3 cation transport 45046 2.557E-1 protein import into 
peroxisome membrane 

30001 5.264E-3 metal ion transport 55114 2.557E-1 oxidation reduction 

6810 1.151E-2 transport 6338 2.557E-1 chromatin remodeling 

15672 1.685E-2 monovalent inorganic 
cation transport 

7155 2.557E-1 cell adhesion 

51234 2.034E-2 establishment of 
localization 

22610 2.557E-1 biological adhesion 

      51016 2.557E-1 barbed-end actin filament 
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capping 

      51693 2.557E-1 actin filament capping 

      15917 2.557E-1 aminophospholipid 
transport 

LIN7B-1*  MAGI2-2* 

GO ID p-value Description GO ID p-value Description 

6811 1.414E-1 ion transport 7389 3.909E-1 pattern specification 
process 

35176 1.414E-1 social behavior 35176 3.909E-1 social behavior 

6813 1.414E-1 potassium ion transport 6812 3.909E-1 cation transport 

6812 1.414E-1 cation transport 6810 3.909E-1 transport 

30001 1.414E-1 metal ion transport 7264 3.909E-1 small GTPase mediated 
signal transduction 

30516 1.414E-1 regulation of axon 
extension 

6813 3.909E-1 potassium ion transport 

32927 1.414E-1 positive regulation of 
activin receptor signaling 
pathway 

51234 3.909E-1 establishment of 
localization 

51705 1.414E-1 behavioral interaction 
between organisms 

51179 3.909E-1 localization 

1935 1.414E-1 endothelial cell 
proliferation 

32927 3.909E-1 positive regulation of 
activin receptor signaling 
pathway 

50808 1.414E-1 synapse organization and 
biogenesis 

51705 3.909E-1 behavioral interaction 
between organisms 

MAGI3-1  MLLT4-1* 

GO ID p-value Description GO ID p-value Description 

6813 1.458E-2 potassium ion transport 33081 5.388E-2 regulation of T cell 
differentiation in the 
thymus 

51234 1.768E-2 establishment of 
localization 

46620 5.388E-2 regulation of organ growth 

6810 1.768E-2 transport 303 5.388E-2 response to superoxide 

6811 1.768E-2 ion transport 45541 5.388E-2 negative regulation of 
cholesterol biosynthetic 
process 

51179 1.768E-2 localization 48538 5.388E-2 thymus development 

      45939 5.388E-2 negative regulation of 
steroid metabolic process 

      45540 5.388E-2 regulation of cholesterol 
biosynthetic process 

      1890 5.388E-2 placenta development 

      305 5.388E-2 response to oxygen radical 
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      50810 7.339E-2 regulation of steroid 
biosynthetic process 

MPDZ-10*  PDZK1-1 

GO ID p-value Description GO ID p-value Description 

6813 7.25E-2 potassium ion transport 6811 2.389E-4 ion transport 

1508 1.822E-1 regulation of action 
potential 

45494 5.702E-3 photoreceptor cell 
maintenance 

30001 1.822E-1 metal ion transport      

15672 1.822E-1 monovalent inorganic 
cation transport 

SNTG1-1 

6342 1.822E-1 chromatin silencing GO ID p-value Description 

31507 1.822E-1 heterochromatin 
formation 

6810 2.251E-2 transport 

42391 1.822E-1 regulation of membrane 
potential 

51234 2.251E-2 establishment of 
localization 

45814 1.822E-1 negative regulation of 
gene expression, 
epigenetic 

46942 3.625E-2 carboxylic acid transport 

6812 1.822E-1 cation transport 6813 3.625E-2 potassium ion transport 

19226 1.822E-1 transmission of nerve 
impulse 

15849 3.625E-2 organic acid transport 

 



126 

 

Appendix B 

Predicting PDZ Protein-Protein Interactions From Structure 

 

 

 

 

 

 

 

This work was published in BMC Bioinformatics, 14:12:    Hui, S., Xing, X., Bader, GD. (2013),  
Predicting PDZ mediated protein-protein interactions from structure. 

 

Author contributions: I collected the data, developed and implemented the methods and 

performed the analyses.  Xiang Xing developed the POW! Website under my supervision.  Gary 
D. Bader supervised and advised this project. 
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A. Parameters for structure feature generation software 

1. Solvent accessibility and hydrogen bonding properties 

• Joy website (Mizuguchi et al. 1998): http://tardis.nibio.go.jp/cgi-bin/joy/joy.cgi 

• PDB files were uploaded and the resulting LaTEX output file was downloaded and parsed. 

2. Solvent accessible area 

• Surfv sotfware (Sridharan et al. 1992): 

http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:SURFace_Algorithms 

• The software was run using the parameters: single format flag = on, resolution = 2, probe 

size = 1.4, last 3 parameters = 1, 0 and 0. 

3. Electrostatic and hydrophobicity 

• VASCo sotfware (Steinkellner et al. 2009): http://genome.tugraz.at/VASCo 

• The software uses the program DelPhi (Rocchia et al. 2001; Rocchia et al. 2002) to 

compute the electrostatic potentials and HydroCalc to compute the hydrophobicity values.  

The default parameters, as distributed in the VASCo package for these programs, were 

used.  Both programs require the calculation of surface points which as performed by the 

MSMS software (Sanner et al. 1996).  For all programs the default probe size of 1.4 was 

used. 

4. 3D binding pocket shape 

• 3D-Surfer website (La et al. 2009): http://dragon.bio.purdue.edu/3d-surfer 

• PDB coordinates corresponding to the binding pocket (defined by 10 core positions) were 

uploaded and the resulting Zernike descriptors were collected. 

B. Comparison of predicted and experimentally determined 
genomic binding specificities for human PDZ domains 

Figure B-1  Comparison of predicted and experimentally determined binding specificities for 

human PDZ domains.  The predicted and phage display determined binding specificities for 26 

domains with four or more genomic peptides were visualized as sequence logos and compared. 

The binding specificity similarity between two domains was computed using the normalized 

Euclidean distance between their corresponding position weight matrices (See Section D). Non-
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genomic phage display peptides were removed from the set of binders for each domain. Based on 

a previously established protocol, a peptide was considered to be genomic if the last four 

residues can be found in a proteomic tail, otherwise it was considered to be non genomic. 

Numbers in bold indicate which similarity (sequence or structure) is higher (i.e. which predicted 

logo is closer to the experimental logo). 
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Phage Display
Predicted Logo

(Sequence)
Predicted Logo

(Structure)
Sim

(Sequence)
Sim

(Structure)

0.4 0.5

0.698 0.673

0.781 0.812

0.634 0.711

0.642 0.642

0.709 0.709

0.647 0.718

0.561 0.584
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0.619 0.692

0.701 0.696

0.612 0.627

0.604 0.523

0.69 0.746

0.678 0.691

0.777 0.728

0.781 0.713
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0.693 0.757

0.793 0.562

0.796 0.771

0.771 0.765

0.621 0.675

0.629 0.741

0.47 0.736

0.516 0.569
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C. Structure information for PDZ domains used for training and 
testing 

Table B-1  Structure information for PDZ domains used for predictor training.  In total, 83 PDZ 

domains were used for training. Domain structures were obtained from the PDB or homology 

modelled through the Protein Model Portal. For NMR structures, only the first model was used. 

All homology models were generated by SWISS-MODEL and have greater than 50% sequence 

similarity to their template structure (average 90%).  Model quality is estimated using template 

sequence ID (percentage of residues between target and template sequences that are identical) 

and QMEAN score (a scoring function that measures multiple geometrical aspects of protein 

structure, ranging from 0 to 1 with higher values indicating more reliable models). 

Domain Name Organism Experiment PDB 
Template 

PDB 
Template 

Seq ID 
QMEAN 

Score 

CASK-1 Human XRAY 1KWA    

DLG1-1 Human SWISS-MODEL  1ZOK A 0.99 0.603 

DLG1-2 Human XRAY 2G2L    

DLG1-3 Human SWISS-MODEL  1PDR A 1.00 0.938 

DLG2-3 Human XRAY 2HE2    

DLG3-2 Human XRAY 2FE5    

DLG4-3 Human XRAY 1TP3    

DVL2-1 Human XRAY 2REY    

ERBB2IP-1 Human XRAY 1MFL    

INADL-2 Human NMR 2DLU    

LRRC7-1 Human SWISS-MODEL  2H3L B 0.75 0.856 

MAGI1-4 Human SWISS-MODEL  1UEW A 0.68 0.949 

0.537 0.454

0.421 0.378
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MAGI3-3 Human SWISS-MODEL  1UEW A 0.63 0.924 

MPDZ-1 Human SWISS-MODEL  2O2T A 0.98 0.855 

MPDZ-3 Human SWISS-MODEL  2IWN A 0.96 0.955 

MPDZ-10 Human XRAY 2OPG    

MPDZ-12 Human SWISS-MODEL  2IWP B 1.00 0.887 

MPP6-1 Human SWISS-MODEL  2E7K A 0.75 0.771 

PDLIM4-1 Human XRAY 2V1W    

PDZK1-1 Human SWISS-MODEL  2EDZ A 0.89 0.813 

PSCDBP-1 Human XRAY 2Z17    

SCRIB-1 Human XRAY 2W4F    

SCRIB-2 Human XRAY 1WHA    

SLC9A3R2-2 Human XRAY 2HE4    

SNTA1-1 Human SWISS-MODEL  1QAV A 0.99 0.804 

A1-SYNTROPHIN-1 Mouse NMR 1Z86    

B1-SYNTROPHIN-1 Mouse SWISS-MODEL  1QAV A 0.82 0.742 

CHAPSYN-110-2 Mouse SWISS-MODEL  1BYG A 0.98 0.968 

CHAPSYN-110-3 Mouse SWISS-MODEL  2HE2 B 1.00 0.998 

CIPP-3 Mouse SWISS-MODEL  2DMZ A 0.93 0.749 

CIPP-5 Mouse SWISS-MODEL  2D92 A 0.91 0.835 

CIPP-8 Mouse SWISS-MODEL  2DM8 A 0.97 0.689 

CIPP-9 Mouse SWISS-MODEL  2QG1 A 0.70 0.990 

CIPP-10 Mouse SWISS-MODEL  2IWO A 0.68 0.802 

DVL1-1 Mouse NMR 1MC7    

DVL3-1 Mouse SWISS-MODEL  1L6O A 0.97 0.911 

ERBIN-1 Mouse SWISS-MODEL  2H3L A 0.98 0.836 

GRIP1-6 Mouse SWISS-MODEL  1N7F A 1.00 0.784 

HARMONIN2-1 Mouse SWISS-MODEL  1X5N A 0.95 0.696 

LARG-1 Mouse SWISS-MODEL  2OMJ A 0.99 0.842 

LIN-7C-1 Mouse SWISS-MODEL  2DKR A 0.93 0.799 

LRRC7-1 Mouse SWISS-MODEL  2H3L B 0.75 0.969 

MAGI-1-6 Mouse SWISS-MODEL  2R4H C 0.99 0.738 

MAGI-2-2 Mouse SWISS-MODEL  1UEQ A 1.00 0.904 

MAGI-2-5 Mouse SWISS-MODEL  1UEW A 0.99 0.755 

MAGI-2-6 Mouse SWISS-MODEL  1WFV A 1.00 0.835 

MAGI-3-1 Mouse SWISS-MODEL  1UEQ A 0.77 0.818 

MAGI-3-2 Mouse SWISS-MODEL  1UJV A 0.61 0.728 



134 

 

MAGI-3-5 Mouse SWISS-MODEL  2R4H C 0.66 0.748 

MALS2-1 Mouse SWISS-MODEL  2DKR A 0.99 0.808 

MPP7-1 Mouse SWISS-MODEL  3O46 A 0.93 0.895 

MUPP1-1 Mouse SWISS-MODEL  2O2T A 0.95 0.849 

MUPP1-11 Mouse SWISS-MODEL  2QG1 A 0.95 1.000 

MUPP1-10 Mouse SWISS-MODEL  2OPG B 0.99 0.917 

MUPP1-12 Mouse SWISS-MODEL  2IWP B 0.92 0.871 

MUPP1-13 Mouse SWISS-MODEL  2FNE B 0.96 0.892 

MUPP1-5 Mouse SWISS-MODEL  2D92 A 0.62 0.859 

NHERF2-2 Mouse SWISS-MODEL  2HE4 A 0.93 0.821 

NNOS-1 Mouse SWISS-MODEL  1QAV B 1.00 0.825 

OMP25-1 Mouse SWISS-MODEL  1JIK A 0.96 0.943 

PAR6B-1 Mouse SWISS-MODEL  1NF3 D 1.00 0.667 

PDZK11-1 Mouse SWISS-MODEL  1WI2 A 1.00 0.781 

PDZK1-1 Mouse NMR 2EDZ    

PDZK1-3 Mouse SWISS-MODEL  2D90 A 1.00 0.867 

PSD95-2 Mouse SWISS-MODEL  3GSL A 1.00 1.000 

PSD95-3 Mouse SWISS-MODEL  1TP5 A 1.00 0.894 

PTP-BL-2 Mouse NMR 1VJ6    

SAP102-2 Mouse SWISS-MODEL  1FE5 A 1.00 0.992 

SAP102-3 Mouse SWISS-MODEL  3JXT B 1.00 0.940 

SAP97-1 Mouse SWISS-MODEL  1ZOK A 1.00 0.664 

SAP97-2 Mouse SWISS-MODEL  2I0L B 1.00 1.000 

SAP97-3 Mouse SWISS-MODEL  1PDR A 1.00 0.936 

SCRB1-1 Mouse SWISS-MODEL  2W4F A 0.96 0.825 

SCRB1-2 Mouse SWISS-MODEL  1WHA A 0.94 0.855 

SCRB1-3 Mouse SWISS-MODEL  3GSL A 0.54 0.520 

SEMCAP3-1 Mouse SWISS-MODEL  1UHP A 0.96 0.816 

SHANK1-1 Mouse SWISS-MODEL  1Q3O A 1.00 0.700 

SHANK3-1 Mouse SWISS-MODEL  1Q3O A 0.86 0.636 

SHROOM-1 Mouse SWISS-MODEL  2EDP A 0.53 0.731 

SLIM-1 Mouse SWISS-MODEL  1VB7 A 1.00 0.777 

ZO-1-1 Mouse SWISS-MODEL  2H2C A 1.00 0.960 

ZO-2-1 Mouse SWISS-MODEL  2CSJ A 1.00 0.879 

ZO-3-1 Mouse SWISS-MODEL  2CSJ A 0.51 0.879 

HTRA2-1 Human XRAY 2PZD    
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MLLT4-1 Human NMR 1XZ9    

APBA3-1 Human SWISS-MODEL  2YT7 A 1.00 0.806 

SHANK3-1 Human SWISS-MODEL  1Q3O A 0.86 0.719 

PDZ-RGS3-1 Mouse NMR 1WHD    

Table B-2  Structure information for PDZ domains used for blind testing.  Blind testing was 

performed using interaction data from mouse, worm and fly protein microarray experiments. In 

total, 13 mouse, 7 worm and 6 fly PDZ domains were used. Homology models were generated 

by SWISS-MODEL. All models have at least 40% sequence identity to their template structures. 

An NMR structure was available for one fly domain and the first model was used. The average 

template sequence similarity was 0.92, 0.61 and 0.61 for mouse, worm and fly domains, 

respectively. One mouse domain (CHAPSYN-110-1) was removed from the test set because its 

performance was consistently poor for both predictors.  Model quality is estimated using 

template sequence ID (percentage of residues between target and template sequences that are 

identical) and QMEAN score (a scoring function that measures multiple geometrical aspects of 

protein structure, ranging from 0 to 1 with higher values indicating more reliable models). 

  

 
Domain 
Name Organism Experiment PDB 

Template 
PDB 

Template 
Seq ID 

QMEAN 
Score 

1 CIPP-7 Mouse SWISS-MODEL  2DAZ A 0.91 0.888 

2 GOPC1-1 Mouse SWISS-MODEL  2DCD2 A 1.00 0.833 

3 GRIP1-4 Mouse SWISS-MODEL  1P1D A 0.99 0.549 

4 GRIP1-5 Mouse SWISS-MODEL  1P1D A 0.99 0.78 

5 IL-16-3 Mouse SWISS-MODEL  1X6D A 0.88 0.904 

6 MAGI2-3 Mouse SWISS-MODEL  1UJV A 0.99 0.757 

7 MAGI2-4 Mouse SWISS-MODEL  1UEP A 1.00 0.729 

8 MUPP1-2 Mouse SWISS-MODEL  2DLU A 0.69  

9 NHERF1-2 Mouse SWISS-MODEL  2OZF A 0.94 0.884 

10 PAR-3B-3 Mouse SWISS-MODEL  1WG6 A 1.00 0.572 

11 PAR-6G-1 Mouse SWISS-MODEL  1NF3 A 0.89 0.764 

12 PDZK1-4 Mouse SWISS-MODEL  2VSP A 0.75 0.757 

13 SCRIB-4 Mouse SWISS-MODEL  1UJU A 0.95 0.823 

        

1 DLG1-1 Worm SWISS-MODEL  3GSL A 0.51 0.886 

2 DLG1-3 Worm SWISS-MODEL  3JXT A 0.62 0.999 
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3 DSH-1 Worm SWISS-MODEL  2F0A A 0.67 0.46 

4 LIN7-1 Worm SWISS-MODEL  2DKR A 0.83 0.684 

5 MPZ1-6 Worm SWISS-MODEL  2IWQ A 0.52 0.869 

6 NAB-1-1 Worm SWISS-MODEL  2FN5 A 0.70 0.739 

7 STN-2-1 Worm SWISS-MODEL  2DKR A 0.40 0.597 

        

1 DLG1-1 Fly SWISS-MODEL  1ZOK A 0.70 0.579 

2 DSH-1 Fly SWISS-MODEL  3CBZ A 0.81 0.702 

3 LAP4-2 Fly SWISS-MODEL  1WHA A 0.51 0.865 

4 MAGI-4 Fly SWISS-MODEL  1UEW A 0.50 0.729 

5 PATJ-2 Fly SWISS-MODEL  2IWN A 0.53 0.842 

6 PAR6-1 Fly NMR 1RY4 A    

Table B-3  Structure information for PDZ domains used for proteome scanning in human.  

Proteome scanning was performed for 218 human PDZ domains, which have known interactions 

in iRefIndex. In total, 61 X-ray and nine NMR structures (only the first models used) were 

obtained from the PDB and 148 homology models were created (template sequence similarity 

minimum 22%, average 72%).  Model quality is estimated using template sequence ID 

(percentage of residues between target and template sequences that are identical) and QMEAN 

score (a scoring function that measures multiple geometrical aspects of protein structure, ranging 

from 0 to 1 with higher values indicating more reliable models).  

UniProt 
UniProt 

Id 
Start 
Index 

End 
Index Experiment PDB ID 

Template 
PDB ID 

Template 
Seq ID 

QMEAN 
Score 

AHNAK2-1 Q8IVF2 122 195 SWISS-MODEL  3SHW A 0.39 0.603 

APBA1-1 Q02410 660 741 SWISS-MODEL  1U3B A 1.00 0.810 

APBA1-2 Q02410 755 821 SWISS-MODEL  1U3B A 1.00 0.581 

APBA2-1 Q99767 571 653 SWISS-MODEL  1U3B A 0.85 0.792 

APBA2-2 Q99767 666 733 SWISS-MODEL  1U3B A 0.93 0.514 

APBA3-1 O96018 396 479 SWISS-MODEL  2YT7 A 1.00 0.806 

APBA3-2 O96018 491 559 XRAY 2YT8    

ARHGAP21-1 Q5T5U3 49 159 NMR 2YUY    

ARHGAP23-1 Q9P227 52 156 SWISS-MODEL  2YUY A 0.81 0.609 

ARHGEF11-1 O15085 51 118 SWISS-MODEL  2DLS A 1.00 0.921 

ARHGEF12-1 Q9NZN5 77 147 SWISS-MODEL  2OMJ A 1.00 0.847 

CAR14-1 Q9BXL6 570 659 SWISS-MODEL  1Z87 A 0.30 0.442 

CASK-1 O14936 489 573 XRAY 1KWA    

CNKR1-1 Q969H4 198 286 SWISS-MODEL  2DKR A 0.22 0.458 

CNKSR2-1 Q8WXI2 225 293 SWISS-MODEL  2E7K A 0.29 0.643 
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CNKSR3-1 Q6P9H4 219 288 SWISS-MODEL  2E7K A 0.29 0.688 

CYTIP-1 O60759 76 163 XRAY 2Z17    

DEPTOR-1 Q8TB45 330 408 SWISS-MODEL  2D90 A 0.31 0.879 

DLG1-1 Q12959 221 312 SWISS-MODEL  1ZOK A 0.99 0.603 

DLG1-2 Q12959 316 406 XRAY 2G2L    

DLG1-3 Q12959 463 544 SWISS-MODEL  1PDR A 1.00 0.938 

DLG2-1 Q15700 100 183 SWISS-MODEL  2WL7 A 0.98 0.997 

DLG2-2 Q15700 196 278 SWISS-MODEL  2BYG A 1.00 0.953 

DLG2-3 Q15700 418 518 XRAY 2HE2    

DLG3-1 Q92796 134 216 XRAY 2I1N    

DLG3-2 Q92796 223 315 XRAY 2FE5    

DLG3-3 Q92796 389 464 XRAY 1UM7    

DLG4-1 P78352 67 151 SWISS-MODEL  3GSL B 1.00 0.966 

DLG4-2 P78352 163 245 SWISS-MODEL  3GSL A 1.00 0.991 

DLG4-3 P78352 301 416 XRAY 1TP3    

DLG5-3 Q8TDM6 1353 1426 XRAY 1UIT    

DLG5-4 Q8TDM6 1509 1580 SWISS-MODEL  2QG1 A 0.32 0.594 

DVL1-1 O14640 254 337 SWISS-MODEL  1MC7 A 1.00 0.624 

DVL1L1-1 P54792 260 340 SWISS-MODEL  2KAW A 0.99 0.629 

DVL2-1 O14641 270 353 XRAY 2REY    

DVL3-1 Q92997 252 335 SWISS-MODEL  1L6O A 0.96 0.977 

ERBB2IP-1 Q96RT1 1321 1413 XRAY 1MFL    

FRMPD1-1 Q5SYB0 67 133 SWISS-MODEL  2FNE C 0.33 0.791 

FRMPD2-2 Q68DX3 950 1036 SWISS-MODEL  1VJ6 A 0.61 0.910 

FRMPD2-3 Q68DX3 1080 1168 SWISS-MODEL  1B8Q A 0.38 0.518 

FRMPD3-1 Q5JV73 62 132 SWISS-MODEL  1WHD A 0.34 0.819 

FRMPD4-1 Q14CM0 79 156 SWISS-MODEL  2EDV A 0.36 0.837 

GIPC1-1 O14908 136 211 SWISS-MODEL  3GGE A 0.65 0.852 

GIPC2-1 Q8TF65 125 200 XRAY 3GGE    

GIPC3-1 Q8TF64 120 195 SWISS-MODEL  3GGE A 0.63 0.698 

GOPC-1 Q9HD26 293 369 XRAY 2DC2    

GORASP2-1 Q9H8Y8 5 76 SWISS-MODEL  3RLE A 1.00 0.857 

GRD2I-1 A4D2P6 10 85 SWISS-MODEL  2EDV A 0.36 0.509 

GRD2I-2 A4D2P6 279 357 SWISS-MODEL  2KV8 A 0.36 0.686 

GRIP1-1 Q9Y3R0 56 135 SWISS-MODEL  2QT5 A 1.00 0.866 

GRIP1-2 Q9Y3R0 154 237 XRAY 2JIL    

GRIP1-3 Q9Y3R0 261 335 SWISS-MODEL  1V62 A 0.64 0.804 

GRIP1-4 Q9Y3R0 472 562 SWISS-MODEL  1P1D A 0.99 0.624 

GRIP1-5 Q9Y3R0 577 657 SWISS-MODEL  1P1D A 0.98 0.804 

GRIP1-6 Q9Y3R0 676 753 SWISS-MODEL  1N7E A 1.00 0.953 
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GRIP1-7 Q9Y3R0 1008 1084 SWISS-MODEL  1M5Z A 0.99 0.902 

GRIP2-1 Q9C0E4 52 130 SWISS-MODEL  2QT5 A 0.79 0.889 

GRIP2-2 Q9C0E4 151 227 SWISS-MODEL  2QT5 A 0.70 0.962 

GRIP2-3 Q9C0E4 254 331 XRAY 1V62    

GRIP2-4 Q9C0E4 466 543 SWISS-MODEL  1X5R A 1.00 0.766 

GRIP2-5 Q9C0E4 561 640 SWISS-MODEL  1P1D A 0.88 0.704 

GRIP2-6 Q9C0E4 659 736 SWISS-MODEL  1N7E A 0.90 1.000 

GRIP2-7 Q9C0E4 944 1021 SWISS-MODEL  1M5Z A 0.70  

HTRA1-1 Q92743 370 468 NMR 2YTW    

HTRA2-1 O43464 359 442 SWISS-MODEL  2PZD B 1.00 0.838 

HTRA3-1 P83110 350 441 XRAY 2P3W    

IL16-1 Q14005 221 301 SWISS-MODEL  2ENO A 0.49 0.778 

IL16-3 Q14005 1117 1189 SWISS-MODEL  1X6D A 1.00 0.866 

INADL-1 Q8NI35 138 219 SWISS-MODEL  2DB5 A 1.00 0.792 

INADL-2 Q8NI35 231 342 NMR 2DLU    

INADL-3 Q8NI35 369 451 SWISS-MODEL  2DMZ A 0.99 0.845 

INADL-5 Q8NI35 692 769 XRAY 2D92    

INADL-6 Q8NI35 1073 1155 XRAY 2EHR    

INADL-7 Q8NI35 1243 1319 XRAY 2DAZ    

INADL-8 Q8NI35 1441 1518 XRAY 2DM8    

INADL-9 Q8NI35 1537 1613 SWISS-MODEL  2QG1 A 0.75 1.000 

INADL-10 Q8NI35 1684 1760 SWISS-MODEL  2IWP B 0.66 0.973 

LDB3-1 O75112 11 83 XRAY 1RGW    

LIMK1-1 P53667 168 256 SWISS-MODEL  2YUB A 0.40 0.583 

LIMK2-1 P53671 155 238 SWISS-MODEL  2YUB A 0.95 0.622 

LIN7A-1 O14910 111 188 SWISS-MODEL  2DKR A 0.92 0.793 

LIN7B-1 Q9HAP6 96 172 XRAY 2DKR    

LIN7C-1 Q9NUP9 96 173 SWISS-MODEL  2DKR A 0.94 0.827 

LMO7-1 Q8WWI1 1042 1129 XRAY 2EAQ    

LRRC7-1 Q96NW7 1454 1535 SWISS-MODEL  2H3L B 0.75 0.856 

MAGI1-2 Q96QZ7 478 544 XRAY 2KPK    

MAGI1-3 Q96QZ7 646 722 SWISS-MODEL  3BPU A 0.95 0.756 

MAGI1-4 Q96QZ7 849 923 SWISS-MODEL  2Q9V A 0.97 0.949 

MAGI1-5 Q96QZ7 1001 1092 SWISS-MODEL  1UEW A 0.67 0.752 

MAGI1-6 Q96QZ7 1155 1230 SWISS-MODEL  2R4H A 0.96 0.901 

MAGI2-1 Q86UL8 26 98 SWISS-MODEL  2HE4 A 0.35 0.535 

MAGI2-2 Q86UL8 429 497 XRAY 1UEQ    

MAGI2-3 Q86UL8 605 684 SWISS-MODEL  1UJV A 1.00 0.824 

MAGI2-4 Q86UL8 783 860 XRAY 1UEW    

MAGI2-5 Q86UL8 923 1008 SWISS-MODEL  1UEW A 1.00 0.708 
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MAGI2-6 Q86UL8 1150 1227 XRAY 1WFV    

MAGI3-2 Q5TCQ9 440 504 SWISS-MODEL  1UEQ A 0.74 0.725 

MAGI3-3 Q5TCQ9 603 680 SWISS-MODEL  3SOE A 1.00 0.924 

MAGI3-4 Q5TCQ9 757 833 SWISS-MODEL  1UEP A 0.63 0.750 

MAGI3-5 Q5TCQ9 879 961 SWISS-MODEL  1UEW A 0.63 0.754 

MAGI3-6 Q5TCQ9 1049 1126 SWISS-MODEL  1WFV A 0.65 1.000 

MAST1-1 Q9Y2H9 974 1052 XRAY 3PS4    

MAST2-1 Q6P0Q8 1104 1193 SWISS-MODEL  2KQF A 1.00 0.710 

MAST3-1 O60307 950 1039 SWISS-MODEL  3KHF B 1.00 0.875 

MLLT4-1 P55196 1014 1091 SWISS-MODEL  1XZ9 A 1.00 0.530 

MPDZ-1 O75970 136 228 SWISS-MODEL  2O2T A 0.98 0.855 

MPDZ-2 O75970 258 334 SWISS-MODEL  2DLU A 0.68 0.758 

MPDZ-3 O75970 373 464 SWISS-MODEL  2IWN A 0.95 0.955 

MPDZ-4 O75970 562 630 SWISS-MODEL  2DAZ A 0.38 0.850 

MPDZ-5 O75970 703 784 SWISS-MODEL  2D92 A 0.63 0.836 

MPDZ-6 O75970 1011 1077 SWISS-MODEL  3B76 B 0.39 0.601 

MPDZ-7 O75970 1151 1240 XRAY 2IWQ    

MPDZ-8 O75970 1353 1429 SWISS-MODEL  2DAZ A 0.76 0.785 

MPDZ-9 O75970 1487 1562 SWISS-MODEL  2DKR A 0.39 0.732 

MPDZ-10 O75970 1623 1717 XRAY 2OPG    

MPDZ-11 O75970 1728 1805 XRAY 2QG1    

MPDZ-12 O75970 1862 1945 SWISS-MODEL  2IWP B 1.00 0.887 

MPDZ-13 O75970 1990 2070 XRAY 2FNE    

MPP1-1 Q00013 74 150 XRAY 2EV8    

MPP3-1 Q13368 141 216 SWISS-MODEL  3O46 A 0.80 0.853 

MPP4-1 Q96JB8 161 233 SWISS-MODEL  3O46 A 0.59 0.912 

MPP5-1 Q8N3R9 260 333 XRAY 1VA8    

MPP6-1 Q9NZW5 129 207 SWISS-MODEL  2E7K A 0.75 0.771 

MYO18A-1 Q92614 225 310 SWISS-MODEL  1G9O A 0.29 0.631 

NOS1-1 P29475 20 96 XRAY 1QAV    

PARD3-1 Q8TEW0 282 349 SWISS-MODEL  2DB5 A 0.29 0.587 

PARD3-3 Q8TEW0 597 667 SWISS-MODEL  2K1Z A 0.97 0.630 

PARD3B-1 Q8TEW8 211 292 SWISS-MODEL  2O2T A 0.30 0.716 

PARD3B-2 Q8TEW8 391 471 SWISS-MODEL  2KOJ A 0.61 0.842 

PARD3B-3 Q8TEW8 507 593 SWISS-MODEL  1WG6 A 0.99 0.533 

PARD6A-1 Q9NPB6 160 248 SWISS-MODEL  1RZX A 0.84 0.779 

PARD6B-1 Q9BYG5 162 240 XRAY 1NF3    

PARD6G-1 Q9BYG4 163 241 SWISS-MODEL  1NF3 D 0.90 0.682 

PDLIM1-1 O00151 7 83 XRAY 2PKT    

PDLIM2-1 Q96JY6 1 85 XRAY 2PA1    
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PDLIM3-1 Q53GG5 11 85 SWISS-MODEL  1V5L A 0.96 0.706 

PDLIM4-1 P50479 1 90 XRAY 2V1W    

PDLIM5-1 Q96HC4 12 84 XRAY 2UZC    

PDLIM7-1 Q9NR12 10 82 XRAY 2Q3G    

PDZD11-1 Q5EBL8 50 126 SWISS-MODEL  1WI2 A 1.00 0.835 

PDZD2-2 O15018 342 417 SWISS-MODEL  2DM8 A 0.47 0.812 

PDZD2-3 O15018 592 665 SWISS-MODEL  2ENO A 0.44 0.968 

PDZD2-4 O15018 728 814 SWISS-MODEL  2JRE A 0.35 0.533 

PDZD2-5 O15018 2626 2694 SWISS-MODEL  1X6D A 0.52 0.846 

PDZD3-1 Q86UT5 121 194 SWISS-MODEL  1G9O A 0.41 0.821 

PDZD3-2 Q86UT5 231 298 SWISS-MODEL  2OCS A 0.39 0.866 

PDZD3-3 Q86UT5 333 410 SWISS-MODEL  2V9O E 1.00 1.000 

PDZD4-1 Q76G19 130 215 SWISS-MODEL  1WH1 A 0.75 0.710 

PDZD7-1 Q9H5P4 86 169 NMR 2EEH    

PDZK1-1 Q5T2W1 1 108 SWISS-MODEL  2EDZ A 0.89 0.813 

PDZK1-2 Q5T2W1 142 210 NMR 2EEI    

PDZK1-3 Q5T2W1 247 321 SWISS-MODEL  2D90 A 0.88 0.855 

PDZK1-4 Q5T2W1 384 456 SWISS-MODEL  2VSP D 1.00 0.932 

PDZRN3-1 Q9UPQ7 257 340 NMR 1UHP    

PDZRN3-2 Q9UPQ7 429 505 SWISS-MODEL  1WH1 A 1.00 0.730 

PDZRN4-1 Q6ZMN7 232 315 SWISS-MODEL  1UHP A 0.70 0.839 

PDZRN4-2 Q6ZMN7 412 488 SWISS-MODEL  1WH1 A 0.79 0.782 

PICK1-1 Q9NRD5 25 101 XRAY 2GZV    

PPP1R9A-1 Q9ULJ8 509 590 SWISS-MODEL  3HVQ C 1.00 0.933 

PPP1R9B-1 Q96SB3 498 578 XRAY 3EGG    

PTPN13-1 Q12923 1096 1176 SWISS-MODEL  2DKR A 0.49 0.788 

PTPN13-2 Q12923 1371 1445 SWISS-MODEL  1Q7X A 0.99 0.355 

PTPN13-3 Q12923 1504 1584 SWISS-MODEL  2OGP A 0.39 0.688 

PTPN13-4 Q12923 1793 1866 SWISS-MODEL  2DKR A 0.35 0.616 

PTPN13-5 Q12923 1891 1955 SWISS-MODEL  1UEZ A 0.39 0.772 

PTPN3-1 P26045 513 596 SWISS-MODEL  2VPH A 0.71 0.830 

PTPN4-1 P29074 520 603 XRAY 2CS5    

RADIL-1 Q96JH8 976 1062 NMR 1UM1    

RAPGEF6-1 Q8TEU7 538 610 SWISS-MODEL  1UF1 A 0.51 0.821 

RGS12-1 O14924 26 97 XRAY 2KV8    

RGS3-1 P49796 302 374 XRAY 2F5Y    

RHPN1-1 Q8TCX5 542 611 SWISS-MODEL  1VAE A 0.43 0.662 

RHPN2-1 Q8IUC4 524 592 XRAY 2VSV    

RIMS1-1 Q86UR5 608 689 SWISS-MODEL  2CSS A 1.00 0.734 

SCRIB-1 Q14160 725 816 XRAY 2W4F    
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SCRIB-2 Q14160 853 958 NMR 1WHA    

SCRIB-3 Q14160 1007 1091 SWISS-MODEL  3GSL A 0.44 0.745 

SCRIB-4 Q14160 1106 1190 XRAY 1UJU    

SDCBP-1 O00560 117 193 XRAY 1YBO    

SDCBP-2 O00560 198 274 SWISS-MODEL  1NFE A 1.00 0.865 

SDCBP2-1 Q9H190 111 186 SWISS-MODEL  1W9E B 0.69 0.872 

SDCBP2-2 Q9H190 195 265 SWISS-MODEL  1NFE A 0.70 0.869 

SHANK2-1 Q9UPX8 250 339 SWISS-MODEL  1Q3O A 0.90 0.832 

SHANK3-1 Q9BYB0 565 668 SWISS-MODEL  1Q3O A 0.86 0.719 

SHROOM3-1 Q8TF72 36 111 SWISS-MODEL  2EDP A 0.63 0.745 

SHROOM4-1 Q9ULL8 19 93 NMR 2EDP    

SIPA1-1 Q96FS4 690 759 SWISS-MODEL  2EEH A 0.32 0.723 

SIPA1L1-1 O43166 957 1026 SWISS-MODEL  2YT8 A 0.31 0.684 

SIPA1L2-1 Q9P2F8 959 1026 SWISS-MODEL  1G9O A 0.33 0.804 

SIPA1L3-1 O60292 975 1042 SWISS-MODEL  2YT8 A 0.34 0.671 

SLC9A3R1-1 O14745 20 92 XRAY 1G9O    

SLC9A3R1-2 O14745 159 232 SWISS-MODEL  2KRG A 1.00 0.824 

SLC9A3R2-2 Q15599 147 229 XRAY 2HE4    

SNTA1-1 Q13424 83 171 SWISS-MODEL  1QAV A 0.99 0.804 

SNTB1-1 Q13884 117 193 SWISS-MODEL  2VRF A 0.86 0.993 

SNTB2-1 Q13425 118 196 XRAY 2VRF    

SNTG1-1 Q9NSN8 60 137 SWISS-MODEL  1Z87 A 0.45 0.769 

SNTG2-1 Q9NY99 76 155 SWISS-MODEL  1Z87 A 0.54 0.639 

SYNJ2BP-1 P57105 16 99 SWISS-MODEL  2JIK A 1.00 0.977 

SYNPO2-1 Q9UMS6 7 89 SWISS-MODEL  1WF7 A 0.38 0.696 

SYNPO2L-1 Q9H987 7 89 SWISS-MODEL  2EDP A 0.43 0.644 

TIAM1-1 Q13009 856 920 XRAY 2D8I    

TIAM2-1 Q8IVF5 891 977 SWISS-MODEL  1KY9 B 0.36 0.588 

TJP1-1 Q07157 26 108 XRAY 2H2C    

TJP1-2 Q07157 189 263 XRAY 2RCZ    

TJP1-3 Q07157 429 499 SWISS-MODEL  1UF1 A 0.40 0.783 

TJP2-1 Q9UDY2 35 118 XRAY 1CSJ    

TJP2-2 Q9UDY2 307 386 XRAY 3E17    

TJP2-3 Q9UDY2 518 581 SWISS-MODEL  1UF1 A 0.38 0.783 

TJP3-1 O95049 16 90 SWISS-MODEL  2H2B A 0.56 0.966 

TJP3-2 O95049 195 272 SWISS-MODEL  2OSG A 0.58 0.594 

TJP3-3 O95049 394 461 SWISS-MODEL  1UM7 A 0.43 0.792 

USH1C-1 Q9Y6N9 91 166 SWISS-MODEL  3K1R A 0.99 1.000 

USH1C-2 Q9Y6N9 220 289 SWISS-MODEL  2KBS A 1.00 0.932 

USH1C-3 Q9Y6N9 460 527 SWISS-MODEL  1V6B A 0.96 0.837 
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WHRN-1 Q9P202 144 217 XRAY 1UEZ    

WHRN-2 Q9P202 288 358 XRAY 1UF1    

WHRN-3 Q9P202 820 888 SWISS-MODEL  1UFX A 1.00 1.000 

D. Validation results of structure-based predictions against known 
PDZ domain-peptide interactions 

Table B-4  Validation results for human PDZ domain proteome scanning predictions against 

known interactions in PDZBase.  Proteome scanning predictions for 45 human PDZ domains 

were validated against known PDZ domain-peptide interactions in PDZBase. Several statistics 

were calculated including: #P (number of positives), #TP (total number of true positives), #Pred. 

Struct. (number of predictions predicted only by the structure-based predictor), #Pred. Seq. 

(number of predictions predicted only by the sequence-based predictor), #Pred. Both (number of 

predictions predicted by both), #TP Struct. (number of true positives predicted by the structure-

based predictor only), #TP Seq. (number of true positives predicted by the sequence-based 

predictor only), #TP Both (number of true positives predicted by both). 
Domain 
Name #P #TP 

#Pred. 
Struct. 

#Pred. 
Seq. 

#Pred. 
Both 

#TP 
Struct. 

#TP 
Seq. 

#TP 
Both 

Template 
Seq ID 

QMEAN 
Score 

ARHGEF11-1 2 0 273 0 0 0 0 0 1.00 0.921 

CASK-1 6 2 207 671 9 0 2 0   

DLG1-1 2 2 283 127 173 0 0 2 0.99 0.603 

DLG1-2 3 3 117 246 162 0 1 2   

DLG2-1 2 2 214 122 178 0 0 2 0.98 0.997 

DLG2-2 2 2 389 182 226 0 0 2 1.00 0.953 

DLG3-1 2 1 192 159 141 0 0 1   

DLG3-2 2 2 235 171 237 1 0 1   

DLG4-1 2 2 250 112 188 0 0 2 1.00 0.966 

DLG4-2 2 2 110 225 183 0 0 2 1.00 0.991 

ERBB2IP-1 2 2 64 72 13 0 0 2   

GIPC1-1 6 2 188 193 32 1 1 0 0.65 0.852 

GOPC-1 2 0 21 1 0 0 0 0   

GRD2I-1 1 0 18 354 5 0 0 0 0.36 0.509 

INADL-6 1 0 243 19 1 0 0 0   

INADL-8 1 0 597 73 116 0 0 0   

LIN7A-1 1 1 195 128 231 0 0 1 0.92 0.793 

LIN7B-1 2 2 171 197 251 1 0 1   

LIN7C-1 1 1 123 217 231 0 0 1 0.94 0.827 
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MAGI2-2 1 0 28 723 22 0 0 0   

MAGI2-6 2 1 212 252 184 0 0 1   

MAGI3-2 1 0 66 997 283 0 0 0 0.74 0.725 

MLLT4-1 6 1 8 47 0 0 1 0 1.00 0.530 

MPDZ-10 4 3 235 121 78 0 0 3   

MPDZ-13 2 1 156 21 49 1 0 0   

MPP1-1 1 0 109 309 25 0 0 0   

MPP5-1 1 0 44 4 1 0 0 0   

PDZD3-3 1 1 22 979 47 0 1 0 1.00 1.000 

PDZK1-1 1 1 70 525 256 0 0 1 0.89 0.813 

PICK1-1 5 0 65 0 0 0 0 0   

PTPN13-2 2 1 80 194 28 0 1 0 0.99 0.355 

PTPN13-3 2 0 184 0 0 0 0 0 0.39 0.688 

PTPN13-4 2 0 53 0 0 0 0 0 0.35 0.616 

PTPN13-5 1 0 3 6 0 0 0 0 0.39 0.772 

PTPN3-1 1 1 1 719 27 0 1 0 0.71 0.830 

PTPN4-1 2 1 73 147 61 1 0 0   

SLC9A3R1-1 7 4 20 670 56 0 4 0   

SLC9A3R1-2 2 2 1 2720 44 0 1 1 1.00 0.824 

SLC9A3R2-2 3 3 224 909 587 0 0 3   

SNTA1-1 3 2 378 208 190 0 0 2 0.99 0.804 

SNTB2-1 2 1 99 337 125 0 1 0   

SNTG1-1 1 1 7 681 39 0 1 0 0.45 0.769 

SNTG2-1 1 1 26 365 127 0 0 1 0.54 0.639 

TJP1-2 2 0 29 197 5 0 0 0   

USH1C-1 2 0 80 186 13 0 0 0 0.99 1.000 

Table B-5  Validation results for human PDZ domain proteome scanning predictions against 

known negative interactions (with PDZ binding motifs) in the literature.  Proteome scanning 

predictions for 74 human PDZ domains were validated against  experimentally determined 

negative interactions involving peptides with PDZ binding motifs (found from the literature) for 

a total of 410 interactions (Luck et al. 2011). 

Domain 
Name #FP #N 

Domain 
Name #FP #N 

Domain 
Name #FP #N 

CASK-1 1 2 INADL-6 1 4 MPDZ-12 3 5 

DLG1-1 1 3 INADL-7 2 5 MPDZ-13 0 3 



144 

 

DLG1-2 1 3 INADL-8 1 4 MPDZ-2 0 2 

DLG1-3 1 2 INADL-9 0 5 MPDZ-3 0 2 

DLG3-1 0 2 LIN7A-1 0 1 MPDZ-4 0 2 

DLG3-2 0 2 LIN7B-1 0 6 MPDZ-5 1 2 

DLG3-3 0 2 MAGI1-2 0 19 MPDZ-6 0 2 

DLG4-1 1 5 MAGI1-3 2 23 MPDZ-7 0 2 

DLG4-2 0 4 MAGI1-4 0 18 MPDZ-8 0 3 

DLG4-3 1 5 MAGI1-5 7 26 MPDZ-9 1 3 

ERBB2IP-1 0 13 MAGI1-6 5 20 PICK1-1 0 3 

GIPC1-1 0 5 MAGI2-1 1 7 PTPN13-1 0 3 

GOPC-1 0 8 MAGI2-2 1 8 PTPN13-2 0 5 

GRIP2-1 0 5 MAGI2-3 1 11 PTPN13-3 0 2 

GRIP2-2 2 5 MAGI2-4 4 12 PTPN13-4 0 2 

GRIP2-3 0 5 MAGI2-5 8 13 PTPN13-5 0 3 

GRIP2-4 0 2 MAGI2-6 1 6 PTPN3-1 0 2 

GRIP2-5 0 2 MAGI3-2 2 8 SHANK2-1 0 1 

GRIP2-6 2 2 MAGI3-3 0 10 SLC9A3R1-1 0 1 

GRIP2-7 0 1 MAGI3-4 1 11 SLC9A3R1-2 0 1 

INADL-1 0 5 MAGI3-5 3 13 SNTA1-1 0 2 

INADL-10 0 5 MAGI3-6 2 10 TJP1-1 1 3 

INADL-2 0 5 MPDZ-1 1 2 TJP1-2 0 3 

INADL-3 0 5 MPDZ-10 1 2 TJP1-3 1 3 

INADL-5 2 5 MPDZ-11 0 5    

Table B-6  Validation results for human PDZ domain proteome scanning predictions against 

known negative interactions (with no PDZ binding motifs) in the literature. Proteome scanning 

predictions for 47 human PDZ domains were validated against known negative interactions 

involving mutated peptides with non-binding PDZ motifs (found from the literature) for a total of 

126 interactions (Luck et al. 2011). 

Domain 
Name #FP #N 

Domain 
Name #FP #N 

Domain 
Name #FP #N 

ERBB2IP-1 0 1 MAGI2-1 0 3 MPDZ-2 0 3 

GIPC1-1 0 8 MAGI2-2 0 3 MPDZ-3 0 3 

INADL-1 0 2 MAGI2-3 0 3 MPDZ-4 0 3 

INADL-10 0 2 MAGI2-4 0 3 MPDZ-5 0 3 

INADL-2 0 2 MAGI2-5 0 3 MPDZ-6 0 3 



145 

 

INADL-3 0 2 MAGI2-6 0 3 MPDZ-7 0 3 

INADL-5 0 2 MAGI3-2 0 1 MPDZ-8 0 3 

INADL-6 0 2 MAGI3-3 0 1 MPDZ-9 0 3 

INADL-7 0 2 MAGI3-4 0 1 PICK1-1 0 4 

INADL-8 0 2 MAGI3-5 0 1 PTPN13-1 0 2 

INADL-9 0 2 MAGI3-6 0 1 PTPN13-2 0 3 

MAGI1-2 0 4 MPDZ-1 0 3 PTPN13-3 0 2 

MAGI1-3 0 5 MPDZ-10 0 3 PTPN13-4 0 1 

MAGI1-4 0 4 MPDZ-11 0 3 PTPN13-5 0 2 

MAGI1-5 0 5 MPDZ-12 0 3 MPDZ-2 0 3 

MAGI1-6 0 5 MPDZ-13 0 3    

Table B-7  Validation results for worm PDZ domain proteome scanning predictions against 

experimentally determined interactions.  Proteome scanning was performed for six worm PDZ 

domains with interactions from protein microarray experiments. Several statistics were 

calculated including the ones from Table B-6 as well as the following: #N (number of 

negatives), #FP Struct. (number of false positives predicted by the structure-based predictor 

only), #FP Seq. (number of false positives predicted by the sequence-based predictor only), #FP 

Both (number of false positives predicted by both). 
Domain 
Name #P #TP 

#Pred. 
Struct. 

#Pred. 
Seq. 

#Pred. 
Both 

#TP 
Struct. 

#TP 
Seq. 

#TP 
Both #N 

#FP 
Struct. 

#FP 
Seq. 

#FP 
Both 

DLG1-1 4 4 251 17 28 3 0 1 18 6 0 1 

DLG1-3 7 4 36 65 22 0 3 1 15 3 1 0 

DSH-1 11 6 523 5 8 6 0 0 4 1 0 0 

LIN7-1 11 4 33 91 72 1 2 1 11 0 0 1 

MPZ1-6 18 12 194 78 68 8 1 3 4 1 0 0 

STN2-1 8 4 19 212 47 1 1 2 14 0 0 0 

Table B-8  Validation results for fly PDZ domain proteome scanning predictions against 

experimentally determined interactions.  Proteome scanning was performed for six worm PDZ 

domains with interactions from protein microarray experiments. Several statistics were 

calculated including the ones from Table B-6 as well as the following: #N (number of 

negatives), #FP Struct. (number of false positives predicted by the structure-based predictor 

only), #FP Seq. (number of false positives predicted by the sequence-based predictor only), #FP 

Both (number of false positives predicted by both). 

Domain #P #TP #Pred. #Pred. #Pred. #TP #TP #TP #N #FP #FP #FP 
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Name Struct. Seq. Both Struct. Seq. Both Struct. Seq. Both 
DLG1-1 4 4 115 43 66 0 0 4 16 4 0 0 

DSH-1 4 0 77 37 6 0 0 0 16 3 0 0 

LAP4-2 5 4 15 15 13 1 0 3 15 2 1 0 

LAP4-3 9 5 81 0 8 3 0 2 11 1 0 0 

MAGI-4 3 2 54 66 26 0 1 1 17 2 1 2 

PAR6-1 2 0 1 0 0 0 0 0 18 0 0 0 

Table B-9  Validation results for human PDZ domain proteome scanning predictions against 

known interactions in iRefIndex.  Proteome scanning results for 221 human PDZ domains with 

both structure-based and sequence-based predictions were validated against known human PPIs 

in iRefIndex. A prediction is considered to be a true positive if the domain involved is found in a 

known PPI where one of the proteins contains the domain. See Table B-6 caption for details 

about the statistics calculated. 

Domain Name #P #TP 
#Pred. 
Struct. 

#Pred. 
Seq. 

#Pred. 
Both 

#TP 
Struct. 

#TP 
Seq. 

#TP 
Both 

APBA1-1 7 0 9 1 0 0 0 0 

APBA1-2 7 0 56 23 19 0 0 0 

APBA3-1 2 1 404 49 2 1 0 0 

APBA3-2 2 1 172 13 12 0 0 1 

ARHGAP21-1 4 0 7 1760 17 0 0 0 

ARHGEF11-1 11 1 273 0 0 1 0 0 

ARHGEF12-1 3 0 451 0 0 0 0 0 

CAR11-1 6 0 0 878 0 0 0 0 

CASK-1 13 2 207 671 9 1 1 0 

CNKSR1-1 9 0 2 1 0 0 0 0 

CNKSR2-1 8 0 16 8 0 0 0 0 

DEPTOR-1 4 0 215 9 13 0 0 0 

DLG1-1 23 11 283 127 173 2 0 9 

DLG1-2 23 12 117 246 162 3 1 8 

DLG1-3 23 12 398 206 168 6 0 6 

DLG2-1 9 2 214 122 178 1 0 1 

DLG2-2 9 4 389 182 226 3 0 1 

DLG2-3 9 4 1174 149 225 2 0 2 

DLG3-1 22 4 192 159 141 1 0 3 

DLG3-2 22 3 235 171 237 0 0 3 

DLG3-3 22 4 171 272 102 1 0 3 
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DLG4-1 28 8 250 112 188 4 1 3 

DLG4-2 28 8 110 225 183 3 2 3 

DLG4-3 28 9 367 244 130 3 1 5 

DLG5-1 2 0 0 25 0 0 0 0 

DLG5-2 2 0 0 20 0 0 0 0 

DLG5-3 2 0 2 239 0 0 0 0 

DLG5-4 2 0 2 97 2 0 0 0 

DVL1-1 11 0 717 68 34 0 0 0 

DVL1L1-1 1 0 81 173 7 0 0 0 

DVL2-1 18 0 793 63 59 0 0 0 

DVL3-1 9 0 92 89 15 0 0 0 

ERBB2IP-1 8 1 64 72 13 1 0 0 

GIPC1-1 25 3 188 193 32 3 0 0 

GOPC-1 7 0 21 1 0 0 0 0 

GORASP1-1 2 0 0 69 0 0 0 0 

GORASP2-1 7 0 54 30 2 0 0 0 

GRD2I-1 1 0 18 354 5 0 0 0 

GRD2I-2 1 0 41 1127 44 0 0 0 

GRIP1-1 32 0 166 104 7 0 0 0 

GRIP1-2 32 0 20 6 4 0 0 0 

GRIP1-3 32 0 69 14 1 0 0 0 

GRIP1-4 32 0 1 746 0 0 0 0 

GRIP1-5 32 1 11 1439 13 0 1 0 

GRIP1-6 32 1 1170 277 63 1 0 0 

GRIP1-7 32 0 789 5 5 0 0 0 

GRIP2-1 9 0 8 35 0 0 0 0 

GRIP2-2 9 0 12 253 19 0 0 0 

GRIP2-3 9 0 9 215 6 0 0 0 

GRIP2-4 9 0 30 155 2 0 0 0 

GRIP2-5 9 1 8 1644 16 0 1 0 

GRIP2-6 9 0 1672 214 40 0 0 0 

GRIP2-7 9 0 473 2 12 0 0 0 

HTRA1-1 2 0 1 0 0 0 0 0 

HTRA2-1 7 0 90 0 0 0 0 0 

IL16-1 5 1 621 0 6 1 0 0 

IL16-2 5 0 0 194 0 0 0 0 
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IL16-3 5 0 80 0 5 0 0 0 

IL16-4 5 0 0 0 0 0 0 0 

INADL-1 7 0 16 294 20 0 0 0 

INADL-10 7 0 28 43 8 0 0 0 

INADL-2 7 0 269 191 97 0 0 0 

INADL-3 7 0 230 26 0 0 0 0 

INADL-4 7 0 0 0 0 0 0 0 

INADL-5 7 0 1231 39 51 0 0 0 

INADL-6 7 0 243 19 1 0 0 0 

INADL-7 7 0 137 8 13 0 0 0 

INADL-8 7 0 597 73 116 0 0 0 

INADL-9 7 0 45 23 2 0 0 0 

LDB3-1 1 0 152 71 12 0 0 0 

LIMK1-1 10 0 100 3 0 0 0 0 

LIMK2-1 3 0 3 2 0 0 0 0 

LIN7A-1 5 1 195 128 231 1 0 0 

LIN7B-1 6 3 171 197 251 1 0 2 

LIN7C-1 8 2 123 217 231 1 0 1 

LMO7-1 3 0 71 87 7 0 0 0 

LNX1-1 11 0 0 32 0 0 0 0 

LNX1-2 11 0 0 197 0 0 0 0 

LNX1-3 11 0 0 31 0 0 0 0 

LNX1-4 11 0 0 0 0 0 0 0 

LNX2-1 3 0 0 6 0 0 0 0 

LNX2-2 3 0 0 236 0 0 0 0 

LNX2-3 3 0 0 57 0 0 0 0 

LNX2-4 3 0 0 12 0 0 0 0 

LRRC7-1 4 1 62 100 36 0 0 1 

MAGI1-1 13 0 0 21 0 0 0 0 

MAGI1-2 13 3 2 466 9 0 2 1 

MAGI1-3 13 2 135 229 61 0 1 1 

MAGI1-4 13 2 34 57 15 0 0 2 

MAGI1-5 13 2 588 27 42 2 0 0 

MAGI1-6 13 5 648 611 587 2 0 3 

MAGI2-1 8 1 17 431 5 0 1 0 

MAGI2-2 8 2 28 723 22 0 2 0 
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MAGI2-3 8 0 38 0 0 0 0 0 

MAGI2-4 8 1 82 117 25 0 1 0 

MAGI2-5 8 2 661 50 102 1 0 1 

MAGI2-6 8 1 212 252 184 0 1 0 

MAGI3-1 10 0 0 7 0 0 0 0 

MAGI3-2 10 6 66 997 283 0 2 4 

MAGI3-3 10 0 21 0 0 0 0 0 

MAGI3-4 10 1 61 132 23 0 1 0 

MAGI3-5 10 1 265 46 48 0 0 1 

MAGI3-6 10 4 527 594 688 0 0 4 

MAST1-1 33 0 7 387 43 0 0 0 

MAST2-1 6 2 52 367 69 0 2 0 

MAST3-1 4 0 21 516 44 0 0 0 

MLLT4-1 19 0 8 47 0 0 0 0 

MPDZ-1 13 2 350 314 96 2 0 0 

MPDZ-10 13 7 235 121 78 2 1 4 

MPDZ-11 13 0 112 25 1 0 0 0 

MPDZ-12 13 4 437 3 2 4 0 0 

MPDZ-13 13 3 156 21 49 2 0 1 

MPDZ-2 13 3 350 1002 89 3 0 0 

MPDZ-3 13 1 1209 561 530 1 0 0 

MPDZ-4 13 2 180 112 36 1 0 1 

MPDZ-5 13 6 1252 353 109 6 0 0 

MPDZ-6 13 0 1 339 0 0 0 0 

MPDZ-7 13 2 30 103 23 1 1 0 

MPDZ-8 13 0 4 75 1 0 0 0 

MPDZ-9 13 4 764 120 26 4 0 0 

MPP3-1 7 1 5 30 0 0 1 0 

MPP4-1 1 0 9 135 1 0 0 0 

MPP5-1 5 0 44 4 1 0 0 0 

MPP6-1 16 1 302 3 0 1 0 0 

MPP7-1 1 0 0 187 0 0 0 0 

MYO18A-1 6 0 0 363 1 0 0 0 

NOS1-1 8 0 114 8 7 0 0 0 

PARD3-1 24 0 18 1 3 0 0 0 

PARD3-2 24 0 0 131 0 0 0 0 
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PARD3-3 24 0 27 1 0 0 0 0 

PARD3B-1 6 0 58 104 7 0 0 0 

PARD3B-2 6 0 145 431 51 0 0 0 

PARD3B-3 6 0 104 23 3 0 0 0 

PARD6A-1 12 0 108 0 0 0 0 0 

PARD6B-1 7 0 26 0 0 0 0 0 

PARD6G-1 5 0 115 0 0 0 0 0 

PDLIM1-1 5 0 58 234 5 0 0 0 

PDLIM4-1 1 0 173 92 41 0 0 0 

PDLIM5-1 1 0 111 108 6 0 0 0 

PDLIM7-1 12 0 40 27 0 0 0 0 

PDZD11-1 2 0 30 308 43 0 0 0 

PDZD2-1 1 0 0 1 0 0 0 0 

PDZD2-2 1 0 1 1113 5 0 0 0 

PDZD2-3 1 0 671 0 0 0 0 0 

PDZD2-4 1 0 111 18 3 0 0 0 

PDZD2-5 1 0 316 0 2 0 0 0 

PDZD2-6 1 0 0 20 0 0 0 0 

PDZD3-1 3 1 132 290 60 0 1 0 

PDZD3-2 3 0 4 11 3 0 0 0 

PDZD3-3 3 3 22 979 47 0 3 0 

PDZD3-4 3 0 0 17 0 0 0 0 

PDZD4-1 1 0 118 0 0 0 0 0 

PDZK1-1 9 3 70 525 256 0 3 0 

PDZK1-2 9 1 15 147 9 0 1 0 

PDZK1-3 9 5 60 1171 368 1 2 2 

PDZK1-4 9 2 45 338 41 1 1 0 

PDZRN3-1 2 0 158 37 3 0 0 0 

PDZRN3-2 2 0 185 0 0 0 0 0 

PICK1-1 31 0 65 0 0 0 0 0 

PPP1R9A-1 2 0 87 6 3 0 0 0 

PPP1R9B-1 14 0 11 11 0 0 0 0 

PREX1-1 3 0 0 11 0 0 0 0 

PREX2-1 2 0 0 16 0 0 0 0 

PRX-1 6 0 0 2 0 0 0 0 

PSMD9-1 3 0 0 0 0 0 0 0 
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PTPN13-1 7 0 391 2 2 0 0 0 

PTPN13-2 7 0 80 194 28 0 0 0 

PTPN13-3 7 0 184 0 0 0 0 0 

PTPN13-4 7 0 53 0 0 0 0 0 

PTPN13-5 7 0 3 6 0 0 0 0 

PTPN3-1 9 1 1 719 27 0 1 0 

PTPN4-1 10 0 73 147 61 0 0 0 

RADIL-1 14 0 73 947 21 0 0 0 

RAPGEF2-1 13 0 0 0 0 0 0 0 

RAPGEF6-1 4 0 1529 0 5 0 0 0 

RGS12-1 1 1 21 880 42 0 0 1 

RGS3-1 2 0 94 2684 31 0 0 0 

RHPN2-1 10 0 60 200 23 0 0 0 

RIMS1-1 17 0 108 93 7 0 0 0 

RIMS2-1 3 0 0 108 0 0 0 0 

SCRIB-1 14 3 150 55 84 1 0 2 

SCRIB-2 14 3 130 38 65 1 0 2 

SCRIB-3 14 3 344 0 0 3 0 0 

SCRIB-4 14 2 107 152 60 0 1 1 

SDCBP-1 10 0 8 123 4 0 0 0 

SDCBP-2 10 0 17 1 0 0 0 0 

SHANK1-1 3 1 0 1105 0 0 1 0 

SHANK2-1 13 2 4 1505 139 0 1 1 

SHANK3-1 8 0 224 883 640 0 0 0 

SHROOM2-1 4 0 0 1586 0 0 0 0 

SHROOM3-1 1 0 20 508 27 0 0 0 

SIPA1-1 3 0 252 0 0 0 0 0 

SIPA1L1-1 2 0 2 0 0 0 0 0 

SIPA1L3-1 2 0 0 0 0 0 0 0 

SLC9A3R1-1 14 6 20 670 56 0 6 0 

SLC9A3R1-2 14 8 1 2720 44 0 8 0 

SLC9A3R2-1 16 9 0 693 0 0 9 0 

SLC9A3R2-2 16 11 224 909 587 0 2 9 

SNTA1-1 8 4 378 208 190 1 0 3 

SNTB1-1 3 2 55 358 104 0 0 2 

SNTB2-1 5 1 99 337 125 0 0 1 
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SNTG1-1 3 0 7 681 39 0 0 0 

SNTG2-1 1 1 26 365 127 0 0 1 

SNX27-1 2 2 0 728 0 0 2 0 

STXBP4-1 1 0 0 20 0 0 0 0 

SYNJ2BP-1 8 4 9 691 78 0 3 1 

SYNPO2-1 3 0 77 252 6 0 0 0 

TAX1BP3-1 2 0 0 262 0 0 0 0 

TIAM1-1 5 0 12 0 0 0 0 0 

TJP1-1 26 2 129 306 42 0 1 1 

TJP1-2 26 1 29 197 5 0 1 0 

TJP1-3 26 1 197 351 32 0 1 0 

TJP2-1 14 1 152 123 2 1 0 0 

TJP2-2 14 0 0 1 0 0 0 0 

TJP2-3 14 1 140 329 22 0 0 1 

TJP3-1 4 1 158 283 16 0 1 0 

TJP3-2 4 0 0 1 0 0 0 0 

TJP3-3 4 0 128 214 55 0 0 0 

USH1C-1 2 0 80 186 13 0 0 0 

USH1C-2 2 0 89 1 4 0 0 0 

USH1C-3 2 0 43 0 0 0 0 0 

 


