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Linda Linke,1 Hendrik Witt,1,7 Ursula D. Weber,4 Marc Zapatka,4 Rainer König,2,13,14 Rameen Beroukhim,3,15,16

Guillaume Bergthold,3,15,17 Peter van Sluis,18 Richard Volckmann,18 Jan Koster,18 Rogier Versteeg,18 Sabine Schmidt,19

Stephan Wolf,19 Chris Lawerenz,20 Cynthia C. Bartholomae,21 Christof von Kalle,21 Andreas Unterberg,21

Christel Herold-Mende,21 Silvia Hofer,22 Andreas E. Kulozik,7 Andreas von Deimling,23,24 Wolfram Scheurlen,25

Jörg Felsberg,26 Guido Reifenberger,26 Martin Hasselblatt,27 John R. Crawford,28,29 Gerald A. Grant,30,31 Nada Jabado,32

Arie Perry,33 Cynthia Cowdrey,34 Sydney Croul,35 Gelareh Zadeh,35 Jan O. Korbel,11 Francois Doz,8,36 Olivier Delattre,8,9

Gary D. Bader,12 Martin G. McCabe,37 V. Peter Collins,38 Mark W. Kieran,39 Yoon-Jae Cho,40 Scott L. Pomeroy,41

Olaf Witt,42 Benedikt Brors,2 Michael D. Taylor,6 Ulrich Schüller,43 Andrey Korshunov,1,23,24 Roland Eils,2

Robert J. Wechsler-Reya,5,44 Peter Lichter,4,44 and Stefan M. Pfister,1,7,44 on behalf of the ICGC PedBrain Tumor Project
1Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
2Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
3Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
4Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
5Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
6The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
7Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, 69120 Heidelberg, Germany
8Institut Curie, 75005 Paris, France
9Institut Curie/INSERM U830, 75248 Paris, France
10Department of Neuropathology, NN Burdenko Neurosurgical Institute, Moscow 125047, Russia
11European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
12The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
13Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
14Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), 07745 Jena, Germany
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SUMMARY
Smoothened (SMO) inhibitors recently entered clinical trials for sonic-hedgehog-driven medulloblastoma
(SHH-MB). Clinical response is highly variable. To understand the mechanism(s) of primary resistance and
identify pathways cooperating with aberrant SHH signaling, we sequenced and profiled a large cohort of
SHH-MBs (n = 133). SHH pathway mutations involved PTCH1 (across all age groups), SUFU (infants,
including germline), and SMO (adults). Children >3 years old harbored an excess of downstream MYCN
and GLI2 amplifications and frequent TP53 mutations, often in the germline, all of which were rare in infants
and adults. Functional assays in different SHH-MB xenograft models demonstrated that SHH-MBs harboring
aPTCH1mutation were responsive to SMO inhibition, whereas tumors harboring an SUFUmutation orMYCN
amplification were primarily resistant.
INTRODUCTION

Medulloblastoma (MB) comprises a collection of clinically and

molecularly distinct tumor subgroups that arise either in the cer-

ebellum or brainstem (Grammel et al., 2012; Louis et al., 2007;

Taylor et al., 2012). In children, they comprise the most frequent

embryonal brain tumor, whereas in adults the disease is relatively

rare, accounting for less than 1% of all intracranial malignancies

(Louis et al., 2007). Current therapy regimens including surgery,

cranio-spinal radiotherapy, and chemotherapy, may cure 70%–

80% of patients with MB. Most survivors, however, suffer from

long-term sequelae because of the intensive treatment, demon-

strating that less toxic treatments are urgently needed. Molecu-

lar analyses have shown that there are four major MB subgroups

(WNT, Sonic Hedgehog [SHH], Group 3, and Group 4; Taylor

et al., 2012). They are highly distinct in tumor cell histology and

biology, and in addition show divergent clinical phenotypes

such as patient demographics, tumor dissemination, and patient

outcome (Kool et al., 2012; Northcott et al., 2012a; Taylor et al.,

2012). Recent studies, largely focusing on pediatric MB, have

utilized next-generation sequencing technologies to map the

genomic landscape of MB and to identify novel driver mutations

in each molecular subgroup (Jones et al., 2012; Northcott et al.,

2012a, 2012b; Parsons et al., 2011; Pugh et al., 2012; Rausch

et al., 2012; Robinson et al., 2012). Due to the infrequent occur-

rence of this disease in adulthood, little is known about the
Significance

Our data show that most adults, but only half of the pediatric pa
predicted by molecular analysis of the primary tumor and test
eration of SMO inhibitor trials should be based on these predic
suggest rational combination therapies including epigeneticmo
show that tumor predisposition (Gorlin syndrome and Li-Fraum
Each patient with SHH-MB, especially those 4–17 years old wi
tions. Separate LFS-MB trials should be considered, sparing r
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biology and genetics of MB in adults. This also explains why

there are few prospective phase III trials for this age group.

Most centers treat adult patients with MB either using glioblas-

toma protocols (which are largely ineffective) or, alternatively,

using pediatric MB protocols, although toxicity profiles differ

greatly between children and adults, leading to dose-limiting

toxicity in a high proportion of adults treated on pediatric proto-

cols (Brandes et al., 2009; Padovani et al., 2007; Spreafico et al.,

2005).

Targeted therapy as an alternative treatment option for

patients with MB is especially interesting for SHH-MBs. SHH

pathway antagonists, primarily those inhibiting at the level of

smoothened (SMO), are currently a major area of interest in the

pharmaceutical industry because they can potentially be applied

in multiple cancers with activated SHH signaling (Lin andMatsui,

2012). Some of these drugs are already in clinical trials for MB

(Low and de Sauvage, 2010; Ng and Curran, 2011). SHH-MBs

with alterations in downstream SHH pathway genes, however,

such as SUFU, GLI2, orMYCN, may demonstrate primary resis-

tance to SMO inhibition (Lee et al., 2007). Furthermore, as has

been shown in both humans and mice, tumors may also rapidly

acquire secondary resistance to treatment (Dijkgraaf et al., 2011;

Rudin et al., 2009; Yauch et al., 2009), suggesting that such in-

hibitors might be ineffective as a curative option when adminis-

tered as monotherapy. SHH-MBs present the most common

subgroup in infants (%3 years old) and adults (R18 years old),
tients, with SHH-MB will likely respond to SMO inhibition as
ed in the SHH xenografts, demonstrating that the next gen-
tive biomarkers. Recurrent mutations in additional pathways
difiers and PI3K/AKT inhibitors, especially in adults.We also
eni syndrome) is highly prevalent in patients with SHH-MB.
th LCA histology, should be tested for germline TP53 muta-
adiotherapy and excluding alkylating drugs.
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whereas in children (4–17 years old) other subgroups are more

prevalent (Kool et al., 2012). Transcriptome analyses and whole

genome sequencing have already shown that SHH-MBs are

quite heterogeneous (Northcott et al., 2011a; Rausch et al.,

2012). Childhood SHH-MBs, for instance, are genetically distinct

from those in infants, because they frequently harbor TP53

mutations and as a result of chromothripsis, their genomes are

often dramatically rearranged (Rausch et al., 2012). To preselect

patients who might qualify for clinical trials using SMO antago-

nists or future combination therapies, a better understanding of

the biology of SHH-MBs across different age groups is required.

We have therefore sequenced the genomes of 133 cases of

SHH-MB, including 50 adult and 83 pediatric cases. In addition,

we analyzed the tumors for DNA methylation and gene

expression.

RESULTS

SHH-MBs in Infants, Children, and Adults Are
Genomically Distinct
Unsupervised k-means consensus cluster analysis of DNA

methylation data (n = 129) identified two major clusters, mainly

separating infant from childhood and adult SHH-MB tumors (Fig-

ure 1A, left panel). Unsupervised cluster analysis of gene expres-

sion data (n = 103) showed similar results, with the infant cases

again being the most distinct (Figure 1A, right panel). GISTIC2

analysis of somatic copy number aberrations in all SHH-MB

cases (n = 266) reported by MAGIC (Northcott et al., 2012b),

however, showed that childhood SHH-MBs are very different

from both infant and adult SHH-MBs (Figure 1B). Childhood

SHH-MBs typically show much greater genomic instability and

are characterized by frequent amplifications of oncogenes

includingGLI2,MYCN, andPPM1D,most likely due to underlying

chromosome shattering (chromothripsis; Rausch et al., 2012).

Next-Generation Sequencing of SHH-MB
To determine the mutational landscape of SHH-MBs across age

groups, we sequenced a large series of SHH-MB tumors from

infants (%3 years old; n = 50), children (4–17 years old; n = 33),

and adults (R18 years old; n = 50; Table 1; Table S1 available on-

line). In the discovery cohort of 67 SHH-MBs, analyzed by whole

genome or whole exome sequencing, we identified 1,090 non-

synonymous somatic single nucleotide variants (SNVs) and

155 small insertions or deletions (indels), 89 of which introduced

translational frameshifts and 9 affected splice sites. In total,

1,054 geneswere found to be somatically mutated in this discov-

ery cohort, including 78 with alterations in more than one tumor.

In the two replication cohorts (43 pediatric and 23 adults), we

identified another 666 nonsynonymous SNVs and 76 indels.

For the combined 133 SHH-MBs, we found mutations in 1,156

genes, 215 of which were recurrently altered. All coding somatic

SNVs/indels identified are listed in Table S2.

As previously reported (Jones et al., 2012), pediatric SHH-

MBs harbored very few nonsynonymous SNVs (infants, 0–13,

median 3.0; children [TP53 wild-type], 1–26, median 9.5; Table

S2; Figures 2A and 2B). Exceptions were the eight TP53mutated

tumors in children, in this discovery cohort all between 9.5 and

14 years old, which harbored on average many more mutations

(7–29, median 19.5). WGS data showed that adult SHH-MBs
also containedmanymore nonsynonymous SNVs (9–48, median

25.0), in linewith other adult solid tumors. The average number of

small indels was also higher in adults (0–10, median 3.0) than in

children (0–4, median 1.0) and infants (0–3, median 1.0). Interest-

ingly, there was a much stronger correlation between somatic

mutation rate and patient age, both genome-wide (r2 = 0.58,

p = 1.6 3 10�9, Pearson’s product moment correlation), and

for coding mutations (r2 = 0.62, p = 2.23 10�15), than previously

reported across all MB subgroups (Figures 2A and 2B; Jones

et al., 2012). Assessment of mutation classes revealed a pre-

dominance of cytosine to thymine (C > T) transitions in a CpG

context (likely due to deamination of methylated cytosines), as

expected for an age-related background mutation pattern (Fig-

ures 2C and 2D; Welch et al., 2012). Interestingly, the C > T

fraction in the TP53 mutated cases appeared to be much lower,

with a relatively higher proportion of cytosine to adenosine (C >

A) transitions. Whether this can be explained by the TP53muta-

tion itself remains elusive.

Mutations in the SHH Pathway
Overall, we detected mutations in known SHH pathway genes

(116/133 cases; 87%), further substantiating the tumor-driving

role of the SHH pathway in this medulloblastoma subgroup

(Table S3). As expected, among the most frequently mutated

genes were PTCH1 (60 cases), SMO (19 cases), and SUFU

(10 cases), all mutually exclusive (Figure 3A; Figures S1A–

S1C). In addition, we found two PTCH1 and six SUFUmutations

in the germlines of eight pediatric patients, including two twin

brothers with an identical small indel in SUFU (Table S3). The

second replication cohort (for which germline controls were un-

available) contained another two cases from twin brothers both

with the same inactivating SUFU mutation, strongly suggesting

that this was also a germline event. For all other samples in

this replication cohort, it remains unknown whether any of the

identified PTCH1 or SUFU mutations were germline events.

Interestingly, while PTCH1 mutations were found at roughly

equal frequency in infants (42.0%), children (36.4%), and adults

(54.0%), SMO mutations were highly enriched in adult patients

(15/19 mutations; p = 1.8 3 10�4), while SUFU mutations were

almost exclusively found in infants %3 years old (16/18 muta-

tions; p = 8.43 10�6). Mutations in SMO and SUFUwere absent

or extremely rare in children (4–17 years old; Figures 3A and 3B).

Instead, they frequently harbored TP53 mutations (16/33 chil-

dren; p = 1.2 3 10�11), all found in children between 8 and 17

years old. The TP53 mutations were mutually exclusive with

PTCH1 mutations but often co-occurred with amplifications of

GLI2 (p = 2.5 3 10�6) and MYCN (p = 2.8 3 10�8), three events

that were rare in infants, young children, and adults (Figures 3A

and 3B). In addition, we identified four cases, including three

children with a TP53 mutation, with an amplification of the

SHH gene. These results show that activating mutations in the

SHH pathway are detectable in almost all SHH-MBs, but

the type of mutation and targeted genes are largely variable in

the different age groups (Figure 3C).

Large Cell/Anaplastic Histology and 17p Loss Are
Strongly Associated with TP53 Mutated SHH-MBs
Losses of 9q, 10q, and/or 17p are the most common copy num-

ber aberrations associated with SHH-MBs (Kool et al., 2012). All
Cancer Cell 25, 393–405, March 17, 2014 ª2014 Elsevier Inc. 395
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Table 1. SHH-MB Patient Cohorts

Cohort Number of Patients

Whole genome sequencinga n = 45

Infantsb 5

Childrenc 13

Adultsd 27

Whole exome sequencinga n = 22

Infants 13

Children 9

Adults 0

Targeted sequencing 2734 genesa 12 n = 12

Infants 7

Children 5

Adults 0

Targeted sequencing 400 genese n = 54

Infants 25

Children 6

Adults 23

Immunohistochemistry n = 155

Infants 31

Children 54

Adults 70

See also Tables S1, S2, S3, and S4.
aTumor-normal pairs were sequenced.
bInfants: 0–3 years of age.
cChildren: 4–17 years of age.
dAdults: R 18 years of age.
eOnly tumors were sequenced.
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three were most frequent in childhood cases, with 17p loss

highly enriched in TP53 mutant cases (14/17 had 17p loss; p =

7.8 3 10�8; Figures 3A and 3B). Histology was also unequally

distributed between the three age groups, with most large cell/

anaplastic (LCA) cases found in childhood (15/21; p = 4.1 3

10�9). Thirteen of these 15 had a TP53 mutation. Nodular/

desmoplastic MB variants were most prevalent in infant cases.

Moreover, all four MBs with extensive nodularity (MBEN) were

found in infants (Figures 3A and 3B). In contrast to a recent report

(Brugières et al., 2012), which was, however, reporting on a

larger number of MBENMBs, only 1/4 MBEN cases in our series

had an SUFU mutation, while two harbored a PTCH1, and one

displayed an SMO mutation (Figure 3A).

TERT Promoter Mutations Are Highly Recurrent in Adult
SHH-MBs
Recently, several groups have reported that TERT promoter

mutations that drive telomerase activity are frequently found in
Figure 1. Genetic and Epigenetic Differences between SHH-MBs from

(A) Cluster analysis of DNA methylation and gene expression data of SHH-MB.

n = 103) reveal two SHH-MB subgroups identified by unsupervised k-means con

beset, each column represents a sample. The level of DNAmethylation (b value) is

infants; yellow, children; and pink, adults) and clustering according to expression

were available.

(B) GISTIC2 significance plots of amplifications (red) and deletions (blue) observed

regions have been indicated.
various cancers, including medulloblastoma, of mainly adult

patients (Killela et al., 2013; Koelsche et al., 2013; Remke

et al., 2013). Two mutually exclusive hotspot mutations in the

promoter region have been reported: C228T and the less

frequent C250T. Using our WGS data and data from the replica-

tion cohort in which the TERT promoter region was analyzed by

PCR and Sanger sequencing (Remke et al., 2013), we found that

indeed these mutations almost exclusively and with high fre-

quency occur in adult SHH-MBs (Table S1). Strikingly, almost

all adult patients for which we had data available had a somatic

TERT promoter mutation (43/44, 98%; 40 had the C228T muta-

tion and 3 had the C250T mutation). In contrast, in infants and

children, only 3/24 (13%) and 3/14 (21%) SHH-MBs, respec-

tively, had a TERT mutation (five C228T and one C250T).
DDX3X and Chromatin Modifiers Are Frequently
Mutated in Adult SHH-MBs
Other genes previously reported as being recurrently mutated in

pediatric SHH-MBs (MLL2,BCOR, and LDB1) were also found in

adult SHH-MBs (Figures 4A–4C). Interestingly, however, we

identified several recurrent mutations in adult SHH-MBs that

were completely absent or very rare in pediatric SHH-MBs,

including BRPF1, KIAA0182, TCF4, CREBBP, NEB, LRP1B,

PIK3CA, FBXW7, KDM3B, XPO1, PRKAR1A, and PDE4D (Fig-

ures 4A–4C; Figures S1D–S1I). Another striking example is the

gene encoding the RNA helicase DDX3X, which was mutated

in 27 adult SHH-MBs (54%) and only 6 pediatric MBs (7.2%,

p = 4.5 3 10�9). DDX3X was among the new genes identified

in recent sequencing studies of pediatric MB (Jones et al.,

2012; Pugh et al., 2012; Robinson et al., 2012). Notably, whereas

mutations were found in 50% ofWNT-MBs in children (Northcott

et al., 2012a), few DDX3X mutations were seen in SHH-MBs in

these studies (Pugh et al., 2012; Robinson et al., 2012). All iden-

tifiedmutations affected one of the two helicase domains with no

difference in their distribution between WNT- and SHH-MBs

(Figure S1D). Interestingly, mutations affecting the SWI-SNF

complex, also mainly found in the WNT-MBs in children (Jones

et al., 2012; Northcott et al., 2012a; Pugh et al., 2012; Robinson

et al., 2012), were also frequently seen in adult SHH-MBs.

Pathway analyses, performed separately for the three age

groups, showed marked differences in altered processes. In

infant cases, developmental processes and DNA/histone

methylation are prominently affected. Both in children and in

adults, chromatin organization is also affected, but especially

in adults many more chromatin modifiers and/or transcription

regulators were additionally altered, as well as different and

larger gene sets involved in brain development (Figure S2 and

Table S4). Remarkably, most of the mutations in chromatin

modifiers in adults were found to be mutually exclusive (Fig-

ure 4D). Interestingly, some of these mutations in chromatin
Infants, Children, and Adults

Both methylation profiling (left; n = 129) and gene expression profiling (right;

sensus clustering. Each row represents a methylation probe/expression pro-

represented with a color scale as depicted. For each sample patient age (blue,

data or methylation data (when available) is shown. Grey indicates that no data

in SHH-MB infants, children, and adults. Candidate genesmapping significant

Cancer Cell 25, 393–405, March 17, 2014 ª2014 Elsevier Inc. 397
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Figure 2. Number and Type of Somatic Mutations in Medulloblastoma Tumors in Relation to the Age of the Patient

(A) Total number of somatic mutations genome wide correlates with age of the patient. Plotted are the total number of somatic SNVs identified genome wide

versus age of the patient for all cases for which we performed whole genome sequencing (WGS; n = 45). Red indicates patients harboring a TP53 mutation.

(B) Same as in (A), but only the total number of coding SNVs is plotted versus age for all cases for which we performed either whole genome or whole exome

sequencing (WGS and WES, n = 67).

(C) Mutation signatures. Plotted are the total numbers of somatic mutations genome wide sorted by age of the patient. Coloring of bars represents the ratio of the

six possible nucleotide changes (C > A, C > G, C > T, T > A, T > C, and T > G) for each sample.

(D) Normalized mutation signatures sorted by age.
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modifiers were more closely associated with SMO mutations,

like the ones in BRPF1/3, while mutations in CREBBP or

KDM3B were more often found in PTCH1-mutated tumors.

PI3K/AKT Signaling Activated in Adult SHH-MB
Associates with Poor Outcome
As we identified recurrent mutations affecting the PI3K/AKT/

mTOR-pathway in SHH-MBs (PIK3CA, PTEN, and PIK3C2G

are all mutated in >5% of SHH-MBs; Figures 4A–4C), which

could lead to GLI activation independent of SMO (Wang et al.,

2012), targeting this pathway could be an option for combination

therapies. To investigate which SHH patients would be most
398 Cancer Cell 25, 393–405, March 17, 2014 ª2014 Elsevier Inc.
suitable for targeting PI3K/AKT/mTOR-signaling, we examined

activation of the pathway in a large series of SHH-MBs

(n = 155) by immunohistochemistry using antibodies for p-AKT

and p-S6. p-AKT and p-S6 positivity were each detected in

17% of cases, with 12% positive for both (Figures 5A–5F).

Surprisingly, the vast majority of positive cases were tumors

from adult patients, with 31% and 30% of the adult SHH-MBs

staining positive for p-AKT or p-S6, respectively. Moreover,

survival analysis showed that both p-AKT and p-S6

positivity were strongly associated with a poor outcome in adult

patients with SHH-MB (Figure 5G). Other factors shown to be

associated with a poor outcome in SHH-MB patients, like
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Figure 3. Genetic and Histological Differences between SHH-MBs from Infants, Children, and Adults

(A) SHH pathway mutations, gender, histology and 9q/10q/17p aberrations in all sequenced 133 SHH-MB. Cases have been split up in infants, children and

adults, and are sorted based on type of mutation in the SHH-pathway. Potential response to SMO inhibition: cases with SHH amplifications, PTCH1mutations, or

SMO mutations will likely respond to SMO inhibition (indicated in green). Cases with SUFU mutations or MYCN or GLI2 amplifications will likely not respond to

SMO inhibition (indicated in red). In cases for which no mutations in the SHH pathway were detected, it is not clear whether they will respond to SMO inhibitors

(indicated in yellow). Percentages indicate fraction of infants, children, or adults, respectively, of each category. p Values indicate whether distributions are

significantly different among infants, children, and adults.

(B) Pie charts showing in infants, children, and adults with SHH the distribution of gender (male, blue; female, pink; unknown, gray), histology (classic, dark red;

nodular/desmoplastic, green; large cell/anaplastic LCA, orange; MBEN, yellow; and unknown, gray), 9q loss (yes, black; no, gray), 10q loss (yes, black; no, gray),

17p loss (yes, black; no, gray), and type of SHH pathway mutation (SHH amp, purple; PTCH1 mut, red; SMO mut, green; SUFU mut, orange; GLI2/MYCN amp,

blue; and unknown, gray).

(C) Trimodal age distribution of patients with SHH-MB. Red line indicates age distribution of all patients with SHH-MB. Three subgroups make up this age

distribution: young children with PTCH1 and SUFUmutations (blue line), older children with PTCH1 and TP53mutations (purple line), and adults whomostly have

PTCH1 or SMO mutations (green line).

See also Figure S1.
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MYCN or GLI2 amplification, LCA histology or metastasis at

diagnosis, are all exceptionally rare in adult SHH-MB patients

(Figures 1C and 3A; Kool et al., 2012), and could therefore

not explain the poor outcome of these p-AKT/p-S6-positive
subgroup of patients. Our results suggest that adult

patients with SHH-MB may be the best group to benefit

from combination therapies of SMO inhibitors with PI3K/AKT/

mTOR inhibition.
Cancer Cell 25, 393–405, March 17, 2014 ª2014 Elsevier Inc. 399
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Figure 4. Most Frequently Mutated Genes in SHH-MB and the Mutual Exclusivity of Mutations in Chromatin Modifier Genes

(A–C)Mutation frequencies of 33 genes that aremutated either inR5%of all SHH-MB cases or inR10%of SHH-MB cases in one of the age categories. Mutation

frequencies for these 33 genes are shown in infants (A), children (B), and adults (C). Black indicates the fraction of mutations that is found in the germline.

(D) Mutations in chromatin modifiers in infants, children, and adults with SHH-MB. The top line shows the mutations in the SHH pathway for each case.

See also Figure S2.
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SHH Medulloblastomas with Mutations Downstream of
SMO Are Resistant to LDE-225
Assuming a linear pathway, we anticipate that patients with

mutations in the SHH pathway downstream of SMO (e.g.,

SUFU, GLI2, and MYCN) show primary resistance to targeted

SMO inhibition. To test this hypothesis, we used xenografts

from three SHH-associated MBs (DMB-012, RCMB-018, and

RCMB-025; Yeh-Nayre et al., 2012). These xenografts were

generated by stereotaxic orthotopic xenotransplantation of

cells immediately after surgical resection, maintained by serial

intracranial transplantation, and harvested only for use in

short-term experiments, allowing them to maintain the charac-

teristics of the original tumors (Shu et al., 2008; Zhao et al.,

2012). WES showed that each xenograft harbored a different

alteration in the SHH pathway (Figure 6A). Cells from each

xenograft line were treated in vitro with NVP-LDE225, an SMO

inhibitor that is currently being applied in phase III clinical trials
400 Cancer Cell 25, 393–405, March 17, 2014 ª2014 Elsevier Inc.
for relapsed childhood and adult SHH-MB (Geoerger et al.,

2012). Proliferation was measured based on incorporation of

tritiated thymidine. Treatment with LDE225 significantly in-

hibited the proliferation of DMB-012 cells (PTCH1 mutant), but

did not affect the proliferation of RCMB-018 (MYCN amplifica-

tion) or RCMB-025 cells (SUFU deletion; Figures 6B–6D). Pre-

clinical testing in vivo also demonstrated a strong inhibition of

tumor growth by LDE225 in DMB-012 (Figure 6E), but not

RCMB-018 (Figure 6F and Figure S3), confirming the in vitro

data. Survival analyses indeed show that mice with DMB-012

tumors live longer when treated with LDE-225 (Figure 6G), but

mice with RCMB-018 tumors do not (Figure 6H). Finally, we

have tested whether RCMB-018 cells, resistant to LDE-225,

are responsive to arsenic trioxide (ATO) targeting cells at the

level of GLI (Beauchamp et al., 2011). Figure 6I illustrates that

RCMB-018 cells are responsive to ATO. At concentrations of

5–10 mM, cells are markedly inhibited in growth. Our data
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Figure 5. Immunohistochemical Staining of MB Tissue Arrays for p-AKT and p-S6

(A) Example of positive p-AKT MB.

(B) Example of negative p-AKT MB.

(C) Example of positive p-S6 MB.

(D) Example of negative p-S6 MB.

(E) Overlap in staining results between p-AKT and p-S6.

(F) Frequencies of p-AKT and p-S6 staining in infants, children, and adults.

(G) Survival analysis for p-AKT and p-S6 in all SHH patients and in adults only. Numbers on the y-axis indicate the fraction of surviving patients. Numbers on the

x-axis indicate the follow-up time in months. The number of patients per group is indicated next to the graphs plus the number of events within that group

(between brackets). For infants and children, the number of patients staining positive was too low to draw conclusions from separate survival analyses.
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show that classification as an SHH-MB using a five-gene

expression signature currently being applied in clinical trials is

not sufficient as a predictive biomarker for response to SMO

antagonists, because all SHH-MBs are detected by this signa-

ture, regardless of their underlying genetic makeup (Amakye

et al., 2012).

DISCUSSION

Herein we have shown that genetic hits in SHH-MBs are very

heterogeneous. Tumors in infants, children, and adults strongly

differ in transcriptome, methylome, and copy-number aberra-

tions as well as in number and type of mutations they contain.

Hereditary predisposition syndromes involving germline muta-

tions of SUFU (or rarely PTCH1; Gorlin syndrome) are highly

prevalent in infant (0–3 years old) SHH-MBs, while germline

TP53 mutations (Li-Fraumeni syndrome) are common in older

children (>3 years old), especially in children between 8 and 17

years old. Strikingly, almost all adults harbored somatic muta-

tions in the TERT promoter, whereas they were much less com-

mon in pediatric patients. Our data show that three groups of

SHH-MBs should be considered: young children with mostly

PTCH1 orSUFUmutations, older children with frequent germline
TP53 mutations and chromothripsis-associated amplifications

of SHH pathway genes, and adults harboring mostly PTCH1

and SMO mutations (Figure 3C). Recent data showing that

SHH-MBs can arise from different precursor cells in the cere-

bellum or brainstem (Grammel et al., 2012) suggest that infant

SHH-MBs may have a different cellular origin or hit the same

progenitor cell at a different stage of differentiation than child-

hood or adult SHH-MBs (which were more similar at the tran-

scriptome/methylome levels).

Most importantly, our results show that patients with different

underlying SHH mutations should be stratified accordingly. We

have demonstrated that targeting the SHH pathway in SHH-MB

using SMO antagonists will most likely give the best results in

adult patients. A vast majority (82%) of adult patients harbor

tumors with mutations in either PTCH1 or SMO, rendering

them likely responsive to these drugs. In contrast, infant (36%)

and childhood (45%) SHH-MBs frequently have mutations

downstream of SMO, which makes these tumors intrinsically

resistant to drugs targeting SMO. Indeed, SHH-MB xenografts

harboring these downstream mutations did not respond to

SMO antagonists. The impact of bone developmental toxicity

may additionally limit the use of SMO inhibitors in infants (Kimura

et al., 2008).
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Figure 6. SMO Antagonists Do Not Suppress Proliferation of All SHH-Associated MB Tumors
(A) Characteristics of SHH-MB models treated with LDE225.

(B–D) Cells from patient-derived xenografts of SHH-associated MB were treated with DMSO (0.05% [hatched bars] or 0.25% [solid bars]) or LDE-225 (100

[hatched bars] or 500 nM [solid bars]). Cells were pulsedwith [methyl-3H]thymidine (3H-Td) after 48 hr and harvested for analysis of 3H-Td incorporation at 66 hr. In

DMB-012 (B), LDE-225 significantly inhibited 3H incorporation compared to DMSO control (p < 0.01 based on paired two-tailed t test). In RCMB-018 (C) and

RCMB-025 (D), LDE-225 did not significantly inhibit 3H incorporation (p > 0.5 and p > 0.1, respectively). Data represent means of triplicate samples ± SD.

(E and F) Cells from MB xenograft DMB-012 (E) or RCMB-018 (F) were infected with luciferase virus and transplanted into NSG mice. Bioluminescence images

were taken pretreatment (day 0) and at different time points after daily treatment with vehicle or SHH antagonist (LDE-225, 5 or 20 mg/kg/day). Five mice per

group were used. Representative examples from each group are shown. Other examples are shown in Figure S3. A red cross indicates when mice were

sacrificed.

(G and H) Kaplan-Meier survival plots for the mice harboring DMB-012 tumors (G) or RCMB-018 tumors (H) and treated with vehicle or LDE-225.

(I) RCMB-018 cells were treated with DMSO (0.25%; gray bar), LDE-225 (500 nM; red bar), vehicle (PBS + 0.01 N NaOH; light blue bars), or increasing

concentrations of ATO (dark blue bars). Cells were pulsed with [methyl-3H]thymidine (3H-Td) after 48 hr and harvested for analysis of 3H-Td incorporation at 66 hr.

LDE-225 did not inhibit 3H incorporation compared to DMSO control, but ATO did at 5 and 10 mM concentrations. Data represent means of triplicate

samples ± SD.

See also Figure S3.
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Furthermore, our results strongly suggest that each patient

with a SHH-MB, but especially those between 4 and 17 years

of age with LCA histology, should be tested for germline TP53

mutations. Currently, these patients with Li-Fraumeni syndrome

(LFS)-MB are often not recognized and therefore treated with

standard protocols, including ionizing radiotherapy and alkylat-

ing chemotherapy. Moreover, as almost all patients with germ-

line TP53 mutations have tumors with LCA histology, they are

often stratified as high risk and will therefore get even higher
402 Cancer Cell 25, 393–405, March 17, 2014 ª2014 Elsevier Inc.
doses of radiotherapy and chemotherapy. It seems that these

patients are often cured of their MB, but frequently die of

secondary malignancies induced by previous radio-chemo-

therapy. This may partly explain why TP53 mutations in SHH-

MBs are associated with a particularly poor outcome (Zhukova

et al., 2013), and is also in line with the finding thatMYCN ampli-

fication in SHH-MBs is associated with an inferior prognosis

(Kool et al., 2012; Korshunov et al., 2012; Ryan et al., 2012).

We therefore strongly suggest that separate LFS-MB trials



Figure 7. Schematic Overview of SHH-, PI3K/AKT/mTOR-, and PKA Pathways and How They Interact

Genes that were found in the genomic analyses of SHH-MBs to harbor activating mutations (green stars), inactivating mutations (red stars), or were found to be

amplified (MYCN andGLI) are indicated. All thesemutations lead to activation of GLI proteins and their downstream pathways. Options for targeted treatment are

indicated. Patients harboring mutations in either PTCH1 or SMO should be responsive to SMO inhibitors, whereas patients harboring mutations more down-

stream in the SHH pathway (SUFU,MYCN, and GLI) or in the PI3K/AKT/mTOR and/or PKA-pathways may be treated using arsenic trioxide (ATO) or other more

specific GLI-inhibitors or PI3K/AKT/mTOR inhibitors.
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should be developed using chemotherapy-only protocols and

excluding alkylating drugs.

We further strongly advocate that the next generation

of SMO inhibitor trials should be based on underlying tumor

genetics because many patients with SHH-MB will not respond

to these inhibitors. Alternative treatment options could include

arsenic trioxide (ATO) targeting GLI transcription factors by

degrading the protein (Figure 7; Kim et al., 2010, 2013). ATO

and the antifungal agent itraconazole (which acts on SMO)

have also been suggested in preclinical experiments for use

in SHH-MBs that become resistant after treatment with

SMO antagonists (Kim et al., 2013) or in combination with

SMO inhibitors upfront knowing that GLI2 amplifications

comprise a common mechanism of secondary resistance

to SMO inhibition in preclinical models (Buonamici et al.,

2010; Dijkgraaf et al., 2011). Other options for combination

therapies to avoid or delay the development of resistance

include drugs targeting PI3K/AKT/mTOR- or PKA-signaling

pathways (Figure 7), both mutated in a subset of patients

with SHH and both also leading to GLI activation (Metcalfe
et al., 2013; Milenkovic and Scott, 2010; Wang et al., 2012),

or epigenetic drugs.
EXPERIMENTAL PROCEDURES

Patient Samples

Patient materials were collected after receiving informed consent according to

International Cancer Genome Consortium guidelines (http://www.icgc.org)

and as approved by the institutional review board of contributing centers.

DNA derived from SHH-MBs and matched normal blood from 45 patients

was subjected to whole genome sequencing (WGS) using Illumina technolo-

gies. Two additional tumor-normal pairs were sequenced by whole exome

sequencing (WES). WGS data for 13/45 andWES data for another 20 pediatric

tumor-normal pairs were previously reported (Jones et al., 2012; Pugh et al.,

2012). All patients in this discovery cohort (n = 67) were confirmed to have a

MB of the SHH subtype by either gene expression profiling, DNA methylation,

or immunohistochemistry (SFRP1 Northcott et al., 2011b and GAB1 Ellison

et al., 2011). In addition, we used data from 12 pediatric SHH-MB tumor-

normal pairs that were sequenced for 2,734 genes as part of a previously

reported replication cohort (Jones et al., 2012). Finally, a set of 400 genes,

including those identified as recurrently mutated in SHH-MBs in our discovery

cohort, was investigated in another independent set of pediatric (31) and adult
Cancer Cell 25, 393–405, March 17, 2014 ª2014 Elsevier Inc. 403
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(23) SHH-MBs, for which only tumor DNA was available. In total, sequencing

data for 133 (83 pediatric and 50 adult) SHH-MBs are presented in this study.

Patient details are listed in Table S1.

Animals

Immunocompromised (NOD-scid IL2Rgammanull or NSG) mice used for

transplantation were purchased from Jackson Labs. Mice were maintained

in the Animal Facility at Sanford-Burnham. All experiments were performed

in accordance with national guidelines and regulations, and with the approval

of the animal care and use committee at Sanford-Burnham.

The experimental procedures used in this study are described in more detail

in the Supplemental Experimental Procedures.

ACCESSION NUMBERS

The Gene Expression Omnibus accession numbers for the complete CpG

methylation values are GSE49576 and GSE49377; for the complete gene

expression values, the number is GSE49243. The European Genome-

phenome Archive accession number for the sequencing data is

EGAS00001000607.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and four tables and can be found with this article online at

http://dx.doi.org/10.1016/j.ccr.2014.02.004.
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Pugh, T.J., Hovestadt, V., Stütz, A.M., et al. (2012). Dissecting the genomic

complexity underlying medulloblastoma. Nature 488, 100–105.

Killela, P.J., Reitman, Z.J., Jiao, Y., Bettegowda, C., Agrawal, N., Diaz, L.A.,

Jr., Friedman, A.H., Friedman, H., Gallia, G.L., Giovanella, B.C., et al. (2013).

TERT promoter mutations occur frequently in gliomas and a subset of tumors

derived from cells with low rates of self-renewal. Proc. Natl. Acad. Sci. USA

110, 6021–6026.

Kim, J., Tang, J.Y., Gong, R., Kim, J., Lee, J.J., Clemons, K.V., Chong, C.R.,

Chang, K.S., Fereshteh, M., Gardner, D., et al. (2010). Itraconazole, a

commonly used antifungal that inhibits Hedgehog pathway activity and cancer

growth. Cancer Cell 17, 388–399.

Kim, J., Aftab, B.T., Tang, J.Y., Kim, D., Lee, A.H., Rezaee, M., Kim, J., Chen,

B., King, E.M., Borodovsky, A., et al. (2013). Itraconazole and arsenic trioxide

inhibit Hedgehog pathway activation and tumor growth associated with

acquired resistance to smoothened antagonists. Cancer Cell 23, 23–34.

Kimura, H., Ng, J.M., and Curran, T. (2008). Transient inhibition of the

Hedgehog pathway in young mice causes permanent defects in bone struc-

ture. Cancer Cell 13, 249–260.

Koelsche, C., Sahm, F., Capper, D., Reuss, D., Sturm, D., Jones, D.T., Kool,
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