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Abstract:

Background: The eastern woodchuck (Marmota monax), which can be naturally infected
with woodchuck hepatitis virus (WHV), has served as a model for aspects of human
hepatitis B virus (HBV) infection, including the establishment of chronic infection and
progression from chronic hepatitis to liver cancer. However, the cellular landscape of
the woodchuck liver and its parallels to HBV infection remain uncharacterized.
Methods: We present a woodchuck single-cell and spatial transcriptomic atlas in health
and chronic WHYV infection, with a characterization of cell-type and infection-driven
processes in hepatic (Healthy: 52,024 cells; Infected: 40,810 cells; n=8 each) and
peripheral blood mononuclear cells (Healthy: 25,314 cells, n=7; Infected: 19,518 cells,
n=8). We further examined shared WHV—-HBYV disease pathways transcriptionally and
assessed woodchuck liver immune responses functionally using precision-cut
woodchuck liver slice stimulation.

Results: We applied our generated atlas and found hepatic cellular and immune
diversity in woodchuck liver was comparable to human livers. We found that immune
cells in the PMA/IONO stimulated PCLS displayed a type | inflammatory response as
expected, reinforcing our annotations. Our atlas further demonstrated transcriptional
and cellular similarities between the HBV and WHYV infected liver, including the
activation of dendritic cells in the periportal region of the infected liver, and a
restructuring of the T cell compartment in WHYV infection from memory towards

exhaustion, a hallmark of human HBV.



Conclusions: We present a multi-omic atlas of healthy, diseased, and ex vivo—
stimulated woodchuck liver. This work identified shared WHV-HBV pathological
processes, reinforces the value of this preclinical model and provides a resource to

advance HBV pathogenesis studies and therapeutic development.

Impact and Implications:

Limited treatment options for liver disease, often requiring liver transplantation,
emphasize the need for human-relevant animal models to speed the development of
new therapeutic interventions. Woodchucks infected with woodchuck hepatitis virus
(WHV) develop chronic hepatitis and liver cancer, similar to human hepatitis B virus
(HBV) infection. However, the composition and active biological processes in
woodchuck hepatic cells were poorly understood, limiting the utility of this model to
therapeutic discovery. In this study, we characterized the healthy and chronically
infected woodchuck liver in comparison to human HBV at a single-cell resolution
reinforcing the potential of WHV-infected woodchuck as a model for human HBV

disease.

Introduction

The mammalian liver is a vital organ with essential metabolic and detoxification
functions.'=3 It has a profound regenerative capacity that can be compromised in end-

stage disease, necessitating transplantation.* The hepatitis B virus (HBV) is a
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hepatotrophic virus that can persist chronically in the infected host and can lead to
hepatocellular carcinoma (HCC), the most common primary form of liver cancer.®

Investigations into the pathogenesis of HBV have been constrained by limited
access to physiologically relevant animal models, restricted human tissue availability,
and the inherent fragility of hepatic cell populations.t®¢ While single-cell RNA sequencing
(scRNA-seq) and spatial transcriptomics have advanced our understanding of hepatic
cellular complexity, the lack of a well-characterized HBV animal model precludes
functional studies of disease progression and therapeutic intervention.*’

The eastern North American woodchuck, Marmota monax, can be naturally
infected with woodchuck hepatitis virus (WHV) and serves as a critical
immunocompetent preclinical model for HBV-induced liver disease.®® WHV mirrors
human HBV in genome organization, and the infection causes an immune response,
and disease progression from hepatitis to HCC reflective of human disease.?® This
model has helped reveal key insights in chronic HBV persistence, but its full potential is
limited by scarce woodchuck-specific cell biology resources for tracking cellular
ecosystems during WHV infection.10-12

Here, we mapped the healthy and WHV-infected woodchuck liver and matched
peripheral blood mononuclear cells (PBMCs) using sScCRNA-seq, spatial transcriptomics,
and in-vitro tissue stimulation studies (Fig. 1). We applied this map to examine WHV-
induced disease pathways and identified overlapping T cell exhaustion and dendritic cell
differentiation and activation pathways in chronic WHV (cWHV)-infected woodchuck
livers and human chronic HBV (cHBV) infection, including TIGIT, TOX, PDCD1, and

IFNG. This analysis provides a foundation for cell-specific studies of HBV liver
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pathogenesis and oncogenesis, and for preclinical evaluation of new therapies for cHBV

and HCC.

Methods

Detailed methods of tissue and transcriptomic data processing and data analysis

can be found in the supplementary methods.

Tissue preparation

All animal procedures included in this study were approved by institutional ethics boards
(supplementary methods). Woodchucks (see clinical and virological characteristics,
Table S1) were infected with WHV under established protocols and liver tissue was
dissociated into single-cell suspensions as previously described.'** PBMCs were

isolated using standard percoll-based density gradient centrifugation.

Precision-cut woodchuck liver slice stimulations
Precision-cut liver slices were generated from woodchuck W3391 (healthy) and
stimulated for ex vivo studies as previously described and single-nucleus RNA-seq

(snRNA-seq) of stimulated slices was performed.

RNA-sequencing and data processing

We developed a new, annotated high-quality woodchuck genome annotation to
enable gene identification and quantification from RNA-sequencing data (Fig. S1,
details in supplementary methods). 3’ Visium spatial transcriptomics (10x Genomics,

see Table S2- for sample QC) was performed on OCT-embedded 16-micron slices each
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from a healthy (L212) and diseased (L215) woodchuck liver tissue) and scRNA-seq and
snRNA-seq data (10X Genomics chromium SingleCell 3' v2 chemistry) were aligned to
the woodchuck genome using 10X Genomics Space Ranger v1.2.2 and 10X Genomics
Cell Ranger v5.0.0% respectively. Sequencing data were processed, integrated, and
annotated using the seurat v5 analysis!* pipeline, and DropletQC*® was used to
remove empty droplets in filtered Cell Ranger results (Fig. S2 and Fig. S3). Shared
immune dysfunction between cWHYV and cHBV infections was examined via pathway

analysis using publicly available human HBV data (GSE182159)%°.

DNA extraction and quantitative WHV PCR

DNA was isolated from 100 pL plasma or 10 mg of snap-frozen tissue and was
amplified by quantitative polymerase chain reaction (qPCR) using WHV and woodchuck
b-actin specific primers. Cycling conditions were as follows: 95 °C for 1 min followed by
45 amplification cycles (95 °C for 15 s, 60 °C for 30 s) and a melt curve. Primers against
the WHYV preS region were used at a final concentration of 250nM (forward:
ATGCACCCATTCTCTCGAC,; reverse: CTGAGCAGCTTGGTTAGAGT). Standard
curves were generated using serial dilutions of WHV plasmid DNA from 108 to 1
copies/reaction. The WHYV viral copies are reported as copies per mL of plasma or ng of

total DNA. Full details can be found in supplementary methods.

Results

An Atlas of Healthy Woodchuck Liver Cells and PBMCs Demonstrates

Compartment Specific Immune Subtypes and Transcriptional Profiles
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After filtering, SCRNA-seq of six liver biopsies and two perfused lobes yielded
52,024 liver cells and 25,314 PBMCs, which were broadly grouped into 24 cell types
(Fig. 2A-E, Fig. S4). Our combined atlas of woodchuck liver and PBMC was annotated
with automated methods based on human datasets,>?17:18 (Fig. S5) and manual
curation focused on lineage-associated genes from human liver single-cell studies
(Table S3, Fig. S6-S10). Our approach to include biopsies and perfused caudates
captured both liver parenchymal (hepatocytes and cholangiocytes) and non-
parenchymal cell populations (endothelial and mesenchymal cells, Fig. S6-7), and
immune cell populations (myeloid cells, T cells, NK cells, and mature and antibody-
secreting B cells, Fig. S8-10) based on transcriptomic similarity to their human
counterparts (Fig. S5).

With these annotations applied (Fig. 2A), we first employed the atlas to examine
infiltrating immune cells in woodchuck liver homogenates vs those found in PBMCs to
allow a more accurate description of tissue residency genes. Cell types captured from
the woodchuck liver and PBMCs largely separated into unique populations, except for
basophils, plasmablasts, and mature B cells (Fig. 2B-E, Fig. S4A-F). Our analysis
yielded numerous immune tissue residency markers in woodchuck liver. Just as in
human datasets,** tissue-resident immune cells had distinct gene expression profiles
from circulating populations of the same cell type (Fig. 2F,G, Fig. S11, Table S3). Liver-
resident T cell and NK cell populations (Fig. 2F) had clear markers of tissue residency
(e.g. CXCR6, ITGAE, ITGB1, CCL5)'°2°% and differentiation (e.g. RUNX2, KLF2, TOX,
ZBE2, NR4A2)'°20, |n contrast, PBMC enriched T cell and NK cell populations

expressed circulation (e.g. CCR7, SELL)?! and resting (e.g. LEF1, SATB1)6
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phenotypes. Further differences in gene expression by compartment were noted in the
NK and NKT cell subclusters (Fig. S11), with those found in liver predominantly sharing
markers of lymphocyte terminal differentiation (e.g. GZMK, NKG7) while expressing
liver-resident T and NK cell genes (e.g. FCER1G, GZMH/B, CD160, Znf683).
Meanwhile NK and NKT cell subclusters from PBMC differentially expressed IL7R,
BANKZ1, SELL-1 suggesting the adoption of a residency and differentiated phenotype in
the liver.

Myeloid populations also displayed compartmentalization, with dendritic cells,
basophils (GATA4), and activated monocytes (IL1B) distributed across both sites, while
macrophages (C1QC) and Kupffer cells (MARCO, C1QC) were liver-enriched (Fig. 2D).
Furthermore, dendritic cells in PBMCs (Fig. 2G) expressed genes related to
inflammation (e.g. FCN1, FCN2, MSR1)?2 while those in the liver expressed genes
associated with antigen-presentation to CD8" T cells and differentiation (e.g. CD74,
TAP1, CLEC9A, BATF3, IRF8, FLT3)2%. Taken together, this atlas provides a platform
for examining the PBMC to liver immune cell differentiation, activation and infiltration
trajectories and the transcriptomic signatures of woodchuck intrahepatic cell

populations.

Spatially-resolved Woodchuck Liver transcriptomics Reveal Hepatocyte
Metabolic Programs

Hepatocytes exhibit zonated gene expression patterns, with periportal cells
specializing in high-energy processes like cholesterol biosynthesis and oxidative

metabolism, while pericentral cells focus on glycolysis and xenobiotic metabolism.3
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Unbiased spatial transcriptomics with 55um resolution (10X Genomics 3’ Visium) was
applied to ascribe a geographical location to the annotated intrahepatic cells in our
atlas. This approach provided spatial context to periportal and pericentral hepatocytes
revealing their distinct transcriptional profiles (lobule zones annotated by a pathologist,
Fig 3A-E, Tables S4, S5, and S6). Pericentral hepatocytes differentially expressed
human pericentral markers (CYP2E1, FETUB, CYP1A2) alongside GLUD1/GLUD?2
(non-zonated in humans) and HMGCS1 (periportal in humans), indicating partially
conserved but distinct zonation patterns between species.'’ Using pathway analyses,
we found that enriched pathways in the pericentral zones include those of xenobiotic
metabolism, blood coagulation, bile transport, and demethylase activity (Fig. 3F), which
is consistent with what has been recorded in the literature.324

Periportal hepatocytes in the woodchuck shared both human periportal markers
HAMP, APOC2, and mouse orthologs Saal/SaaZ2 (Fig 3D,E, Table S4, S5). Pathway
enrichment analysis of periportal zones from the spatial transcriptomics data revealed
triglyceride regulation, alcohol binding, hormone binding, and electron respiratory chain
pathway activity (Fig. 3F). Combining this evidence demonstrates strong correlations
with human and mouse biology in liver zonation.

As described previously,17?4 hepatocyte markers were a source of ambient
RNA contamination in sScCRNA-seq data, indicating that they may have been damaged or
otherwise influenced by the experimental protocol, limiting the ability to resolve
hepatocyte transcriptional profiles in the scRNA-seq data (Fig. S12).

As expected,t7:?4 in the Visium spatial data from 55um-diameter spots,

hepatocyte signatures were dominant over those of other smaller cell types making the

11


https://sciwheel.com/work/citation?ids=5923889,12030117&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=3090117,15866922&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=5923889,12030117,15866922&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=5923889,12030117,15866922&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0

localization of non-hepatocytes difficult to resolve. For example, VWF and ACKR1,
markers for periportal and pericentral endothelial cells respectively (Fig. S6) have
correlation coefficients of -0.01 and 0.01 with their respective zones when analysing the
spatial transcriptomics data (Table S6). Other marker genes have similarly weak
coefficients suggesting that co-occurring signals were not sufficiently strong enough to
make any conclusions (Table S6), suggesting a higher resolution spatial approach or a
probe-based approach targeting non-hepatocyte genes would be required to overcome

this issue.

Examination of Woodchuck Intrahepatic Cell Function using Precision-Cut Liver
Slices

To validate our annotations and characterize woodchuck cell-specific response,
we stimulated woodchuck precision-cut liver slices (PCLS) in vitro with phorbol
myristate acetate (PMA) and ionomycin before snRNA-seq analysis (Fig. 1C, Fig. 4A).
PMA triggers receptor ligation-independent NF-kB pathway activation while ionomycin
increases intracellular calcium, a critical mediator of immune activation.?®> We identified
cell types based on their gene expression profiles (Fig. 4B, Table S7), and compared
PMA-stimulated cell populations to their unstimulated counterparts on a per-lineage
basis (Fig. 4C-G, Table S8). Generally, type | inflammation gene signatures were
strongly expressed in stimulated T and myeloid cells, with mild inflammation signatures
occurring in other cell types (Fig. 4D-G, Table S8). Firstly, PMA-stimulated T cells
expressed known activation markers (NFKB1, CCL3, CCL4, CCL5, TNF, and IL2RA)

and showed TGF@ signalling and IFNy activation respectively (Fig. 4D-E,G, Table S8).
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This response mirrored previously reported human PBMC T-cell responses to
PMA/ionomycin, which showed corresponding upregulation of IL2, IFNG, TNF-a, and
CCL5 (RANTES).?® Collectively, this suggests a bias towards TH1 over TH2 or TH17
responses. Stimulated myeloid populations similarly upregulated NFKB1, TNF, IFNG,
IL2RA, CCL4, and CCL3, along with IL7 (Fig. 4F,G), with pathways enriched for
interferon response, inflammation, and chemokine migration (Fig. S13). Myeloid-specific
activation markers SLAMF1, CD274, GBP2, CXCL8 and BATF2 were also induced (Fig.
S14), validating the presence of anticipated inflammatory signatures.

Beyond immune cells, hepatocytes, cholangiocytes, endothelial cells, and
mesenchymal cells similarly displayed pro-inflammatory NFKB1 pathway activation
seen through upregulation of key cytokines: (CXCL10, CCL4 and CXCLS8), and
inflammatory effector proteins (TIFA and IDO1) (Fig. 4D,G, Fig. S14, Table S8). Further,
stimulated hepatocytes expressed FAS while cholangiocytes upregulated caspase
transcripts (CASP4, CASP6) (Table S8), suggesting an activation of cell-death
programs in parenchymal cells. Endothelial cells also increased the expression of cell
adhesion and leukocyte trafficking markers (e.g. CD44, ITGAM, SYN3, and VCAM1),
Type | inflammation genes (STATS3, IFNG) and pro-survival genes (e.g. BATF3, IRGM,
TCF3), underscoring the role of these cells in activating the immune response and
promoting immune infiltration (Fig. 4D,G, Table S8). Furthermore, cholangiocytes and
endothelial cells showed increased expression of CSF1 (Table S8), a monocyte to
macrophage differentiation growth factor. Antibody-secreting B cells, myeloid cells and
hepatocytes also showed increased expression of lymphocyte growth factor gene IL7

(Fig. 4D,G, Table S8). Altogether this suggests the upregulation of a macrophage-
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promoting environment and the development of a T cell supportive niche in
inflammatory liver tissue. Collectively, these findings demonstrate that woodchuck
hepatic cells exhibit coordinated inflammation-associated gene activation following

PMA/ionomycin stimulation.

Periportal zone damage and Cytotoxic T Cell Exhaustion in cWHYV infection

To expand on the value of the woodchuck as a pre-clinical model of chronic viral
liver infection, we applied our above scRNA-seq workflow to cWHV-infected woodchuck
livers (Fig. 1D, Fig. 5A,B, Fig. S15-21). Using the marker genes identified through the
above analysis, 23 populations of parenchymal, stromal and immune cells were
annotated (Fig. S15A-F, Fig. S20-25; diseased animal characteristics Table S1; cell-
type specific DGE analysis Table S9; diseased vs healthy DGE analysis for each cell
type Table S10; histology Fig. S16-19). Cells from infected livers strongly and
consistently expressed WHYV viral transcripts while healthy samples did not (Fig. 5C-E).

Analysis of the infected spatial transcriptomics liver slices from woodchuck L215
revealed strong pericentral zonation, but very little periportal zonation suggesting a
reduction of periportal gene expression in response to infection (Fig. 5F,G). Specific cell
type signatures were differentially present between healthy and diseased spatial
transcriptomics data (Fig. 5H) and were enriched in specific zones (Fig. 5I, Fig. S22).

We identified a cluster of T cells (CD8_Ex_TOX) with upregulation of key
effector- (IFNG, KLRD1, CCL3), activation- (FUT8), and exhaustion-associated markers
(TOX, NR4A2) in cWHYV that were enriched in disease (Fig. 6A-E, Fig. S17).

Additionally, NK/T cells in healthy woodchuck liver and PBMC samples had a higher

14



cytotoxic score while maintaining a lower exhaustion signature than cWHV NK/T cells
(Fig. 6D, Table S11 for gene sets). These data indicate that CD8* T cells may be
exhausted in cWHYV livers leading to impaired viral clearance in chronically infected
samples, similarly to recent scRNA-seq mapping of cHBV infected human livers.6

In addition, dendritic cells also expressed distinct genes in infected versus
healthy cells, largely involved in differentiation or antigen presentation (e.g. CADM1,
WDFY4, IRF8, LRBA) (Fig. 6F). Myeloid cell populations were also generally more
present in the diseased spatial transcriptomics data compared to healthy with
signatures scoring more strongly for classical monocytes, Kupffer cells, activated
monocytes, and dendritic cells among others (Fig. 6G).

Furthermore, similar to cHBV infection?’, histological evaluation of cWHV-
infected tissue identified immune infiltration, and mild hepatocytic necrosis at the
periportal region while the central veins remain undamaged (Fig. S23-26). This supports
the reduced periportal zonation seen in the spatial transcriptomics data (Fig. 5F).
Altogether these results suggest a reduction in healthy periportal hepatocytes and

increased exhausted T cells and immune filtration in the liver during c(WHYV infection.

Cell-level characterization of cWHV infection as a pre-clinical model of cHBV
infection

To directly compare cWHYV infection with cHBV, we analysed a publicly available
dataset of immune-active cHBV-infected scRNA-seq data of immune cells
(GSE182159).%¢ Shared markers of chronic activation were identified by correlating

genes upregulated in both cWHV and cHBYV relative to their respective healthy controls
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(Fig. 7A). The strongest correlations were observed in CD8* T cells, where shared
markers included exhaustion-associated genes TOX and NFATC1 as well as T cell
activation markers, TNFRSF1B, NR4A2, ITGB1 and CD27.6 Several of these T cell
activation genes have also been shown in studies of liver resident T cells in both NASH
and in cHBYV infection.?82°

We then searched for shared enriched pathways in T cells and myeloid cells in
both cWHV-infected woodchuck and HBV-infected human tissues (Fig. 7B,C). This
analysis showed shared PD-1 activation, lymphocyte activation and pathways
associated with myeloid activation such as “IFNG signalling” in chronic WHV carriers -
reinforcing the parallels between cWHYV and cHBV. This analysis indicates that cWHV-
infected woodchuck livers exhibit disease related pathway activation that have been
noted in human cHBV infection.

Previously, PD-1, a programmed cell death receptor that is expressed on
activated effector T cells, has been shown to increase intrahepatically as a result of
cWHYV infection when analysed with quantitative polymerase chain reaction (qPCR).3°
To expand on the PD-1 shared pathway to delineate exhaustion vs. activation, we
further examined key activation and exhaustion genes and found that in both scenarios,
cHBV and cWHV T cells upregulated genes involved in exhaustion and inflammation
(TIGIT, TOX, TNFRSF9, CTLA4, IFNG, CXCR®6) (Fig. 7D, Fig. S27A-E). These findings
suggest that similar programs are activated in both cWHV and HBV infections and
highlights the potential and value of the woodchuck model for testing
immunomodulatory interventions to drive antiviral immunity and promoting a functional

cure for HBV.

16


https://sciwheel.com/work/citation?ids=15292690&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10746362,17379739&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=15694205&pre=&suf=&sa=0

Discussion

A key challenge in applying the WHV-infected woodchuck model for
understanding HBV immunopathogenesis and targeting the intrahepatic cellular
ecosystem in WHYV disease has been the lack of molecular biology tools leveraged to
understand the cellular ecosystems within the woodchuck liver and circulating immune
populations.3%-32 Here, we generated the first single-cell atlas of the woodchuck liver
and PBMCs and applied this map to highlight shared cell populations and gene
pathways between WHV-induced disease in woodchucks and HBYV infection in humans.
Our atlas strengthens and reaffirms the translational potential of this unique, HBV-
homologous model and will allow for the examination of key molecular parallels
between WHV and human HBYV pathogenesis to inform future therapeutic development.

Our cell-level examination of the parenchymal and non-parenchymal ecosystem
in the healthy and diseased woodchuck liver delivers an unbiased snapshot of the major
cell types in the woodchuck liver, which compliments previous woodchuck studies and
adds a new level of information regarding cell level interactions that may be targeted to
promote antiviral responses. For example, previous bulk RNA-seq analyses have
identified intrahepatic expression of markers associated with T cell exhaustion and
inhibition of anti-viral cytokine signalling in livers of woodchucks with cWHV
hepatitis.3>32 Here, we describe the transcriptome of a cWHV-infected liver derived
exhausted-like T cell populations associated with viral persistence (expressing TOX,
TIGIT, CXCR6) and found only in small populations in the healthy woodchuck liver or

PBMCs. Importantly, our data suggests shared dynamics of T cell response in cWHV
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and HBV thereby reinforcing the value of this model for future immune modulating
studies to induce potent antiviral immunity facilitating sterilizing HBV clearance. Indeed,
restoring the function of exhausted T cells through reprogramming their metabolism is
thought to be a promising therapeutic target for cancer immunotherapy.3*
Previous studies that employed gPCR to profile the immune infiltrates in biopsies from
WHYV infected woodchucks have implicated intrahepatic Tregs in regulating, and
specifically inhibiting, the response to HBV.332 We found that intrahepatic Tregs in the
woodchuck liver are characterized by the expression of FOXP3 and inhibitory genes
TOX and TIGIT, in addition to upregulating the PD-1 pathway. Myeloid and dendritic
cells have also been suggested to be involved in the immunopathogenesis of cWHV
infection, noting an increase in their proportions weeks after infection.*° However,
myeloid cells in the infected liver have demonstrated toll-like receptor suppression
suggesting an inhibition of the innate immune function.3®

In our study, in addition to the T cell exhaustion and inhibitory signatures that
were identified, our analysis simultaneously found pathways associated with the
myeloid regulation of T cells. This further suggests that myeloid cells play an important
role in guiding the T cell response to viral infection. Taken together, our data shows
shared myeloid activation and T cell dysfunction in WHV and may provide a rationale for
targeting T cell and myeloid interactions as potential a pathway to modify to limit WHV-
induced T cell exhaustion and viral persistence.

We applied spatial transcriptomics profiling to probe hepatocyte zonation within
the woodchuck liver, identifying pericentral (CYP2E1, FETUB, HMGCS1) and periportal

(APOC2, Saal/Saa2, HAMP) markers, which scRNA-seq alone was unable to
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distinguish. As an indication of the applicability of the WHV model to examine immune
targets in HBV, our study found that most immune cells in woodchuck liver and PBMCs
resembled human counterparts, including T cell, monocyte and macrophage subsets,
supporting translatable immune targets. Notably, tumour-associated exhausted T cells
represent a promising therapeutic target given their important role in promoting viral
tolerance and immune escape in many cancers.!3

A well-described challenge related to transcriptionally profiling total liver
homogenates is the fragility of hepatocytes which leads to high cell death and
consequent release of ambient RNA, which can contaminate cell preparations and
complicate annotation. Filtering the liver homogenate datasets with DropletQC greatly
improved the clarity of signals from the liver tissue data and removed clusters previously
thought to be periportal hepatocytes and Kupffer cells.

However, the WHV-infected woodchuck model of HBV is not without its caveats.
cHBYV infection in humans is frequently associated with progressive liver fibrosis or
cirrhosis which is infrequent in woodchuck with cWHV.*? Moreover, progression to
cWHV-induced HCC is more consistent and rapid,'? whereas only 10-25% of chronically
HBV infected individuals develop HCC3®. Finally, WHV frequently integrates around the
N-myc?2 locus®’, whereas HBV insertional mutagenesis is largely thought to be
random.3 Thus, findings related to WHV-triggered HCC development in woodchucks
may not fully replicate processes expected to occur in HBV-induced liver cancer.

Taken together, our work characterising the immune cells in cWHYV allows for
hypothesis generation of potential immunotherapies that can be tested and analysed in

the c(WHYV infection model for HBV-induced HCC. Future work may incorporate
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additional disease stages, multi-omic data, and validation of predicted cellular
phenotypes. Taken together, these maps will enhance the utility of the woodchuck-WHV
model and benefit the HBV community by acting as a reference for examining the liver
cellular microenvironment and intrahepatic immune responsiveness to test antiviral and
immunotherapies through the course of WHV-induced inflammatory liver disease and

HCC development.

Abbreviations

ScCRNA-seq = single-cell RNA sequencing
snRNA-seq = single-nucleus RNA sequencing
HCC = hepatocellular carcinoma

ATAC-seq = assay for transposase-accessible chromatin using sequencing
PBMC = peripheral blood mononuclear cell
HBV = hepatitis B virus

WHYV = woodchuck hepatitis virus

HSC = hepatic stellate cell

LSEC = liver sinusoidal endothelial cell

PCLS = precision cut liver slice

DE = differentially expressed

GSEA = Gene Set Enrichment Analysis

TLH= Total Liver Homogenate
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Figure Legends

Fig. 1: Generation of the healthy woodchuck liver atlas and its application to
cWHV/cHBV. (A) Intrahepatic cells (8 healthy livers) and PBMCs (7 matched samples)
underwent scRNA-seq, quality filtering, and clustering/annotation. (B) Spatial
transcriptomics data from 1 healthy liver (2 slices) were processed with 10X Genomics
pipeline and zonation signatures characterized. (C) PCLS data were stimulated with
PMA/lonomycin followed by single-nucleus RNA sequencing, downsampling and
compared to unstimulated data. (D) scRNA-seq (8 liver samples, 8 PBMCs) and spatial
transcriptomics (1 liver, 2 slices) were performed on cWHYV cells. The scRNA-seq

samples were merged with healthy cells and compared to HBV-infected liver data'®.

Fig. 2: Woodchuck liver and PBMCs show distinct populations of circulating and
tissue-resident immune cells. (A) A total UMAP of 77,338 cells from woodchuck liver
biopsies (n=6), liver homogenate from perfused caudate lobes (n=2), and PBMC (n=7)
with annotations assigned and coarse cell types used for subclustering circled. (B) Total
UMAP colored by tissue type. (C-E) Zoom-in subclustering of NK cells and T cells (C),
Myeloid cells (D) and B cells (E) (clusters from total map included in each zoom-in are
indicated in Fig. 2A), upper panels show UMAPs colored by tissue type, lower panels
show annotated clusters for each zoom in. (F-G) Volcano plots showing the expression
of tissue residency (right) and PBMC-associated (left) genes in subclustered immune
cells from woodchuck liver and PBMC, with key human genes highlighted. The 4

individual T cell and NK cell volcano plots include clusters from 2C with keywords CD4,
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CD8, gd and NK in annotation, respectively; The 2 myeloid volcano plots include

clusters from 2D with keywords DC and Mono in annotation respectively.

Fig. 3: Spatial transcriptomics data describes zonation patterns in the woodchuck
liver. Spatial transcriptomics of 2 healthy woodchuck liver slices. (A) H&E-stained liver
with pericentral/periportal zonation. (B) Spatial clusters projected onto the liver slice. (C)
Key pericentral genes (CYP2E1, FETUB, HMGCS1) and gene score and (D) periportal
genes (APOC2, Saal/Saa2, HAMP) and gene score mapped onto slices. (E) Spatial
clusters and key spatial-associated genes projected as dotplots. (F) Pathways
upregulated for periportal (red) and pericentral (blue) hepatocytes. *AMY2B truncated

from AMY1A;AMY1C;AMY1B;AMY2A;AMY2B.

Fig. 4. PMA/lonomycin stimulates immune cell populations in the woodchuck
liver. (A) Healthy woodchuck precision cut liver slices were stimulated with
PMA/ionomycin and single-nucleus RNA sequencing was performed. (B) A UMAP of
9,208 stimulated and unstimulated woodchuck liver cells split by treatment and labelled
by cell type. (C) A barplot of sample IDs as distributed across clusters labelled in (B)
where UMAPs are split by treatment (PMA/ionomycin and control, respectively). (D)
UMAPs of stimulated woodchuck liver cells split by sample ID with heatmaps of key
inflammatory genes projected onto the maps. (E) and (F) are volcano plots of the results
of a differential expression test comparing slices stimulated by PMA/lonomycin to
unstimulated cells. (E) is a volcano plot of CD3+ NK/T cells, and (F) is a volcano plot of

CD68+ myeloid cells. (G) Heatmaps showing the expression of housekeeping genes
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and genes stimulated by PMA/lonomycin. *CCL3 truncated from

CCL3L1;CCL3L3;CCL3;CCL18 and CCL4 truncated from CCL4L2;CCL4L1:CCLA4.

Fig. 5: A comparison of cWHV and healthy parenchymal and stromal cells. (A)
UMAP of healthy and cWHYV liver and PBMC cells. (B) Cells split by disease state. (C)
Normalized WHYV expression across woodchucks. (D) The expression of WHV in spatial
transcriptomics data. (E) DE genes in infected (right) vs healthy (left) hepatocytes. (F)
The distribution of periportal and pericentral scores in healthy and infected spatial
transcriptomics data and (G) across liver lobule spots. (H) Cell type scores in diseased
and healthy spatial data and (1) the distribution of the zonation score within spots

representing each cell type (Wilcoxon test).

Fig. 6: The immune landscape of WHV-infected woodchuck blood and liver
compartments. (A) A UMAP of healthy and diseased NK/T cells. (B) T cells from (A)
split by disease state. (C) Proportion of immune cells within CD45* population. (D) A
comparison of exhaustion and cytotoxicity scores. (E) A comparison of log-fold change
and the proportion of cells that express a particular gene between CD8* Teff Mem (left)
and Tox* Tex (right) and (F) infected (right) vs (left) healthy DCs. (G) Cell type

signatures across healthy and diseased cell subtypes in visium data.

Fig. 7: Shared pathways of T cell exhaustion and activation in cWHV- and cHBV-

infected tissue. (A) The average log2FC of each gene in the infected HBV and cWHV

samples relative to their respective controls (red indicates significant in woodchuck, blue
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indicates significant in cHBV immune-active, purple indicates significant in both) across
cell types. (B) Overlapping enriched pathways in gene-set enrichment analysis between
T cells from cHBV (n=5)'% and cWHV (n=8) livers. (C) Overlapping enriched pathways in
gene-set enrichment analysis between infected myeloid populations. (D) UMAPs
depicting the average normalized expression of exhaustion genes in both human and

woodchuck.
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Highlights

Woodchuck liver and blood cells share key characteristics with human cells
Analogous cells in liver and blood have unique signatures indicating their origin
Exhausted T cells are enriched in the diseased woodchuck liver

Woodchuck and human share chronic hepatic inflammation gene signatures



