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Abstract 

Network alignment is an emerging analysis method enabled by the rapid large-scale collection of 

protein-protein interaction data for many different species. As sequence alignment did for gene 

evolution, network alignment will hopefully provide new insights into network evolution and 

serve as a new bioinformatic tool for making biological inferences across species. 

Using new SH3 binding data from Saccharomyces cerevisiae, Caenorhabditis elegans, and 

Homo sapiens, I construct new interface-interaction networks and devise a new network 

alignment method for these networks. With appropriate parameterization, this method is highly 

successful at generating alignments that reflect known protein orthology information and contain 

high network topology overlap. However, close examination of the optimal parameterization 

reveals a heavy reliance on protein sequence similarity and fungibility of other data features, 

including network topology data, an observation that may also pertain to protein-protein 

interaction network alignment. 

Closer examination of interactomic data, along with established orthology data, reveals that 

protein-protein interaction conservation is quite low across multiple species, suggesting that the 

high network topology overlap achieved by contemporary network aligners is ill-advised if 

biological relevance of results is desired. Further consideration of gene duplication and protein 
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binding sites reveal additional PPI evolution phenomena further reducing the network topology 

overlap expected in network alignments, casting doubt on the utility of network alignment 

metrics solely based on network topology. 

Instead, I suggest a new framework to think about protein-protein interaction network alignment 

focused on generating and validating small-scale inferences. I create a prototype alignment 

visualization and analysis tool to facilitate this approach, which will hopefully aid researchers in 

learning more about the mechanisms of network evolution and how network alignment can 

model them. 
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 Background 

1.1 Introduction 

1.1.1 Comparative Evolution 

Evolution is the fundamental organizing principle in modern biology. The markers of 

conservation and divergence are some of the few sensible patterns by which biological 

knowledge can be organized. Where conservation is found, we can infer the existence of 

selective forces acting to preserve some key functionality. Where divergence is found, we can 

hypothesize the rise of some new development, either intrinsic or extrinsic. Observation of both 

conservation and divergence requires comparison, which occupies an exceptionally prominent 

role in biological data analysis. 

Alignment is a uniquely biological approach to comparative analysis. The sequence alignment 

algorithms Needleman-Wunsch1 and Smith-Waterman,2 the sequence alignment search heuristic 

BLAST3, and multiple sequence alignment algorithms like MUSCLE4 are ubiquitous and 

indispensable tools in computational biology. Aligning genes/proteins with these tools has been 

essential for understanding their function, such as by identifying protein domains, the structural, 

functional and evolutionary units that make up a large part of proteins. Structural alignment of 

proteins has also proven a similarly important tool.5 

Sequence and structure data are, however, alone inadequate for study of complex biological 

systems, because they do not naturally capture the interactions between genes/proteins. Scientists 

interested in understanding complex biological systems have had to create new methods and 

models to represent these systems. Commonly, this is done by considering several proteins that 

collaborate for a specific cellular process, known as a functional module. These modules include 

complexes, wherein many proteins gather together to perform a particular function, and 

pathways, wherein proteins are organized in a process to perform a particular function.  

Detection and confirmation of protein complexes and pathways, however, was difficult using 

traditional experimental methods. Protein complexes needed to be purified and crystallized, a 

difficult and costly procedure that is highly sensitive to chemical conditions. Pathway detection 

often involved multiple experiments, such as using gene coexpression experiments to identify 

putative pathway participants and then performing gene knockout experiments to confirm their 
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functional cooperation. These requirements substantially limited the number of pathways and 

complexes that could be identified and characterized, which then further limited comparative 

study of these modules between species. 

Now, with the arrival of high-throughput protein-protein interaction (PPI) methods, we have 

entered a new period of big data comparative systems biology. Instead of experimental data 

generation lagging badly behind hypothesis generation, PPI data is now generated en masse, 

awaiting analysis and exploitation. While the data is still far from perfect or complete, its 

plentifulness has ushered in a new approach to systems biology, one which is expansive and 

ambitious, limited more by what can be understood rather than what is prohibitively costly. 

1.1.2 Protein-Protein Interactions 

Proteins in vivo need to cooperate in order to perform the myriad biological functions required to 

sustain life. This cooperation often occurs via physical interaction between protein molecules, 

called protein-protein interactions (PPIs). These interactions can take a variety of forms, ranging 

from transient interactions to longer-term stable interactions, between pairs of proteins or as 

multi-protein complexes, and can include self-interactions such as in homodimers. Scientists 

have long organized proteins into discrete functional units, known as modules, such as pathways 

and complexes for study. These modules are bound together by PPIs, and in this manner, PPIs 

have implicitly served as a foundational element of systems biology, but they were not 

considered independently and broadly. 

Over time though, PPI data has been gathered in ever-increasing quantities, due to the 

development of high-throughput methods for the detection of PPIs, or PPI mapping, such as 

yeast-two-hybrid (Y2H), protein complementation assays (PCA), and affinity purification 

followed by mass spectrometry (AP-MS). There has been dramatic growth recently, in both the 

number of species with PPI data and the number of PPIs for each species, as PPI mapping 

experiments have proliferated.  

With this newfound availability of PPI data, scientists have begun to focus on PPIs collectively, 

to see what biological knowledge can be learned from direct study of PPIs and incorporation of 

PPI data with other biological data. The set of all PPIs in a given species is known as the 

interactome, which can be represented as a protein-protein interaction network (PPIN), wherein 
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the nodes are proteins and the edges interactions between physically interacting proteins. PPINs 

are the only way currently available to model most, if not all, the biological systems within the 

entire cell simultaneously. While there are significant limitations in relying solely on PPI data for 

such modelling, there is immense power in collecting an entire interactome into a single network 

for analysis. 

The number of computational biology tools for PPIs and PPINs has increased greatly in recent 

years. These include visualization software like Cytoscape,6 PPI predictors like PIPE,7,8 and PPI 

databases such as BioGRID, iRefIndex, and others.9-20 PPI data can also be used to infer protein 

essentiality21 and identify disease-causing genes and mutations.22-25  

Perhaps the most popular usage for PPI data is for gene function prediction. Traditionally, gene 

function predictions were made based on the sequence homology between a protein of known 

function and a protein of unknown function. Conservation of sequence implied conservation of 

function. However, this approach is relatively limited, due to the limited number of homologous 

protein pairs matching this specific profile. With PPI data, because proteins often interact with 

one another in service of a biological function, an uncharacterized protein’s function can often be 

inferred via its interactions with characterized proteins with known function.26,27 This is known 

as the “guilt by association” model, and is used by protein function predictors such as 

GeneMANIA, which integrates PPI data with gene expression and other data to predict protein 

functions across the entire proteome.28 

Despite the power of and interest in PPI data for driving biological research, it must be noted that 

PPIs are a crude model of the biological systems working in the cell. There are a number of 

representational limitations when modeling PPIs as a network, such as the inability of PPI data to 

capture interactions between proteins and other types of molecules, such as ribosomal RNA, 

which may hide indirect but important interactions between protein molecules.  

There are also abstractions made due to the limits of current PPI mapping technology and the 

desire to create comprehensive datasets. For example, PPI data is aggregated irrespective of cell 

type and the cellular conditions under which the data was collected, despite the fact that they can 

greatly impact gene expression, alternative splicing, and post-translational modification. 

Furthermore, while PPI mapping technology has seen many recent developments, PPI 

characterization studies have not kept up, and so very little is known about the nature of many 
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PPIs, such as whether they are permanent or transient, strong or weak, or dependent on specific 

cellular conditions. Finally, PPI data is often organized around genes rather than proteins, thus 

sidestepping the issues of how to select the correct protein isoform, in the common case of 

multiple proteins encoded by the same gene, and how to deal with less reliable, in comparison to 

genetic data, proteomic data. 

While some of these limitations may yet be overcome with technological advancements, others 

may be entirely insurmountable. What the consequences of these limitations are is yet unclear; 

only by continuing to utilize the data will we encounter the limitations of our current approaches 

to using PPIs to learn about biology, and discover how we might rectify some of the 

shortcomings of current approaches. 

1.1.3 Protein-Protein Interaction Data Quality 

Despite major advances in PPI mapping methods, there remain major uncertainties when 

working with PPI data. Generally, a single, experimental hit in a PPI database is sufficient for a 

PPI to be considered true, an approach that may be particularly susceptible to false positives. 

Troublingly, studies indicate that Y2H, PCA, and MS detect highly disparate sets of PPIs, so 

they are poorly suited for mutual validation.29 Additionally, even estimating the rate of false 

positives is difficult, due to how PPI data is aggregated. In the absence of a comprehensive PPI 

mapping project, existing PPI data comes from a pastiche of uncoordinated PPI mapping 

projects, each using slightly different protocols. Nor is there an established consensus on the 

false positive rate (FPR) for experimentally detected PPIs, as early estimates of species 

interactome sizes have long since been exceeded.20,30 

Similarly, false negative data likely troubles current PPI datasets. With scientists independently 

conducting PPI mapping experiments, there is significant social bias in the proteins selected for 

experimentation, based on their biomedical relevance and ease of availability.31,32 Proteins not 

covered by PPI mapping experiments cause inexplicable gaps in the known interactome, a 

phenomenon that is particularly noticeable when working with smaller interactome datasets, such 

as when Zhang et al. added 1680 FANCD2 PPIs to BioGRID’s M. musculus PPIN,33 which at 

the time only held 39 146 PPIs,20,34 for a sudden 4.3% growth, when McFarland et al. added 171 

SNCA PPIs in 2008,35,36 or when Piazzi et al. added 188 PLCB1 PPIs in 2013.37,38 These sudden 
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additions could dramatically affect both past and future results that are based on specific 

database versions, hampering reproducibility, biasing analyses, and prompting false conclusions.  

Furthermore, because PPI detection methods are not consistently effective for different PPIs, a 

single study may be insufficient to fully map a protein’s PPIs, which instead would require 

coverage from multiple experiments with different methods. For example, membrane proteins 

are a large fraction of the proteome, nearly 30%, but are badly underrepresented in PPI databases 

because of the difficulty in applying established PPI detection methods to them.39-41 Determining 

whether a protein truly has few PPIs or was not covered by PPI mapping experiments is difficult 

because PPI databases do not store negative results, except small specialized databases such as 

Negatome.42 Consequently, the only way to definitively identify a non-interaction from the 

literature is an in-depth review of PPI mapping studies, a technique at odds with the “big data” 

approach often embodied by PPI analyses. 

Thus, while the availability of PPI data is increasing rapidly, there remain persistent data quality 

issues that may not be resolved simply by conducting more PPI mapping studies. Generating 

more PPI data will not innately improve the reliability of the data nor establish a known quality 

level for the data. Instead, further PPI mapping studies may need to be coordinated to be 

mutually validating, between both high-throughput and low-throughput methods so as to 

establish their discrepant capabilities and to distinguish those discrepancies from technical error 

or experimental incompleteness. By increasing the depth of PPI mapping coverage, rather than 

simply its width, we can hopefully improve our certainty of PPI data quality. Until then, though 

PPI data holds great potential for scientific discovery, analyses must be carefully designed to 

avoid erroneous conclusions resulting from variable data quality.43 

1.1.4 Interface-Interaction Networks 

One key abstraction in PPIN models is that proteins are treated as monadic. In reality, PPIs 

typically are not mediated by the entirety of the participating proteins; instead, they operate 

between specific binding interfaces on those proteins. Interface-interaction networks (IINs) are a 

refinement of PPINs wherein proteins are subdivided into their separate interaction interfaces.44 

IINs can be represented using a traditional graph model where a node represents a specific 

binding site and an edge represents a physical interaction between two binding interfaces on their 

respective proteins, or a hypergraph model in which protein nodes contain interface nodes. In the 
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hypergraph model, IINs are a higher resolution version of the PPIN, layering on additional 

binding interface information where available. 

The higher resolution of IINs allows for new biological insights that cannot be derived from 

standard PPINs. For example, IINs can distinguish between “date hubs” – proteins that interact 

with many partners, but at different times or in different locations – and “party hubs” – proteins 

that interact with many partners simultaneously (see Figure 1-1).45 While these distinct types of 

hub proteins will appear identically in a PPIN, in an IIN, the former will have few binding sites 

that are reused for many different interaction partners whereas the latter will have many binding 

sites that are specific for each interaction partner. This is useful to help elucidate the evolutionary 

processes and constraints acting on hub proteins. The study of IINs will also help interpret how 

protein domain and binding site gain and loss affect the PPIN, predict PPIN perturbations caused 

by sequence mutations that affect binding sites, and allow in-depth analysis of how protein-

protein interactions are formed and lost.46-48 

Network topology differences between IINs and PPINs, however, mean that algorithms designed 

to operate on PPINs may not function properly with IINs. While PPINs are often sparse, IINs are 

much more so, with each PPIN node (protein) split into multiple nodes that represent the 

different binding sites on that protein. Similarly, while PPINs exhibit a hub and spoke topology, 

with many low-degree and fewer high-degree nodes, this characteristic is exaggerated in IINs. 

For example, protein-recognition modules, such as protein kinases or SH3 domains, are often 

capable of binding many different proteins, leading to relatively few high-degree nodes 

connected to many low degree nodes. Additionally, due to binding specificity similarities, 

different domains will often recognize the same ligands, forming a multi-fan network topology. 

Methods that depend on the neighbourhoods of nodes being topologically distinct to generate 

their alignments get confused by these repeated patterns and thus perform inconsistently (see 

below for examples). 
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Protein A
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Interface 
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Interface 
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Figure 1-1 – An example of the additional detail provided by interface-interaction 

networks. In a traditional protein-protein interaction network (top), proteins A, B, and C appear 

identical, based on their interactions with proteins D and E. However, with additional interface-

specific information, as shown in the interface-interaction network (bottom), they can be 

distinguished. Protein A has two distinct interfaces that accommodate binding with proteins D 

and E, indicating that concurrent binding may be possible. Protein B has only a single interface 

though, which indicates that proteins D and E bind to it competitively. Protein C interacts with 

proteins D and E differently, possibly binding multiple protein E molecules concurrently. In the 

interface-interaction network, all five proteins have recognizably distinct interaction behaviour. 

For clarity, the interface-interaction network is shown as a hypergraph rather than a graph. 
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However, isolating PPIs to these submolecular interfaces, which can be simply short 

subsequences but also complex structures (see Figure 1-2) formed from different sections of the 

polypeptide, is very difficult. Hence while networks that capture the specific interfaces in PPIs, 

called interface-interaction networks (IINs),44 would more precisely model the physical 

interactions between proteins, they are no substitute for PPINs due to the sparsity of data. Some 

experimentally mapped interface-interaction data sets have recently become available, such as a 

set of PPIs mediated by SH3 domains in Saccharomyces cerevisiae, Caenorhabditis elegans, and 

Homo sapiens.46,49,50 SH3 domains are peptide-recognition modules that bind to short linear 

peptides with characteristic proline-rich motifs. In graph form, the resulting SH3-mediated IINs 

are bipartite, though this may not be generally the case with other interface types (see Figure 

1-3). Due to this bipartite property, certain network topology motifs, such as cliques, are absent 

while others, such as 4-cycles, are highly enriched, and analytical techniques designed for use on 

PPINs may not work with IINs.  
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Figure 1-2 – Figure 1 from Comprehensive Analysis of the Human SH3 Domain Family 

Reveals a Wide Variety of Non-canonical Specificities.50 Depicted are the canonical structures 

for protein-protein interactions mediated by SH3 domains. The SH3 domain is a complex, 3-

dimensional structure consisting of approximately 60 amino acids, while its target ligand, shown 

as a black arrow in (A) and (B), is a one-dimensional peptide chain of approximately 8 amino 

acids. (Reproduced with permission.) Original caption: (A) Representative crystal structures of 

SH3 domains in complex with class I (left, CTTN-1/1, PDB: 2D1X) or class II (right, CD2AP-

1/1, PDB: 3U23) peptides. The peptide backbone is shown as a black tube with the C-terminus 

indicated by an arrowhead and side chains shown as colored sticks, as follows: Pro0 (yellow), 

Pro+3 (pink), Arg−3 in class I or Arg+5 in class II (blue). The SH3 domain backbone is shown as a 

gray ribbon and the residues that interact with the peptide are represented as spheres numbered 

according to the SH3 domain family alignment (Table S1) and colored to match the peptide 

residue that they contact. (B) Surface representation of the SH3 domains colored as in (A). (C) 

Schematic depiction of class I and class II peptide recognition. Peptide residues are depicted as 

triangles colored as in (A). The SH3 domain sites are depicted as gray boxes numbered 

accordingly. 
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Figure 1-3 – A representative subnetwork of the S. cerevisiae SH3-mediated interface 

interaction network. Depicted in blue are four SH3 domains from BZZ1, MYO3, and MYO5; 

in pink are their binding sites, with the start and stop positions of their protein subsequences in 

parentheses. While SH3 domains can target the same site, they are not known to bind to each 

other, creating a bipartite network structure. Furthermore, since most SH3 domains bind to many 

binding sites, this creates a hub-and-spoke network topology wherein high-degree SH3 domain 

nodes occupy central hub positions surrounded by lower-degree binding site nodes. 

1.2 Protein-Protein Interaction Network Alignment 

One emerging new application for protein-protein interaction data is network alignment. 

Specifically, network alignment typically refers to the alignment of the PPINs generated from the 

whole or partial interactomes of different species, though the alignment of other networks is also 
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possible, such as metabolic networks or gene coexpression networks.51-54 Network alignment is 

explicitly a tool for assessing comparative systems evolution via direct comparison of PPINs to 

identify conserved and divergent elements. 

In its most basic form, given two PPINs, G1 = {V1, E1} and G2 = {V2, E2}, wherein each node 

represents a protein and each edge a PPI, an alignment between G1 and G2 is some injective 

mapping between {(u1 ∈ V1, v1 ∈ V2), (u2 ∈ V1, v2 ∈ V2), ..., (un ∈ V1, vn ∈ V2)}, where n ≤ |V1| 

and n ≤ |V2|.
55 This formulation greatly simplifies the network alignment problem, though there 

are still O(n!) possible alignments to consider. There are many variations on this formulation in 

the published literature. Among them are alignments of multiple networks, those with many-to-

many equivalence classes rather than one-to-one injective mappings, and those that allow 

proteins to be aligned to multiple partners. These distinct formulations are inspired by various 

data, algorithmic, and biological considerations, and there is no consensus on a superior or single 

correct formulation. As such, in reviewing the existing network alignment literature, an 

“alignment” will refer to this simplest formulation unless otherwise noted. 

1.2.1 Theoretical Considerations 

The premise of network alignment is that given that PPIs are functional in nature, their evolution 

must be functionally constrained, and so the network topology of PPINs must also be 

functionally constrained. Then, as with sequence alignment performed on genes/proteins, 

network alignment performed on the interactome should be able to reveal the evolutionary 

history of the interactome. For example, a pathway or complex that is highly conserved between 

species would indicate a very constrained, possibly essential, function. Alternately, if a region of 

a PPIN is highly rewired in another PPIN – that is, some proteins in one species have vastly 

different interaction partners from their orthologs in another species – this indicates a lack of 

functional conservation for those proteins, and perhaps even the evolution of new molecular 

functions or modules. 

By general consensus, network alignment has broadly been divided into two sub-problems, based 

on the expected output. This division is inspired by the distinction between local and global 

sequence alignment. In global network alignment (GNA), the inputs are two (or more) large 

networks, prototypically the whole interactomes of different species, and the output is an 

alignment between most, if not all, of the nodes of those networks.55 In contrast, in local network 
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alignment (LNA), there is no expectation that the output alignment will cover most of an 

interactome. Instead, LNA accepts as input one or more large PPINs, plus possibly a small query 

network, and produces multiple small alignments of subnetworks that may overlap.  

There are several established problems in computer science theory that resemble the network 

alignment problem. In the trivial case of aligning a network to itself, network alignment is akin 

to the graph isomorphism problem, which is of unresolved complexity, though a quasi-

polynomial algorithm has recently been proposed.56,57 In the case of aligning a network with a 

subnetwork, as might occur when querying an interactome with a pathway or a complex, 

network alignment is akin to the subgraph isomorphism problem, which is NP-complete.58 In 

practice, however, neither of these problems are realistic representations of the biological 

considerations of network alignment; generally, there is no expectation that a meaningful exact 

(sub-)network match will be found, due to network evolution and rewiring. It is precisely 

because exact matches are not expected that network alignment holds relevance; if PPINs were 

fixed in the absence of evolutionary dynamics, the network alignment problem would simply be 

the problem of “aligning” proteins, already largely solved by sequence alignment.  

Given that network rewiring results in distinct networks that should nevertheless be alignable, 

network alignment may best be considered a specific case of the inexact graph matching 

problem.59 However, the biological characteristics of PPINs and our interest in the evolution of 

networks establish network alignment as a unique problem in need of novel methods, though 

prior inexact graph matching methods may still prove useful. 

1.2.2 Local Network Alignment 

Within network alignment, local network alignment (LNA) refers to alignment methods that 

produce smaller subnetwork alignments, in contrast with global alignment which attempts to 

align whole interactome networks. With its smaller scale, local alignment is computationally 

simpler and conceptually grounded in biology, as the aligners aim to identify pathways, protein 

complexes, or other connected network modules of interest to biologists. 

Created in 2003, the first popular network alignment algorithm, PathBLAST, is a local alignment 

method that intends to identify pathways in a PPIN by alignment.60 Taking a query, which may 

either be a pathway of interest or a larger PPIN, and a target interactome, PathBLAST merges 
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the two networks into a global alignment graph, based on sequence similarity between the 

protein nodes as determined by BLAST (nodes merged if E-value < 10-2). Paths through this 

global alignment graph are then scored, with a composite Bayesian scoring function that attempts 

to assess the likelihood of true protein homology and true PPI identification,61 and high-scoring 

paths are returned as aligned pathways. The scoring function also includes consideration for gaps 

or mismatches in the aligned pathways, penalizing their score but still allowing for alignment if 

the overall score is sufficient. A later iteration, NetworkBLAST, also aligned protein clusters or 

complexes using a seed-and-extend algorithm, which builds seeds of three or four nodes for each 

node in the network, and then uses a local search heuristic, adding high-scoring neighbours and 

removing low-scoring members, to expand the seed to up to 15 proteins (not higher, due to 

computational limitations).62 

PathBLAST and NetworkBLAST established many of the characteristic features of LNA 

methods, such as the use of a seed-and-extend algorithm, the use of a global alignment graph, 

and a statistical scoring function based on a network evolution model. Though how each of these 

components and how they are assembled vary from method to method, most LNA algorithms 

retain these key features, distinguishing them from GNA methods. NetAligner adds additional 

edges to the global alignment graph, filling in edge gaps/mismatches based on the assumption 

that interacting proteins evolve at similar rates.63 MaWISh includes duplication as a third 

evolutionary event to the model underlying its scoring scheme.64 Graemlin uses a scoring matrix 

to allow searches for arbitrary structures.65 AlignNemo uses connected 4-subgraphs as seeds to 

initialize the seed-and-extend algorithm, which then connects seeds together to form an 

alignment.66 AlignMCL uses a Markov clustering algorithm to form an alignment from the 

global alignment graph.67 GASOLINE uses bootstrapping to stochastically, iteratively extend 

seeds, and is capable of aligning multiple networks simultaneously.68 

In recent years, however, there has been a decline in interest in LNA research, with GASOLINE 

being the last prominent LNA method published in the last five years. The attention of the 

network alignment community has largely shifted to focus on global network alignment instead. 

1.2.3 Global Network Alignment 

In global network alignment (GNA), the objective is to “find the best overall alignment between 

the input networks,” as described in the paper describing, IsoRank, the first popular GNA 
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method.55 IsoRank formulated the GNA problem as a spectral problem, creating an eigenvalue 

equation and then using an iterative algorithm to solve for the principal eigenvector. The 

eigenvalue equation used by IsoRank, like that used by PathBLAST, consists of two components 

added together: a protein sequence similarity component, E-values as computed by BLAST, and 

a network topology similarity component, in which the similarity score of every pair of nodes is 

partially distributed to their neighbours, in a PageRank-like manner.69 Once an eigenvector is 

converged upon, the top scoring node pairs within that eigenvector are extracted and greedily 

aligned.  

As PathBLAST did for LNA and network alignment in general, IsoRank established a key trend 

that persists in GNA research to this day, a function used to compute node similarity that is then 

used to guide alignment. In particular, many GNA methods continue use a similarity function 

that adds the two components, with a parameter used to control their relative weights, and 

BLAST to produce the scores for the protein similarity component. Unlike with PathBLAST and 

other LNA methods, the weighting of this scoring function is not derived from statistical 

analysis, but instead manually set to an arbitrary value, or for unspecified reasons. 

In contrast to LNA, GNA methods are more varied, with many variations on the network 

topology measures used in the node scoring function and the algorithm used to transform that 

scoring function into an alignment. There are four major types of algorithms used in GNA 

methods: seed-and-extend, optimization, spectral, and genetic. 

GNA seed-and-extend algorithms are highly similar to those used in LNA methods, beginning 

with a small, high-confidence seed alignment and then iteratively growing the alignment 

outwards. Many GNA seed-and-extend algorithms only extend along aligned edges, unlike LNA 

algorithms which account for interaction gaps and mismatches, which improves their 

performance on various network topology alignment metrics (see below). One common variation 

is to align in “shells” outwards from the seed, iteratively aligning all nodes at the same distance 

from the seed, then using some procedure to align unaligned “orphan” nodes. One such GNA 

method is GRAAL, which introduced the graphlet degree signature as a measure of the network 

topology similarity of nodes for use in node similarity scoring function, used throughout the 

GRAAL family of network alignment methods.70 Two of GRAAL’s descendants, C-GRAAL 

and MI-GRAAL, also use similar seed-and-extend approaches.71,72  
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Another common variation seen in GNA seed-and-extend algorithms is to use multiple seeds and 

mesh together the separately seeded alignments. By starting with one or more high-scoring 

seeds, seed-and-extend algorithms ensure that regions of high similarity are aligned, not 

sacrificed for overall alignment quality, and that the algorithm does not entrap itself with a poor 

initial seed choice. GHOST is one such method, similar to GRAAL.73 GHOST uses a spectral 

signature in its node similarity scoring function, treats each shell to be aligned as a quadratic 

assignment problem, and adds a local search phase at the end to improve the initial alignment. 

IGLOO uniquely uses local network alignments as its seeds, and then performs global 

alignments with the remainder of the network.74 NETAL and HubAlign are other examples of 

GNA seed-and-extend algorithms.75,76 

GNA optimization algorithms create alignments by finding the alignment with the overall 

maximum of some optimized value. In contrast with seed-and-extend algorithms, optimization 

algorithms pay less attention to contiguity of aligned regions and may sacrifice regions of high 

similarity if it improves overall alignment. H-GRAAL is an example, using the Hungarian 

algorithm to find the alignment with the maximum sum of node similarity scores between 

aligned nodes.77 PISwap is a unique method that uses local search to refine existing alignments, 

iteratively testing minor swaps in the alignment to optimize an evaluation function, although it 

has also been used to create de novo alignments.78 The alignment algorithm in ModuleAlign uses 

the Hungarian algorithm to optimally align proteins based on a novel clustering-based similarity 

function, then uses local search to adjust the alignment to maximize alignment of edges.79 SANA 

uses the simulated annealing heuristic to quickly converge to the optimal alignment.80  

There are also several network alignment methods that employ genetic algorithms to seek 

optimally scoring alignments, such as Optnetalign, which uses a multiobjective memetic 

algorithm to optimize on both network topology and biological objectives concurrently.81 Other 

network alignment methods using genetic algorithms include GEDEVO and MAGNA++,82,83 as 

well as their multiple-network alignment versions GEDEVO-M and multiMAGNA++.84,85  

GNA spectral algorithms cast network alignment problem as a linear algebra problem, and 

employ spectral methods to find an alignment, often to achieve greater speed. IsoRank is such an 

example, as is IsoRankN, a descendent designed for aligning multiple networks, and L-GRAAL, 

from the GRAAL family of network alignment methods, which uses Lagrangian relaxation.86,87 
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GHOST uses Lagrangian relaxation to solve a quadratic assignment problem to align subsets of 

proteins previously created using a seed-and-extend method.73 GA, Natalie, and Fuse are all 

network alignment methods that use spectral algorithms to generate alignments.88-90 

1.2.4 Assessment and Evaluation of Network Alignments 

1.2.4.1 Biological Assessment 

The evaluation of network alignment methods is commonly undertaken in two ways, biological 

and network-topological. The original application for GNA, as expressed by Singh et al., was to 

enable “species-level comparisons” and to detect functional orthologs, defined by 

Bandyopadhyay et al. as orthologous proteins that “play functionally equivalent roles.”55,91 To 

this end, Singh et al. analyzed the functional coherence of the yeast (S. cervisiae) and fruitfly (D. 

melanogaster) proteins aligned by IsoRank using functional annotations from the Gene Ontology 

(GO) Consortium, which maintains GO, a hierarchical ontology for protein function terms, and 

the associated GO database, a database of annotations attributing functional terms to genes.92  

However, the method employed involved mapping all GO terms to ancestral terms at depth five 

in GO, discarding any terms at lower depths, and then counting the number of shared depth five 

GO terms. This methodology is advised against by the GO Consortium, as GO terms can occupy 

multiple levels in the hierarchy and there is no fixed notion of the significance of any particular 

level across GO.93,94 For example, while both are second-level terms, “signaling” has more than 

100 000 protein annotations in GO whereas “cell killing” has less than 2000,95 meaning that 

alignment of two “signaling” proteins is not particularly significant compared to the alignment of 

two “cell killing” proteins. Furthermore, GO is irregularly shaped, with nodes and edges 

unevenly distributed across its branches, and GO annotations themselves are also unevenly 

distributed, making simple count-and-compare assessment methods unsuitable for determining 

the significance of two aligned proteins sharing an annotation.96,97  

Unfortunately, due to the prominence of IsoRank, similar count-and-compare methods have 

regularly been used in assessing the quality of network alignments, including some that simply 

count the number of GO terms from all levels shared between aligned proteins, an 

inappropriately coarse measure of functional similarity.75,76 It is only in recent years that the 

community has shifted towards more appropriate methods, such as semantic similarity or shared 
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Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (KP) annotations,98 though this 

shift has not been fully adopted.  

Notwithstanding these technical quantitative issues, there is a qualitative conundrum for 

biological assessment of alignments based on existing functional annotation databases. Most 

network aligners include BLAST sequence similarity as an input, whether as E-values or bit 

scores. This creates a problem of circularity and/or redundancy, as many functional annotations 

and the experiments conducted to determine them are dependent on BLAST or other sequence 

alignment tools. As such, the high biological quality performance scores of some network 

aligners may be an undue result of sequence similarity input data dominating network topology 

considerations. For example, Fuse uses an α parameter to control the relative weights of their 

novel non-negative matrix trifactorization-based similarity score, which fuses together sequence 

similarity and network wiring patterns, and BLAST E-values.90 However, the biological quality 

of the alignments generated using α values between α = 0.2 (minimal BLAST E-value weight) 

and α = 1.0 (total dependence on BLAST E-values) were nearly indistinguishable, whereas there 

was a steep drop-off in the absence of BLAST E-values (α = 0.0) (see Figure 1-4). This suggests 

that Fuse’s high-quality alignment results are highly dependent on BLAST E-values, and that 

perhaps the network-based considerations involved were not major contributors to the biological 

quality of Fuse’s alignments.  
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Figure 1-4 – Supplementary Figure 3 from Fuse: multiple network alignment via data 

fusion, including original caption.90 Note that there is no meaningful difference between results 

achieved with α values between 0.2 or 1.0. With α = 1.0, Fuse uses only BLAST similarity 

without any network topology in its similarity score, suggesting that network information plays 

only a marginal role in Fuse’s results. (Reproduced with permission.) 

1.2.4.2  Network Topology Assessment 

Network alignment assessment via network topology measures was not undertaken in the 

original IsoRank paper nor in LNA papers, but was popularized for GNA by the Pržulj lab’s 

work on GRAAL. GRAAL utilized the measures edge coverage* (EC), which counts the number 

of edges aligned, and the largest contiguous connected subcomponent (LCCS), which attempts to 

measure the contiguity of the network alignment.70 Additional measures such as induced 

conserved sub-structure (ICS) and symmetric substructure score (S3), have since been introduced 

as refined EC measures.73,99 

                                                 

*
 Edge coverage is often called “edge correctness” in network alignment research, but this is a misnomer as it is 

simply a count of the edges aligned, for which there is no demonstrable correctness to their alignment.80  
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The connection between network topology measures such as EC, LCCS, ICS, and S3 and the 

biological significance of network alignments has never been effectively established, however. 

Recent work has shown a negative or no correlation between maximizing these network 

topology measures and improvements on biological quality measures. When MAGNA optimized 

its alignments on EC, ICS, and S3, on S. cerevisiae-H.sapiens and C. jejeuni-E. coli PPIN 

pairings, GO term enrichment showed no consistent improvement, either on the number of GO 

terms shared by aligned proteins or GO semantic similarity of aligned proteins99 (see Figure 1-5 

and Figure 1-6). Malod-Dognin et al. have shown that there is a trade-off between the S3 and KP 

scores of alignments produced by L-GRAAL, HubAlign, Natalie, and MAGNA100 (see Figure 

1-7). Using OptNetAlign, Clark and Kalita also found either negative and no correlation between 

biological measures, the number of shared GO terms and BLAST bit-score, and the network 

topology measures, EC, ICS, and S3 81 (see Figure 1-8).  

 

Figure 1-5 – Supplementary Figure S9 from MAGNA: Maximizing Accuracy in Global 

Network Alignment, including original caption.99 MAGNA was used to optimize PPIN 

alignments of S. cerevisiae and H. sapiens generated by different alignment algorithms, using 

one of three network topology similarity measures (EC, ICS, and S3). There was no pattern of 

increased GO semantic similarity of the aligned proteins found in the post-optimization 

alignments compared to the original alignments (O), suggesting that these three network 

topology similarity measures are a poor fit for predicting function and orthology, and for 

measuring alignment quality. (Reproduced with permission.) 
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Figure 1-6 – Supplementary Figure S13 from MAGNA: Maximizing Accuracy in Global 

Network Alignment, including original caption.99 MAGNA was used to optimize PPIN 

alignments of C. jejuni and E. coli generated by different alignment algorithms, IsoRank,55 MI-

GRAAL,87 and GHOST,73 using one of three network topology similarity measures (EC, ICS, 

and S3). There was no pattern of increased GO semantic similarity of the aligned proteins found 

in the post-optimization alignments compared to the original alignments (O), suggesting that 

these three network topology similarity measures are poor fits for predicting function and 

orthology, and for measuring alignment quality. (Reproduced with permission.) 

These results suggest a disconnect between the network topology measures used to evaluate 

network alignments, and the proposed objectives of network alignment to predict protein 

function and identify functionally conserved proteins. Maximizing network aligner performance 

on both network topology and biological quality measures are contrary objectives, leaving open 

the question of how aligners should align. 
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Figure 1-7 – Figure 4 from Unified Alignment of Protein-Protein Interaction Networks, 

including original caption.100 Malod-Dognin et al. used four different network aligners (L-

GRAAL,87 HubAlign,76 Natalie,89 and MAGNA83) and adjusted their α parameters to control the 

relative weight of sequence (BLAST) or network topology similarity inputs. Their results show 

an explicit trade-off in the network topology evaluation measure S3 and the biological quality 

evaluation measure KP (the % of aligned proteins sharing KEGG pathways) for the resulting 

network alignments. (Reproduced under the Creative Commons Attribution 4.0 International 

License.) 
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Figure 1-8 – Table 1 from A comparison of algorithms for the pairwise alignment of 

biological networks, including original caption.81 Clark et al. used OptNetAlign to generate 

many non-dominated alignments of the S. cerevisiae and H. sapiens PPINs, optimizing on three 

network topology measures (ICS, S3, and EC) and two biological quality measures (Gene 

Ontology Consistency and BLAST bit-score). They examined these 571 alignments and found 

the above correlations of the five measures, plus LCCS, in those alignments. The two biological 

quality measures (GOC and BLAST bit-score) showed no or strongly negative correlation with 

the three network topology measures, again indicating that network topology similarity is not an 

appropriate measure of an alignment’s biological quality nor its ability to make biological 

conclusions. Furthermore, the high correlation between GOC and BLAST bit-score hints at the 

confirmation bias problem in using BLAST bit-score as an input to network alignment while also 

using GO term similarity as an evaluation metric. (Reproduced with permission.) 

1.2.4.3 Simulation-based Assessment 

Some network alignment methods are also evaluated based on their performance in simulated 

trials. The advantage of aligning simulated networks is that the correct node pairings are known 

in their totality beforehand, without any confirmation bias introduced by the use of other sources 

of biological information, allowing for direct assessment of an alignment method’s ability to 

correctly align nodes (proteins). Evaluation using fully simulated networks is rare, due to 

continued debate on how best to simulate PPINs (see 1.3.2 Models for Protein-Protein 

Interaction Networks).  
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Instead, researchers often take existing PPINs, randomly rewiring edges to simulate network 

evolution and PPI noise, then align the rewired networks with each other and/or the original 

PPIN.70,75,99 Additionally, several methods use an S. cerevisiae PPI dataset from Collins et al.,101 

adding lower confidence PPIs to the S. cerevisiae PPIN before aligning the two.73,77,99  The 

usefulness of these simulations, however, depends upon the verisimilitude of their approximation 

of real PPIN variation. Uniform random removal and addition of edges to PPINs is very unlikely 

to faithfully approximate evolutionary divergence in real-world interactomes. Furthermore, both 

simulation methods, as typically employed in the literature, use inappropriately low rates of 

noise, with a maximum of only 25%, in contrast to higher observed rates of PPIN rewiring.102-105 

1.2.4.4 Summary 

Assessment of network alignment methods and the alignments they generate remains a difficult 

problem to unpack, with various issues that trouble all popular metrics. Whether biology-, 

network topology-, or simulation-based, all the popular evaluation metrics present difficult 

conundrums for network alignment researchers. Biological assessment metrics have problems 

with circularity and possibly overvaluing naturally dominating biological input data, such as 

protein sequence alignment. Network topology metrics may not be measuring the alignments’ 

biological informativeness nor their ability to produce biologically meaningful insights. 

Simulation-based metrics may be inaccurate due to our poor understanding of PPINs and PPIN 

evolution. 

It should be noted that network alignment, if developed into a successful, validated biological 

research tool, could answer these very questions that trouble its development. Network alignment 

could, in an ideal future, serve as an alternative tool for determining protein function and 

inspiring proteomic research, illuminate how PPINs encode protein function and reveal the 

underpinnings of PPIN evolution, and offer us insights on the structure of PPINs. Ultimately, the 

ability of extant network alignment approaches to answer these questions, however, is dubious. 

When Malod-Dognin et al. evaluated the biological quality of 8 different network aligners 

(Natalie, L-GRAAL, PiSwap, HubAlign, SPINAL,106 MAGNA, ModuleAlign, and 

OptNetAlign) based on the number of aligned proteins that share GO terms, divided into the 

categories of biological process, cellular component, or molecular function terms, all the tested 

methods performed rather poorly100 (see Figure 1-9). Fewer than half of the aligned proteins 
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shared any common GO terms in any of the above categories in 16 separate experiments with 

different PPIN pairs, and the best average performance for all aligners was less than 25%. If the 

primary objective of network alignment, in particular GNA, is to enable determinations of 

protein function, these results are insufficient and unpromising. 
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Figure 1-9 – Part of Supplementary Figure 2 from Unified Alignment of Protein-Protein 

Interaction Networks.100 Three charts showing the performance of 8 different network 

aligners76,78,79,81,87,89,99,106 in aligning proteins with at least 1 shared GO annotation, divided into 

biological process (BP), molecular function (MF), or cellular component (CC) GO terms. The 

coloured bar shows the average performance by the aligner on 16 different PPIN pairs, while the 

whiskers show minimum and maximum. Note that y-axes are not standardized, and that aligner 

performance is rather low, with the best average performance at ~16% for BP, ~24% for MF, and 

~6% for CC, levels that are too low to consider for functional prediction. (Reproduced under the 

Creative Commons Attribution 4.0 International License.) Original caption: Detailed 

performance comparisons. Network aligners (x-axis) are compared according to the topological 

and biological quality (y-axis) of their alignments. The error bars show the smallest, the average 

and the maximum of these scores over the 16 PPI network pairs, respectively. The left panels 

present the results for the topological scores (from top to bottom: NC, EC, ICS, S3 and LCC) and 

the right panels present the results for the biological scores (from top to bottom: KP, GO-BP, 

GO-MF and GO-CC). In each panel, aligners are sorted from the best performing (on the left) to 

the worst performing method (on the right). 
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1.3 Protein-Protein Interaction Network Evolution 

Protein-protein interaction network alignment is often presented as a static problem, seeking the 

optimal alignment of two (or more) fixed input graphs, but underlying the problem is the 

dynamic process of network evolution, which creates the differences in the networks being 

aligned. As PPINs encode function, and evolution is both constrained and guided by function, 

the questions of how network alignment should be performed and how network evolution occurs 

are effectively intertwined. Better understanding of how function is encoded and conserved 

within the network would, for example, indicate how networks and proteins should be aligned. 

Similarly, better understanding of network divergence and positive selection in the network may 

indicate network regions that should not be aligned, an important yet largely unaddressed 

consideration that distinguishes local and global network alignment.107 

While network alignment research remains in its infancy and primarily focused on simply 

identifying functionally similar protein pairings, it should eventually develop into a tool to 

investigate and understand network evolution, just as sequence alignment serves for 

genetic/genomic evolution. Considering network alignment against the larger background of 

network evolution will enable insights into the contours of the network alignment problem, 

which can then be applied to create network alignment and analysis tools that more precisely 

answer questions of scientific interest.  

1.3.1 Fundamentals and Applications 

As with the genome, the interactome is a potential treasure trove of information that could 

further our understanding of the cell. Within the PPINs that represent the interactome are all the 

protein complexes and pathways studied in molecular biology. These modules are critical 

components in our current understanding of cellular biology, but much of the interactome lies 

outside these well-studied modules, and thus also beyond our understanding. With the 

availability of interactomic data from many species, it is possible that we can leverage this data 

using comparative evolution to better understand the yet poorly studied parts of the interactome. 

 

Even with the PPI data quality issues described earlier, many significant observations have been 

drawn from comparative network analysis, with various implications for our understanding of 

evolution. It has been found that genes under positive selection are more likely to be located at 
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the periphery of the PPIN.108 Network topology has also been used to identify certain proteins 

that are particularly important to the cell, specifically hub and bottleneck proteins.  

Hub proteins are high-degree proteins, and their network importance is reflected biologically by 

their tendency to be essential proteins.45,109,110 Hub proteins can be divided into “date” hubs, 

proteins with many partners that compete for the same binding interface, and “party” hubs, 

proteins that bind to multiple proteins concurrently via multiple binding interfaces. Date hubs 

play an outsized role in the connectivity of the PPIN, while party hubs serve as a crux for 

functional proteomic units. Their distinct roles influences their sequence and structural evolution, 

with date hubs having higher levels of disorder to facilitate docking of different proteins in the 

same region.111 Bottleneck proteins are proteins that occupy critical junctions between highly 

connected portions of the interactome, identified by their high betweenness centrality.112 Like 

hub proteins, they tend to be essential, due to their role in linking different network modules, 

which are themselves arranged around hub proteins. These distinct meta-functional roles played 

by hub and bottleneck proteins may themselves exert distinct evolutionary forces upon these 

proteins.113  

These examples demonstrate that there are complex dynamics between genetic evolution and 

network evolution; understanding the interplay between evolution on these different levels will 

be critical to developing a full understanding of the cell.47 Unlike genes, however, of which there 

are many in every species, each species has only one interactome, as they are currently 

abstracted. This limits opportunities for inter-species comparison, elevating the importance of 

high-quality comparative network analysis in identifying the patterns within interactomes that 

would illuminate network evolutionary processes.  

However, in addition to these modules, there is an extensive amount of noise, including 

experimental noise (i.e. false positives and false negatives) and also true PPIs that contain 

varying amounts of biological information that has not been understood yet. Distinguishing the 

true noise from the less understood parts of the interactome poses a major challenge, but 

comparative network analysis may be a potent tool in addressing it, by observing patterns of 

conservation across different interactomes. 

One way this is done is by considering the interologs of different PPINs. An interolog is an 

analogue to orthologs for protein-protein interactions; if two interacting proteins in the same 
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species each have, in another species, orthologs that also interact, then those two interactions are 

interologs.114 Interologs have been used to directly transfer PPIs, inferring PPIs in one PPIN 

from the presence of their interologs in the other, a process called interolog mapping.18,112,115-117 

This allows the transfer of information from well-studied interactomes to poorly studied 

interactomes, enabling analyses otherwise impossible due to a lack of data, such as analyzing the 

relationship between network rewiring and gene essentiality in S. cerevisiae and M. musculus.21 

Interologs, or the absence of them, can also be used to identify and study protein complexes and 

their evolution.118,119  

There is, however, a significant body of work that suggests that our understanding of PPINs is 

insufficient, or the existing PPI data is insufficient, for such inter-species interactomic analyses. 

Some studies have indicated that interolog conservation between species is too low for interolog 

mapping as a general strategy.104,105 There have also been studies questioning our statistical 

understanding of PPINs and, consequently, conclusions based on those studies, such as the 

dichotomy between date and party hubs and ability to predict function using PPINs.120-122 Thus, 

as PPI data continues to be collected and used in new applications, work must continue on 

understanding the fundamentals of PPINs and PPIN evolution. 

1.3.2 Models for Protein-Protein Interaction Networks 

There is an ongoing debate in PPIN evolution research over the best network generation model 

to explain and/or simulate PPIN evolution. The development of a network generation model that 

could accurately simulate real-world PPINs would likely provide extensive insights into the 

mechanisms of network evolution. More practically though, accurate PPIN generating models 

could generate simulated PPINs to serve as a statistical background for network analyses or as a 

testbed for better evaluation of network alignment methods. 

Current popular PPIN models fall into three general categories: scale-free (Barabási–Albert), 

geometric, and duplication-divergence models. Scale-free networks have a degree distribution 

that follows the power law, which supposedly makes scale-free models suitable for a variety of 

networks, including PPINs, the World Wide Web, and social networks.123 The Barabási–Albert 

model generates networks using preferential attachment: nodes are added to the network one at a 

time, and edges drawn from each new node to existing nodes randomly, but with probabilities 

favouring high-degree nodes.  
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Geometric random graphs are, like scale-free networks, used to model non-biological networks, 

like social networks. To generate a geometric graph, nodes are randomly scattered across a 

geometric surface and edges drawn between nodes if the distance between them is less than a 

specified parameter. There has been evidence that geometric random graphs are better models for 

PPINs along with other statistical evidence suggesting that PPINs are not truly scale-free.124 

However, geometric random graph models do not simulate evolutionary processes in any 

manner, as all nodes and edges are added to the network simultaneously. In contrast, scale-free 

models remain popular for PPINs as preferential attachment represents a biologically feasible 

mechanism for network evolution, though preferential attachment cannot fully explain PPIN 

evolution alone. 

Finally, the duplication-divergence (DD) model generates networks using node duplication as its 

principal mechanism.125 The evolutionary mechanisms of duplication and divergence have been 

featured in evolutionary models for gene and domain evolution, in addition to PPINs.126,127 

Beginning with two connected nodes, nodes are randomly selected to be duplicated along with 

their interactions, and then interactions are randomly removed from one or both of the duplicates. 

Unlike the scale-free and geometric random models, this model is not commonly used for 

networks other than PPINs, as it fundamentally incorporates a mechanism, gene duplication and 

divergence, that is unique to biology. However, duplication-divergence remains a highly 

simplified model of network evolution; while it may simulate real PPINs statistically,128 it does 

not specifically model other network events, such as de novo protein gain or interaction 

rewiring.107,129,130 The basic DD model, however, can serve as a platform for more variations that 

incorporate additional evolutionary events.131  

Generally, these models are evaluated based on their ability to simulate random de novo 

networks that bear similar graph theoretic statistics to real PPINs, and not on their ability to 

explain or generate testable hypotheses for individual proteins or clusters. Given that much 

molecular biology research is structured around individual proteins, complexes, and/or pathways, 

this has resulted in an information gap, as the global perspectives often adopted in PPIN research 

are incompatible with the local perspectives more common in molecular biology as a whole. The 

absence of PPIN models with explanatory power has, for example, driven researchers interested 

in PPIN alignment to formulate novel PPIN models to serve as foundation for their alignment 

methods,64,132,133 but these models are crudely parameterized and underdeveloped. Superior, 
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more reliable PPIN models would enable development of network alignment tools with the 

precision and specificity needed to extract relevant biological insights from PPINs. 

1.4 Protein-Protein Interaction Network Alignment Visualization 

As increasing amounts of molecular biology data have been generated in the past three decades, 

there has been a corresponding increase in the number of visualization tools developed to 

facilitate human observation and assessment of this data. While in the beginning, generic all-

purpose graph visualization tools were sufficient,134,135 the flood of data available to molecular 

biologists, in particular data of different types, demanded the development of new tools to not 

just visualize, but also integrate and partially automate analysis of this data. The “hairball 

problem” in particular, wherein large networks appear as a dense, visually indecipherable cluster 

when visualized, necessitated tools that could quickly and efficiently prune irrelevant 

information and present to users tightly arranged views, which encouraged specialization 

amongst network visualization tools. These tools include Cytoscape,6 NAViGaTOR,136 and 

OrthoNets.137 

However, network alignment visualization is quite limited. OrthoNets, a Cytoscape app, creates 

side-by-side visualizations of orthologous subnetworks, but it is rather rigid in its approach, 

focused specifically on orthologous proteins and their neighbours, and automatically retrieves 

data from fixed, now outdated, sources. With the many network alignment methods now 

available, and their shaky ability to reveal biologically meaningful relationships, biologists 

interested in using network alignments as an information source need the ability to quickly 

visualize and assess the relevant results. This is especially true for global network alignments, as 

they may produce suboptimal alignment results in the region of interest in a compromise for 

overall alignment quality. Global network alignments also contain an overwhelming amount of 

data from the alignment of two whole interactomes, effectively creating a “double hairball” 

problem.  

Another Cytoscape app for network alignment visualization exists for the network alignment 

method GASOLINE68 (see Figure 1-10). Somewhat confusingly, this app is also named 

GASOLINE.138 GASOLINE the app is designed to execute GASOLINE the method on user-

provided input files, and display the results. Like with OrthoNets, the rigid workflow integration 

in GASOLINE the app limits its utility for those interested in other alignment methods, and there 
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is little data integration capability to facilitate incorporation of GASOLINE into more extensive 

workflows. 

 

Figure 1-10 – Figure 1 from GASOLINE: a Cytoscape app for multiple local alignment of 

PPI networks.138 The GASOLINE app is a tool to help users run the GASOLINE algorithm on 

their own input data and visualize the resulting local network alignments. (Reproduced under the 

Creative Commons Attribution 4.0 International License.) Original caption: A) GASOLINE 

parameters; B) Alignment results; C) Description of selected proteins and associated GO terms; 

D) Alignment visualization: intra-edges are represented with solid lines and coloured according 

to their weight (green for low values, yellow for medium values and red for high values); inter-

edges are drawn with dashed lines. 
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 Alignment of Interface-Interaction Networks 

2.1 Introduction 

A major objective of biology is to understand how complex biological systems are assembled 

from their components into functional units and how they evolve. In molecular biology, efforts 

have increasingly focused on how proteins and other molecules interact, and determining how 

their interplay affects biological phenotypes, including disease. This has driven work in 

interactomics, as better, cheaper high-throughput methodologies allow us to systematically map 

the dynamic molecular interactions in a cell.139 To aid the evolutionary study of these networks, 

a number of network alignment methods have been developed.140 

Recently, protein interactions have been mapped at the level of amino acid positions, which can 

be represented as an interface-interaction network (IIN), where nodes represent binding sites, 

such as protein domains and short sequence motifs.44,46,49,109,141 These networks provide a more 

accurate picture of how protein interaction networks are organized in biological systems. Thus, 

studying the function and evolution of these higher resolution networks should provide new 

biological insights. However, current protein interaction network alignment algorithms are not 

designed to align these networks and generally fail to do so in practice. In response, we 

developed GreedyPlus, the first algorithm designed to align IINs. In the next sections, we 

provide background about the network alignment problem, introduce IINs and review existing 

algorithms. We then describe the GreedyPlus algorithm and associated input data, comparisons 

with existing protein-protein interaction network alignment methods and results aligning IINs 

from different species. 

2.1.1 Network Alignment Theory 

In the trivial case of finding the ideal alignment of a network to itself, the network alignment 

problem is equivalent to the classic graph isomorphism problem, which is of unknown 

complexity142. However, as biological networks evolve, we expect divergence between the 

networks via the addition and deletion of both nodes and edges, and thus the objective of 

network alignment is to find similarity between networks rather than perfect isomorphisms. In 

the particular case where one network is a subnetwork of the other, the network alignment 

problem is specifically the subgraph isomorphism problem.58 In the general case, the network 
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alignment problem degenerates into many instances of the subgraph isomorphism problem with 

loosened constraints; particularly, the objective is to find a set of non-overlapping, partial 

isomorphisms of all possible subnetworks of both networks. Given that the complete protein-

protein interaction networks (PPINs) of species such as human and yeast101,143 number in the 

thousands of nodes and edges, and that the subgraph isomorphism problem is NP-complete, an 

optimal computational approach is unfeasible and heuristics and approximations must be used.  

2.1.2 Interface-Interaction Networks 

Interface-interaction networks are a refinement of PPINs wherein proteins are subdivided into 

their separate interaction interfaces.44 We choose to represent the IIN using a traditional graph 

model where a node represents a specific binding site and an edge represents a physical 

interaction between two binding sites on their respective proteins. The IIN is thus a higher 

resolution version of the PPIN. 

The higher resolution of IINs allows for new biological insights that cannot be derived from 

standard PPINs. For example, IINs can distinguish between date hubs – proteins that interact 

with many partners, but at different times or in different locations - and party hubs – proteins that 

interact with many partners simultaneously.45 While these distinct types of hub proteins will 

appear identically in a PPIN, in an IIN, the former will have few binding sites that are reused for 

many different interaction partners whereas the latter will have many binding sites that are 

specific for each interaction partner. This is useful to help elucidate the evolutionary processes 

and constraints acting on hub proteins. The study of IINs will also help interpret how domain and 

binding site gain and loss affect the PPIN, predict PPIN perturbations caused by sequence 

mutations that affect binding sites, and allow in-depth analysis of how protein-protein 

interactions are formed and lost.46-48 

Network topology differences between IINs and PPINs, however, mean that algorithms designed 

to operate on PPINs may not function properly with IINs. While PPINs are often sparse, IINs are 

much more so, with each PPIN node (protein) split into multiple nodes that represent the 

different binding sites on that protein. Similarly, while PPINs exhibit a hub-and-spoke network 

topology, with many low-degree and fewer high-degree nodes, this characteristic is exaggerated 

in IINs. For example, protein-recognition modules, such as protein kinases or SH3 domains, are 

often capable of binding many different proteins, leading to relatively few high-degree nodes 
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connected to many low degree nodes. Additionally, due to binding specificity similarities, 

different domains will often recognize the same ligands, forming a multi-fan network topology. 

Methods that depend on the neighbourhoods of nodes having distinct local network topologies to 

generate their alignments get confused by these repeated patterns and thus perform 

inconsistently. 

Experimentally mapped interface-interaction data across species have recently become available, 

such as a set of interactions mediated by SH3 domains in Saccharomyces cerevisiae (budding 

yeast)49 and Caenorhabditis elegans (worm)46 SH3 domains are peptide-recognition modules 

that bind to short linear peptides with characteristic proline-rich motifs. The resulting IINs are 

bipartite, though this may not be generally the case. Due to their bipartite property, certain 

network topology motifs, such as cliques, are absent while others, such as 4-cycles, are highly 

enriched. Existing PPIN alignment algorithms have not been designed for bipartite networks and 

can fail to align these networks. The graphlet degree signature similarity measure used by 

GRAAL,70,144 for example, loses most of its resolution on a bipartite graph due to the absence of 

odd cycles. Alternatively, the bipartite nature of the networks confounds IsoRank,55 as its node 

similarity measure can get stuck oscillating between domain and binding site nodes rather than 

converging. 

To address the IIN alignment problem, we developed a new algorithm called GreedyPlus, which 

considers bipartite IINs by design. 

2.1.3 Protein-Protein Interaction Network Alignment 

Even though we argue that IIN alignment represents a different problem to PPIN alignment, the 

problems are related in their approach and we review PPIN alignment work here. Previous 

network alignment research has focused on protein-protein interaction networks, although other 

network types have been studied.145 Previous PPIN alignment methods have sought to identify 

pairs of orthologous proteins and/or functionally orthologous proteins. Mirroring biological 

sequence alignment techniques, PPIN alignment methods have broadly taken two approaches: 

local alignment and global alignment. Local alignment algorithms seek small subnetworks that 

are similar in network topology, emphasizing regions of high-confidence alignment between the 

two networks. Typically, these methods use protein sequence alignment as a primary indicator of 

protein orthology, and then incorporate network information to identify clusters of sequence-
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similar proteins; these clusters in the network, then, are considered putatively orthologous 

functional units. 

PathBLAST,60 one of the first published PPIN alignment methods, and its successor 

NetworkBlast62 are examples of local network alignment algorithms. Both methods begin by 

identifying all pairs of proteins between the two input networks with significant sequence 

similarity (using BLAST E-values),3 formulating each pair as nodes within a global alignment 

graph, and filling in the edges between these paired protein nodes using interaction data. In the 

global alignment graph, edges can be aligned (edges exist in both input networks), gapped (an 

edge exists in only one input network), or mismatched (no edge exists in either network), 

implying an abstract model of network evolution. A scoring model is then used to score the 

aligned proteins, and the high-scoring pairings are combined into a small pathway or complex as 

the final result. 

Generally, the local network alignment strategy is similar to that for local sequence alignment, 

beginning with a seed that can be aligned with high confidence, which is often based on BLAST 

scores. A scoring scheme is defined, often based on an explicit evolutionary model, and then the 

alignment is extended outwards from the seed along network edges, incorporating as many other 

protein pairs as possible and optimizing on the score. NetAligner,63 for example, assumes that 

interacting proteins evolve at similar rates as part of scoring edge mismatches and gaps. 

MaWISH64 formulates an evolutionary model consisting of three events: match, mismatch, and 

duplication, which are used to develop a scoring scheme for optimization and thresholding. The 

explicit use of an evolutionary model to generate a scoring scheme is not novel; as with sequence 

alignment, any network alignment method implies an evolutionary model. However, as protein-

protein interaction network evolution remains a largely mysterious process, the evolutionary 

models underlying the scoring schemes are diverse. 

Otherwise, the local network alignment problem is well defined. The objective is to identify 

small, well-defined interactomic units – such as protein complexes or pathways – that are 

analogs within the input networks. However, by focusing on local regions, they may miss global 

aspects of network evolution. Additionally, as certain network topology patterns appear 

frequently in PPINs, such as cliques and hubs, local network alignments can improperly align 

subnetworks corresponding to these patterns. This is typically prevented using minimum 
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sequence similarity thresholds, explicitly or implicitly, to block the alignment of proteins with 

dissimilar sequences. As a result, these methods may miss functionally and topologically similar 

protein pairs that have dissimilar sequences. 

Global network alignment methods attempt to align all or most of the proteins in two or more 

PPINs. These methods typically build interactome-wide alignments either by seeding an initial 

alignment and then extending it or by seeking a global optimum according to some scoring 

mechanism using methods such as the Hungarian77 or the PageRank55 algorithms. Global 

alignments likely have much higher false positive rates than local alignments as they align many 

more protein pairs, even those for which evidence is weak. Still, global alignment methods have 

produced network alignments with significant levels of functional similarity between aligned 

proteins. 

The IsoRank algorithms – IsoRank55 and its successor IsoRankN86 - adopt a global approach to 

the PPIN alignment problem, formulating a set of mathematical equations and solving them 

concurrently across the entirety of the two networks, in a manner similar to the PageRank 

algorithm. The intuition behind the IsoRank algorithm is that two nodes should be aligned if their 

respective neighbours should be aligned, considering similarities of neighbours and BLAST 

sequence similarity. To solve for all possible node pairings, the problem is reframed as an 

eigenvector, and approximated using the power method. Once convergence is achieved, the 

nodes are aligned greedily based on their similarity scores. Neither network topology similarity 

nor an evolutionary model for networks are explicitly incorporated in this approach. 

GRAAL70 and H-GRAAL77 focus on the use of graphlet degree signatures144 as a purely 

network-topology-based measure of node similarity. GRAAL and the related MI-GRAAL72 use a 

seed-and-extend approach aligning in expanding radii from the seed nodes in both input 

networks, aligning the nodes at each radius greedily. H-GRAAL, like IsoRank, formulates the 

global network alignment problem as a minimum-weight bipartite matching problem and solves 

this problem using the Hungarian algorithm. C-GRAAL71 uses BLAST sequence similarity in a 

seed-and-extend approach where nodes with high neighbourhood densities are selected as seeds, 

greedily aligning their neighbourhoods, and then using a common neighbourhood mechanism to 

align further. 
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Alternatively, network alignment algorithms can use evolutionary models to score possible 

alignments in terms of likelihood, as BLAST does with sequence alignments. Unlike the IsoRank 

and GRAAL algorithms, Graemlin65 and Graemlin 2.0132 explicitly formulate a model for 

network evolution, consisting of four distinct evolutionary events for Graemlin and six for 

Graemlin 2.0. These models are trained on pre-existing protein orthologies from KEGG,146 and 

then used to score potential alignments between networks. However, even using a seed-and-

extend method that takes an iterative approach to alignment creation, the number of possible 

events results in an exponential number of possible steps at each iteration, requiring complicated 

heuristics to manage algorithm complexity. Furthermore, there is no generally accepted model of 

PPIN evolution and unlike with bases in sequence alignment, there is no clear synonymity 

between proteins. 

Most PPIN alignment methods have attempted to align pairs of related proteins, analogously to 

pairs of similar amino acids in protein sequence alignment. However, many proteins are part of 

orthologous and paralogous groups. This has been only recently treated in network alignment, 

due to the significant complications it creates in both the design of an algorithm and in the 

subsequent assessment of the algorithm’s effectiveness. Despite this, a few attempts have been 

made to create alignment methods that produce many-to-many alignments between proteins; 

these are exclusively extensions of previous one-to-one alignment methods, such as IsoRankN86 

and Graemlin 2.0132 (which extend IsoRank55 and Graemlin65 respectively). In both of these 

cases, the later iteration was shown to be more effective, based on functional enrichment of 

aligned proteins. 

2.2 Results 

2.2.1 Comparison with PPIN Alignment Algorithms 

To assess the GreedyPlus algorithm (see 2.5.1 Algorithm and Figure 2-11 for details), we tested 

it, along with several algorithms for PPIN alignment, by aligning available worm and yeast SH3 

domain IINs.46,49 We first implemented two naïve alignment algorithms to serve as baselines (see 

2.5.2 Comparison Algorithms for details). The first is a greedy algorithm that aligns nodes solely 

in descending order of similarity score. The second is a seed-and-extend algorithm that initially 

picks the highest scoring node pair as an initial seed for the alignment. It then extends the 
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alignment along the edges of the two networks by iteratively aligning the highest scoring pair of 

unaligned nodes connected to already aligned nodes. We also used several other published 

network alignment algorithms – IsoRank, GRAAL, H-GRAAL, C-GRAAL, and Natalie 2.0.147 

For fair comparison, the algorithms were prevented from aligning domain nodes and ligand 

nodes to each other; this was done either using negative scores for domain-ligand pairs or the 

algorithms were re-implemented with only this specific additional constraint added. 

We compare these algorithms’ performance based on three metrics. The first two – represented 

protein orthologies (RPO) and orthologous node pairs (ONP) are measures of how well the 

algorithms reproduce known orthologous relationships (see Figure 2-1). An RPO is a pair of 

orthologous proteins, one from each species aligned, which depends on alignment of at least one 

pair of corresponding interfaces (nodes). An ONP is a pair of aligned interfaces that implies a 

pair of orthologous proteins; thus, # RPO ≤ # ONP by definition for any alignment. Finally, we 

ask how well the networks align topologically, by counting the number of edges aligned (EA). 
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Figure 2-1 – Illustrative examples of represented protein orthologies (RPOs) and 

orthologous node pairs (ONPs). In each of subfigures, the two proteins are assumed to be 

orthologous between Species 1 and 2. The orange circles represent specific sites within each 

protein, depicted as blue ellipses in hypergraph form, and the dark orange arrows represent 

alignment of the two interfaces. Each pair of aligned interfaces between the two orthologous 

proteins is 1 ONP. However, regardless of the number of aligned interfaces between the two 

proteins, there can only be a maximum of 1 RPO, depicted as a dark blue arrow, indicating that 

the orthologous relationship between the proteins is represented in the alignment. 

As IsoRank and Natalie 2.0 use BLAST protein similarity as their only similarity feature, our 

first comparison uses only BLAST protein similarity. C-GRAAL uses BLAST score among 

others, so we include it in these tests. The Edge Alignment Weight (EAW) parameter for 
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GreedyPlus was set to 0.5 after testing with several values (see Discussion). The Greedy, 

GreedyPlus, and IsoRank algorithms all align similar numbers of orthologous nodes (ONP, 20, 

18, and 19 respectively, out of a maximum of 22, see Table 2-1), capturing most of the 

orthologous protein pairs (RPO) present in our worm and yeast datasets (13, 14, and 12 

respectively, out of a maximum of 16). 

Alignment using 

BLAST node 

similarity 

Greedy Seed & 

Extend 

GreedyPlus C-GRAAL IsoRank Natalie 

2.0 

# Represented Protein 

Orthologies (RPO) 

13/16  

(81%) 

1/16  

(6%) 
14/16  

(88%) 

3/16 

(19%) 

12/16  

(75%) 

0/16  

(0%) 

# Orthologous Node 

Pairs (ONP) 
20/22 

(91%) 

1/22  

(5%) 

18/22 

(82%) 

4/22 

(18%) 

19/22 

(86%) 

0/22  

(0%) 

# Edges Aligned (EA) 27/466 

(6%) 

9/466  

(2%) 

291/466 

(62%) 

221/466 

(47%) 

96/466 

(21%) 
354/466 

(76%) 

Table 2-1 – Comparison between GreedyPlus, C-GRAAL, IsoRank, and Natalie 2.0 with C. 

elegans and S. cerevisiae SH3-mediated IINs. Only BLAST protein scores were used as a 

similarity feature. The maximum possible values are RPO: 16, ONP: 22, and EA: 466. Bold 

numbers indicate maximums per row. RPO is the number of known protein orthologies that 

contain aligned interfaces. ONP is the number of aligned interfaces within orthologous proteins. 

By definition, ONP ≥ RPO. 

While the greedy algorithm was successful at aligning nodes from orthologous proteins, the low 

(27 out of a maximum possible 466, 6%) number of edges aligned implies that it is a poor 

network alignment strategy. This may be expected, as the algorithm does not consider edges. The 

IsoRank algorithm also aligns edges poorly (96 of 466 EA, 21%), as it primarily focuses on the 

alignment of similar nodes. The bipartite nature of the networks also causes unusual behaviour: 

the R similarity score in IsoRank fails to properly distribute itself throughout the networks, 

instead oscillating between domains and ligand sites rather than converging to a stable state. An 

examination of the resulting IsoRank alignment (see Figure 2-2) reveals no connected 

concentrations of aligned nodes and edges, and thus no regions of similar network topology 

between the C. elegans and S. cerevisiae networks. 
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Figure 2-2 – IsoRank alignment of worm and yeast SH3-mediated IINs, using only protein 

BLAST. Domain interfaces are represented by triangular nodes, ligand interfaces by circular 

nodes. Yellow nodes are aligned and from orthologous proteins (ONPs), green nodes and edges 

are aligned but not orthologous, red are unaligned from worm, blue are unaligned from yeast. 

Node size indicates score. The fact that IsoRank largely ignores edge alignment is reflected in 

the low number of green edges. While there are more blue edges and nodes than red, due to the 

larger size of the yeast network, there are no large clusters of green (aligned regions).  

Similar to IsoRank, the C-GRAAL algorithm also struggles with the topology of the network. 

The seeds it finds are invariably ligand sites adjacent to multiple domains, as domains have much 

higher degrees. However, domains share few common neighbours due to their binding 

specificity, and ligand sites have generally few neighbours. This limits the alignment expansion, 

based on its core common-neighbours concept, to less than half of the final alignment. 
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The seed & extend and Natalie 2.0 algorithms captured very few orthologies (1 and 0 of 16 

RPOs, respectively) as they are primarily focused on edge alignment. Seed & Extend makes an 

early unrecoverable error, beginning alignment at the periphery of the worm network and then 

rapidly dead-ending, aligning only a total of ten nodes. Natalie 2.0 utilizes a scoring scheme 

focused on maximizing edge-correctness, on which it performs well at the expense of orthology 

recovery, indicating that simply maximizing network overlap is insufficient for reproducing 

known biological relationships. 

Finally, GreedyPlus performs best on RPO and second-best on both ONP and EA (14 of 16, 18 

of 22, and 291 of 466 respectively). It is also the only algorithm that performs evenly across the 

three metrics, with performance each at >60% of max, and thus generally performs the best in 

this comparison (see Figure 2-3). 

The GRAAL and H-GRAAL algorithms rely on a single node similarity feature, known as the 

graphlet degree signature.70 Thus our second comparison uses only graphlet degree node 

similarity across all compared algorithms (see Table 2-2), including C-GRAAL as it was also 

tested with just graphlet degree signature. This node similarity measure results in poor node 

alignment performance across all algorithms. For example, the GRAAL algorithm identifies no 

orthologous node pairs, though it does have a similar execution time as GreedyPlus. The 

generation of the graphlet degree signature for a given node involves counting the number of 2-, 

3-, 4-, and 5-node graphlets in which the node participates. However, of the 29 graphlets of such 

size, 20 of them contain odd cycles not present in bipartite networks. This reduces the number of 

graphlet orbits, and the length of the graphlet degree signature vector, from 72 to 20. Due to this 

loss of resolution, the GRAAL algorithm loses power in discriminating between node pairings 

(see Figure 2-4). Furthermore, the exaggerated spoke-hub network of IINs in comparison to 

PPINs, for which the GRAAL algorithm was designed, results in the GRAAL algorithm 

preferring to align non-orthologous nodes to orthologous ones. 

H-GRAAL, which focuses on aligning nodes, also fails due to the loss of resolution, while the C-

GRAAL algorithm suffers from the same issues as in the earlier tests. Thus, for graphlet degree, 

different network types require different network topology considerations to be aligned properly. 
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Figure 2-3 – GreedyPlus alignment of worm and yeast SH3-mediated IINs, using only 

protein BLAST, EAW = 0.5. Domain interfaces are represented by triangular nodes, ligand 

interfaces by circular nodes. Yellow nodes are aligned and from orthologous proteins (ONPs), 

green nodes and edges are aligned but not orthologous, red are unaligned from worm, blue are 

unaligned from yeast. Node size indicates score. The GreedyPlus algorithm aligns many more 

edges than IsoRank, resulting in many fewer blue and red edges, as they are replaced by half as 

many green edges. However, there are still no large clusters of green, with red and blue edges 

dispersed throughout the alignment, indicating that interaction rewiring is both common and 

distributed. 

 

Alignment using 

graphlet degree node 

similarity 

Greedy Seed & 

Extend 

GreedyPlus C-

GRAAL 

GRAAL H-

GRAAL 

# Represented Protein 

Orthologies (RPO) 
1/16  

(6%) 

0/16  

(0%) 

0/16  

(0%) 

0/16  

(0%) 

0/16  

(0%) 
1/16  

(6%) 

# Orthologous Node 

Pairs (ONP) 
1/22  

(5%) 

0/22  

(0%) 

0/22  

(0%) 

0/22  

(0%) 

0/22  

(0%) 
1/22  

(5%) 

# Edges Aligned (EA) 91/466  

(20%) 
319/466  

(68%) 

298/466  

(64%) 

295/466  

(63%) 

157/466  

(34%) 

93/466  

(20%) 

Table 2-2 – Comparison between GreedyPlus, C-GRAAL, GRAAL, and H-GRAAL with C. 

elegans and S. cerevisiae SH3-mediated IINs. Only graphlet similarity scores were used as a 

similarity feature. The maximum possible values are RPO: 16, ONP: 22, and EA: 466. Bold 

numbers indicate maximums per column. RPO is the number of known protein orthologies that 

contain aligned interfaces. ONP is the number of aligned interfaces within orthologous proteins. 

By definition, ONP ≥ RPO. 
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Figure 2-4 – A density plot of graphlet similarity scores between orthologous nodes and 

random node pairs. Orthologous node pairs (in pink) do not demonstrate a characteristic 

graphlet similarity score; as such, graphlet similarity has reduced power in correctly aligning 

nodes. Note that many random node pairs (in blue) have high graphlet similarity in the IINs 

under study; this is due to the prevalence of leaf nodes, which tend to exhibit similar graphlet 

degree vectors. 

2.2.2 Incorporating More Similarity Features 

As seen in our comparisons above, the choice of similarity feature can dramatically affect 

algorithmic performance across a range of algorithms for a given network. In particular, the 

simple Greedy algorithm, using a highly informative similarity feature (BLAST), was more 

successful at recovering orthologous protein relationships than the more advanced GRAAL 

algorithm using a poor similarity feature (graphlet degree) for our IIN (13 RPOs, 20 ONPs vs. 0 

RPOs, 0 ONPs, respectively). To investigate the information content of diverse similarity 

features and their impact on network alignment, we gathered 29 node similarity features, based 

on sequence, functional annotation, and network topology characteristics (see Supplementary 

Table 1, Methods), and attempted alignment with GreedyPlus using all these features, equally 

weighted with each other and the Edge Alignment Weight (EAW, see 2.5 Methods).
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In this comparison, with 29 equally weighted similarity measures, the H-GRAAL algorithm performs best in aligning orthologous nodes, 

with 11 RPOs and 15 ONPs, but it aligns only 10% (47) of the edges (see Table 2-3). This performance is very similar to that of the 

Greedy algorithm in all respects, suggesting that edge alignment in H-GRAAL is largely by chance. Other than Natalie 2.0, which 

produces the exact same alignment as in the first comparison (see Table 2-1), the Seed & Extend algorithm aligns the fewest orthologous 

nodes (2 ONPs, 9%), but aligns the most edges (306 EAs, 65%). As every pair of nodes the algorithm aligns must be connected to two 

previously aligned nodes, the algorithm tends to generate a high number of edge alignments, but this inflexibility causes it to ignore 

possible node alignments supported by high similarity scores when no neighbours have yet been aligned. The importance of the input 

similarity feature is shown by the improved performance of GRAAL due to the introduction of more informative similarity features, and 

the decreased performance of IsoRank, due to the dilution of the highly informative BLAST similarity feature. However, GreedyPlus had 

the best balanced performance in both properly aligning node pairs (44% RPOs, 45% ONPs) and the number of aligned edges (51% EAs). 

Alignment using 29 equal 

weight node similarity 

measures 

Greedy Seed & 

Extend 

Greedy-

Plus 

C-GRAAL GRAAL H-GRAAL Iso-Rank Natalie 2.0 

# Represented Protein 

Orthologies (RPO) 

10/16 

(63%) 

2/16 (13%) 7/16  

(44%) 

1/16 

(6%) 

4/16 (25%) 11/16 

(69%) 

7/16 (44%) 0/16 

(0%) 

# Orthologous Node Pairs 

(ONP) 

13/22 

(59%) 

2/22 (9%) 10/22 

(45%) 

1/22 

(5%) 

5/22 (23%) 15/22 

(68%) 

9/22 (41%) 0/22 

(0%) 

# Edges Aligned (EA) 35/466 

(8%) 

305/466 

(65%) 

238/466 

(51%) 

293/466 

(63%) 

56/466 

(12%) 

47/466 

(10%) 

87/466 

(19%) 
354/466 

(76%) 

Runtime (ms) 766 794 2,719 2,755 2,695 84,722 112,289 1,804,620* 

Table 2-3 – Alignment algorithm performance on C. elegans and S. cerevisiae SH3-mediated IINs using all similarity features. All 

29 similarity features were used with naïve parameterization. The maximum possible values are RPO: 16, ONP: 22, and EA: 466. Bold 

numbers indicate maximums per row (Greedy and Seed & Extend are excluded from runtime comparison). RPO is the number of known 

protein orthologies that contain aligned interfaces. ONP is the number of aligned interfaces within orthologous proteins. By definition, 

ONP ≥ RPO. * The original distribution was used for Natalie 2.0. All other algorithms were implemented in Java by the authors.
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2.2.3 Parameter Weight Tuning 

Having established GreedyPlus’ performance using naïve parameterizations on the weights of 

each of the 29 similarity measures, we investigated how improved parameterizations would 

affect alignment quality. We used a random-restart hill-climbing strategy to search the high-

dimensional parameter space for local maxima in orthology recovery (see 2.5 Methods). This 

strategy was applied to all 29 similarity features plus the edge alignment weight together (see 

Table 2-4). Using this procedure, we found a set of parameters that can recover all possible 

orthologies (16 RPO, 21 ONP) with a high number of edges aligned (210/466, 45%). 

Proteins 
BLAST coverage 8.48 BLAST score 6.89 

TCSS - biological process  0.62 TCSS - cellular component  2.56 

TCSS - molecular function 6.98   

 

Domains 
Average shortest path length 7.60 Betweenness centrality 5.12 

BLAST coverage 6.71 BLAST score 2.65 

Closeness centrality 6.54 Degree 0.53 

Eccentricity 1.24 Graphlet degree similarity 7.16 

Neighbourhood connectivity 2.74 Radiality 4.42 

Stress 7.69 Topological coefficient 1.86 

 

Ligands 
Average shortest path length 1.94 Betweenness centrality 4.06 

Closeness centrality 0.88 Degree 0.17 

Eccentricity 1.50 Graphlet degree similarity 0.27 

Neighbourhood connectivity 0.53 Radiality 0.44 

Smith-Waterman coverage 5.04 Smith-Waterman score 1.33 

Stress 1.50 Topological coefficient 0.71 

Edge alignment weight 1.86   

Table 2-4 – An “optimal” parameter set for GreedyPlus, normalized out of 100. The full set 

of similarity features tested with GreedyPlus, and the corresponding weights used to achieve 

“optimal” alignment performance.  

However, several local maxima existed that each resulted in similarly high orthology recovery. 

Also, some parameters are similar to each other, thus not all 29 may be required. To address the 

possibility of overfitting, we gradually reduced the number of parameters while repeating the 

search/optimization procedure. In so doing, we found a set of 6 parameters still capable of 
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producing high-quality alignments (16 RPO, 22 ONP, 218/466 or 47% EA), as shown in Table 

2-5. 

Proteins 
BLAST score 46.86 TCSS – molecular function 5.71 

 
Domains 
BLAST score 1.14 Closeness centrality 20.71 

 
Ligands 
Closeness centrality 1.71 Smith-Waterman score 16.00 

Edge alignment weight 8.00   

Table 2-5 – A reduced “optimal” parameter set for GreedyPlus, normalized out of 100. A 

reduced set of similarity features used by GreedyPlus to achieve “optimal” alignment 

performance, and their associated weights. 

Sequence similarity features account for ~64% of the overall parameter weighting. Network 

topology considerations, including the closeness similarity features and the edge alignment 

weight – which is not a similarity feature and can be applied multiple times to the same pair of 

potentially aligned nodes – account for ~30%. 

Including closeness and the edge alignment weight in addition to the sequence similarity features 

improved orthology recovery. When closeness was removed, the resulting alignment produces 

only 13 RPO, 17 ONP, and 231 EA. Similarly, setting the edge alignment weight to zero results 

in a poorer alignment, in particular with edges: 13 RPO, 19 ONP, 34 EA. The small weight 

assigned to the functional similarity feature Topological Clustering Semantic Similarity 

(TCSS),148 however, is insignificant; setting it to zero did not change the overall alignment 

performance, despite TCSS being weighted relatively highly when optimization was performed 

using all assembled features (see Table 2-4). Removing all non-sequence similarity features (i.e. 

using only BLAST and Smith-Waterman) results in 13 RPO, 19 ONP, 29 EA. Given the 

decreased performance using just sequence similarity features, we conclude that non-sequence 

similarity features are useful in determining the similarity between nodes for the purposes of 

network alignment.  

2.2.4 A Zoom-in 

As a snapshot of how GreedyPlus works in practice, we zoom in on the yeast protein BZZ1 (see 

Figure 2-5), which has two domain nodes in our dataset. BZZ1 is a recruiter protein involved in 
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regulating actin polymerization,149 and is an ortholog of the worm protein SDPN-1; Gene 

Ontology identifies both genes as involved in endocytosis92. In this alignment, performed by 

GreedyPlus using its tuned similarity weights, one of the BZZ1 domains is aligned to SDPN-1’s 

single SH3 domain. However, because GreedyPlus cannot perform one-to-many alignments, 

BZZ1’s other SH3 domain is aligned to EPHX-1, which is not an identified ortholog. Neither 

SDPN-1 nor EPHX-1 are among BZZ1’s top BLAST scores, ranking 9th and 11th among our 

dataset; however, the other similarity features and the Edge Alignment Weight drive up their 

priority in alignment. 

 

Figure 2-5 – A zoom-in of the “optimal” GreedyPlus alignment of worm and yeast SH3-

mediated IINs, consisting of the two yeast BZZ1 nodes and all their neighbours. Domain 

interfaces are represented by triangular nodes, ligand interfaces by circular nodes. Yellow nodes 

are aligned and orthologous; green nodes and edges are aligned, red are unaligned from worm, 

blue are unaligned from yeast. Node size indicates score. The two EAW contributors to EPHX-

1,1010,1087 - BZZ1,568,633 are outlined in purple; the EAW contributor to SDPN-1,420,502 - 

BZZ1,478,572 is outlined in orange. 

Interestingly, the EPHX-1 – BZZ1 alignment was performed first, as the neighbouring aligned 

pairs F22E12.1,377,394 - YTA12,151,171 and UNC-26,1085,1112 - INP53,960,975 boost its 

score, via the EAW, by ~36%, illustrating the additive effect of the EAW. Subsequently, the 

nodes LST-1,181,200 and STP22,187,204 are aligned, partially on the strength of the EAW from 



50 

 

EPHX-1 – BZZ1, which then promotes the alignment of SDPN-1 to BZZ1. A number of other 

orthologous node alignments occur in the immediate neighbourhood, but do not contribute any 

EAW to the BZZ1 domain alignments because they are not adjacent in either the worm or yeast 

networks. For example, WSP-1 and LAS17 are orthologs, but while LAS-17 interacts with BZZ1 

in yeast, its worm ortholog WSP-1 does not interact with either SDPN-1 or EPHX-1 in our SH3 

dataset, nor is such an interaction found in the interaction data iRefIndex,150 hinting at a 

previously undetected interaction.  

We also observe that while BNI1 is an interaction partner with BZZ1, with two sites targeted by 

the two BZZ1 SH3 domains, its worm ortholog CYK-1 does not interact with either EPHX-1 or 

SDPN-1. This non-interaction is also supported by iRefIndex. In our worm network, the 

respective CYK-1 sites are targeted only by Y106G6H.14 and TOCA-1, neither of which have 

functional annotations in GO, though TOCA-1 is indicated to be involved in endocytosis as 

well151,152 (see Figure 2-6). This extensive interaction rewiring suggests that IIN alignment 

approaches based on maximizing network topology overlap may not be appropriate in 

identifying orthologs. 

 

Figure 2-6 – A zoom-in of the “optimal” GreedyPlus alignment of worm and yeast SH3-

mediated IINs, consisting of the three worm CYK1 nodes and all their neighbours. Domain 

interfaces are represented by triangular nodes, ligand interfaces by circular nodes. Yellow nodes 

are aligned and orthologous; green nodes and edges are aligned, red are unaligned from worm, 

blue are unaligned from yeast. Node size indicates score. 
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2.2.5 Yeast Subspecies Alignments 

In addition to the C. elegans to S. cerevisiae IIN alignment, we tested GreedyPlus on published 

predicted SH3 IINs from 18 different yeast species105 (see 2.5. Methods). All 18 networks were 

pairwise aligned, using both the full set of features and the reduced set identified above. TCSS 

was removed as a similarity feature to remove circularity, as most GO annotations for these yeast 

species’ proteins are predicted via orthology with S. cerevisiae. The feature weighting identified 

in the above described optimization for GreedyPlus on C. elegans and S. cerevisiae was used. 

As these species are more closely related than C. elegans and S. cerevisiae, we found, as 

expected, that GreedyPlus is able to recover more orthologous pairs in these pairwise alignments. 

When using a minimal set of similarity features with optimized weights (see Table 2-5), 

GreedyPlus alignments almost always recovered more than 70% of the known orthologous 

protein pairs while still maintaining a high percentage of edges aligned (mean 50.6% of 

maximum possible, see Figure 2-7). Using all the gathered similarity features, except TCSS (26 

features), GreedyPlus still performed well, aligning an average of 56% of orthologous protein 

pairs (see Figure 2-8). 

In both cases, a high percentage of the edges were aligned; notably, more edges were aligned 

when the full set of 26 similarity features were considered. This result is contrary to what would 

be expected; given equal weights, with more similarity features, the relative weight of the EAW 

is decreased from 1/5th of the overall scoring function to 1/26th. This suggests that the additional 

similarity features – almost all based on network topology – increase the alignment of edges by 

promoting the alignment of nodes with similar local network topology. This may be due to the 

inferred nature of these networks from relatively closely related species which lead to networks 

with unusually similar network topologies. 
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Figure 2-7 – Percent RPO and EA achieved for pairwise yeast species alignments. Using the 

optimized parameters from Table 2-5, GreedyPlus was run on each pair of yeast networks (see 

2.5 Methods). The percent of represented protein orthologies and edges aligned for each 

alignment was retrieved and plotted on the same scale. 
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Figure 2-8 – Percent RPO and EA achieved for pairwise yeast species alignments. Using the 

full set of similarity features and no optimization, GreedyPlus was run on each pair of yeast 

networks (see Methods). The percent of represented protein orthologies and edges aligned for 

each alignment was retrieved and plotted on the same scale. 

2.3 Discussion 

We have described GreedyPlus, a network alignment algorithm that is effective, flexible in terms 

of input data, and fast, outperforming traditional network alignment methods in aligning IINs. 

With feature optimization, made easier by GreedyPlus’ speed, we identified a set of data features 

and their weights that proved highly effective in guiding network alignment. 

Unlike other network alignment algorithms, GreedyPlus explicitly specifies a trade-off between a 

node alignment and edge alignment via the EAW parameter. This means that a priori knowledge 

about the networks being aligned can be used to control alignment. Lower EAW values should 

be more suitable for dissimilar networks, to force the algorithm to focus on nodes, whose 

similarity scores should already be sufficiently differentiated to distinguish proper from improper 
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alignments. On the other hand, higher EAW values should be more suitable for highly similar 

networks, resulting in a stricter alignment, which would highlight the few areas of difference. 

This feature makes the GreedyPlus algorithm suited for evaluating the relative importance of 

node versus edge alignment in network alignments. Identifying the correct parameterisation for 

the alignment of different types of networks is in itself an interesting research problem capable 

of informing us on how networks evolve.  

Another important feature of GreedyPlus is that it is mostly agnostic to the topological nature of 

the networks being aligned, other than the assumption that neighbours of aligned nodes should 

more likely be aligned themselves. As our SH3 domain data set does not contain domain-domain 

or ligand-ligand interactions, the IINs we studied were bipartite, which confounded several of the 

algorithms tested. Though the current GreedyPlus implementation is specialized to handle 

bipartite networks, it is not dependent on the bipartition, and the approach could be adapted to 

different network types.  For example, domain-domain interactions are possible with other 

domains, such as SAM and coiled-coil, and so IINs are not necessarily bipartite.  

Though we lack sufficient IIN data to make a general statement, we observed a trade-off between 

the alignment of biologically verified node pairs and the alignment of edges with a number of 

algorithms, including our own. Notably, an increase in the number of edges aligned did not 

necessarily lead to an increase in the number of nodes properly aligned. Some brief experiments 

with the Edge Alignment Weight parameter showed that, with GreedyPlus, attempting to 

maximize the number of aligned edges results in a distinct decrease in the number of properly 

aligned nodes (see Figure 2-9).  
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Figure 2-9 – Trade-off in GreedyPlus performance between orthologous nodes aligned and 

edges aligned. Using BLAST score between proteins as the only similarity feature, we ran 

GreedyPlus with the edge alignment weight set at values ranging from 0% to 100% of the protein 

BLAST score weight, and plotted its performance. If the plots were tightly correlated, it would 

indicate that successfully aligning networks by network topology would be equivalent to aligning 

node pairs successfully. However, we observe a distinct trade-off between aligning edges and 

aligning orthologous nodes. 

Despite this trade-off, our results show that including network topology similarity features 

improves the orthology predictions of network alignment, demonstrating their relevance, and 

hinting that network alignment may complement sequence alignment as a bioinformatics tool to 

study evolution, but the significance of edge alignment in constructing network alignments is 

unclear. While aligning two edges implies similarity between their endpoints, simply 

maximizing the number of edges aligned clearly does not result in a biologically relevant and 

informative alignment. Though it would be a simple extension, GreedyPlus does not currently 

implement edge similarity features, and treats all interactions as functionally identical, because 

while some are available, such as PPI confidence estimates,153 binding affinity, tissue specificity, 

or the types of interacting residues, they are not currently prolific enough to be generally useful. 
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It is possible that with discriminatory information about the interactions that edges represent, a 

method based on optimizing edge alignments may prove effective for aligning entire networks as 

well. Using this information, a PPIN alignment algorithm, for example, could preferentially align 

two SH3-mediated interactions, rather than an SH3-mediated interaction and a WW-mediated 

interaction, or could avoid aligning a structural interaction to a transient enzymatic interaction. 

We selected a broad set of similarity features to investigate their utility in network alignment. 

Sequence similarity, in particular BLAST-based, is ubiquitous in network alignment research; 

ligand sequences, however, are too short for BLAST, so Smith-Waterman was used instead. GO 

functional annotations are often used to validate network alignments; we were interested in 

examining whether they could be used as an input feature as well. Network topology features 

other than graphlet signatures have had some treatment in the literature; Kuchaiev et al.72 have 

previously evaluated graphlet signature, node degree, clustering coefficient, and eccentricity. As 

such, we opted to incorporate many different network topology features to assess their utility 

(see Table 2-4). In general, the features are of two types: centrality or clustering. Average 

shortest path length, betweenness, closeness, eccentricity, radiality, and stress are all measures 

whether a node is located in the centre or on the periphery of a network. The alignment of a 

central node to a peripheral node would, given our current knowledge of network evolution, 

imply a highly improbable evolutionary history, involving a large redistribution of node and 

edges about a previously peripheral node. Degree, graphlet signature, neighbourhood 

connectivity, stress, and topological coefficient are all measures of connectedness in the 

neighbourhood around a node. These measures should distinguish a node in a highly connected 

neighbourhood from one in a sparse neighbourhood, providing regional information to guide 

alignment. Clustering coefficient was not used, as the nodes in a bipartite graph always have a 

clustering coefficient of zero.123 

Notably, using BLAST score for full-length proteins alone as the single distinguishing similarity 

feature results in substantial orthology recovery in the alignment (see Table 2-6). Conversely, 

using the sequence similarity scores of the nodes - BLAST for domains and Smith-Waterman for 

ligands – alone resulted in no orthology recovery. Various combinations of the network topology 

and functional similarity features, as determined using TCSS,148 also resulted in low orthology 

reproduction. This seems to suggest that while non-sequence-based information has a role to play 

in network alignment, its direct contribution is not obvious. 
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 Represented 
Protein 

Orthologies 

Orthologous 
Node Pairs 

Edges Aligned 

Protein BLAST 10 12 299 

Domain BLAST / Ligand S-W 0 0 296 

Protein & Domain BLAST / 
Ligand S-W 

6 10 288 

Network Topology Features  0 0 272 

Functional Features  5 7 278 

Table 2-6 – GreedyPlus performance using different similarity features. GreedyPlus was 

used to align the C. elegans and S. cerevisiae SH3 IINs, using different sets of similarity features 

under simple parameterization (all scoring weights, including EAW, are equal), and the results of 

each alignment are shown. 

Many measures of network alignment quality are also dependent on BLAST similarity. In 

addition to orthologs, some measure of coherence between the GO terms of aligned nodes is 

often used to verify the biological quality of an alignment. However, many GO terms are 

inferred from another protein based on sequence similarity, either directly or indirectly. Even 

experimentally derived GO terms may be subject to BLAST-derived confirmation bias, as 

experimental design could be guided by BLAST results. Notably, while using functional features 

alone generates an alignment with orthology reproduction (see Table 2-6), they played close to 

no role in our optimized parameter set (see Table 2-5); this may be explained by a duplication of 

information between sequence- and function-based similarity features. If network alignment is to 

serve as an independent tool alongside BLAST, the development of assessment measures that do 

not involve BLAST-based confirmation bias will be essential. 

Finally, network alignments, consisting of at least two networks plus the alignment between 

them, present a challenging visualization problem.138 Even with the relatively small, sparse IINs, 

alignments produce networks exhibiting the same “hairball” nature characteristic of the PPIN 

visualization problem.138 For instance, it would be useful to evaluate compound graph and 

hypergraph visualizations, similar to what is presented in Figure 1. With the proliferation of 

network alignment research, improved visualization tools will be critical for the interpretation of 

generated alignments. 
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2.4 Conclusions 

GreedyPlus is a novel algorithm useful for the alignment of interface-interaction networks, 

compatible with a range of node similarity measures. While node sequence information is 

dominant in its ability to align nodes properly, network topology information is useful for 

improving alignment performance, even if it is of low utility in isolation. We identify a reduced 

set of information types and a weighting of these types that can be used to generate relatively 

high performance alignments. The algorithm and our evaluation framework will be used to 

further investigate network evolution and how to best align biological networks. 

2.5 Methods 

2.5.1 Algorithm 

We created a fast algorithm for the alignment of IINs, GreedyPlus, using a local network 

alignment approach. Additionally, alignments generated by GreedyPlus can easily be compared, 

on a stepwise basis, to identify when and why each alignment tuple was formed (or not), 

allowing us to specifically query how changes in parameterization and input data may lead to 

differences in the resulting alignment. Further, a key research question for network alignment is 

how to balance node-specific information versus network topology information. The critical 

characteristic of network alignment is that edges must be aligned in addition to nodes; an 

alignment that has no aligned edges is, fundamentally, not a network alignment.154 However, 

while there is a plethora of biological information regarding proteins, there is a dearth of 

information on protein-protein interactions that would assist in guiding or verifying an 

alignment. Thus, to investigate the interrelation and relative importance of node versus edge 

alignment, GreedyPlus explicitly models a balance between these two elements. 

An interface interaction network can be modelled as an undirected graph G, consisting of a node 

set V and an edge set E, where each edge is a tuple of two nodes (v1, v2). An alignment of two 

PPINs G1 and G2 is thus a set of 2-tuples A = {[u1, v1], [u2, v2], …, [ui, vi]}, where ui ∈ V1 ∈ G1 

and vi ∈ V2 ∈ G2, if the alignment is one-to-one. In this context, the goal of GreedyPlus, like 

most other biological network alignment algorithms, is primarily to align nodes [ui, vi] such that 

biological inferences can be drawn about one node from the other based on their alignment. If 
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these nodes represent interfaces, such an inference might be that they are orthologous, or that 

they mediate functionally similar interactions, or that they evolved to occupy similar positions in 

their respective networks under similar selective pressures. 

Though generalizable to other networks, GreedyPlus’ current implementation is tailored 

specifically to accommodate bipartite peptide-recognition module-mediated IINs, reflecting the 

current availability of IIN data. These networks, being bipartite, can be modelled in a similar 

manner as general IINs, as an undirected graph G, with a node set V = {D, L}, where D and L are 

the sets of nodes representing peptide recognition domains (e.g. SH3) and ligands respectively, 

and ∀ v ∈ G, v ∈ D or v ∈ L. An alignment A of such networks is then restricted such that for 

each tuple [u, v] ∈ A, either (u ∈ D ∧ v ∈ D) or (u ∈ L ∧ v ∈ L). 

The key intuition behind the GreedyPlus algorithm is that the presence of interaction is itself a 

biological evidence source pointing towards an orthologous relationship between a pair of 

proteins. That is, if there exists (u1, u2) ∈ G1 and (v1, v2) ∈ G2, and it is known that u2 and v2 are 

orthologous, then we can infer that u1 and v1 are more likely to also be orthologous. Furthermore, 

if there also exist (u1, u3) ∈ G1 and (v1, v3) ∈ G2, this would provide even stronger evidence; thus 

the more edges that would be aligned by aligning nodes u1 and v1, the more likely that this is a 

good alignment of nodes. 

The GreedyPlus algorithm is essentially a greedy algorithm that iteratively aligns pairs of nodes 

in descending order of similarity, defined by a given similarity score. However, when aligning 

two nodes, GreedyPlus also considers the number of edges that would be aligned if the nodes 

were aligned, strengthening the respective node pair similarity score with more edges aligned 

(see Figure 2-10 and Figure 2-11). Thus, GreedyPlus will prefer to align node pairs that also 

align edge pairs over those that do not if the difference in similarity is small, but will align highly 

similar nodes irrespective of network topology. The preference of the algorithm in aligning edges 

or maximizing node similarity can be controlled using a defined parameter, named the edge 

alignment weight (EAW), providing flexibility and enabling investigation of the relative 

importance of aligning nodes versus edges. 
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Figure 2-10 – A simple example of GreedyPlus in action. First, GreedyPlus finds the highest 

scoring pair of nodes (in yellow), in this case the pair (A, 1), and aligns them. Then the similarity 

matrix is updated, with the scores of all pairs of all neighbours of just-aligned nodes (in green) 

incremented by the Edge Alignment Weight (in this case, 1). Using the updated similarity 

matrix, GreedyPlus iterates until all nodes are aligned. In this example, the third node alignment 

[C, 3] is made as a result of the Edge Alignment Weight increasing its similarity score; 

otherwise, the pairing [E, 3] would have been made instead. 

The edge alignment weight (EAW) determines how strongly GreedyPlus prioritizes the 

alignment of edges compared to nodes. When the EAW is set to zero, GreedyPlus behaves 

identically to the greedy alignment algorithm, as it will ignore the alignment of edges. When the 

EAW is set to ∞, GreedyPlus behaves similarly to a seed-and-extend algorithm (see below), 

always choosing to align two edges whenever possible as the EAW will overwhelm any 

preference in aligning nodes, with the exception that it can resume alignment even if edge 

extension possibilities are exhausted. By tuning the EAW parameter to intermediate values, the 

preference between node or edge alignment can be balanced. 
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Figure 2-11 – Pseudocode for the GreedyPlus algorithm. This pseudocode is not optimized, 

for clarity purposes. Note that EAW has an additive effect; the more edge alignments that 

support a given node alignment, the higher the corresponding score is boosted. 

A naïve implementation of GreedyPlus runs in worst-case O(|D|3|E| + |L|3|E|) time, though given 

the nature of domains and ligands, |L| >> |D|. In practice, GreedyPlus takes approximately two 

seconds to align two networks with |L| = 500 and |E| = 600, implemented in Java 7 on a 3.4 GHz 

processor. 

2.5.2 Comparison Algorithms 

To compare with GreedyPlus, we created two simple algorithms for IIN alignment to serve as 

baselines. The first we deemed the Greedy algorithm (see Figure 2-12). The Greedy algorithm 

simply aligns the highest scoring pair of nodes between the two networks repeatedly and 

exhaustively. It pays no attention to the alignment of edges, and the only graph theoretic 

considerations in its alignment are those embedded within the scoring function used. Effectively, 

the Greedy algorithm performs identically to the GreedyPlus algorithm, when the latter’s edge 

alignment weight is set to 0. 



62 

 

 
Figure 2-12 – The Greedy algorithm for IIN alignment.This is a simple algorithm for IIN 

alignment used as a comparison baseline for GreedyPlus. It aligns the highest scoring pair of 

nodes repeatedly and exhaustively, with no other considerations. 

The second algorithm was deemed the Seed and Extend algorithm (see Figure 2-13). The Seed 

and Extend algorithm begins by aligning the highest scoring pair of nodes between the two input 

networks. Then from that point onwards, every new pair of nodes aligned must each interact with 

a pair of previously aligned nodes in the network, such that every pair of nodes aligned by Seed 

and Extend will add at least one aligned pair of edges to the alignment. Seed and Extend then 

continues adding newly aligned node pairs exhaustively. 

Taken together, the Greedy and Seed and Extend algorithms serve as bounding algorithms for 

the behaviour of GreedyPlus, which we expect to fall somewhere in between the two, depending 

on the edge alignment weight. They serve to verify that both scoring components of the 

GreedyPlus algorithm, the node-based similarity scores and the edge-based edge alignment 

weight, are contributing to the performance of the algorithm. 
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Figure 2-13 – The Seed and Extend algorithm for IIN alignment.This is a simple algorithm 

for IIN alignment used as a comparison baseline for GreedyPlus. Beginning with a single node 

pair, it strictly follows the edges in both input networks as it aligns additional nodes and adds 

them to the existing sub-alignment.  

2.5.3 Network Creation 

The S. cerevisiae and C. elegans networks were created using interaction data from Tonikian et 

al. and Xin et al..46,49 24 SH3 domains were identified in S. cerevisiae, their 853 interactions 

were experimentally identified, and then 497 ligand targets for those interactions were predicted. 

Similarly, 33 SH3 domains, 466 SH3-mediated interactions, and 433 SH3 ligands were identified 

in C. elegans. Each SH3 domain was represented by an individual node, with the exception of 

the first two SH3 domains on the Sla1 protein, which were treated as a single domain in the 

original prediction procedure, as the two domains could not be purified separately. These 

networks cover approximately half of the SH3 domains in each species; the remainder failed for 

various experimental reasons and were thus excluded from our work. 

Each predicted interaction included a target peptide sequence of length 15. When these peptide 

targets occupied non-overlapping positions in the target proteins, each peptide target was as an 

independent binding site represented as an independent node. When binding sites overlapped, 

they were merged, when possible, into a singular node representing no more than 30 amino 
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acids. Overlapping binding sites with a combined length of more than 30 amino acids were 

manually separated into multiple nodes with minimum sequence overlap between nodes. 

The interaction networks for the other yeast species were similarly created using interaction data 

from Sun et al..105 Each network contains approximately 500 predicted interactions, generated by 

using the 30 position weight matrices created for 24 S. cerevesiae SH3 domains and mapping 

them to each yeast proteome in which an orthologous SH3 domain exists. The networks for three 

species – S. paradoxus, S. mikatae, and S. bayanus – the only three datasets sourced from Fungal 

Comparative Genomics (original source: Kellis et al.155), were excluded due to unusual 

performance. In particular, pairwise alignments between the remaining 20 yeast species had an 

average protein orthology recovery rate of 56% and a minimum of 29%, compared to just 24% 

for alignments between the three excluded species and the remaining 20 yeast species. 

2.5.4 Orthology Data 

The orthology dataset for S. cerevisiae and C. elegans was created from a union of orthology 

mappings retrieved from Ensembl,156 Inparanoid,157 and OrthoMCL,158 The orthology datasets 

for the yeast species were produced by Wapinski et al..159 

2.5.5 Similarity Feature Data 

We began with 29 similarity features for assessing every pair of nodes from two separate 

networks. Sequence similarity was calculated between every pair of proteins using BLAST-P, 

taking both the raw score and the coverage as features, as well as every pair of domains. 

Sequence similarity between ligand sites was calculated using the Smith-Waterman algorithm 

with the BLOSUM62 scoring matrix, as implemented by JAligner.160 

Functional similarity was calculated between proteins using TCSS,148 taking the biological 

processes, cellular components, and molecular function scores as three separate similarity 

features. Graphlet degree similarity was calculated between all SH3 domain and between all 

ligand site nodes separately, as described by Pržulj et al.,124 as were the remaining 18 similarity 

features – betweenness, closeness, degree, eccentricity, neighbourhood connectivity, radiality, 

stress centrality, and topological coefficient. Raw values for these features were obtained using 

the NetworkAnalyzer plug-in in Cytoscape,6,161 and a raw similarity value was calculated for 
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each pair of domains [i, j], i ∈ D1, j ∈ D2, rawi,j = max(scorex - scorey) - (scorei – scorej) ∀ x ∈ 

D1, ∀ y ∈ D2, and then normalized logarithmically to the interval [0,1] using the formula: ∀ x ∈ 

D1, ∀ y ∈ D2, adji,j = log(rawi,j) / log(max(rawx,y)). Similarity scores between ligand nodes were 

calculated similarly. 

2.5.6 Parameter Training Procedure 

The parameter training procedure used was a random hill-climbing heuristic, designed to find 

parameter sets that maximized the orthologies found (RPOs). For each set of similarity features 

trained, we randomly generated a weight parameter in the interval [0,1], and generated a 

corresponding alignment. We then randomly incremented or decremented the first parameter by 

a step value if the new value would remain within the interval [0,1] and generated a new 

alignment. If the first alignment had more RPOs, then the parameter change was reversed and 

another parameter chosen to be incremented or decremented. Otherwise, the new 

parameterization was kept, and the parameter stepping repeated until no further improvement 

could be achieved. Then every other parameter would be retested for possible improvement via 

incrementation or decrementation. 

This process was continued until no parameter could be either incremented or decremented to 

improve the orthology reproduction of the alignment produced. This procedure was iterated four 

times, using increasingly precise step sizes: 4√0.01 ≈ 0.32, 0.1, 0.03, and 0.01, until convergence 

was achieved, resulting in a parameterisation at a presumed local maximum for orthology 

recovery. 

For each set of similarity features used, the training procedure was iterated at least 5,000 times, 

producing at least 5,000 locally optimal parameter sets. 

2.5.7 Similarity Feature Reduction 

To reduce the full set of similarity features to a smaller set, redundant similarity features were 

identified by calculating Euclidean distances between each similarity feature matrix and 

performing principal component analysis. Similarity features that were highly similar to another 

feature (Euclidean distance with another similarity feature ≤ 0.10) were then removed, with 

preference given to removing the feature most similar to the other remaining features. The 
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following features were removed: BLAST coverage, TCSS cellular component, and TCSS 

biological process for proteins, betweenness, BLAST coverage, eccentricity, and radiality for 

domains, average shortest length path, betweenness, eccentricity, degree, radiality, and stress for 

binding site. 

To further reduce the similarity feature set, GreedyPlus was re-optimized with the remaining 18 

similarity features to identify features that could be removed without negatively impacting 

algorithmic performance. The similarity feature given the lowest weight in parameter sets 

associated with the top 50 results from the training procedure was identified as the most 

uninformative feature and removed. This process was repeated until an effective minimal set of 

similarity features was identified, whereby the removal of any additional feature resulted in loss 

of orthology recovery.
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Dynamics of Protein-Protein Interaction Conservation  
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 Dynamics of Protein-Protein Interaction Conservation  

3.1 Introduction 

Experimental efforts to map physical protein-protein interactions (PPIs) continue to produce 

increasing amounts of data, resulting in increasingly complete organismal protein-protein 

interaction networks (PPINs). These networks capture much information about complex 

biological systems, including protein function122,162 and modular structure, representing 

biological pathways and protein complexes.163 

An important way to understand biological systems is to study their evolution. Molecular 

evolution of biological sequences is well understood, but there is very little support for a general 

theory of network evolution. Current PPIN evolution models largely fall into categories: scale-

free (preferential attachment), geometric, and duplication-divergence.123,124 Generally, these 

models are evaluated based on their ability to simulate random de novo networks that bear 

similar graph theoretic statistics as real PPINs, rather than their explanatory power for network 

evolution. 

There have been more direct efforts to measure and quantify PPIN evolution. Walhout et al. 

introduced the term interolog in 2000 as an analog to orthologs for PPIs; if two interacting 

proteins in the same species each have, in another species, orthologs that also interact, then those 

PPIs are interologs and presumed to be conserved.114 There have been numerous efforts to 

estimate the rate of network rewiring, using various strategies including examining paralogs,102 

PWM scanning,105 incorporating structural modelling,109 and direct comparison, though using 

various counting mechanisms,103,104,117 depending on the specific scientific perspective at work. 

Published conclusions about network rewiring rates have, however, varied widely, depending on 

factors like the species and the network regions assessed. 

One application of PPIN evolution concepts is the development of network alignment 

algorithms. The principal assumption in network alignment research is that PPIs are conserved 

across species because PPIs define function and function is conserved. PPINs, then, can be 

aligned to each other, for a variety of scientific purposes, including function prediction, 

identifying homologs/orthologs, and investigating PPIN evolution. In particular, network 

alignment algorithms are divided into local, focusing on aligning small PPIN regions such as 
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pathways or complexes, and global, which attempt to align whole PPINs, approaches, with 

commensurately scaled objectives. 

There are several other pervasive assumptions about PPIN evolution in the literature. For 

instance, it is typically assumed that PPI conservation between species is high, and thus PPIs can 

be transferred between species.21,104,117,164,165 A related assumption is that highly conserved 

proteins are likely to have highly conserved PPIs, which then warrants the use of sequence 

similarity as a key information source for aligning nodes in network alignment 

algorithms.70,100,166 However, our understanding of the relationship between sequence similarity 

and the appropriate alignment of proteins is limited. Whole protein BLAST scores are typically 

used to determine the suitability of a protein alignment, with little attention paid to other 

important evolutionary events. Gene duplication is particularly difficult to handle, as it changes 

the multiplicity of aligned proteins, and the divergence in function is expected to be matched by 

a divergence in interaction partners.167 Similarly, gene fusion events should generate proteins 

with novel sets of interaction partners, possibly composites of the fused proteins’ interaction 

partners. Within a single protein, there are other observable evolutionary phenomena that should 

generate predictable PPIN changes. Deletions, mutations or major rewriting of protein sequence 

sections involved in protein-protein interactions should subsequently lead to the loss of those 

interactions. Exon shuffling of those regions to other proteins may also result in the transfer of 

interactions from one protein to another.168 Such events could easily have phenotypic effects of 

interest, though the relationship between PPI evolution and phenotype has not been well-

established.169 

Ideally, we would understand how protein-protein interactions are formed and controlled down 

to the residue level for most PPIs, but that remains difficult mainly due to the lack of detailed 

PPIN data across organisms. However, the modularity of protein domains may provide a useful 

starting point from which a deeper understanding of interactomes can be developed, and network 

evolution can be connected to protein and genome evolution.47 Protein domains are conserved 

sequence, function and structure units found throughout the proteome and some mediate PPIs. 

The proliferation of domains has occurred in a variety of ways, including duplication of proteins 

containing domains, and domain shuffling.170-173 Peptide recognition modules (PRMs) are a 

subset of domains that bind linear peptide motifs.174 They are relatively well-studied, and since 

their primary molecular function is to mediate PPIs, they could be used to study the relationship 
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between protein evolution and interactome evolution. Just as function is conserved on the protein 

level, we would expect that function would also be conserved on the domain level;175 we might 

speculate that conserved PRMs should also show conservation of interaction targets, and that 

duplicated PRMs should diverge in target interactors.  

In this work, we investigate interaction conservation in PPINs, with an eye towards the 

consequences for network alignment research. We also consider several previously unconsidered 

evolutionary phenomena, such as changes in domain signature and gene duplication, and how 

they might be considered in network alignment. We find that current interactomic data show low 

rates of interaction conservation, especially for duplicated proteins, to an extent that has negative 

implications for global network alignment strategies. We further find that even within the limited 

scope of SH3-mediated PPIs, there is little evidence of PPI conservation. Combined with other 

research on gene multi-functionality and its impact on network analyses,122 this work casts doubt 

on the utility of methods that presume that PPIs are highly conserved. The mechanisms of 

network evolution need to be better understood, and methods created that build upon these 

mechanisms, in order to devise better, more accurate PPIN alignment methods and better 

understand how biological systems evolve. 

3.2 Results 

3.2.1 Interolog conservation across species 

Under either the preferential attachment or duplication-divergence models that dominate network 

evolution,167,176,177 high-degree proteins should remain high-degree as they gain interactions at a 

faster rate than low-degree proteins. However, examining this in existing protein-protein 

interaction networks shows that this effect is not strong. Comparing orthologs and their degrees 

in the PPINs of five model species (human: H. sapiens, mouse: M. musculus, fruitfly: D. 

melanogaster, worm: C. elegans, and budding yeast: S. cerevisiae), the correlation between the 

degrees of orthologs is very low (see Figure 3-1 and Table 3-1). While there are known biases 

and incompleteness in PPI data, this result suggests that for PPIN alignment, the presence (or 

absence) of aligned interactions is an unreliable signal from which to infer orthology.  
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Figure 3-1 – Comparisons of the number of interaction partners for all pairs of protein 

orthologs in various pairs of species. (Continued on next page.) 



72 

 

  
Figure 3-1 – Comparisons of the number of interaction partners for all pairs of protein 

orthologs in various pairs of species. The x- and y- axes have different scales to account for 

different proteome and interactome sizes between species. A LOWESS (locally weighted 

scatterplot smoothing) curve is included as an approximate line of best fit. 

 

Correlation Mouse Fruitfly Worm Yeast 

Human 0.2775 0.1554 0.0668 0.3477 

Mouse  0.1978 0.0541 0.1727 

Fruitfly   0.1269 0.2165 

Worm    0.0748 

Table 3-1 – Correlation coefficients between the number of interaction partners for all 

pairs of protein orthologs in various pairs of species. 
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Figure 3-2 – Illustration of various interolog scenarios. Interologs occur when an interaction 

exists between two proteins, A and B, and an interaction exists between the orthologs of those 

two proteins in another species, A’ and B’. These two interactions are interologs of each other, 

and are presumed to be conserved. However, counting interologs between two interactomes can 

be complicated by diverse genomic evolutionary events, such as gene duplications. In B), the 

protein C in species 1 has been duplicated twice, resulting in orthologs C’, C’’, and C’’’ in 

species 2, but only C’ and D’ interact, with dotted lines representing the missing interactions 

from D’ to C’’ and C’’’. In this case, it is ambiguous if the interaction between C and D is 

conserved: out of three possibilities for an interolog to appear in species 2, only one such 

interolog appears. In C), both proteins G and H have been duplicated in species 2, but only G’ 

and H’ interact. Thus, the interaction exists between one pair of orthologs, but not between the 

three other possible pairings of G and H orthologs. In D), gene duplication has occurred in both 

species, with two interactions between both E1 and E2 with F in species 1 only conserved once 

between E’ and F’. Thus, the level of interolog conservation varies depending on which direction 

of comparison is of interest, from species 1 to species 2 or vice-versa. 

We next examined the rate of conservation in the PPINs of different species by examining 

interolog frequency. Some complexities of interolog definition must first be addressed. As 

protein orthologies are not always one to one, due to protein duplication and deletion events, 

interologs can be counted in different ways, presenting different perspectives on how frequently 

interactions are conserved (see Figure 3-2). Previous work on interolog mapping has used 

reciprocal best BLASTP hits to identify orthologs instead of established orthology databases, as 

a means to limit false positives.18,104,117 While this approach may be sensible for the purpose of 

predicting PPIs in new species, it is not suitable for use in PPIN evolution studies because it 

misses a large set of orthologs that have lower BLASTP similarity scores. As we are interested in 

estimating rates of interaction conservation, we need to consider all potential interologs, rather 
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than just the subset considered likely to have been conserved (see Figure 3-3). To support this, 

we define orthologs more liberally by collecting them from multiple ortholog definition services. 

Based on available data, interologs are rather uncommon. In Table 3-2, we show the rates at 

which any potential interolog can be found in a target species for a given pair of interacting 

proteins in another origin species. We examined every known protein-protein interaction (PPI) in 

the origin species, taking both interactors, identified their respective orthologs in the target 

species, and then checked for any interaction between any two members from the two distinct 

ortholog sets. We ignore unmatchable interactions, interactions for which one or more of the 

original interactors had no orthologs in the target species, as these interactions cannot be 

conserved due to larger genomic changes. Instead, we consider only matchable interactions, 

interactions for which there are orthologous partners to their interactors in the target species, and 

whether they were matched at all by at least one interaction between any of the interactors’ 

corresponding orthologs in the target species. 

These values represent how often a PPI in the origin species is conserved in the target species. 

The values fluctuate greatly, due to differing interactome sizes and ortholog complements, as 

well as incompleteness in the interactome data, but even when the largest interactome, H. 

sapiens (human), is the target, fewer than 37% of the interactions from any other species were 

found to have interologs. Thus, the majority of matchable interactions are not conserved given 

current data. Furthermore, while many sequence alignment methods rely on protein sequence 

similarity to achieve high biological quality (see 1.2.4.1 Biological Assessment and 2.3 

Discussion), as shown in Table 3-3, sequence similarity is not a good indicator for the 

conservation of an interaction. By keying too heavily on biologically meaningful node 

alignments, network alignment methods may be sacrificing biologically meaningful edge 

alignments, tacitly subordinating the alignment of interactomes to the alignment of the 

proteomes. 
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Figure 3-3 – Boxplots and density plots comparing the mean BLASTP bit-score between 

interologous and non-interologous protein pairs between selected pairs of species. 
(Continued on next page.) 
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Figure 3-3 – Boxplots and density plots comparing the mean BLASTP bit-score between 

interologous and non-interologous protein pairs between selected pairs of species. For each 

pair of interacting proteins in the first species, we examined every corresponding pair of 

orthologs in the other species, identifying them as interologs if the orthologs interacted or non-

interologs otherwise. We then used BLASTP on every pair of orthologs, then for each 

interolog/potential interolog calculated the mean bit-score between the two constituent ortholog 

pairs, then plotted these scores. While there are differences in the two distributions of BLASTP 

bit-scores visible in the C. elegans – H. sapiens and M. musculus – H. sapiens density plots, 

there is substantial overlap between the BLASTP bit-scores of the interologous and non-

interologous ortholog pairs in all the above plots, particularly at the lower end of bit-scores.  
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 Target Interolog Species 

Human Mouse Fruitfly Worm Yeast 

Origin 
Interaction 

Species 

Human 
 6578/99477 

(6.61%) 

5036/94277 

(5.34%) 

1219/38187 

(3.19%) 

8326/43021 

(19.35%) 

Mouse 
5392/14921 

(36.14%) 

 1205/8757 

(13.76%) 

312/4395 

(7.10%) 

912/2665 

(34.22%) 

Fruitfly 
3182/22222 

(14.32%) 

852/12784 

(6.66%) 

 354/6644 

(5.33%) 

1948/8867 

(21.97%) 

Worm 
702/4660 

(15.06%) 

212/2904 

(7.30%) 

329/3447 

(9.54%) 

 277/1119 

(24.75%) 

Yeast 
5702/40201 

(14.18%) 

847/26875 

(3.15%) 

1841/35425 

(5.20%) 

314/14358 

(2.19%) 

 

Table 3-2 – Interaction conservation between five model organism species (H. sapiens, M. 

musculus, D. melanogaster, C. elegans, and S. cerevisiae).  For every protein-protein 

interaction in the origin species (left), we searched for corresponding interologs in each of the 

other four target species (top). Presented are the number of interactions in the origin species with 

at least one interolog in the target species, the number of interactions in the origin species that 

could have interologs in the target species based on available orthologs, and the ratio between 

them. Due to gene deletion, “de novo” gene creation, and undiscovered orthology relationships, 

not all proteins have orthologs in all other species. Thus some interactions are unmatchable, if 

one or more of their interactors do not have orthologs in a given target species. Only the 

matchable interactions, those whose interactors each have at least one ortholog in the other 

species, were counted in the denominators above. Of those interactions, those for which at least 

one interolog was found in the target species were counted in the numerator.  Consequently, both 

proteome size and interactome size/coverage are key determinants of the background sizes 

shown in the above table. 

Most interolog analysis focuses on conserved PPIs, but it is also important to consider how often 

an interolog is not found where it might be expected, as this helps us understand interactome 

evolution and how we should model network changes. In particular, when interactors are 

duplicated, the interaction between them may be conserved between each of the resulting 

duplicates, between some of them, or between none of them. To study this, we repeated the 

above analysis, but asked how often an interaction was conserved out of all opportunities for it to 

be conserved among all the orthologs of the interactors.  

We found that when there are multiple opportunities for an interaction to be conserved, it is 

decreasingly likely that each possible interolog is found. While ~36% of mouse PPIs have at 

least one interolog in human, mouse PPIs are, on average, only conserved  ~26% of the time 

amongst all the possible ortholog pairs in human (see Figure 3-4, see Figure A-1 for all species 

comparisons). Furthermore, we found that of all the human PPIs that could be conserved from 

the mouse interactome, only 15% were found in the human interactome. This difference exists 

because highly duplicated proteins create many more opportunities for potential interologs, thus 
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numerically dominating the calculation, and the more often a protein has been duplicated, the 

less likely its interactions are to be conserved (see Figure 3-5, see Figure A-2 for all species 

comparisons). This is consistent with duplication-divergence models of network evolution129,167 

and the hypothesis that PPIs correlate with a protein’s function: when genes are duplicated, they 

will diverge in function, which manifests as rewiring of the interactions involving the duplicated 

proteins.128  

As most network aligners are one-to-one, aligning each node to at most one other node, it is 

unclear how they treat gene duplications. However, many-to-many network aligners specifically 

will have to consider that the higher the multiplicity of a given node alignment, the less likely 

they will be aligning edges, and conversely, the more edges they align together, the less likely 

they’ll be aligning paralogous proteins. This will create a conflict between two presumed goals 

for these aligners: to align together related gene families and to align PPIs at a high rate. 

Similarly, interolog mapping efforts may need to pay special mind to duplicated proteins. 

Comparing the average and overall rates of comparison listed in Figure 3-4 and Figure A-1 

shows the outsized effect of gene duplication: even if the average PPI in the target species might 

be conserved at a reasonable rate, the relatively few PPIs with highly duplicated interactors can 

dramatically reduce the overall precision of interolog mapping, by a factor of up to half. 



79 

 

 

Figure 3-4 – The rate of conservation for PPIs from different species in the H. sapiens 

interactome. This figure shows the distribution of conservation rates per PPI in the origin 

species, where a value of 1.0 indicates that the PPI is conserved between all human orthologs of 

the protein interactors and 0.0 indicates that no interaction is ever found between any of the 

human orthologs. Compared to Table 3-2, which presented the % of PPI that had any conserved 

interolog in the human interactome, these rates of conservation are much lower, as there are 

often multiple human orthologs for any given protein in the origin species. In the top right are 

listed the mean rate of conservation for a given PPI in the origin species amongst all possible 

interologs in the H. sapiens interactome, and the total rate of conservation of all possible 

interologs in H. sapiens. 

 



80 

 

 

 

Figure 3-5 – % interolog conservation for PPIs in the H. sapiens interactome, grouped by 

the number of potential interologs. Due to gene duplication events resulting in many-to-many 

ortholog relationships, some PPIs can be conserved more than once, resulting in multiple 

potential interologs. These histograms show the level of interolog conservation of PPIs from 

various species in the human interactome, grouped by the maximum number of potential 

interologs that could have been found based on the number of orthologs in the human genome. 

PPIs with no interologs were excluded, as they overwhelmed all other PPIs due to low overall 

rates of interolog conservation. 
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3.2.2 Impact of PRMs on Protein Interactivity 

The dynamics of network evolution are complex, with distinct contributions from diverse 

molecular-level evolutionary mechanisms that affect gene and protein sequences. Given that 

phenotypic variation is fundamentally driven by mutations at the gene level, gene and protein 

sequences could serve as indicators for evolutionary events at the network level, and there has 

been some work that has demonstrated this.178 The larger problem of how to infer network 

evolution events from genetic sequence events remains unsolved, however.47 

One way to explore this question is through peptide recognition modules (PRMs), which are a 

natural bridging point between evolutionary events at the sequence level and at the network 

level. As PRMs often exhibit highly specific but diverse binding profiles, even within the same 

PRM family,50 it may be expected that proteins with more PRMs would be involved in more 

PPIs. We explored this correlation for a set of well-studied PRMs across species (see Table 3-3). 

While the number of interactions involving a given worm or yeast protein correlates well with 

the number of PRM domains, these figures fall off significantly for human, mouse, and fruitfly 

proteins. A similar pattern is seen with protein binding domains in general. This pattern is 

strongest with SH3 domains, the oldest of the analyzed PRM families, while the younger PRM 

families, such as SH2, PDZ, and WW, retain relatively high correlations in the two mammalian 

species. Also, Bromo domains generally have a strong negative correlation.  

To further examine these effects, we compared the differences in the number of PPIs and the 

number of SH3 domains between orthologous protein pairs in which at least one of the orthologs 

has an SH3 domain (see Figure 3-6). We focused on SH3 domains for this analysis as they are 

the most numerous and best studied, however we also performed this analysis generally for all 

PRM domains collectively. (See 3.5.2 Domain Data for details.) Again, we generally observe a 

weak positive correlation on the number of PPIs involving a protein as the number of SH3 or 

PRM domains within that protein changes, especially for yeast orthologs. However, this pattern 

does not hold for the other species. 

The differences in correlation patterns we observe between species and between domain types 

suggest multiple distinct evolutionary processes affecting the interactome. For example, domain 

expansion in larger mammalian proteomes may cause a stronger negative selection effect on 

shared interactors, like short proline-rich sequences targeted by SH3 domains.179,180 Or domain 
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duplication/divergence may cause domains to expand in number within a protein and diverge in 

function to add functionality to a protein through evolution of new binding partners.46 Another 

possibility is that specific biological functions evolve in different ways depending on selection 

pressure. SH3 domains, for example, are functionally enriched in endocytosis and other 

functions related to movement of the cellular boundary.46 The difference in correlation between 

interactions and SH3 domains may reflect a change in how those functions, and the parts of the 

interactome responsible for those functions, have evolved before and within Arthropoda. This 

difference also suggests there’s an interplay between PPIs and domain evolution,175,181,182 and 

that interactomic concepts such as network alignment and interface-interaction networks44,183 

could provide additional insight into the evolution of proteins and species. With other work 

indicating that different regions of PPINs exhibit distinct local network topology,113 PPINs may 

be better considered as collections of various subnetworks, each with its own functional or 

evolutionary processes in use, rather than as a uniform whole. 

Correlation All Protein-binding SH3 Bromo PDZ SH2 WW PRM 

Human 0.044 0.028 0.102 -0.141 0.091 0.133 0.256 0.144 

Mouse 0.013 0.011 -0.016 -0.134 0.143 0.246 0.251 0.084 

Fruitfly 0.013 -0.021 0.020 -0.042 -0.009 -0.174 -0.250 -0.004 

Worm 0.048 0.166 0.430 -0.660 0.155 -0.126 0.485 0.325 

Yeast 0.085 0.172 0.393 -0.525 -0.803 N/A 0.718 0.214 

Table 3-3 – Correlation coefficients between the number of domains in a protein and the 

number of PPIs involving that protein, aggregated per species, using different domain 

types. Proteins with zero of a given domain type were excluded from the respective calculation. 

N/A indicates that no correlation was computable, because every protein in the specified species 

with the specified domain type all contain the same number, or none, of that domain. Italicized 

text indicates that the correlation coefficient was computed using fewer than 10 separate data 

points (proteins). The PRM grouping is an aggregation of all the specified PRM types: Bromo, 

FHA, GYF, PDZ, Polo-box, PTB, SH2, SH3, and WW (see 3.5 Methods). 
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Figure 3-6 – Scatterplots relating the number of SH3 domains and the number of PPIs for 

orthologous protein pairs across different species. (Continued on next page.) 
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Figure 3-6 – Scatterplots relating the number of SH3 domains and the number of PPIs for 

orthologous protein pairs across different species. In each plot, each data point represents a 

pair of orthologous proteins between two species. Plotted along the x-axis is the change in the 

number of SH3 domains from the ortholog in the first species, as per the plot title, to the ortholog 

in the second species. Plotted similarly along the y-axis is the change in the number of PPIs for 

each ortholog. A LOWESS curve indicates an approximate line of best fit and a correlation 

coefficient displayed in the bottom right. Orthologous protein pairs with the same number of the 

specified domain are displayed visually, but were excluded from the correlation coefficient 

calculation, because of their abundance. Note that while the x-axis is standardized, the y-axis 

scale varies, reflecting differences in interactome density. Note also that the data points at 

Δ#SH3 Domains ≥ 2 both represent orthologies involving intersectin-1 or intersectin-2, which 

are highly similar paralogs with five SH3 domains in H. sapiens. 
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Figure 3-7 – Scatterplots relating the number of PRMs and the number of PPIs for 

orthologous protein pairs across different species. (Continued on next page.) 



86 

 

 

Figure 3-7 – Scatterplots relating the number of PRMs and the number of PPIs for 

orthologous protein pairs across different species. In each plot, each data point represents a 

pair of orthologous proteins between two species. Plotted along the x-axis is the change in the 

number of PRMs from the ortholog in the first species, as per the plot title, to the ortholog in the 

second species. Plotted similarly along the y-axis is the change in the number of PPIs for each 

ortholog. A LOWESS curve indicates an approximate line of best fit and a correlation coefficient 

displayed in the bottom right. Orthologous protein pairs with the same number of the specified 

domain are displayed visually, but were excluded the correlation coefficient calculation, because 

of their abundance. Note that while the x-axis is standardized, the y-axis scale varies, reflecting 

differences in interactome density.  
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3.2.3 The importance of domain architecture in protein-protein interaction 
conservation 

To examine specific examples of sequence changes that are likely to have an important effect on 

the PPIN, we examined whether any of the 214 human SH3 proteins have a different number of 

SH3 domains in yeast, worm, fruitfly, or mouse orthologs, indicating that a domain gain or loss 

event has occurred at some point along the lineage. Beginning with a computationally generated 

list of these events, we manually verified each individually, examining the larger homologous 

protein family, verifying homology and domain identification by examining homologs from 

other species such as R. norvegicus and D. rerio, and expanding/extending the lineages as 

appropriate. While most SH3 protein orthologs have the same number of SH3 domains within 

ortholog groups, many SH3 domain number changes within the gene families were found (see 

Table 3-4). When one ortholog has an SH3 domain absent in the other, we expect that the second 

ortholog would participate in fewer SH3 domain-mediated interactions, resulting in a PPIN 

change that identifiable based on a change at the sequence level.47 Thus, even within ortholog 

groups, expected to conserve function between species, we observe important sequence changes 

likely to affect the PPIN. 

To further probe the effect of sequence changes on PPINs, we examined the intersectin gene 

family, which is the best studied multi-domain family with domain number changes between 

species. Human intersectin-1 (ITSN1) contains five SH3 domains, the most of any human 

protein. It has a less well studied paralog ITSN2 and orthologs in yeast, worm, and fruitfly, 

though the fruitfly ortholog, DAP160, has only four SH3 domains while yeast ortholog EDE1 

has none. Human ITSN1 is known to have two isoforms, a short-form of 1220 amino acids and a 

brain-specific long-form with 1721 amino acids, both of which contain all five SH3 

domains.184,185 Both human ITSN1 and human ITSN2 are implicated in endocytosis and 

exocytosis, possibly as a regulator of the formation of clathrin pits.186,187 
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Table 3-4 – Evolutionary gain/loss events of SH3 domains. 

 Yeast Protein Worm Protein Fruitfly Protein Mouse Protein Human Protein 

Name 
# SH3 

Domains 
Name 

# SH3 
Domains 

Name 
# SH3 

Domains 
Name 

# SH3 
Domains 

Name 
# SH3 

Domains 

Domain 
Gain 

Events 

DGR2 0 
SYM-4 0   AHI1 1 AHI1 1 

YMR102C 0 

RGA1 0 
TAG-325 0   ARHGAP12 1 ARHGAP12 1 

RGA2 0 

  Y44E3A.4 2 CINDR 3 

CD2AP 3 CD2AP 3 

SH3D21 3 SH3D21 3 

SH3KBP1 3 SH3KBP1 3 

      GAS7 0 GAS7 1 

  CGEF-1 0 CG30440 0 

MCF2 0 MCF2 0 

MCF2L 1 
MCF2L 1 

MCF2L2 0 

  AAP-1 0 PI3K21B 0 

PIK3R1 1 PIK3R1 1 

PIK3R2 0 PIK3R2 0 

PIK3R3 1 PIK3R3 1 

HMT1 0   ART8 0 PRMT2 1 PRMT2 1 

BUD2 0 

GAP-3 1 VAP 1 RASA1 1 RASA1 1 

GAP-1 0   

RASA2 0 RASA2 0 

RASA3 0 RASA3 0 

RASA4 0 
RASA4 0 

RASA4B 0 

RASAL1 0 RASAL1 0 

MDR1 0 TBC-18 1 CG12241 1 SGSM3 1 SGSM3 1 

  SHN-1 0 PROSAP 1 
SHANK1 1 SHANK1 1 

SHANK2 1 SHANK2 1 
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SHANK3 1 SHANK3 1 

PFA3 0 DHH-6 0 
CG4483 1 

ZDHHC6 1 ZDHHC6 1 
CG5196 0 

 

Domain 
Loss 

Events 

  CSK-1 1 CSK 0 
CSK 1 CSK 1 

MATK 1 MATK 1 

  

MOM-4 0 

DSTYK 0 DSTYK 0 DSTYK 0 W03A5.1 1 

Y105C5A.24 0 

BZZ1 2 

TOCA-1* 1 

CIP4 1 

FNBP1 1 FNBP1 1 

TOCA-2* 1 
FNBP1L 1 FNBP1L 1 

TRIP10 1 TRIP10 1 

  
SEM-5 2 DRK 2 

GRAP 2 
GRAP 2 

GRAPL 1 

GRAP2 2 GRAP2 2 

GRB2 2 GRB2 2 

NCK-1 3 DOCK 3 NCK1 3 NCK1 3 

      
SH3TC1 1 SH3TC1 1 

SH3TC2 2 SH3TC2 1 

CDC24 0 VAV-1 2 VAV 1 

VAV1 2 VAV1 2 

VAV2 2 VAV2 2 

VAV3 2 VAV3 2 

NCK2 3 NCK2 3 

 

Multiple 
Domain 

Gain/Loss 
Events 

  UNC-73 1 TRIO 1 

ARHGEF25 0 ARHGEF25 0 

KALRN 2 KALRN 2 

TRIO 2 TRIO 2 

EDE1 0 ITSN 5 DAP160 4 ITSN1 5 ITSN1 5 
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ITSN2 5 ITSN2 5 

    CG43729 1 

STAC 2 STAC 1  

STAC2 2 STAC2 1 

STAC3 2 STAC3 2 

  ARK-1 1 
ACK-

LIKE 
0 TNK1 1 TNK1 1 

  SID-3 0 SHARK 0 TNK2 1 TNK2 1 

Table 3-4 – Evolutionary gain/loss events of SH3 domains. Listed are all the human proteins with SH3 domains, for which there exists 

a mouse, fruitfly, worm, or yeast ortholog or a paralog with a different number of SH3 domains. They are organized into apparent 

phylogeny, based on MUSCLE4 and Ensembl156 data, then further grouped by whether there is an apparent SH3 gain or loss event, or 

some combination of multiple gain/loss events. *The evolutionary relationship between worm TOCA-1 and TOCA-2 and with 

worm/human FNBP1, FNBP1L & TRIO is unclear, possibly reflecting distinct gene duplication events or a combination of duplication 

and deletion events.
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For each of the intersectin orthologs in these species, we gathered their PPIs from multiple 

sources and counted the number of interologs between each pair of proteins (see Table 3-5). The 

PPI data is inconsistent between species, with the fruitfly and mouse orthologs having unusually 

few protein-protein interactions, which possibly reflects data incompleteness rather than true 

interaction sparseness. 

 
# of 
PPIs 

# Interologs with 

Yeast 
EDE1 

Worm 
ITSN-1 

Fruitfly 
DAP160 

Mouse 
ITSN1 

Mouse 
ITSN2 

Yeast EDE1 117      

Worm  
ITSN-1 

66 5 (25)     

Fruitfly 
DAP160 

16 2 (9) 1 (8)    

Mouse 
ITSN1 

13 2 (6) 5 (11) 2 (5)   

Mouse 
ITSN2 

1 0 (0) 0 (1) 0 (1)   

Human 
ITSN1 

96 13 (46) 17 (53) 10 (15) 11 (15) 0 (1) 

Human 
ITSN2 

88 8 (38) 8 (51) 6 (13) 5 (14) 0 (1) 

Table 3-5 – Number of interologs shared between intersectin orthologs. The number of 

potential interologs for each comparison varies depending on the conservation of protein 

orthologs in each species. Thus, for each protein in each pair of orthologs, we counted the 

number of protein interactors that have orthologs in the other species, then take the lower of the 

two and report it in parentheses. This value should be considered an approximation of how many 

interologs are theoretically possible, as protein duplications cause a single interaction in one 

species to serve as an interolog for multiple interactions in the other. 

To further break down these interologs and understand the nature of PPI conservation, we 

incorporate data on the binding targets of SH3 domains in yeast, worm and human, which 

specifies what proteins, and which regions on these proteins, are targeted by various SH3 

domains. The yeast and worm SH3 binding data were generated with phage display, then verified 

with yeast-two-hybrid screens,46,49 whereas the human SH3 binding data is predicted data created 

using DoMoPred188 with PWMs created from phage display experiments,50 using a 95% 

confidence cut-off. By attributing PPIs to the specific domains and ligands that are interacting, 

we hope to identify how gain/loss of domains and changes in domain/ligand specificity affect 

interaction conservation at the protein level. The PPIs for each protein are separated based on the 
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SH3 domain that mediates the interaction (see Table B-1), with PPIs not mediated by an SH3 

domain listed separately.  

Of the five yeast EDE1 interactions conserved in worm ITSN-1, none of them are mediated by 

the four worm SH3 domains for which we have binding data (see Figure 3-8).  However, two 

EDE1 interactions, not including self-interactions, have human interologs mediated by human 

ITSN1’s SH3 domains – EDE1 - HRR25 is conserved as ITSN1 - TTBK2 and EDE1 - PKC1 is 

conserved as ITSN1 - PKN3, both mediated by ITSN1’s fifth SH3 domain. Four EDE1 

interactions have human interologs mediated by human ITSN2’s SH3 domains: EDE1 - AKL1 as 

ITSN2 - AAK1, EDE1 - HRR25 as ITSN2 - TTBK2, EDE1 - PKC1 as ITSN2 - PKN3, and 

EDE1 - PRK1 as ITSN2 - AAK1, all of which are mediated by ITSN2’s fifth SH3 domain. None 

of these human ITSN1 or ITSN2 interologs have been identified by traditional PPI mapping 

physical experimental techniques.50 Furthermore, their interaction partners do have orthologs in 

worm, none of which are known to interact with worm ITSN-1, suggesting that there may be a 

gap in the experimental interactomic data. However, when we use MUSCLE4 to create multiple 

sequence alignments of each set of these human and yeast interactors, and their worm orthologs, 

we find that the specific binding site in the human interactor is not conserved in either the yeast 

or worm orthologs (see Table 3-6). In our observations, unconserved interactions are often 

entirely missing the target ligand, which is consistent with earlier work comparing the worm and 

yeast SH3 interactomes.46 

Thus, there are many more unconserved than conserved interactions within this protein family. 

Some of these are due to unmatched interactions – those that are not found in the other species 

even though an ortholog exists, but many are due to unmatchable interactions – those that have 

no ortholog to match to. Some lack of conservation may be due to false negative and positive 

PPIs in either species interactome, but this likely doesn’t explain all the lack of conservation as 

the intersectin gene family has higher interaction conservation than most: with 16, human ITSN1 

and worm ITSN-1 have more interologous partners than most worm-human orthologs, ranking in 

the 99.8th percentile (see Figure 3-9). Additionally, breaking down the interactions to the level of 

their mediating domains shows that SH3 domains seem to conserve few, if any, interactions, 

possibly due to rapid evolution of binding motifs and domain architectures as previously found 

between worm and yeast.46 While it is often assumed that protein domains are indicative of a 

protein’s function and that a conserved domain architecture indicates a conserved function, the 
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lack of consistency between the binding partners of orthologous yeast, worm, and human SH3 

domains suggests that this phenomenon may be more complicated.

5 Interologs:
      CHC1 | CHC-1

      EDE1 | EHS-1

      ENT1 | EPN-1

      EDE1 | ITSN-1*

   YAP1802 | UNC-11

1 unmatched interactor:
UNC-26

3 unmatched interactors:
CSN-5, FIGL-1, Y43F8C.6SH3 

Domain 
#1

SH3 
Domain 

#2

SH3 
Domain 

#3

SH3 
Domain 

#4

SH3 
Domain 

#5

4 unmatchable interactors:
B0286.3, NUM-1, Y57A10A.1, Y57G11C.22

2 unmatched interactors:
B0286.3, Y77E11A.2

EH 
Domain 

#1

EH 
Domain 

#2

41 unmatchable interactors:
B0286.3, C06A6.2, C11E4.6, C12D8.1, C36C9.1, CED-

6, CLIC-1, DAB-1, EPS-8, F10D7.5, F10E9.3, 

F41H10.3, F46H5.7, F56D3.1, F59E12.9, F59G1.8, 

FLN-1, HCP-2, HPO-34, IFA-1, KEL-8, LEV-11, LFI-1, 

LIN-65, LST-1, MAB-10, MSP-10, MSP-113, NUM-1, 

PQN-87, RME-4, SAS-5, SQV-4, SUMV-1, TAG-163, TFG-

1, Y106G6D.7, Y43F8C.6, Y57A10A.1, Y57G11C.22, 

Y77E11A.2

Worm ITSN-1

57 unmatched interactors:
AKL1, ARE1, BZZ1, CMD1, CMK1, CMK2, COP1, CYS4, 

DUF1, ECM25, ECM29, ENO1, ESA1, ETP1, FRK1, HRR25, 

MRM1, MRPL10, MRPL17, MRPL23, MRPL9, OYE2, PHO85, 

PKC1, PRK1, PXA1, RAD53, RET2, ROM2, RPL11A, 

RPL12A, RPL13B, RPL16B, RPL19A, RPL28, RPL2A, 

RPL35A, RPL38, RPL6B, RPL9A, RPN11, RPS11A, 

RPS14B, RPS31, RPS6A, RTC6, SEC26, SHQ1, SLA2, 

SMT3, SSC1, SWE1, TRM3, UBI4, UTP20, YCK1, YPT7

56 unmatchable interactors:
AEP1, APL1, APM2, ATG26, ATP25, BUD3, CLC1, CLN2, 

CYM1, END3, IMG1, IMG2, IST2, LAS17, LSB3, MET10, 

MHR1, MRP20, MRP49, MRP7, MRPL1, MRPL13, MRPL15, 

MRPL16, MRPL20, MRPL22, MRPL24, MRPL27, MRPL28, 

MRPL3, MRPL35, MRPL36, MRPL39, MRPL4, MRPL44, 

MRPL6, MRPL7, MRPL8, MSS51, NAF1, NUP42, PAL1, 

PSH1, RPA34, RSC8, SEC28, SEC9, SGM1, SLA1, SOV1, 

SPC72, SPR3, SRO9, STM1, SYP1, YML6

Yeast EDE1

EH 
Domain 

#1

EH 
Domain 

#2

EH 
Domain 

#3

5 unmatchable interactors:
C06A6.2, C36C9.1, LST-1, MAB-10, SQV-4, Y43F8C.6

20 unmatched interactors:
ALX-1, APA-2, APB-1, C08F8.2, CSN-5, DPY-23, DYN-

1, FIGL-1, HGRS-1, HPK-1, NURF-1, PCF-11, SAP-49, 

SEC-31, STAM-1, UBQL-1, UNC-26, W09D10.1, WWP-1, 

Y44E3A.4

 

Figure 3-8 – Schematic of interaction conservation between yeast EDE1 and worm ITSN-1. 
The two proteins share five interologs. All other interactions are divided into unmatchable, if the 

interaction partner has no ortholog in the other species, and unmatched, if there were no 

interactions between any of the orthologs of the interaction partner and EDE/ITSN-1. * indicates 

self-interactions, which are often excluded from standard PPIN analysis. 
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Human 

ITSN1 

Interactor 

Worm  

Interactor 

Ortholog  

Yeast 

EDE1 

Interactor 

 

PKN3 PKN-1 PKC1 

 
TTBK2 R90.1 HRR25 

 
Human 

ITSN2 

Interactor 

Worm 

Interactor 

Ortholog 

Yeast 

EDE1 

Interactor 

 

AAK1 SEL-5 AKL1 

 
AAK1 PRK1  

PKN3 PKN-1 PKC1 Same as with ITSN1 

TTBK2 R90.1 HRR25 Same as with ITSN1 

Table 3-6 – Multiple sequence alignments of human ITSN1/2 SH3 binding site regions with yeast and worm orthologs. There are 6 

PPIs for yeast EDE1 that are conserved and mediated by SH3 domains in human ITSN1/2. We used MUSCLE4 to perform multiple 

sequence alignment of the EDE1 and ITSN1/2 interactors, as well as the corresponding worm ortholog, for which there are no known 

PPIs. Illustrated are the regions around the SH3 binding site in the multiple sequence alignment, with the SH3 binding site in human 

highlighted in orange. In all cases, the binding site in the human interactors is unconserved in the other orthologs, though two of the bound 

prolines in human AAK1 are conserved in yeast AKL1. We observed this non-conservation commonly for SH3 binding targets, 

suggesting that even when PPIs are seemingly conserved, there may be complex evolutionary dynamics at work that lead to expected non-

conservation of PPIs. Alignment views were generated using Geneious version 9.189
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Figure 3-9 – Schematic of interaction conservation between human ITSN1 and worm 

ITSN-1. The two proteins share 16 interologs; only one with SH3 binding target information 

available, shown in the middle (human SYNJ2 and worm UNC-26). All other interactions are 

divided into unmatchable, if the interaction partner has no ortholog in the other species, and 

unmatched, if there were no interactions between any of the orthologs of the interaction partner 

and ITSN1/ITSN-1. The SH3 binding specificity is shown on the two target proteins SYNJ2 and 

UNC-26, as well as their SAC domains (blue), endonuclease/exonuclease/phosphatase domains 

(red), and DUF1866 domains (cyan). Human ITSN1 SH3 binding targets are predicted, whereas 

worm ITSN-1 SH3 binding targets were experimentally determined. Predicted human SH3 

interactions without experimental verification are italicized. * indicates self-interactions, which 

are often excluded from standard PPIN analysis. 

3.3 Discussion 

We have shown that, based on current data, most PPIs are not conserved and that it is likely there 

are multiple mechanisms of molecular evolution that rewire PPINs between species. From this, 

we argue for a model of PPIN evolution that incorporates multiple mechanisms that affect local 

network regions differently. 

16 interologs:
      AP2B1 | APB-1

       CLTC | CHC-1

       DAB2 | DAB-1

        DES | IFA-1

       DNM1 | DYN-1

       DNM2 | DYN-1

       EPN2 | EPN-1

      EPS15 | EHS-1

    EPS15L1 | EHS-1

      ITSN1 | ITSN-1*

      ITSN2 | ITSN-1*

    PDCD6IP | ALX-1

     PICALM | UNC-11

      SF3B4 | SAP-49

    SH3KBP1 | Y44E3A.4

      SYNJ2 | UNC-26

5 unmatched interactors:
CSN-5, FIGL-1, MAB-10, SQV-4, Y43F8C.6

4 unmatched interactors:
B0286.3, NUM-1, Y57G11C.22

2 unmatched interactors:
B0286.3, Y77E11A.2

36 unmatched interactors:
APA-2, B0286.3, C08F8.2, C11E4.6, C12D8.1, CED-6, 

CLIC-1, CSN-5, DPY-23, EPS-8, F10D7.5, FIGL-1, 

FLN-1, HCP-2, HGRS-1, HPK-1, KEL-8, LEV-11, LFI-1, 

MAB-10, NUM-1, NURF-1, PCF-11, RME-4, SEC-31, SQV-

4, STAM-1, TAG-163, TFG-1, UBQL-1, W09D10.1, WWP-

1, Y106G6D.7, Y43F8C.6, Y57G11C.22, Y77E11A.2

17 unmatchable interactors:
C06A6.2, C36C9.1, F10E9.3, F41H10.3, F46H5.7, 

F56D3.1, F59E12.9, F59G1.8, HPO-34, LIN-65, LST-1, 

MSP-10, MSP-113, PQN-87, SAS-5, SUMV-1, Y57A10A.1

45 unmatched interactors:
AMPH, ARF6, ARFIP2, ARHGAP31, BECN1, CDC42, 

CSNK2B, CYTH1, EEF1A1, EPHB2, FNBP1, GOLGA5, HIP1, 

INPPL1, KIF5A, LMO4, MAPK8IP2, PACSIN3, PAK3, 

PDE4D, PFDN5, PHGDH, PIK3R1, PK, PLK1, PPFIA2, 

PPL, RAB5A, RAI14, RNF40, RPS6KA5, SCAMP1, SCOC, 

SGIP1, SH3GL2, SMARCC2, SMNDC1, SNAP23, SNAP25, 

SNX5, STON2, TK1, TSG101, UBE2K, UNC119

29 unmatchable interactors:
AGFG1, AGFG2, ASAP2, CCNO, CEP85L, CLIP2, DISC1, 

DLGAP1, FCHSD2, FNBP4, GAREML, GCC1, GP6, KHDRBS1, 

KIF16B, MAPK6, MRPL20, MTUS2, PIK3AP1, PREX1, 

RAB11FIP2, RABEP1, SPDL1, SPRY2, TRIM8, WAS, WASL, 

WBP11, ZFPM2

Human ITSN1

SH3 
Domain 

#1

SH3 
Domain 

#2

SH3 
Domain 

#4

SH3 
Domain 

#5

EH 
Domain 

#1

EH 
Domain 

#2

SH3 
Domain 

#1

SH3 
Domain 

#2

SH3 
Domain 

#3

SH3 
Domain 

#4

SH3 
Domain 

#5

EH 
Domain 

#1

EH 
Domain 

#2

Worm ITSN-1

24 unmatched interactors:
ADAM12, ANK3, ARAP1, CBL, CBLB, CBLC, CNTN2, DAB2, 

DAG1, DOCK3, DOCK4, FGD5, LATS1, PDZD8, PIK3C2B, 

REPS1, REPS2, RHOU, SDC3, SH3D19, SIRT1, SOS1, 

SOS2, TNK2

1 unmatched interactor:
RICTOR

33 unmatched interactors:
ADAM8, ARHGEF5, CACNA1D, CACNA1E, CACNA1F, CAMKK1, 

CAMSAP1, CBL, CBLC, CELSR3, COL12A1, DAG1, DNM1, 

DNM3, DOCK3, DOCK4, DOCK5, KCNA5, OBSL1, PCLO, 

PIK3C2B, PIK3R2, PKD1, PTK2, PTPRN2, REPS1, REPS2, 

RIMS1, RIMS2, SOS1, SOS2, TNK2, TRIM67

37 unmatched interactors:
AMPH, ARAP1, CASKIN1, CBL, CBLB, CNTN2, DAB2, 

DAG1, DNM1, DNM2, DNM3, DOCK4, DSCAML1, FAM43A, 

FAT1, FGD5, MAP4K4, PDZD8, PIK3C2B, PKN3, PTK2, 

PTK2B, REPS1, RHOU, RIMS1, RIN1, ROBO2, SETD5, 

SH3D19, SHANK2, SIPA1L3, SOS1, SOS2, TNK2, TTBK2, 

WDR44, ZNF474

12 unmatchable interactors:
FAM162B, GAREM, GAREML, HCN2, HERC1, IL31RA, 

MYO15A, NRG1, OBSCN, RUSC1, SH3PXD2B, SPRY2

3 unmatchable interactors:
B0286.3, NUM-1, Y57G11C.22

20 unmatchable interactors:
C1ORF168, C21ORF58, C2CD2, CDC42EP2, DLG5, GAREM, 

GAREML, HCN3, HERC1, KNDC1, MYO15A, NCKIPSD, 

OBSCN, PEAK1, PHLDB1, PRKCDBP, RUSC1, SH3PXD2B, 

SPRY2, TP73

SH3 
Domain 

#3

1 unmatchable interactor:
Y57A10A.1

3 unmatchable interactors:
C06A6.2, C36C9.1, LST-1

SYNJ2

UNC-26
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3.3.1 Local is better than global for network alignment 

The low rate of interolog conservation contradicts a key assumption underlying global network 

alignment research. Assuming that established ortholog pairs truly represent conserved proteins, 

a global network alignment algorithm could be expected to align all these orthologs, but it would 

have to overcome the very high levels of noise generated by unconserved interactions between 

those orthologs and the misleading signals produced by novel proteins without corresponding 

orthologs, and possibly cases wherein orthologs have different binding sites. If such an alignment 

had been optimized on various network-topology-based measures of network alignment quality 

that correlate strongly with the number of edges aligned, such as edge correctness or symmetric 

substructure score,99 the alignment will likely contain many improperly aligned interactions, 

confusing subsequent efforts to make biologically relevant inferences from the alignment. We 

propose that network alignment algorithms should be capable of indicating when two networks 

are and are not (sufficiently) conserved, as is possible with sequence alignment algorithms. 

Furthermore, as a result of gene duplication and divergence, interaction conservation rates are 

not uniform across the interactome. Gene duplications are already a conceptual problem for 

many network alignment methods55,73,87 that perform one-to-one protein alignments, as the 

complexity of the evolutionary relationship cannot be represented in the alignment and the 

leftover paralogs can then confound the alignment of other proteins. Interaction divergence also 

indicates that network alignment algorithms should not consider all interactions and areas of the 

network to be uniformly informative. Instead, a network alignment algorithm seeking to produce 

an evolutionarily true global alignment should also consider gene duplication and divergence, 

possibly incorporating it explicitly into a scoring function. For example, as Figure 3-5 suggests, 

PPIN alignment could consider gene family size, scoring larger families lower than smaller 

families. Alternately, it may be prudent for network alignment algorithms to avoid heavily 

duplicated proteins, or provide lower confidence scores for alignments of those proteins. More 

generally, due to the low level of interaction conservation observed in current network data, 

network alignment methods should not include the number of edges aligned as an optimization 

or evaluation metric, as many of the aligned edges are likely false and may even distort the 

proper alignment of nodes.  

In our work, we also show that small changes in protein sequence can have large impacts on 

interaction conservation, in particular small changes in domain and binding site sequences, 
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which concurs with evidence that small sequence motifs can be used to predict PPIs with high 

accuracy.190 More work needs to be done to assess how the sequence similarity and network 

topology similarity components of most network alignment techniques interact, and how they 

contribute to algorithmic performance on biologically relevant evaluation measures. Just as 

sequence alignment is supported by models of gene and protein evolution, network alignment 

should be supported by models of PPIN evolution, which need to be better developed. We 

believe that more comprehensive, small-scale analyses of PPINs across species, such as by 

Kappei et al. 2017,119 are necessary to develop these models, and serve as a sturdy foundation for 

more global PPIN evolution research. 

3.3.2 PPI Data Quality 

One possible explanation for our results is that the protein-protein interaction data is erroneous 

and incomplete. The PPI data used in this work were retrieved from iRefIndex (see 3.5 

Methods), which aggregates interaction data from many PPI databases.10 False positive 

interactions could result in systematic errors in our analyses even if there were no systematic bias 

in how they were generated. False positive interactions are likely to decrease the perceived rate 

of interaction conservation, as they cannot, by definition, be conserved and are unlikely to 

randomly match up with another, true positive interaction due to the assumed sparsity of PPINs. 

False negative interactions may also decrease the perceived rate of interaction conservation, if 

the true rates of conservation and false negatives are both high, as conserved interactions are 

erroneously left out of PPI datasets. Consequently, our work may underestimate how well 

conserved PPINs truly are, though other work has also suggested that this rate is lower than 

commonly assumed.46,105 

To consider these data quality issues, we re-performed the analyses in the first two sections using 

limited subsets of proteins: first with only disease-associated proteins as annotated by OMIM’s 

Morbid Map,191 and also with only “core” conserved proteins with orthologs in all five species, 

under the assumption that the proteins in these subsets are relatively well-studied. Interaction 

conservation numbers were slightly increased, which was expected given the removal of poorly 

conserved, poorly studied proteins from the data set, while the relationship between domain and 

interaction numbers remained approximately the same. Thus, our major conclusions are not 

affected by bias towards the most studied proteins. 



98 

 

Other technical issues include that the unknown number of false negatives means that there is no 

reliable baseline to use to normalize the differing levels of coverage for the PPI datasets of 

different species or sections of an interactome and also that it is difficult to prove an interaction 

can never occur. Despite these various technical issues, it remains useful to evaluate existing 

theories of network evolution in the context of the entire interactome, using the most 

comprehensive data available. However, we recommend that experimental studies focus on 

collecting complete (positive and negative) information for tractable subsets of the interactome, 

such as individual genes or pathways, across species to inform network evolution studies. 

3.3.3 Quality of binding site data 

Computational identification of protein domains, as performed by Pfam, is based on matching 

protein peptide sequences to hidden Markov models that represent specific domain profiles.192 

Due to the costs associated with creating crystal-based structures for proteins, these domain 

profiles themselves are generated based on previously identified canonical domains, which have 

typically been well-studied and have known crystal structures. However, many protein domains 

are known only through electronic annotation processes like Pfam’s. Consequently, the set of 

“known” SH3 domains is likely not unbiased, with a skew towards the canonical SH3 domains 

that serve as the core blueprint for the definitive HMMs, which may have undue effects on any 

analyses of SH3 domain evolution. 

Furthermore, though SH3 domains are relatively well-studied, partially due to their binding 

affinity for a well-defined short, linear motif, we continue to learn new facts about the SH3 

domain. Recent work with human SH3 domains identified, based on their peptide-binding 

preferences, seven additional classes of SH3 domains, in addition to the two canonical classes.50  

3.4 Conclusion 

Based on the latest available PPI data, there is little evidence to support the idea that PPI 

conservation is high enough to support analytical techniques such as interaction transfer between 

species or global network alignment. Considering evolutionary concepts such as duplication and 

divergence of genes and the presence of interaction-mediating domains, further inconsistencies 

arise with the presumption of high, uniform rates of interaction conservation between species. 

Whether these inconsistencies arise due to data quality and completeness issues or not, however, 
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is difficult to determine under the current circumstances, and a radical revamp of how PPI data is 

collected may be required to fully unravel the problem. 

Meanwhile, these and other issues with PPI data should prompt more work in understanding the 

fundamentals of interactome evolution, instead of the development of high-level computational 

methods that may be ignoring, or even obscuring, the biological mechanisms at play. We believe 

it’d be more prudent, for example, for researchers to focus more on local network alignment 

rather than global network alignment so as to establish what biologically relevant information 

PPIN alignments can and should extract from interactome data, or to investigate what factors 

suggest that an interaction can be mapped from one species. These are critical questions, needed 

to establish the baseline utility and reliability of inter-species PPIN data analysis, that should be 

answered before the competitive development of algorithms to solve artificial questions that may 

not even reflect true biological reality. 

3.5 Methods 

3.5.1 Protein-protein Interaction Data 

Ensembl version 89 served as the authoritative source for gene and protein data, from human 

(H.sapiens), mouse (M. musculus), fruitfly (D. melanogaster), worm (C. elegans) and yeast (S. 

cerevisiae).193 

Species Proteins Interactions 
Mean 

Interactions per 
Protein 

% IRefIndex Physical 
Interactions 

Captured 
S. cerevisiae 5 755 82 137 14.272 99.76 

C. elegans 4 780 12 040 2.519 97.71 

D. 

melanogaster 

8 280 39 430 4.762 95.68 

M. musculus 6 082 15 998 2.630 97.99 

H. sapiens 14 286 178 337 12.483 99.06 

Table 3-7 – Summary of interaction data used. 

The protein-protein interaction networks in this work were compiled based on protein-protein 

interaction data retrieved from iRefIndex version 14.0.10  This data uses controlled vocabulary 

codes from the Molecular Interactions Controlled Vocabulary for only intra-species, physical 

interactions (MI:0218 and MI:0915), which excludes predicted interactions (MI:1110). 

Interactions identified only via inference, interaction prediction, or an unknown method 
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(MI:0362, MI:0063, and MI:0686) were also filtered out.  All interactions were mapped to the 

corresponding Ensembl proteins by HGNC symbol, UniProtKB ID, Entrez Gene ID, and/or 

RefSeq ID, with a success rate of no less than 95% (95.68% for D. melanogaster).194-197 

Complexes were resolved as multiple two-way protein interactions between all participating 

proteins. Self-interactions were included as self-loops in the networks to consider PPIs created 

by gene fusion and gene fission events. Proteins with no interacting partners were excluded from 

the data set. When multiple proteins had identical sequences, the duplicates were removed in 

favour of the first alphabetically (arbitrary selection) so as to prevent skewing of the data 

analysis. 

Certain highly promiscuous or unusually long proteins, and their orthologs, were removed from 

later analyses as outliers to prevent distortion of results:  

 human EED (460 interactions, 466 amino acids), mouse EED (1140 interactions, 441 

amino acids), fruitfly ESC (13 interactions, 425 amino acids), fruitfly ESCL (2 

interactions, 462 amino acids), & worm MES-6 (6 interactions, 459 amino acids) 

 human OBSCN (9 interactions, 8925 amino acids) & mouse OBSCN (2 interactions, 

8032 amino acids) 

 human TTN (107 interactions, 35991 amino acids), mouse TTN (24 interactions, 35213 

amino acids), & worm TTN-1 (1 interaction, 18562 amino acids) 

 human UBC (9812 interactions, 685 amino acids), mouse UBC (324 interactions, 734 

amino acids), and yeast UBI4 (3192 interactions, 381 amino acids). 

3.5.2 Domain Data 

Domain data for all proteins was retrieved from Ensembl. For identification of SH3 domains, we 

began with a union of the sequences identified by Pfam, PROSITE, SMART, and 

Superfamily,192,198-200 and retrieved all domains with InterPro terms IPR001452 (SH3 domain), 

IPR003646 (SH3-like domain, bacterial-type), and IPR011511 (Variant SH3 domain).201 We 

then manually assessed how likely each sequence was a true SH3 domain based on concurrence 

between the databases, key sequence signatures such as the canonical GXXP sequence, and 

corroboration in the literature.  
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From these assessments, Pfam was found to be the most reliable of the databases, and was then 

used as the database for identification of other domains. Protein-binding domains were identified 

using InterPro terms tagged with GO annotation 0005515 (protein binding).92  

The peptide recognition modules used in this work were initially curated based on work by 

Castagnoli et al..202 Of the 16 PRMs listed, 7 were removed because they were not tagged with 

the protein-binding GO annotation in Interpro or because their Interpro description indicated they 

perform a function other than protein-binding. The remaining 9 PRMs are: Bromo, FHA, GYF, 

PDZ, Polo-box, PTB, SH2, SH3, and WW. FHA, GYF, Polo-box, and PTB domains were 

excluded from Table 3-3 due to low counts, but were included in the overall PRM counts. 

Species # SH3 
Domains 

# Proteins w/ 
SH3 Domains 

# Human 
Orthologs to SH3 

Proteins 

# Orthologs to 
Human SH3 

proteins 
S. cerevisiae 27 23 35 28 

C. elegans 80 60 139 69 

D. melanogaster 84 64 165 79 

M. musculus 285 210 240 227 

H. sapiens 291 214 - - 

Table 3-8 – Summary of SH3 complements for several species. Note that each species has 

more SH3 domains than SH3 proteins, as many SH3 proteins have multiple SH3 domains. Note 

further that due to gene duplication, many human SH3 proteins share the same orthology, i.e. are 

paralogs of each other. 

Orthology data was compiled using a union of Ensembl, InParanoid, and OrthoMCL.193,203,204  

3.5.3 SH3 Domain Binding Data 

Experimental data on the binding targets of yeast and worm SH3 domains was compiled from 

previous work yeast and worm.46,49 and human SH3 domains. Yeast and worm SH3 domain 

binding affinities were experimentally determined using phage display on individual domain 

isolates, and then confirmed using yeast-two-hybrid experiments on whole proteins.  

Human SH3 data were predicted using DoMoPred188 based on phage display data from 50, with 

interactions included only if predicted with 95% confidence or higher. 



 

102 

Chapter 4  

 

 

 

Small-Scale Visualization of Protein-Protein Interaction Network 

Alignment 

 

 

 

 

 

 

 

 

 

 

I conceived of, designed, and conducted this project. Gary D. Bader supervised and advised this 

project.  
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 Small-Scale Visualization of Protein-Protein 
Interaction Network Alignment 

4.1 Introduction 

In interactomics at large, there remain many key outstanding questions to be answered. At what 

rate are PPIs conserved? Is this rate substantive and consistent enough to support various inter-

species interactomic methods such as network alignment? What factors control the rate of PPI 

conservation? The answers to these questions are critical to our understanding of biological 

system evolution, and the development and refinement of bioinformatic tools to derive insights 

from interactomic data.  

For network alignment, a major concern is to identify which proteins should be aligned and 

which proteins should not (see 1.1 Introduction). In the current state of the field, global network 

alignment methods presume that entire interactomes should be aligned to each other, which is 

likely unfounded given gene gains and losses between species. Furthermore, network alignment 

quality is measured with two types of measures, typically averaged across the entire alignment. 

The first are abstract network topological measures that may or may not capture any biologically 

relevant phenomena, created and used almost exclusively within the network alignment 

community. The second are gene functional measures, such as the ability to predict GO 

functional terms, but state-of-the-art network aligners perform quite poorly on these measures, 

especially considering that many utilize sequence alignment as input data, which is expected to 

strongly correlate with gene function.  

Similarly, interolog mapping is a technique used in computational biology that may or may not 

be generally appropriate. While originally recommended only for proteins that were best 

reciprocal BLASTP hits,178 others have used interolog mapping more liberally and explored 

where the limits should be set.21,104,166 Like with network alignment, these efforts have been 

applied to the interactome altogether, disregarding the possibility that the interactome may not be 

uniformly conserved. Paralogs, in particular, may pose a sticking point: paralogs have lower 

rates of interaction conservation than expected (see 3.2.1 Interolog conservation across species) 

and only one paralog can be a reciprocal best BLAST hit for an ortholog, suggesting that extra 

care must be taken with paralogs when performing interaction mapping. 
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For researchers interested in using network alignment, interlog mapping, and other network-

based methods in their own research, these questions of suitability are difficult to answer. 

Interactomics is a “big data” field; yet molecular biology is often conducted on a small scale, 

researchers investigating one protein, or one pathway, or one complex, or one biological function 

at a time. With “big data” interactomic methods making sweeping, possibly inaccurate, 

generalizations across the interactome, researchers interested in incorporating interactomics into 

their own smaller-scale research can be left unsure of how to do so, or whether it would even be 

appropriate to do so. Attempting to incorporate interactomic data and methods in their own work 

can be quite difficult, due to the dearth of tools to bridge the gap between “big data” 

interactomics and “small data” studies, such as that done by Kappei et al..119 

To address this, we propose a new framework for utilizing network alignment, one focused on 

facilitating the generation and evaluation of specific, smaller in scope hypotheses. We have also 

developed a prototype small-scale network visualizer, the Pairwise Protein Alignment Analysis 

Tool (PPAAT), designed to present pairs of proteins and their immediate interactomic 

neighbourhood, integrated with other data sources.  

4.2 Results 

4.2.1 Description of PPAAT 

PPAAT is an HTML/JavaScript application written using Cytoscape.js designed to visualize two 

proteins and their neighbourhoods at a time. PPAAT is specifically designed to visualize only 

two proteins at once to allow for data integration and more details to appear on the screen. When 

the user selects two proteins from different species, PPAAT loads protein-protein interaction 

network data, domain data, and ortholog data for display (see Figure 4-1). 

The user’s two query proteins are displayed prominently near the centre of the display, with their 

sequence stretched vertically from the N-terminus at the top to the C-terminus at the bottom. 

Along the query proteins’ sequences, we display the peptide recognition modules on that protein, 

specifically BROMO, EH, FHA, GYF, PDZ, Polo, PTB, SH3, SH3, and WW domains, being 

domains whose primary function is protein-binding.192,201,202 The domains are arranged in protein 

sequence order, spaced evenly for visual clarity.  
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Figure 4-1 – The default PPAAT view. On the left is C. elegans protein ITSN-1 and its 

interactors, in pink. On the right is the H. sapiens ortholog ITSN1 and its interactors, in blue. 

These two proteins have a particularly high rate of interologs between their neighbours, 

indicative of their orthology. Their protein domains, in green, are arranged vertically along the 

length of each protein. Matched, interologous interactor nodes are encircled in green, unmatched 

interactor nodes are encircled in red, and unmatchable interactor nodes are encircled in blue. 

Node categories are grouped where needed for clarity of visual presentation. 

Using the network data, all the neighbours of both query proteins are loaded and displayed. 

Neighbours are grouped and displayed according to two separate priority systems. Firstly, when 

information is available, we connect neighbours directly to the specific domain in the respective 

query protein; otherwise, the neighbour is connected to the query protein itself. If there are 

independent data indicating that the neighbour interacts with the domain and with the protein, we 

prioritize the domain-neighbour interaction to the exclusion of the query-neighbour interaction, 

presuming that the domain is responsible for facilitating the interaction. If more than one domain 

facilitates the interaction, we arbitrarily group the neighbour with the first of the interacting 

domains. 
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We also group neighbours based on their ortholog in the opposing query species. If a neighbour 

has no orthologs in the opposing species, then that neighbour is considered “unmatchable,” as it 

could not possibly form an interolog with the query proteins. If a neighbour has at least one 

ortholog in the opposing species, and at least one of those orthologs interacts with the opposing 

query protein, then the neighbour, its ortholog, and the two query proteins form an interolog. 

Finally, if the neighbour has orthologs but those orthologs do not interact with the opposing 

query protein, then that neighbour is considered “unmatched.” 

By grouping interacting proteins into these three categories, the percentage of interologs shared 

for the two query proteins can be accurately calculated as the number of matched neighbours 

divided by the number of unmatched neighbours. This value is computed and displayed on the 

left panel for users, as well as a listing of the interologous interactions that are “missing.” There 

are also options for the user to change whether predicted PPIs should be displayed and whether 

the domains should be displayed (see Figure 4-2). All nodes in the visualization also have a 

dropdown menu accessible via right-mouse-click that provides additional information and 

external links for each protein (see Figure 4-3). 

 

Figure 4-2 – A reduced PPAAT view.  PPAAT can hide visual features undesired by the user, 

such as predicted interactions and the domains of the query proteins. On the left is C. elegans 

protein ITSN-1 and its interactors, in pink, and on the right is the H. sapiens ortholog ITSN1 and 

its interactors, in blue, as in Figure 4-1. 
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PPAAT relies on data files manually downloaded from Ensembl,156 Inparanoid,157 OrthoMCL,158 

and BioGRID9 or iRefIndex.10 These files are processed into smaller intermediate files, 

extracting cellular, experimentally identified PPIs, including from protein complexes. These files 

then parsed into a JSON file for PPAAT display by a series of Java scripts, taking approximately 

10 seconds on a 3.4 GHz processor, including file IO. We expect that the runtime could be 

significantly decreased with refactoring and more efficient preprocessing, including using an 

online database rather than an offline filesystem. 

 

Figure 4-3 – Dropdown menu for proteins in PPAAT.  PPAAT includes additional 

information and links in dropdown menus for each protein, accessible via right-mouse-click. 

These menus allow users to access more information about the protein and functionality that 

could not otherwise be displayed in the larger view. 

4.2.2 Use Cases 

While PPAAT is still in early development, it supports a variety of use cases pertinent to 

molecular biology research. 

The user has two putative orthologs and would like to evaluate whether PPI network data 

supports the orthology hypothesis. 

Given conservation of protein-protein interactions, it may be expected that orthologs 

should share a higher proportion of orthologous neighbours, or interologs, than non-

orthologous proteins. Some studies have indicated that interaction and interolog 

conservation rates are quite low, especially when the proteins have paralogs, but some 
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ortholog pairs may yet have a higher rate of interaction conservation that would make 

them observable statistical outliers (see Figure 4-1 and Figure 4-4). By identifying when 

proteins have unusually high interolog ratios, PPI data might be used as another evidence 

source for ortholog identification and to evaluate the potential level of conservation of 

gene function. 

 

Figure 4-4 – A PPAAT visualization of paralogs C. elegans ITSN-1 and H. sapiens ITSN2. 

On the left is C. elegans protein ITSN-1 and its interactors, in pink. On the right is H. sapiens 

paralog ITSN2 and its interactors, in blue. In contrast to Figure 4-1, while there are some 

interologs matched between the two proteins, there are substantially fewer than between the two 

orthologous proteins. However, without contextual information, it is unclear whether a 2.61% 

interolog rate is significant or not. 

By also considering the domain data provided by PPAAT, the user may also consider 

network rewiring in the context of sequence changes within the two proteins. A 

gained/lost domain may account for some level of rewiring between the two proteins, 

explaining a lower than expected rate of interaction conservation. Conversely, major 

changes in domain complement may also disqualify putative orthologs (see Figure 4-5). 
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Figure 4-5 – A PPAAT visualization of non-homologous proteins S. cerevisiae BOI1 and C. 

elegans Y44E3A.4. On the left is S. cerevisiae BOI1 and its interactors, in pink. On the right is 

C. elegans Y44E3A.4 and its interactors, in blue. In contrast to Figure 4-1 and Figure 4-4, the 

interolog matched rate is very low and the domain architectures of the two proteins are different, 

suggesting correctly indicating that the two proteins are not homologous. 

The user has two orthologs and would like to evaluate the completeness of their interaction 

data, or identify possible false negative protein-protein interactions involving either 

ortholog. 

If a user expects a certain interaction conservation rate between the two proteins of 

interest, PPAAT could be used to evaluate whether the extant PPI data meets this 

expectation. In the event that the observed interaction rate is much lower than expected, 

one may conclude that there are interactions missing. In this context, PPAAT can be 

considered a PPI predictor, using interolog completion as its predictive indicator.  

PPAAT provides users a list of these predicted missing PPIs for both the two input 

proteins (see Figure 4-6). As one missing PPI could complete multiple interologs, arising 

from duplication of one of the interacting genes, missing PPIs that would complete more 

interologs are listed first, reflecting the relatively stronger strength of these predictions. 

These interaction predictions can be targeted for further analysis or for PPI mapping 

experiments, to confirm their absences from the interactome. 
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Figure 4-6 – PPAAT Predicted PPIs for C. elegans ITSN-1 and H. sapiens ITSN1 based on 

interolog conservation. PPAT can predict missing PPIs presuming interolog conservation. PPIs 

are predicted separately for each input protein, with the predicting orthologous interactors listed 

as evidence for closer examination. As some missing PPIs could satisfy multiple interologs if 

found, PPAAT considers these stronger PPI predictions and prioritizes them in the list order. 

 The additional domain-specific interaction data presented in PPAAT may also help 

simplify this work for the user. If a missing interaction would be paired with a domain-

mediated interaction on the other protein, the user may want to specifically seek a 

domain-mediated interaction, rather than a generic PPI. With well-studied domains, this 

could be a much simpler task, using computational models for domain binding 

specificity.205 

The user has two orthologs and would like to identify additional ortholog pairs from their 

neighbours. 

Alternately, if a user finds that the interaction conservation identified for the two input 

proteins is lower than expected, they may instead attribute this discrepancy to missing 
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orthology pairings between neighbours of the input proteins. By examining the proteins 

listed as “unmatched” for both input proteins, the user may find previously unidentified 

ortholog pairs, which would then increase the number of interologs observed. 

The domain data provided by PPAAT can also be used in this process. With the 

unmatched neighbours specifically attributed to domains on either protein, the user can 

specifically focus on the matching domain on the other protein, if such a domain exists, 

and its unmatched interactors.  

The user has two orthologs and would like to evaluate the interaction conservation between 

them. 

Some users may not have prior beliefs about interaction conservation rate, and are instead 

seeking to clarify their understanding of it. PPAAT offers a tool for users to spot-check 

interaction conservation at various locations across the interactome. This may be 

particularly useful if the user believes that interaction conservation rates vary across the 

interactome. If the user is studying a particular set of orthologs they believe may have an 

unusual pattern of interaction conservation, such as a well-conserved pathway or proteins 

with a particular function, PPAAT allows a user to quickly validate this belief without 

writing their own analysis scripts. 

The user has a network alignment and would like to assess the correctness of this 

alignment, with respect to a given protein. 

Network aligners often produce very large alignments that are optimized based on 

multiple features and across many proteins. For researchers interested in a single protein 

or a small set of proteins, this can be an overwhelming amount of data, and the alignment 

may have ultimately misaligned their proteins of interest in any case. PPAAT offers a 

way for users to quickly pare down an alignment to just their protein of interest and its 

aligned partner, then verify whether this specific alignment was justifiable or not based 

on the protein’s domain signature and their surrounding network neighbourhood. For this 

use case, PPAAT could be used as a viewer app for a network alignment tool. 
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The user has two orthologs and would like to evaluate the appropriateness of interolog 

mapping from one to the other. 

Interolog mapping between orthologs is commonly performed to transfer PPI data from a 

well-mapped species to a poorly-mapped species. However, the general advisability of 

the method is debatable, given low interaction conservation rates. Nevertheless, PPAAT 

could be used to transfer interactions from one ortholog to another, using its listings of 

unmatched neighbours. The domain information provided by PPAAT can be a safeguard, 

disqualifying certain mappings if, for example, the domain that mediates an interaction-

to-be-transferred is absent from the ortholog. 

4.3 Discussion 

4.3.1 Additional Features to be Implemented 

While PPAAT can already be used to answer a variety of biological questions, as described 

above, it remains an early prototype whose feature-set could yet still be expanded. The 

integration of more types of data into PPAAT, either explicitly into the application or via 

connections to other online bioinformatics tools, opens up multiple interesting possibilities. 

One major type of data that PPAAT could additionally integrate is functional data. Protein 

function prediction is often cited as one of the objectives of network alignment; global network 

alignment seeks to align “functionally orthologous” proteins across the interactome, whereas 

local network alignment seeks to align orthologous pathways or complexes, which will typically 

fulfill the same biological function. Function is also more broadly associated with PPIs in 

general, under the “guilt by association” paradigm, used to predict protein function from their 

interacting neighbours.28  

By incorporating protein function as an integrated data source, PPAAT could allow users to 

reconsider their presumptions about the relationship between function and PPI conservation. 

With PPAAT organizing the unmatched and unmatchable proteins by their function, protein 

function could be used to identify where orthology relationships or PPIs are missing from the 

input proteins’ neighbourhoods. A user may find, for example, that PPIs involved in a certain 

function are more or less conserved than average, which could be a novel pattern of interest to 

the user and to the wider interactomics community. PPAAT may also reveal that that one of the 
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input orthologs has neighbours of a unique function, possibly indicating functional divergence, 

which could influence whether functional transfer should be performed between the two 

orthologs. 

PPAAT’s integration of protein sequence data could also be improved. Currently, PPAAT only 

displays the presence of peptide recognition modules on the two input proteins, evenly spaced for 

visual clarity. This could be expanded to include more protein domains, so users can more 

accurately judge the similarity of the two proteins. These domains could also be displayed by 

their relative positions on the protein, so that in the case of domain gain or loss, when there are 

multiples of a given domain type, users can quickly determine which of the domains are 

conserved. 

Further considerations include pre-generating network alignments using popular alignment 

methods and storing their pairings for easy user querying, changing the codebase to allow for 

visualization of paralogs for visualization of post-duplication network conservation dynamics, 

and adding filters for the experimental mapping technologies used to detect interactions. 

4.3.2 The Broader PPAAT Framework: Rethinking Network Alignment 

PPAAT promotes the idea of increasing the value of interactomic data by considering it in small, 

accessible portions and visually integrating detailed, complementary information to aid 

interpretation. Currently, while interactomic data in plentiful in various online databases, such as 

BioGRID and iRefIndex, using the data effectively requires parsing plaintext MITAB files. 

There are also few tools linking interactomic data to other biological datasets, making 

interpretation of interactomic data a complex, technically-involved task. Multiple types of tools 

following this approach could be developed, such as ones that focus on pathways or complexes, 

protein families, or small network regions, perhaps in isolation or in comparison. Rather than 

display domain information and organizing around orthologs and interologs, other tools may 

focus on integrating other data, such as sequence similarity, protein structure, protein function, 

gene expression, subcellular localization, to facilitate integration of interactomic data into other 

studies with diverse goals.  

We believe that such work is essential for the long-term viability of interactomics. Ultimately, 

interactomic research is only as useful as its ability to contribute to the understanding of biology, 
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and interactomic currently stands afield from other molecular biology research. Popular “big 

data” approaches to interactomic research do not generate easily testable hypotheses and are ill-

suited for generating the specific insights sought by researchers, impeding the progress of 

interactomics. As a result, competing interactomic paradigms can only be contrasted at high 

levels of abstraction. Instead, low-throughput experiments are needed to develop a complete 

understanding of the molecular and evolutionary mechanisms that produce the phenomena found 

in “big data” studies. 

While we do not believe that PPAAT alone fill this role, we hope that PPAAT and similar tools 

facilitate this important work, making interactomics more accessible to non-experts using a 

“small data” approach. Hopefully, this increased accessibility will convince researchers of the 

value of interactomics, who will in turn contribute to interactomics by providing new insights, 

perspectives, and directions for research. 

4.4 Conclusion 

The Pairwise Protein Alignment Analysis Tool is a novel visualization tool for network 

alignment. By having a small scope, two query proteins, PPAAT can integrate and visualize 

different data types to provide users a broad perspective on their proteins of interest. As a 

minimalistic web-based tool with no workflow integration, PPAAT is flexible enough for easy 

incorporation into different analyses, making network alignment data and network evolution 

concepts accessible to biologists. 

Analysis tools like PPAAT can empower scientists to draw conclusions, formulate new 

hypotheses and evaluate network alignment by their own standards. This will in turn inform the 

network alignment community how to improve their alignment methods, by generating user 

feedback from the application of network alignment in their own work. Ensuring such tools are 

open to all network alignment methods will allow members the scientific community to assess 

which methods are most useful for their purposes, effectively “open-sourcing” the network 

alignment evaluation process, using practical, realistic criteria. Ultimately, while development of 

tools like PPAAT will require additional effort from the network alignment community, it will 

enable further progress and innovation in network alignment research, as well as supporting 

efforts in related areas of systems biology. 
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 Summary and Future Directions 

5.1 Summary of Thesis 

In this thesis, I focus on the extraction of meaningful biological insights from alignment of 

protein-protein interaction networks (PPINs). I investigate how PPIN alignments correspond 

with existing biological data on protein-binding domains, interologs, and paralogs, and find that 

these are difficult elements for current PPIN alignment methods to account for properly. Given 

these failings, PPIN alignment needs to be reconsidered and reimagined, so that alignment 

methods can produce alignments that are consistent with this known data. I propose that, in order 

to do so, PPIN alignment needs to be critically assessed in a small-scale, detailed manner, to 

develop our understanding of the fundamental mechanics of biological network evolution upon 

which we can later base high-level alignment and analysis methods.  

In Chapter 2, I presented GreedyPlus, an algorithm designed for the alignment of interface-

interaction networks (IINs). With newly available IIN data for SH3 domains in S. cerevisiae and 

C. elegans, I used GreedyPlus to probe some of the mechanisms that underlaid the popular PPIN 

alignment algorithms of the time. Keeping GreedyPlus a relatively simple algorithm, I tested 

how various similarity features impacted alignment quality, and how biological and network 

topology features should be weighted in network alignment. With proper parameterization, 

GreedyPlus produced a near ideal alignment of the two networks, capturing all 16 orthologous 

protein pairs in its alignment, and performed admirably on several simulated yeast SH3 IINs. 

After publishing my GreedyPlus work, my initial goal was to iterate on the algorithm, using new 

H. sapiens SH3 binding data or whole PPINs. However, I was troubled by the existence of many 

similarly performing sets of features and parameters and the prominence of protein BLAST 

similarity among them, despite my efforts to manage overfitting. Additionally, I was perplexed 

that various domain-specific features I had experimented with failed to contribute to good 

alignments. Chapter 3 consists of the fruitful results of various attempts to investigate these 

issues from alternate angles, such as by tracing SH3 domain ancestry, considering paralogs and 

interologs, and examining the impact of other peptide recognition domains on PPIN connectivity. 

I found that while protein BLAST scores, often used by network alignment methods, are 

effective at predicting protein orthology, they are not effective at predicting PPI conservation. I 

also find that the rate of interaction conservation is quite low, and that duplicated genes, which 
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can retain high levels of sequence similarity, have even lower rates. Looking at SH3-mediated 

PPI data, I could not identify a pattern of interaction conservation, finding that putative 

conserved SH3 domains infrequently mediated conserved interactions.  

Altogether, these results indicate to me that PPIN evolution is highly complex, with multiple 

mechanisms at work, and that to devise methods that effectively utilize interactomic data from 

multiple species, better understanding of these mechanisms is required. Chapter 4 represents my 

first effort to pivot in that direction. The Pairwise Protein Alignment Analysis Tool (PPAAT) is 

an HTML-based visualization tool for closely examining pairs of proteins and their network 

neighbourhoods. In the current state of the science, critical, in-depth analysis of network 

alignments is difficult due to the lack of usable tools and the large amount of data. By integrating 

network data, domain data, and orthology data, PPAAT offers researchers a tool to assess 

whether two proteins should be aligned or not, among other possible uses. As an initial entry as a 

data integration/visualization tool designed specifically for close-zoom, cross-species network 

analysis, PPAAT will hopefully promote new work in viewing, characterizing, and clarifying the 

observable artefacts of PPIN evolution, and assist us in understanding network evolution in 

greater depth. 

5.2 Future Directions 

5.2.1 Full Development and Deployment of PPAAT 

In its current state, PPAAT is an immature software tool, more suitable for internal than public 

use. In addition to the additional scientific features detailed in 4.3.1 Additional Features to be 

Implemented, PPAAT requires significant development and testing before it can be deployed as 

a public web application. While designed to use HTML and JavaScript, PPAAT currently lacks 

an online infrastructure. Furthermore, there are design decisions to be made about PPAAT’s 

future direction, whether it should be further developed as a visualization tool or an integrated 

analysis tool, or both. With the goal of PPAAT being to inspire and facilitate the usage of 

interactomic data in biological research, user research must be performed to understand what 

features would be useful to potential PPAAT users, so that PPAAT can be designed to fit into 

their workflow. 
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One major improvement needed by PPAAT that has other external applications is the 

development of a more informative scoring function for indicating the interologous coherence 

between two proteins. Currently, PPAAT shows simple counting statistics, but provides no 

context to determine the significance of the presented statistics. Absent this information, users 

are reliant upon their personal experience and intuition to determine whether a given PPAAT 

view is matched or unmatched enough to draw conclusions from.  

One possible solution would be to develop an orthology confidence score using the observed 

interaction conservation rates between orthologous and non-orthologous protein pairs, perhaps 

generated by a Bayesian predictor. With PPAAT, this would provide users contextual 

information on the significance of the network data visualized before them. A scoring function of 

this sort may have utility beyond PPAAT too, however. Such a score could also be used directly 

in network alignment research, to evaluate the predictive power of a given alignment by 

quantifying the number of protein pairs whose neighbourhoods have been significantly aligned 

or even as a measure for network alignment methods to use explicitly, either in evaluation or 

during the alignment process.  

5.2.2 Interaction/Edge Attributes 

A curious asymmetry in network alignment is that nodes (proteins) have many attributes that 

serve in constructing and evaluating alignments, but edges (interactions) have none. This can 

incentivize network alignment methods to either prioritize correct node alignment and relegate 

edge alignment to an afterthought, as there are no “incorrect” edge alignments, or compromise 

node alignment quality in an overzealous effort to maximize the number of edges aligned. Given 

the empirically observed trade-off between node alignment and edge alignment, as described in 

1.2.4.2 Network Topology Assessment, it is imperative for further network alignment 

development that the relative importance of node alignment and edge alignment be understood.  

One way to resolve this asymmetry may be to catalogue and annotate PPI attributes. Doing so, 

creates the notion of “incorrect” edge alignments, if the annotated attributes of two aligned edges 

are mismatched or incompatible. This will at least partially fix the asymmetry between nodes and 

edges, so the trade-off between their alignment can be better assessed, and provide additional 

depth to the concept of interaction conservation. Additional possibilities for edge attribute 

sources include mediation by specific domain types, structural data, and known but uncatalogued 
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characterizations from well-studied pathways and complexes. While some of this data may be 

sparse, exploring the depths of the available data and developing working examples would be an 

important step towards thinking about PPINs in their entirety, rather than from the traditionally 

gene-based perspective. 

5.2.3 Critical Assessment and Validation of Network Alignment Methods 

While there is extensive literature describing network alignment methods, their uptake in the 

broader scientific community has been rather limited. I hypothesize that this is due to the “big 

data” nature of PPINs and network alignment, which, when combined with data quality concerns 

and unimpressive prediction performance, makes the use of network alignment in smaller scale 

projects currently difficult and of dubious benefit to researchers. However, there is apparently 

little interest in bridging this gap in the network alignment community; one prominent network 

alignment researcher once remarked to me that it was not their job to determine how biological 

insights could be derived from network alignments, and that was “the biologists’ job.” 

I disagree. I believe that it is of primary importance that network alignment research begets 

useful biological applications, and furthermore that network alignment researchers must work to 

ensure that occurs. As a starting point, state-of-the-art network alignment methods should be 

assessed for their ability to make useful biological predictions, using other existing prediction 

methods as a comparative baseline. Comparing network alignment methods against other 

prediction methods, instead of each other,140 will determine the scientific value added by 

network alignment to the current repertoire of bioinformatic tools. This assessment should be 

performed with detailed breakdowns, rather than just summary statistics, so different areas of 

strength and weakness can also be identified, such as, for example, if there are certain classes of 

proteins that network alignment is more or less effective on. 

If this is demonstrably the case, that network alignment is more effective with certain parts of the 

proteome or interactome, then network alignment can be recalibrated to specifically focus on 

these. Such focus may be desirable regardless; a PPIN can be thought of as multiple interaction 

networks overlaid together, and by splitting the PPIN into these constituent subnetworks, we 

might eliminate noisy cross-talk between these networks and clear up evolutionary signals for 

alignment. For example, we could separate out gene regulatory networks for alignment, as 

regulatory interactions have up- and down-regulatory attributes that could guide alignment, or 
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core metabolic networks that we expect to be highly conserved between species, or different IINs 

if we expect that there are different evolutionary processes at work on these biophysically 

distinct interaction types. By first studying these systems in isolation, we can confidently 

determine the evolutionary mechanisms influencing each, and whether these mechanisms are 

generalizable or specific, which can then guide the development of network alignment methods 

designed to reveal these mechanisms at work. 

Such a considered approach should not be seen as retreating from a difficult problem. By first 

simplifying the network alignment problem and refining alignment methods within such smaller, 

more tractable problem domains, we might ultimately end up in a better situation to understand 

and solve global network alignment across the entire interactome. Without critical reassessment 

and recalibration, network alignment research may become increasingly impractical, contributing 

little to our overall understanding of biological systems and evolution. 

5.2.4 Modelling the Mechanisms of Network Evolution 

Unlike with sequence alignment, which benefits from rich knowledge about how DNA and 

protein sequence evolution works,206-209 in network alignment there has been little work devoted 

to developing models for network evolution. While several early methods attempted to elucidate 

evolutionary models, more recent work does not. Currently, network alignment research handles 

network evolution with very high-level approaches, perhaps targeting one or two vaguely 

understood network evolution phenomena. For example, HubAlign76 utilizes nodes identified as 

important by their local network topologies and ModuleAlign79 utilizes the modular organization 

of the proteome. There are no commonly cited network alignment analogues to the Jukes-

Cantor210 or Kimura211 models of DNA evolution, nor the BLOSUM212 and PAM213 sequence 

alignment scoring matrices. Within social network theory, there are established mechanisms like 

triadic closure, local bridges, and assortative mixing, that can help explain the “evolution” of 

social networks over time.214 In contrast, it is very difficult to evaluate whether network 

alignments are capturing biologically relevant phenomena, and which phenomena, or scientific 

artefacts. 

Instead, it may be more productive to understand the basic mechanisms of network evolution and 

build up a comprehensive model thereof, then develop a network alignment method to express 

the information captured within. Simpler network alignment methods that concretely capture 
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known evolutionary phenomena could be iteratively improved to include more phenomena as 

they are found, and would provide certainty to users about what biological information is 

contained within their alignment results. Such a considered, iterative approach would also 

increase the synergy between network alignment and network evolution research: unexpected 

results in a network alignment could point towards new evolutionary phenomena to be 

investigated, and as the dynamics of these phenomena are explained they can be incorporated 

back into new network alignment methods. 

To begin this process requires comprehensive consideration of the accumulated network 

evolution information that currently exists. While some of this information resides within 

explicit network evolution research, much of it may also reside in protein complex research, 

protein structure research, and research focused on known modules and key proteins of interest. 

Much of this research contains observations relevant to the dynamics of network evolution, such 

as how a specific protein complex has evolved between species,215 but this information has not 

been viewed through the perspective of network alignment. Though it may be a time-consuming 

process that may require substantive collaboration with other scientists working in fields other 

than network alignment, theorizing the phenomenological patterns that would emerge from 

known evolutionary dynamics or reconstructing the patterns that have already been observed 

could root network alignment more firmly within established fields of knowledge, providing 

traction for more innovation and applications in future network alignment research. 
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 Additional figures demonstrating the impact of gene 
duplication on interolog conservation 

In 3.2.1 - Interolog conservation across species, the impact of gene duplication on the 

conservation of PPIs is discussed. Figure 3-4 and Figure 3-5 showed that the rate of conservation 

of PPIs from S. cerevisiae, C. elegans, D. melanogaster, and M. musculus in the H. sapiens 

interactome is greatly impacted by the duplication of genes. Figure A-1 and Figure A-2 show the 

complete pairwise comparisons between all five species. 

While Table 3-2 showed the percentage of PPIs that had at least 1 interolog in another species, 

the mean rate of conservation for any given PPI is lower due to the fact that many PPIs are not 

fully conserved amongst all possible interologs. This is possibly due to the loss of one or more 

“copies” of the original interaction after duplication or the PPI is a novel gain in the origin 

species. Furthermore, because some genes are highly duplicated, these genes and their protein 

products, with their lower rates of interaction conservation, have an outsized impact on the 

overall rate of interaction conservation, creating a large source of possible error for scientific 

methods that operate on PPIs with the presumption of conservation. 

 
Figure A-1 - % interolog conservation for different species in various model interactomes. 
(Continued on next page.) 
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Figure A-1 - % interolog conservation for different species in various model interactomes. 
(Continued on next page.) 
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Figure A-1 - % interolog conservation for different species in various model interactomes. 
(Continued on next page.) 
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Figure A-1 - % interolog conservation for different species in various model interactomes. 
(Caption on next page.) 
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Figure A-1 - % interolog conservation for different species in various model interactomes.  
This figure shows the distribution of conservation rates per PPI in the origin species, where a 

value of 1.0 indicates that the PPI is conserved between all orthologs of the protein interactors in 

a target species, and 0.0 indicates that no interaction is ever found between any of the target 

species orthologs. Compared to Table 3-2, which presented the % of PPI that had any conserved 

interolog in the human interactome, these rates of conservation are much lower, as there are 

often multiple orthologs in the target species for any given protein in the origin species. In the 

top right are listed the mean rate of conservation for a given PPI in the origin species amongst all 

possible interologs in the target interactome, and the total rate of conservation of all possible 

interologs in the target species. 

 

 
Figure A-2 – % interolog conservation for PPIs with known interologs, normalized by the 

number of potential interologs. (Continued on next page.) 
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Figure A-2 – % interolog conservation for PPIs with known interologs, normalized by the 

number of potential interologs. (Continued on next page.) 
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Figure A-2 – % interolog conservation for PPIs with known interologs, normalized by the 

number of potential interologs. (Continued on next page.) 
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Figure A-2 – % interolog conservation for PPIs with known interologs, normalized by the 

number of potential interologs. Due to gene duplication events resulting in many-to-many 

ortholog relationships, some PPIs can be conserved more than once, resulting in multiple 

potential interologs. These histograms show the level of interolog conservation of PPIs, grouped 

by the maximum number of potential interologs that could have been found based on the number 

of orthologs in the target species. PPIs with no interologs were excluded, as they overwhelmed 

all other PPIs due to low overall rates of interolog conservation. 
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 Protein-protein interactions of human intersectin and 
its orthologs 

In 3.2.3 - The importance of domain architecture in protein-protein interaction conservation, the 

known SH3 interaction data for H. sapiens (human) intersectin proteins (ITSN1 and ITSN2) and 

their orthologs in C. elegans (worm, ITSN-1) and S. cerevisiae (yeast, EDE1) were analyzed. 

The protein-protein interactors for these proteins are listed below, using PPI data from 

iRefIndex, with SH3-specific interactions split out. The worm46 and yeast49 SH3 binding data 

were experimentally derived using phage display and their targets subsequently verified with 

yeast-two-hybrid. The human SH3 binding data50 was predicted based on phage display 

experiments. 

Table B-1 – The protein interactors for human ITSN1 and ITSN2, as well as their yeast 

and worm orthologs. 

Protein/Domain Interactors 

Yeast EDE1 

AEP1, AKL1, APL1, APM2, ARE1, ATG26, ATP25, BUD3, BZZ1, 

CHC1, CLC1, CLN2, CMD1, CMK1, CMK2, COP1, CYM1, CYS4, 

DUF1, ECM25, ECM29, EDE1, END3, ENO1, ENT1, ESA1, ETP1, 

FRK1, HRR25, IMG1, IMG2, IST2, LAS17, LSB3, MET10, MHR1, 

MRM1, MRP20, MRP49, MRP7, MRPL1, MRPL10, MRPL13, 

MRPL15, MRPL16, MRPL17, MRPL20, MRPL22, MRPL23, 

MRPL24, MRPL27, MRPL28, MRPL3, MRPL35, MRPL36, MRPL39, 

MRPL4, MRPL44, MRPL6, MRPL7, MRPL8, MRPL9, MSS51, NAF1, 

NUP42, OYE2, PAL1, PHO85, PKC1, PRK1, PSH1, PXA1, RAD53, 

RET2, ROM2, RPA34, RPL11A, RPL12A, RPL13B, RPL16B, 

RPL19A, RPL28, RPL2A, RPL35A, RPL38, RPL6B, RPL9A, RPN11, 

RPS11A, RPS14B, RPS31, RPS6A, RSC8, RTC6, SEC26, SEC28, 

SEC9, SGM1, SHQ1, SLA1, SLA2, SMT3, SOV1, SPC72, SPR3, 

SRO9, SSC1, STM1, SWE1, SYP1, TRM3, UBI4, UTP20, YAP1802, 

YCK1, YML6, YPT7 

Worm 
ITSN-1 

Non-
SH3 

ALX-1, APA-2, APB-1, C08F8.2, C11E4.6, C12D8.1, CED-6, CHC-1, 

CLIC-1, DAB-1, DPY-23, DYN-1, EHS-1, EPN-1, EPS-8, F10D7.5, 

F10E9.3, F41H10.3, F46H5.7, F56D3.1, F59E12.9, F59G1.8, FLN-1, 

HCP-2, HGRS-1, HPK-1, HPO-34, IFA-1, ITSN-1, KEL-8, LEV-11, 

LFI-1, LIN-65, MSP-10, MSP-113, NURF-1, PCF-11, PQN-87, RME-4, 

SAP-49, SAS-5, SEC-31, STAM-1, SUMV-1, TAG-163, TFG-1, 

UBQL-1, UNC-11, W09D10.1, WWP-1, Y106G6D.7, Y44E3A.4 

SH3 
#1 

C06A6.2, C36C9.1, CSN-5, FIGL-1, LST-1, MAB-10, SQV-4, 

Y43F8C.6 

SH3 
#2 

UNC-26  
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SH3 
#4 

B0286.3, NUM-1, Y57A10A.1, Y57G11C.22 

SH3 
#5 

B0286.3, Y77E11A.2  

Human 
ITSN1 

Non-
SH3 

AGFG1, AGFG2, AP2B1, ARF6, ARFIP2, ARHGAP31, BECN1, 

CCNO, CDC42, CEP85L, CLIP2, CLTC, CSNK2B, CYTH1, DES, 

DISC1, DLGAP1, EEF1A1, EPHB2, EPN2, EPS15, EPS15L1, 

FCHSD2, FNBP1, FNBP4, GCC1, GOLGA5, GP6, HIP1, INPPL1, 

ITSN1, ITSN2, KHDRBS1, KIF16B, KIF5A, LMO4, MAPK6, 

MAPK8IP2, MRPL20, MTUS2, PACSIN3, PAK3, PDCD6IP, PDE4D, 

PFDN5, PHGDH, PICALM, PIK3AP1, PIK3R1, PK, PLK1, PPFIA2, 

PPL, PREX1, RAB11FIP2, RAB5A, RABEP1, RAI14, RNF40, 

RPS6KA5, SCAMP1, SCOC, SF3B4, SGIP1, SH3GL2, SH3KBP1, 

SMARCC2, SMNDC1, SNAP23, SNAP25, SNX5, SPDL1, STON2, 

SYNJ2, TK1, TRIM8, TSG101, UBE2K, UNC119, WAS, WASL, 

WBP11, ZFPM2 

SH3 
#1 

ADAM12, ANK3, ARAP1, CBL, CBLB, CBLC, CNTN2, DAB2, 

DAG1, DOCK3, DOCK4, FAM162B, FGD5, GAREM, GAREML, 

HCN2, HERC1, IL31RA, LATS1, MYO15A, NRG1, OBSCN, PDZD8, 

PIK3C2B, REPS1, REPS2, RHOU, RUSC1, SDC3, SH3D19, 

SH3PXD2B, SIRT1, SOS1, SOS2, SPRY2, SYNJ1, TNK2 

SH3 
#2 

RICTOR 

SH3 
#3 

ADAM8, ANKRD55, ARHGAP32, ARHGEF5, ASAP1, ASAP2, 

BCAR1, CACNA1D, CACNA1E, CACNA1F, CAMKK1, CAMSAP1, 

CBL, CBLC, CELSR3, CEP170, CEP170B, COL12A1, DAG1, DNM1, 

DNM3, DOCK3, DOCK4, DOCK5, FNDC1, GAREM, GAREML, 

HCN4, HERC1, KCNA5, NRG1, OBSCN, OBSL1, PCLO, PIK3C2B, 

PIK3R2, PKD1, PTK2, PTPRN2, REPS1, REPS2, RET, RIMS1, 

RIMS2, SCN2A, SH3PXD2B, SOS1, SOS2, SPRY2, ST5, TEC, TNK2, 

TRIM67 

SH3 
#5 

AMPH, ARAP1, C1ORF168, C21ORF58, C2CD2, CASKIN1, CBL, 

CBLB, CDC42EP2, CNTN2, DAB2, DAG1, DLG5, DNM1, DNM2, 

DNM3, DOCK4, DSCAML1, FAM43A, FAT1, FGD5, GAREM, 

GAREML, HCN3, HERC1, KNDC1, MAP4K4, MYO15A, NCKIPSD, 

OBSCN, PDZD8, PEAK1, PHLDB1, PIK3C2B, PKN3, PRKCDBP, 

PTK2, PTK2B, REPS1, RHOU, RIMS1, RIN1, ROBO2, RUSC1, 

SETD5, SH3D19, SH3PXD2B, SHANK2, SIPA1L3, SOS1, SOS2, 

SPRY2, SYNJ1, TNK2, TP73, TTBK2, WDR44, ZNF474 

Human 
ITSN2 

Non-
SH3 

AGT, AHDC1, AMPH, ANKRD17, BCCIP, CCDC88C, CHIC2, 

CPSF6, DLGAP1, DST, EGFR, EIF3A, EIF3B, EIF3C, EIF3E, EIF3G, 

EIF3H, EIF3I, EIF3L, EIF4A3, EPS15, EPS15L1, ERC1, FASLG, 

FCHSD1, FCHSD2, FNBP4, GOLGA2, GOLGA8A, GOLGB1, 

GPNMB, HNRNPK, HOOK2, ITPKA, ITSN1, ITSN2, KCTD10, 

KDM1A, KHDRBS1, KIAA1549, KXD1, LARP6, LSM8, LTBP4, 

LUC7L3, MAP4K3, MBNL1, MCRS1, MEGF10, NBR1, NR2C2, 

PDCD6IP, PDE4DIP, PIK3AP1, PPP1CC, PSEN1, PTN, RABEP1, 
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RBMX, RNF20, ROCK1, RUFY1, SEMA6A, SH3GL1, SH3KBP1, 

SNAP29, SRGAP2, STX4, SYN1, SYNJ2, TACC1, TBL3, TMF1, 

TRIO, WAS, WASF2, WASL, WIPF2, YLPM1, YTHDF1 

SH3 
#1 

ABR, ARAP1, CBL, CBLB, DNM2, DOCK4, DSCAML1, DYRK2, 

FGD5, GAREML, GDAP2, HERC1, LATS1, MYO15A, NCF1, 

NHSL2, OBSCN, PDZD8, PHLDB1, PIK3C2B, PRRC2B, RBM33, 

REPS1, RIMS1, RUSC1, SIPA1L3, SIRT1, SOS1, SOS2, TNK2 

SH3 
#2 

ABL2, CUX1, PRKD2, SYNE2 

SH3 
#3 

ANKRD55, APC, ARAP1, ARAP2, ARHGAP21, ARHGAP30, 

ARHGEF5, ASAP1, ASAP2, CBL, CBLB, CDK12, CEP104, CEP170, 

DENND1C, DOCK4, DOCK5, FGD1, HERC1, LRRC27, MYO15A, 

OBSCN, PIK3R1, PTK2, RIMS1, RIMS2, SOS2, SYNE2, TAGAP, 

TNIK, WIPF1 

SH3 
#5 

AAK1, ARAP1, ARHGEF15, ASAP1, ASAP2, BIN1, C2CD2, 

CASKIN1, CBL, CBLB, CBLC, DEPDC5, DOCK4, DOCK5, 

DSCAML1, EVL, FGD5, FSIP2, GAREML, HCLS1, HERC1, INPPL1, 

IQSEC2, KNDC1, MAP4K4, MICAL1, MYO15A, NCF1, NOXO1, 

OBSCN, OPHN1, PHLDB1, PIK3C2B, PKN3, PRR27, PRRC2B, 

PTPN12, PTPN22, RAPH1, RBM26, REPS1, RIMS1, RIN1, RIN3, 

ROBO1, RUSC1, SH3D19, SHANK1, SIK1, SIPA1L3, SOS1, SOS2, 

SPATA2L, TNK2, TTBK2, UTRN, WDR44 

Table B-1 – The protein interactors for human ITSN1 and ITSN2, as well as their yeast 

and worm orthologs. Using SH3 binding data, we identify various PPIs known to be mediated 

by those SH3 domains and split out their binding partners. Protein interactors not known to bind 

to an SH3 domain are all grouped under “Non-SH3”. While the worm SH3 binding targets are 

drawn from experimental data, the human SH3 binding targets are drawn from predicted data; 

thus, the total number of interactors assigned to human ITSN1 and human ITSN2 in this table 

exceed the values presented in Table 3-5. 
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