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Abstract

Network alignment is an emerging analysis method enabled by the rapid large-scale collection of
protein-protein interaction data for many different species. As sequence alignment did for gene
evolution, network alignment will hopefully provide new insights into network evolution and

serve as a new bioinformatic tool for making biological inferences across species.

Using new SH3 binding data from Saccharomyces cerevisiae, Caenorhabditis elegans, and
Homo sapiens, | construct new interface-interaction networks and devise a new network
alignment method for these networks. With appropriate parameterization, this method is highly
successful at generating alignments that reflect known protein orthology information and contain
high network topology overlap. However, close examination of the optimal parameterization
reveals a heavy reliance on protein sequence similarity and fungibility of other data features,
including network topology data, an observation that may also pertain to protein-protein

interaction network alignment.

Closer examination of interactomic data, along with established orthology data, reveals that
protein-protein interaction conservation is quite low across multiple species, suggesting that the
high network topology overlap achieved by contemporary network aligners is ill-advised if

biological relevance of results is desired. Further consideration of gene duplication and protein



binding sites reveal additional PPI evolution phenomena further reducing the network topology
overlap expected in network alignments, casting doubt on the utility of network alignment

metrics solely based on network topology.

Instead, | suggest a new framework to think about protein-protein interaction network alignment
focused on generating and validating small-scale inferences. | create a prototype alignment
visualization and analysis tool to facilitate this approach, which will hopefully aid researchers in
learning more about the mechanisms of network evolution and how network alignment can

model them.
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Chapter 1

Background



1 Background

1.1 Introduction

1.1.1 Comparative Evolution

Evolution is the fundamental organizing principle in modern biology. The markers of
conservation and divergence are some of the few sensible patterns by which biological
knowledge can be organized. Where conservation is found, we can infer the existence of
selective forces acting to preserve some key functionality. Where divergence is found, we can
hypothesize the rise of some new development, either intrinsic or extrinsic. Observation of both
conservation and divergence requires comparison, which occupies an exceptionally prominent

role in biological data analysis.

Alignment is a uniquely biological approach to comparative analysis. The sequence alignment
algorithms Needleman-Wunsch! and Smith-Waterman,? the sequence alignment search heuristic
BLAST?, and multiple sequence alignment algorithms like MUSCLE?* are ubiquitous and
indispensable tools in computational biology. Aligning genes/proteins with these tools has been
essential for understanding their function, such as by identifying protein domains, the structural,
functional and evolutionary units that make up a large part of proteins. Structural alignment of

proteins has also proven a similarly important tool.®

Sequence and structure data are, however, alone inadequate for study of complex biological
systems, because they do not naturally capture the interactions between genes/proteins. Scientists
interested in understanding complex biological systems have had to create new methods and
models to represent these systems. Commonly, this is done by considering several proteins that
collaborate for a specific cellular process, known as a functional module. These modules include
complexes, wherein many proteins gather together to perform a particular function, and

pathways, wherein proteins are organized in a process to perform a particular function.

Detection and confirmation of protein complexes and pathways, however, was difficult using
traditional experimental methods. Protein complexes needed to be purified and crystallized, a
difficult and costly procedure that is highly sensitive to chemical conditions. Pathway detection
often involved multiple experiments, such as using gene coexpression experiments to identify

putative pathway participants and then performing gene knockout experiments to confirm their



functional cooperation. These requirements substantially limited the number of pathways and
complexes that could be identified and characterized, which then further limited comparative

study of these modules between species.

Now, with the arrival of high-throughput protein-protein interaction (PPI) methods, we have
entered a new period of big data comparative systems biology. Instead of experimental data
generation lagging badly behind hypothesis generation, PPI data is now generated en masse,
awaiting analysis and exploitation. While the data is still far from perfect or complete, its

plentifulness has ushered in a new approach to systems biology, one which is expansive and

ambitious, limited more by what can be understood rather than what is prohibitively costly.

1.1.2 Protein-Protein Interactions

Proteins in vivo need to cooperate in order to perform the myriad biological functions required to
sustain life. This cooperation often occurs via physical interaction between protein molecules,
called protein-protein interactions (PPIs). These interactions can take a variety of forms, ranging
from transient interactions to longer-term stable interactions, between pairs of proteins or as
multi-protein complexes, and can include self-interactions such as in homodimers. Scientists
have long organized proteins into discrete functional units, known as modules, such as pathways
and complexes for study. These modules are bound together by PPIs, and in this manner, PPIs
have implicitly served as a foundational element of systems biology, but they were not

considered independently and broadly.

Over time though, PPI data has been gathered in ever-increasing quantities, due to the
development of high-throughput methods for the detection of PPIs, or PP1 mapping, such as
yeast-two-hybrid (Y2H), protein complementation assays (PCA), and affinity purification
followed by mass spectrometry (AP-MS). There has been dramatic growth recently, in both the
number of species with PPI data and the number of PPIs for each species, as PPl mapping
experiments have proliferated.

With this newfound availability of PPI data, scientists have begun to focus on PPIs collectively,
to see what biological knowledge can be learned from direct study of PPIs and incorporation of
PPI data with other biological data. The set of all PPIs in a given species is known as the

interactome, which can be represented as a protein-protein interaction network (PPIN), wherein



the nodes are proteins and the edges interactions between physically interacting proteins. PPINs
are the only way currently available to model most, if not all, the biological systems within the
entire cell simultaneously. While there are significant limitations in relying solely on PPI data for
such modelling, there is immense power in collecting an entire interactome into a single network

for analysis.

The number of computational biology tools for PPIs and PPINs has increased greatly in recent
years. These include visualization software like Cytoscape,® PPI predictors like PIPE,”® and PPI
databases such as BioGRID, iRefIndex, and others.®?° PP data can also be used to infer protein

essentiality? and identify disease-causing genes and mutations.?>2°

Perhaps the most popular usage for PPI data is for gene function prediction. Traditionally, gene
function predictions were made based on the sequence homology between a protein of known
function and a protein of unknown function. Conservation of sequence implied conservation of
function. However, this approach is relatively limited, due to the limited number of homologous
protein pairs matching this specific profile. With PPI data, because proteins often interact with
one another in service of a biological function, an uncharacterized protein’s function can often be
inferred via its interactions with characterized proteins with known function.?®?” This is known
as the “guilt by association” model, and is used by protein function predictors such as
GeneMANIA, which integrates PPI data with gene expression and other data to predict protein

functions across the entire proteome.?®

Despite the power of and interest in PPI data for driving biological research, it must be noted that
PPlIs are a crude model of the biological systems working in the cell. There are a number of
representational limitations when modeling PPIs as a network, such as the inability of PPI data to
capture interactions between proteins and other types of molecules, such as ribosomal RNA,

which may hide indirect but important interactions between protein molecules.

There are also abstractions made due to the limits of current PPl mapping technology and the
desire to create comprehensive datasets. For example, PPI data is aggregated irrespective of cell
type and the cellular conditions under which the data was collected, despite the fact that they can
greatly impact gene expression, alternative splicing, and post-translational modification.
Furthermore, while PP1 mapping technology has seen many recent developments, PPI

characterization studies have not kept up, and so very little is known about the nature of many



PPlIs, such as whether they are permanent or transient, strong or weak, or dependent on specific
cellular conditions. Finally, PPI data is often organized around genes rather than proteins, thus
sidestepping the issues of how to select the correct protein isoform, in the common case of
multiple proteins encoded by the same gene, and how to deal with less reliable, in comparison to

genetic data, proteomic data.

While some of these limitations may yet be overcome with technological advancements, others
may be entirely insurmountable. What the consequences of these limitations are is yet unclear;
only by continuing to utilize the data will we encounter the limitations of our current approaches
to using PPIs to learn about biology, and discover how we might rectify some of the

shortcomings of current approaches.

1.1.3 Protein-Protein Interaction Data Quality

Despite major advances in PPI mapping methods, there remain major uncertainties when
working with PPI data. Generally, a single, experimental hit in a PPI database is sufficient for a
PPI to be considered true, an approach that may be particularly susceptible to false positives.
Troublingly, studies indicate that Y2H, PCA, and MS detect highly disparate sets of PPIs, so
they are poorly suited for mutual validation.?® Additionally, even estimating the rate of false
positives is difficult, due to how PPI data is aggregated. In the absence of a comprehensive PPI
mapping project, existing PPI data comes from a pastiche of uncoordinated PPl mapping
projects, each using slightly different protocols. Nor is there an established consensus on the
false positive rate (FPR) for experimentally detected PPlIs, as early estimates of species

interactome sizes have long since been exceeded.?%*

Similarly, false negative data likely troubles current PPI datasets. With scientists independently
conducting PPI mapping experiments, there is significant social bias in the proteins selected for
experimentation, based on their biomedical relevance and ease of availability.313? Proteins not
covered by PPl mapping experiments cause inexplicable gaps in the known interactome, a
phenomenon that is particularly noticeable when working with smaller interactome datasets, such
as when Zhang et al. added 1680 FANCD?2 PPIs to BioGRID’s M. musculus PPIN, which at
the time only held 39 146 PPIs,2%% for a sudden 4.3% growth, when McFarland et al. added 171
SNCA PPIs in 2008,%+¢ or when Piazzi et al. added 188 PLCB1 PPIs in 2013.3"3 These sudden



additions could dramatically affect both past and future results that are based on specific

database versions, hampering reproducibility, biasing analyses, and prompting false conclusions.

Furthermore, because PPI detection methods are not consistently effective for different PPIs, a
single study may be insufficient to fully map a protein’s PPIs, which instead would require
coverage from multiple experiments with different methods. For example, membrane proteins
are a large fraction of the proteome, nearly 30%, but are badly underrepresented in PPI databases
because of the difficulty in applying established PPI detection methods to them.3%-4! Determining
whether a protein truly has few PPIs or was not covered by PP mapping experiments is difficult
because PPI databases do not store negative results, except small specialized databases such as
Negatome.*? Consequently, the only way to definitively identify a non-interaction from the
literature is an in-depth review of PPl mapping studies, a technique at odds with the “big data”
approach often embodied by PPI analyses.

Thus, while the availability of PPI data is increasing rapidly, there remain persistent data quality
issues that may not be resolved simply by conducting more PPl mapping studies. Generating
more PPI data will not innately improve the reliability of the data nor establish a known quality
level for the data. Instead, further PPI mapping studies may need to be coordinated to be
mutually validating, between both high-throughput and low-throughput methods so as to
establish their discrepant capabilities and to distinguish those discrepancies from technical error
or experimental incompleteness. By increasing the depth of PPI mapping coverage, rather than
simply its width, we can hopefully improve our certainty of PPI data quality. Until then, though
PPI data holds great potential for scientific discovery, analyses must be carefully designed to

avoid erroneous conclusions resulting from variable data quality.*®

1.1.4 Interface-Interaction Networks

One key abstraction in PPIN models is that proteins are treated as monadic. In reality, PPIs
typically are not mediated by the entirety of the participating proteins; instead, they operate
between specific binding interfaces on those proteins. Interface-interaction networks (1INs) are a
refinement of PPINs wherein proteins are subdivided into their separate interaction interfaces.**
IINs can be represented using a traditional graph model where a node represents a specific
binding site and an edge represents a physical interaction between two binding interfaces on their

respective proteins, or a hypergraph model in which protein nodes contain interface nodes. In the



hypergraph model, 1INs are a higher resolution version of the PPIN, layering on additional

binding interface information where available.

The higher resolution of 1INs allows for new biological insights that cannot be derived from
standard PPINs. For example, IINs can distinguish between “date hubs” — proteins that interact
with many partners, but at different times or in different locations — and “party hubs” — proteins
that interact with many partners simultaneously (see Figure 1-1).*> While these distinct types of
hub proteins will appear identically in a PPIN, in an IIN, the former will have few binding sites
that are reused for many different interaction partners whereas the latter will have many binding
sites that are specific for each interaction partner. This is useful to help elucidate the evolutionary
processes and constraints acting on hub proteins. The study of I1INs will also help interpret how
protein domain and binding site gain and loss affect the PPIN, predict PPIN perturbations caused
by sequence mutations that affect binding sites, and allow in-depth analysis of how protein-

protein interactions are formed and lost.*6-48

Network topology differences between IINs and PPINs, however, mean that algorithms designed
to operate on PPINs may not function properly with 1INs. While PPINs are often sparse, IINs are
much more so, with each PPIN node (protein) split into multiple nodes that represent the
different binding sites on that protein. Similarly, while PPINs exhibit a hub and spoke topology,
with many low-degree and fewer high-degree nodes, this characteristic is exaggerated in 1INs.
For example, protein-recognition modules, such as protein kinases or SH3 domains, are often
capable of binding many different proteins, leading to relatively few high-degree nodes
connected to many low degree nodes. Additionally, due to binding specificity similarities,
different domains will often recognize the same ligands, forming a multi-fan network topology.
Methods that depend on the neighbourhoods of nodes being topologically distinct to generate
their alignments get confused by these repeated patterns and thus perform inconsistently (see

below for examples).
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Figure 1-1 — An example of the additional detail provided by interface-interaction
networks. In a traditional protein-protein interaction network (top), proteins A, B, and C appear
identical, based on their interactions with proteins D and E. However, with additional interface-
specific information, as shown in the interface-interaction network (bottom), they can be
distinguished. Protein A has two distinct interfaces that accommodate binding with proteins D
and E, indicating that concurrent binding may be possible. Protein B has only a single interface
though, which indicates that proteins D and E bind to it competitively. Protein C interacts with
proteins D and E differently, possibly binding multiple protein E molecules concurrently. In the
interface-interaction network, all five proteins have recognizably distinct interaction behaviour.
For clarity, the interface-interaction network is shown as a hypergraph rather than a graph.



However, isolating PPIs to these submolecular interfaces, which can be simply short
subsequences but also complex structures (see Figure 1-2) formed from different sections of the
polypeptide, is very difficult. Hence while networks that capture the specific interfaces in PPIs,
called interface-interaction networks (1INs),** would more precisely model the physical
interactions between proteins, they are no substitute for PPINs due to the sparsity of data. Some
experimentally mapped interface-interaction data sets have recently become available, such as a
set of PPIs mediated by SH3 domains in Saccharomyces cerevisiae, Caenorhabditis elegans, and
Homo sapiens.*649°0 SH3 domains are peptide-recognition modules that bind to short linear
peptides with characteristic proline-rich motifs. In graph form, the resulting SH3-mediated IINs
are bipartite, though this may not be generally the case with other interface types (see Figure
1-3). Due to this bipartite property, certain network topology motifs, such as cliques, are absent
while others, such as 4-cycles, are highly enriched, and analytical techniques designed for use on

PPINs may not work with TINs.
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Figure 1-2 — Figure 1 from Comprehensive Analysis of the Human SH3 Domain Family
Reveals a Wide Variety of Non-canonical Specificities.>° Depicted are the canonical structures
for protein-protein interactions mediated by SH3 domains. The SH3 domain is a complex, 3-
dimensional structure consisting of approximately 60 amino acids, while its target ligand, shown
as a black arrow in (A) and (B), is a one-dimensional peptide chain of approximately 8 amino
acids. (Reproduced with permission.) Original caption: (A) Representative crystal structures of
SH3 domains in complex with class | (left, CTTN-1/1, PDB: 2D1X) or class |1 (right, CD2AP-
1/1, PDB: 3U23) peptides. The peptide backbone is shown as a black tube with the C-terminus
indicated by an arrowhead and side chains shown as colored sticks, as follows: Pro® (yellow),
Pro*® (pink), Arg 2 in class | or Arg*® in class Il (blue). The SH3 domain backbone is shown as a
gray ribbon and the residues that interact with the peptide are represented as spheres numbered
according to the SH3 domain family alignment (Table S1) and colored to match the peptide
residue that they contact. (B) Surface representation of the SH3 domains colored as in (A). (C)
Schematic depiction of class | and class Il peptide recognition. Peptide residues are depicted as
triangles colored as in (A). The SH3 domain sites are depicted as gray boxes numbered
accordingly.
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Figure 1-3 — A representative subnetwork of the S. cerevisiae SH3-mediated interface
interaction network. Depicted in blue are four SH3 domains from BZZ1, MYO3, and MYO5;
in pink are their binding sites, with the start and stop positions of their protein subsequences in
parentheses. While SH3 domains can target the same site, they are not known to bind to each
other, creating a bipartite network structure. Furthermore, since most SH3 domains bind to many
binding sites, this creates a hub-and-spoke network topology wherein high-degree SH3 domain
nodes occupy central hub positions surrounded by lower-degree binding site nodes.

1.2 Protein-Protein Interaction Network Alignment

One emerging new application for protein-protein interaction data is network alignment.
Specifically, network alignment typically refers to the alignment of the PPINs generated from the

whole or partial interactomes of different species, though the alignment of other networks is also
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possible, such as metabolic networks or gene coexpression networks.>*>* Network alignment is
explicitly a tool for assessing comparative systems evolution via direct comparison of PPINs to

identify conserved and divergent elements.

In its most basic form, given two PPINs, G1 = {V1, E1} and G2 = {V2, E2}, wherein each node
represents a protein and each edge a PPI, an alignment between G; and G is some injective
mapping between {(u1 € Vi, v1 € V2), (U2 € V1, V2 € V2), ..., (Un € V1, Vn € V2)}, Where n < |V
and n < |V|.%® This formulation greatly simplifies the network alignment problem, though there
are still O(n!) possible alignments to consider. There are many variations on this formulation in
the published literature. Among them are alignments of multiple networks, those with many-to-
many equivalence classes rather than one-to-one injective mappings, and those that allow
proteins to be aligned to multiple partners. These distinct formulations are inspired by various
data, algorithmic, and biological considerations, and there is no consensus on a superior or single
correct formulation. As such, in reviewing the existing network alignment literature, an

“alignment” will refer to this simplest formulation unless otherwise noted.

1.2.1 Theoretical Considerations

The premise of network alignment is that given that PPIs are functional in nature, their evolution
must be functionally constrained, and so the network topology of PPINs must also be
functionally constrained. Then, as with sequence alignment performed on genes/proteins,
network alignment performed on the interactome should be able to reveal the evolutionary
history of the interactome. For example, a pathway or complex that is highly conserved between
species would indicate a very constrained, possibly essential, function. Alternately, if a region of
a PPIN is highly rewired in another PPIN — that is, some proteins in one species have vastly
different interaction partners from their orthologs in another species — this indicates a lack of
functional conservation for those proteins, and perhaps even the evolution of new molecular

functions or modules.

By general consensus, network alignment has broadly been divided into two sub-problems, based
on the expected output. This division is inspired by the distinction between local and global
sequence alignment. In global network alignment (GNA), the inputs are two (or more) large
networks, prototypically the whole interactomes of different species, and the output is an

alignment between most, if not all, of the nodes of those networks.* In contrast, in local network
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alignment (LNA), there is no expectation that the output alignment will cover most of an
interactome. Instead, LNA accepts as input one or more large PPINSs, plus possibly a small query

network, and produces multiple small alignments of subnetworks that may overlap.

There are several established problems in computer science theory that resemble the network
alignment problem. In the trivial case of aligning a network to itself, network alignment is akin
to the graph isomorphism problem, which is of unresolved complexity, though a quasi-
polynomial algorithm has recently been proposed.®®*’ In the case of aligning a network with a
subnetwork, as might occur when querying an interactome with a pathway or a complex,
network alignment is akin to the subgraph isomorphism problem, which is NP-complete.*® In
practice, however, neither of these problems are realistic representations of the biological
considerations of network alignment; generally, there is no expectation that a meaningful exact
(sub-)network match will be found, due to network evolution and rewiring. It is precisely
because exact matches are not expected that network alignment holds relevance; if PPINs were
fixed in the absence of evolutionary dynamics, the network alignment problem would simply be

the problem of “aligning” proteins, already largely solved by sequence alignment.

Given that network rewiring results in distinct networks that should nevertheless be alignable,
network alignment may best be considered a specific case of the inexact graph matching
problem.%® However, the biological characteristics of PPINs and our interest in the evolution of
networks establish network alignment as a unique problem in need of novel methods, though
prior inexact graph matching methods may still prove useful.

1.2.2 Local Network Alignment

Within network alignment, local network alignment (LNA) refers to alignment methods that
produce smaller subnetwork alignments, in contrast with global alignment which attempts to
align whole interactome networks. With its smaller scale, local alignment is computationally
simpler and conceptually grounded in biology, as the aligners aim to identify pathways, protein

complexes, or other connected network modules of interest to biologists.

Created in 2003, the first popular network alignment algorithm, PathBLAST, is a local alignment
method that intends to identify pathways in a PPIN by alignment.®® Taking a query, which may
either be a pathway of interest or a larger PPIN, and a target interactome, PathBLAST merges
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the two networks into a global alignment graph, based on sequence similarity between the
protein nodes as determined by BLAST (nodes merged if E-value < 107?). Paths through this
global alignment graph are then scored, with a composite Bayesian scoring function that attempts
to assess the likelihood of true protein homology and true PPI identification,%! and high-scoring
paths are returned as aligned pathways. The scoring function also includes consideration for gaps
or mismatches in the aligned pathways, penalizing their score but still allowing for alignment if
the overall score is sufficient. A later iteration, NetworkBLAST, also aligned protein clusters or
complexes using a seed-and-extend algorithm, which builds seeds of three or four nodes for each
node in the network, and then uses a local search heuristic, adding high-scoring neighbours and
removing low-scoring members, to expand the seed to up to 15 proteins (not higher, due to

computational limitations).%?

PathBLAST and NetworkBLAST established many of the characteristic features of LNA
methods, such as the use of a seed-and-extend algorithm, the use of a global alignment graph,
and a statistical scoring function based on a network evolution model. Though how each of these
components and how they are assembled vary from method to method, most LNA algorithms
retain these key features, distinguishing them from GNA methods. NetAligner adds additional
edges to the global alignment graph, filling in edge gaps/mismatches based on the assumption
that interacting proteins evolve at similar rates.®> MawISh includes duplication as a third
evolutionary event to the model underlying its scoring scheme.®* Graemlin uses a scoring matrix
to allow searches for arbitrary structures.®® AlignNemo uses connected 4-subgraphs as seeds to
initialize the seed-and-extend algorithm, which then connects seeds together to form an
alignment.®® AlignMCL uses a Markov clustering algorithm to form an alignment from the
global alignment graph.®” GASOLINE uses bootstrapping to stochastically, iteratively extend
seeds, and is capable of aligning multiple networks simultaneously.%®

In recent years, however, there has been a decline in interest in LNA research, with GASOLINE
being the last prominent LNA method published in the last five years. The attention of the

network alignment community has largely shifted to focus on global network alignment instead.

1.2.3 Global Network Alignment

In global network alignment (GNA), the objective is to “find the best overall alignment between

the input networks,” as described in the paper describing, IsoRank, the first popular GNA
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method.>® IsoRank formulated the GNA problem as a spectral problem, creating an eigenvalue
equation and then using an iterative algorithm to solve for the principal eigenvector. The
eigenvalue equation used by IsoRank, like that used by PathBLAST, consists of two components
added together: a protein sequence similarity component, E-values as computed by BLAST, and
a network topology similarity component, in which the similarity score of every pair of nodes is
partially distributed to their neighbours, in a PageRank-like manner.®® Once an eigenvector is
converged upon, the top scoring node pairs within that eigenvector are extracted and greedily
aligned.

As PathBLAST did for LNA and network alignment in general, IsoRank established a key trend
that persists in GNA research to this day, a function used to compute node similarity that is then
used to guide alignment. In particular, many GNA methods continue use a similarity function
that adds the two components, with a parameter used to control their relative weights, and
BLAST to produce the scores for the protein similarity component. Unlike with PathBLAST and
other LNA methods, the weighting of this scoring function is not derived from statistical

analysis, but instead manually set to an arbitrary value, or for unspecified reasons.

In contrast to LNA, GNA methods are more varied, with many variations on the network
topology measures used in the node scoring function and the algorithm used to transform that
scoring function into an alignment. There are four major types of algorithms used in GNA

methods: seed-and-extend, optimization, spectral, and genetic.

GNA seed-and-extend algorithms are highly similar to those used in LNA methods, beginning
with a small, high-confidence seed alignment and then iteratively growing the alignment
outwards. Many GNA seed-and-extend algorithms only extend along aligned edges, unlike LNA
algorithms which account for interaction gaps and mismatches, which improves their
performance on various network topology alignment metrics (see below). One common variation
is to align in “shells” outwards from the seed, iteratively aligning all nodes at the same distance
from the seed, then using some procedure to align unaligned “orphan” nodes. One such GNA
method is GRAAL, which introduced the graphlet degree signature as a measure of the network
topology similarity of nodes for use in node similarity scoring function, used throughout the
GRAAL family of network alignment methods.” Two of GRAAL’s descendants, C-GRAAL

and MI-GRAAL, also use similar seed-and-extend approaches.”"2
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Another common variation seen in GNA seed-and-extend algorithms is to use multiple seeds and
mesh together the separately seeded alignments. By starting with one or more high-scoring
seeds, seed-and-extend algorithms ensure that regions of high similarity are aligned, not
sacrificed for overall alignment quality, and that the algorithm does not entrap itself with a poor
initial seed choice. GHOST is one such method, similar to GRAAL.” GHOST uses a spectral
signature in its node similarity scoring function, treats each shell to be aligned as a quadratic
assignment problem, and adds a local search phase at the end to improve the initial alignment.
IGLOO uniquely uses local network alignments as its seeds, and then performs global
alignments with the remainder of the network.”* NETAL and HubAlign are other examples of

GNA seed-and-extend algorithms.”’®

GNA optimization algorithms create alignments by finding the alignment with the overall
maximum of some optimized value. In contrast with seed-and-extend algorithms, optimization
algorithms pay less attention to contiguity of aligned regions and may sacrifice regions of high
similarity if it improves overall alignment. H-GRAAL is an example, using the Hungarian
algorithm to find the alignment with the maximum sum of node similarity scores between
aligned nodes.”” PISwap is a unique method that uses local search to refine existing alignments,
iteratively testing minor swaps in the alignment to optimize an evaluation function, although it
has also been used to create de novo alignments.’® The alignment algorithm in ModuleAlign uses
the Hungarian algorithm to optimally align proteins based on a novel clustering-based similarity
function, then uses local search to adjust the alignment to maximize alignment of edges.”® SANA

uses the simulated annealing heuristic to quickly converge to the optimal alignment.&

There are also several network alignment methods that employ genetic algorithms to seek
optimally scoring alignments, such as Optnetalign, which uses a multiobjective memetic
algorithm to optimize on both network topology and biological objectives concurrently.® Other
network alignment methods using genetic algorithms include GEDEVO and MAGNA++,828 as

well as their multiple-network alignment versions GEDEVO-M and multiMAGNA++ 848

GNA spectral algorithms cast network alignment problem as a linear algebra problem, and
employ spectral methods to find an alignment, often to achieve greater speed. IsoRank is such an
example, as is IsoRankN, a descendent designed for aligning multiple networks, and L-GRAAL,

from the GRAAL family of network alignment methods, which uses Lagrangian relaxation.2:8”
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GHOST uses Lagrangian relaxation to solve a quadratic assignment problem to align subsets of
proteins previously created using a seed-and-extend method.”® GA, Natalie, and Fuse are all

network alignment methods that use spectral algorithms to generate alignments.8-%°

1.2.4 Assessment and Evaluation of Network Alignments

1.2.4.1 Biological Assessment

The evaluation of network alignment methods is commonly undertaken in two ways, biological
and network-topological. The original application for GNA, as expressed by Singh et al., was to
enable “species-level comparisons” and to detect functional orthologs, defined by
Bandyopadhyay et al. as orthologous proteins that “play functionally equivalent roles.”*>% To
this end, Singh et al. analyzed the functional coherence of the yeast (S. cervisiae) and fruitfly (D.
melanogaster) proteins aligned by IsoRank using functional annotations from the Gene Ontology
(GO) Consortium, which maintains GO, a hierarchical ontology for protein function terms, and
the associated GO database, a database of annotations attributing functional terms to genes.*?

However, the method employed involved mapping all GO terms to ancestral terms at depth five
in GO, discarding any terms at lower depths, and then counting the number of shared depth five
GO terms. This methodology is advised against by the GO Consortium, as GO terms can occupy
multiple levels in the hierarchy and there is no fixed notion of the significance of any particular
level across GO.%3% For example, while both are second-level terms, “signaling” has more than
100 000 protein annotations in GO whereas “cell killing” has less than 2000,% meaning that
alignment of two “signaling” proteins is not particularly significant compared to the alignment of
two “cell killing” proteins. Furthermore, GO is irregularly shaped, with nodes and edges
unevenly distributed across its branches, and GO annotations themselves are also unevenly
distributed, making simple count-and-compare assessment methods unsuitable for determining

the significance of two aligned proteins sharing an annotation.%%’

Unfortunately, due to the prominence of IsoRank, similar count-and-compare methods have
regularly been used in assessing the quality of network alignments, including some that simply
count the number of GO terms from all levels shared between aligned proteins, an
inappropriately coarse measure of functional similarity.”® It is only in recent years that the

community has shifted towards more appropriate methods, such as semantic similarity or shared
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Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (KP) annotations,®® though this
shift has not been fully adopted.

Notwithstanding these technical quantitative issues, there is a qualitative conundrum for
biological assessment of alignments based on existing functional annotation databases. Most
network aligners include BLAST sequence similarity as an input, whether as E-values or bit
scores. This creates a problem of circularity and/or redundancy, as many functional annotations
and the experiments conducted to determine them are dependent on BLAST or other sequence
alignment tools. As such, the high biological quality performance scores of some network
aligners may be an undue result of sequence similarity input data dominating network topology
considerations. For example, Fuse uses an o parameter to control the relative weights of their
novel non-negative matrix trifactorization-based similarity score, which fuses together sequence
similarity and network wiring patterns, and BLAST E-values.*® However, the biological quality
of the alignments generated using o values between a = 0.2 (minimal BLAST E-value weight)
and a = 1.0 (total dependence on BLAST E-values) were nearly indistinguishable, whereas there
was a steep drop-off in the absence of BLAST E-values (a = 0.0) (see Figure 1-4). This suggests
that Fuse’s high-quality alignment results are highly dependent on BLAST E-values, and that
perhaps the network-based considerations involved were not major contributors to the biological

quality of Fuse’s alignments.
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Supplementary Figure 3. Functional consistency of Fuse’s clusters for different values of c.
For Fuse’s protein clusters with different values of o, we plot the cumulative number of anno-
tated clusters containing proteins from all 5 species (x-axis) against the number of them that are
functionally consistent (y-axis). Clusters are ranked according to the scores computed as the sum
of association scores between their proteins. We also report the total number of annotated and
consistent clusters for the competing aligners (points in the plots). Biological process (BP) and
molecular function (MF) annotations are considered separately in the left-hand-side and right-
hand-side panels, respectively.

Figure 1-4 — Supplementary Figure 3 from Fuse: multiple network alignment via data
fusion, including original caption.®® Note that there is no meaningful difference between results
achieved with a values between 0.2 or 1.0. With a = 1.0, Fuse uses only BLAST similarity
without any network topology in its similarity score, suggesting that network information plays
only a marginal role in Fuse’s results. (Reproduced with permission.)

1.2.4.2 Network Topology Assessment

Network alignment assessment via network topology measures was not undertaken in the
original IsoRank paper nor in LNA papers, but was popularized for GNA by the Przulj lab’s
work on GRAAL. GRAAL utilized the measures edge coverage” (EC), which counts the number
of edges aligned, and the largest contiguous connected subcomponent (LCCS), which attempts to
measure the contiguity of the network alignment.”® Additional measures such as induced
conserved sub-structure (ICS) and symmetric substructure score (S%), have since been introduced

as refined EC measures.”399

*
Edge coverage is often called “edge correctness” in network alignment research, but this is a misnomer as it is
simply a count of the edges aligned, for which there is no demonstrable correctness to their alignment.®
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The connection between network topology measures such as EC, LCCS, ICS, and S® and the
biological significance of network alignments has never been effectively established, however.
Recent work has shown a negative or no correlation between maximizing these network
topology measures and improvements on biological quality measures. When MAGNA optimized
its alignments on EC, ICS, and S2, on S. cerevisiae-H.sapiens and C. jejeuni-E. coli PPIN
pairings, GO term enrichment showed no consistent improvement, either on the number of GO
terms shared by aligned proteins or GO semantic similarity of aligned proteins® (see Figure 1-5
and Figure 1-6). Malod-Dognin et al. have shown that there is a trade-off between the S® and KP
scores of alignments produced by L-GRAAL, HubAlign, Natalie, and MAGNA! (see Figure
1-7). Using OptNetAlign, Clark and Kalita also found either negative and no correlation between
biological measures, the number of shared GO terms and BLAST bit-score, and the network
topology measures, EC, ICS, and S2# (see Figure 1-8).

17%

-
-
=

- -
I @
= Ed

-
%l
=

GO semantic similarity
g

-
.
B

14%

(0} (EC) [1cs) (%) | {0) (EC) {1cs) (s?) | (O] (Ec) {1cs) (s%) | {O) (EC) {Ics) (s7)

Random IsoRank MI-GRAAL GHOST
Initial Population (Optimizing e)

Figure S9: Details on biological alignment quality of yeast-human alignments in terms of GO semantic
similarity. The results are shown for alignments produced by four existing algorithms (Random, IsoRank,
MI-GRAAL, and GIIOST) as well as by running our new genetic algorithm on populations containing
the alignments produced by the existing algorithms. We use four different populations, corresponding to
the four existing algorithms. For each population. we show results for an original alignment produced by
the existing algorithm (O), as well as for our alignments produced when optimizing each of the following:
EC, ICS, and S®. All results are for population size of 15,000 and for 2,000 generations.

Figure 1-5 — Supplementary Figure S9 from MAGNA: Maximizing Accuracy in Global
Network Alignment, including original caption.®® MAGNA was used to optimize PPIN
alignments of S. cerevisiae and H. sapiens generated by different alignment algorithms, using
one of three network topology similarity measures (EC, ICS, and S®). There was no pattern of
increased GO semantic similarity of the aligned proteins found in the post-optimization
alignments compared to the original alignments (O), suggesting that these three network
topology similarity measures are a poor fit for predicting function and orthology, and for
measuring alignment quality. (Reproduced with permission.)
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Figure S13: Details on biological alignment quality of C. jejuni-E. coli alignments in terms of GO
semantic similarity. The results are shown for alignments produced by four existing algorithms (Random,
IsoRank, MI-GRAAL, and GHOST) as well as by running our new genetic algorithm on populations
containing the alignments produced by the existing algorithms. We use four different populations,
corresponding to the four existing algorithms. For each population, we show results for an original
alignment produced by the existing algorithm (O), as well as for our alignments produced when optimizing
cach of the following: EC, ICS, and S®. All results are for population size of 15,000 and for 2,000
generations.

Figure 1-6 — Supplementary Figure S13 from MAGNA: Maximizing Accuracy in Global
Network Alignment, including original caption.®® MAGNA was used to optimize PPIN
alignments of C. jejuni and E. coli generated by different alignment algorithms, IsoRank,> M-
GRAAL,®" and GHOST,® using one of three network topology similarity measures (EC, ICS,
and S®). There was no pattern of increased GO semantic similarity of the aligned proteins found
in the post-optimization alignments compared to the original alignments (O), suggesting that
these three network topology similarity measures are poor fits for predicting function and
orthology, and for measuring alignment quality. (Reproduced with permission.)

These results suggest a disconnect between the network topology measures used to evaluate
network alignments, and the proposed objectives of network alignment to predict protein
function and identify functionally conserved proteins. Maximizing network aligner performance
on both network topology and biological quality measures are contrary objectives, leaving open
the question of how aligners should align.
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Figure 4. Effects of using topology and sequence homology. For L-GRAAL (top-left panel), HUBALIGN (top-
right panel), NATALIE (bottom-left panel) and MAGNA (bottom-right panel), we report the average quality of
the alignments that they produce on our 16 PPI network pairs, when aligning PPI networks by using topological
information only (cv =0, on the left on the x-axis), sequence similarity only (o= 1, on the right on the x-axis)
and their combinations (all & in between in increments of 0.1). The qualities of the alignments are measured
with topological score S* (blue curves), biological score KP (red curves) and the trade-off score between
biological and topological quality (black curves).

Figure 1-7 — Figure 4 from Unified Alignment of Protein-Protein Interaction Networks,
including original caption.*®® Malod-Dognin et al. used four different network aligners (L-
GRAAL,® HubAlign,’® Natalie,®® and MAGNA®?®) and adjusted their a parameters to control the
relative weight of sequence (BLAST) or network topology similarity inputs. Their results show
an explicit trade-off in the network topology evaluation measure S® and the biological quality
evaluation measure KP (the % of aligned proteins sharing KEGG pathways) for the resulting
network alignments. (Reproduced under the Creative Commons Attribution 4.0 International
License.)
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Table 1.

Correlation matrix for various objectives on the S.cerevisige to H.sapiens alignment problem

3

Ics § EC GoC Bit scoresum  LCCS size
ICS 1.0 -0.132 -0.338 0.079 -0.103 -0.42
s 1.0 0.957 -0.964 -0.848 0.939
EC 1.0 -0.948 -0.796 0.987
GOC 1.0 0.81 -0.91
Bit score sum 1.0 -0.759
LCCS size 1.0

Unlike the other objectives, the number of nodes in the largest common connected subgraph (LCCS)
was not set as an optimization objective in our program; it was computed afterwards

Figure 1-8 — Table 1 from A comparison of algorithms for the pairwise alignment of
biological networks, including original caption.®! Clark et al. used OptNetAlign to generate
many non-dominated alignments of the S. cerevisiae and H. sapiens PPINs, optimizing on three
network topology measures (ICS, S, and EC) and two biological quality measures (Gene
Ontology Consistency and BLAST bit-score). They examined these 571 alignments and found
the above correlations of the five measures, plus LCCS, in those alignments. The two biological
quality measures (GOC and BLAST bit-score) showed no or strongly negative correlation with
the three network topology measures, again indicating that network topology similarity is not an
appropriate measure of an alignment’s biological quality nor its ability to make biological
conclusions. Furthermore, the high correlation between GOC and BLAST bit-score hints at the
confirmation bias problem in using BLAST bit-score as an input to network alignment while also
using GO term similarity as an evaluation metric. (Reproduced with permission.)

1.2.4.3 Simulation-based Assessment

Some network alignment methods are also evaluated based on their performance in simulated
trials. The advantage of aligning simulated networks is that the correct node pairings are known
in their totality beforehand, without any confirmation bias introduced by the use of other sources
of biological information, allowing for direct assessment of an alignment method’s ability to
correctly align nodes (proteins). Evaluation using fully simulated networks is rare, due to
continued debate on how best to simulate PPINs (see 1.3.2 Models for Protein-Protein

Interaction Networks).
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Instead, researchers often take existing PPINs, randomly rewiring edges to simulate network
evolution and PPI noise, then align the rewired networks with each other and/or the original
PPIN."®7>% Additionally, several methods use an S. cerevisiae PPI dataset from Collins et al., 1%
adding lower confidence PPIs to the S. cerevisiae PPIN before aligning the two.”""*® The
usefulness of these simulations, however, depends upon the verisimilitude of their approximation
of real PPIN variation. Uniform random removal and addition of edges to PPINs is very unlikely
to faithfully approximate evolutionary divergence in real-world interactomes. Furthermore, both
simulation methods, as typically employed in the literature, use inappropriately low rates of

noise, with a maximum of only 25%, in contrast to higher observed rates of PPIN rewiring.102-10

1.2.4.4 Summary

Assessment of network alignment methods and the alignments they generate remains a difficult
problem to unpack, with various issues that trouble all popular metrics. Whether biology-,
network topology-, or simulation-based, all the popular evaluation metrics present difficult
conundrums for network alignment researchers. Biological assessment metrics have problems
with circularity and possibly overvaluing naturally dominating biological input data, such as
protein sequence alignment. Network topology metrics may not be measuring the alignments’
biological informativeness nor their ability to produce biologically meaningful insights.
Simulation-based metrics may be inaccurate due to our poor understanding of PPINs and PPIN

evolution.

It should be noted that network alignment, if developed into a successful, validated biological
research tool, could answer these very questions that trouble its development. Network alignment
could, in an ideal future, serve as an alternative tool for determining protein function and
inspiring proteomic research, illuminate how PPINs encode protein function and reveal the
underpinnings of PPIN evolution, and offer us insights on the structure of PPINs. Ultimately, the
ability of extant network alignment approaches to answer these questions, however, is dubious.
When Malod-Dognin et al. evaluated the biological quality of 8 different network aligners
(Natalie, L-GRAAL, PiSwap, HubAlign, SPINAL,'%® MAGNA, ModuleAlign, and
OptNetAlign) based on the number of aligned proteins that share GO terms, divided into the
categories of biological process, cellular component, or molecular function terms, all the tested

methods performed rather poorly'® (see Figure 1-9). Fewer than half of the aligned proteins
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shared any common GO terms in any of the above categories in 16 separate experiments with
different PPIN pairs, and the best average performance for all aligners was less than 25%. If the
primary objective of network alignment, in particular GNA, is to enable determinations of
protein function, these results are insufficient and unpromising.
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Figure 1-9 — Part of Supplementary Figure 2 from Unified Alignment of Protein-Protein
Interaction Networks.!® Three charts showing the performance of 8 different network
aligners’6.78.798187.89.93,106 i 3ljgning proteins with at least 1 shared GO annotation, divided into
biological process (BP), molecular function (MF), or cellular component (CC) GO terms. The
coloured bar shows the average performance by the aligner on 16 different PPIN pairs, while the
whiskers show minimum and maximum. Note that y-axes are not standardized, and that aligner
performance is rather low, with the best average performance at ~16% for BP, ~24% for MF, and
~6% for CC, levels that are too low to consider for functional prediction. (Reproduced under the
Creative Commons Attribution 4.0 International License.) Original caption: Detailed
performance comparisons. Network aligners (x-axis) are compared according to the topological
and biological quality (y-axis) of their alignments. The error bars show the smallest, the average
and the maximum of these scores over the 16 PPI network pairs, respectively. The left panels
present the results for the topological scores (from top to bottom: NC, EC, ICS, S®and LCC) and
the right panels present the results for the biological scores (from top to bottom: KP, GO-BP,
GO-MF and GO-CC). In each panel, aligners are sorted from the best performing (on the left) to

Proeins sharing BP annatatians {%)

Prateins sharing WF annatations (%)

Zrotairs sharing CC arnotations (%)
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1.3 Protein-Protein Interaction Network Evolution

Protein-protein interaction network alignment is often presented as a static problem, seeking the
optimal alignment of two (or more) fixed input graphs, but underlying the problem is the
dynamic process of network evolution, which creates the differences in the networks being
aligned. As PPINs encode function, and evolution is both constrained and guided by function,
the questions of how network alignment should be performed and how network evolution occurs
are effectively intertwined. Better understanding of how function is encoded and conserved
within the network would, for example, indicate how networks and proteins should be aligned.
Similarly, better understanding of network divergence and positive selection in the network may
indicate network regions that should not be aligned, an important yet largely unaddressed

consideration that distinguishes local and global network alignment.2’

While network alignment research remains in its infancy and primarily focused on simply
identifying functionally similar protein pairings, it should eventually develop into a tool to
investigate and understand network evolution, just as sequence alignment serves for
genetic/genomic evolution. Considering network alignment against the larger background of
network evolution will enable insights into the contours of the network alignment problem,
which can then be applied to create network alignment and analysis tools that more precisely

answer questions of scientific interest.

1.3.1 Fundamentals and Applications

As with the genome, the interactome is a potential treasure trove of information that could
further our understanding of the cell. Within the PPINSs that represent the interactome are all the
protein complexes and pathways studied in molecular biology. These modules are critical
components in our current understanding of cellular biology, but much of the interactome lies
outside these well-studied modules, and thus also beyond our understanding. With the
availability of interactomic data from many species, it is possible that we can leverage this data

using comparative evolution to better understand the yet poorly studied parts of the interactome.

Even with the PPI data quality issues described earlier, many significant observations have been
drawn from comparative network analysis, with various implications for our understanding of

evolution. It has been found that genes under positive selection are more likely to be located at
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the periphery of the PPIN.1% Network topology has also been used to identify certain proteins

that are particularly important to the cell, specifically hub and bottleneck proteins.

Hub proteins are high-degree proteins, and their network importance is reflected biologically by
their tendency to be essential proteins.*>1%%11% Hyb proteins can be divided into “date” hubs,
proteins with many partners that compete for the same binding interface, and “party” hubs,
proteins that bind to multiple proteins concurrently via multiple binding interfaces. Date hubs
play an outsized role in the connectivity of the PPIN, while party hubs serve as a crux for
functional proteomic units. Their distinct roles influences their sequence and structural evolution,
with date hubs having higher levels of disorder to facilitate docking of different proteins in the
same region.!! Bottleneck proteins are proteins that occupy critical junctions between highly
connected portions of the interactome, identified by their high betweenness centrality.'!? Like
hub proteins, they tend to be essential, due to their role in linking different network modules,
which are themselves arranged around hub proteins. These distinct meta-functional roles played
by hub and bottleneck proteins may themselves exert distinct evolutionary forces upon these

proteins. 113

These examples demonstrate that there are complex dynamics between genetic evolution and
network evolution; understanding the interplay between evolution on these different levels will
be critical to developing a full understanding of the cell.*” Unlike genes, however, of which there
are many in every species, each species has only one interactome, as they are currently
abstracted. This limits opportunities for inter-species comparison, elevating the importance of
high-quality comparative network analysis in identifying the patterns within interactomes that

would illuminate network evolutionary processes.

However, in addition to these modules, there is an extensive amount of noise, including
experimental noise (i.e. false positives and false negatives) and also true PPIs that contain
varying amounts of biological information that has not been understood yet. Distinguishing the
true noise from the less understood parts of the interactome poses a major challenge, but
comparative network analysis may be a potent tool in addressing it, by observing patterns of

conservation across different interactomes.

One way this is done is by considering the interologs of different PPINs. An interolog is an

analogue to orthologs for protein-protein interactions; if two interacting proteins in the same
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species each have, in another species, orthologs that also interact, then those two interactions are
interologs.*'* Interologs have been used to directly transfer PPIs, inferring PPIs in one PPIN
from the presence of their interologs in the other, a process called interolog mapping. 8112115117
This allows the transfer of information from well-studied interactomes to poorly studied
interactomes, enabling analyses otherwise impossible due to a lack of data, such as analyzing the
relationship between network rewiring and gene essentiality in S. cerevisiae and M. musculus.?
Interologs, or the absence of them, can also be used to identify and study protein complexes and

their evolution.11811°

There is, however, a significant body of work that suggests that our understanding of PPINSs is
insufficient, or the existing PPI data is insufficient, for such inter-species interactomic analyses.
Some studies have indicated that interolog conservation between species is too low for interolog
mapping as a general strategy.%#1% There have also been studies questioning our statistical
understanding of PPINs and, consequently, conclusions based on those studies, such as the
dichotomy between date and party hubs and ability to predict function using PPINs.*2%122 Thus,
as PPI data continues to be collected and used in new applications, work must continue on
understanding the fundamentals of PPINs and PPIN evolution.

1.3.2 Models for Protein-Protein Interaction Networks

There is an ongoing debate in PPIN evolution research over the best network generation model
to explain and/or simulate PPIN evolution. The development of a network generation model that
could accurately simulate real-world PPINs would likely provide extensive insights into the
mechanisms of network evolution. More practically though, accurate PPIN generating models
could generate simulated PPINs to serve as a statistical background for network analyses or as a

testbed for better evaluation of network alignment methods.

Current popular PPIN models fall into three general categories: scale-free (Barabasi—Albert),
geometric, and duplication-divergence models. Scale-free networks have a degree distribution
that follows the power law, which supposedly makes scale-free models suitable for a variety of
networks, including PPINs, the World Wide Web, and social networks.*?® The Barabasi—Albert
model generates networks using preferential attachment: nodes are added to the network one at a
time, and edges drawn from each new node to existing nodes randomly, but with probabilities

favouring high-degree nodes.
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Geometric random graphs are, like scale-free networks, used to model non-biological networks,
like social networks. To generate a geometric graph, nodes are randomly scattered across a
geometric surface and edges drawn between nodes if the distance between them is less than a
specified parameter. There has been evidence that geometric random graphs are better models for
PPINs along with other statistical evidence suggesting that PPINs are not truly scale-free.'?*
However, geometric random graph models do not simulate evolutionary processes in any
manner, as all nodes and edges are added to the network simultaneously. In contrast, scale-free
models remain popular for PPINSs as preferential attachment represents a biologically feasible
mechanism for network evolution, though preferential attachment cannot fully explain PPIN

evolution alone.

Finally, the duplication-divergence (DD) model generates networks using node duplication as its
principal mechanism.'? The evolutionary mechanisms of duplication and divergence have been
featured in evolutionary models for gene and domain evolution, in addition to PPINs,126:127
Beginning with two connected nodes, nodes are randomly selected to be duplicated along with
their interactions, and then interactions are randomly removed from one or both of the duplicates.
Unlike the scale-free and geometric random models, this model is not commonly used for
networks other than PPINSs, as it fundamentally incorporates a mechanism, gene duplication and
divergence, that is unique to biology. However, duplication-divergence remains a highly
simplified model of network evolution; while it may simulate real PPINSs statistically,'?® it does
not specifically model other network events, such as de novo protein gain or interaction
rewiring.1%12%130 The basic DD model, however, can serve as a platform for more variations that

incorporate additional evolutionary events.*3!

Generally, these models are evaluated based on their ability to simulate random de novo
networks that bear similar graph theoretic statistics to real PPINs, and not on their ability to
explain or generate testable hypotheses for individual proteins or clusters. Given that much
molecular biology research is structured around individual proteins, complexes, and/or pathways,
this has resulted in an information gap, as the global perspectives often adopted in PPIN research
are incompatible with the local perspectives more common in molecular biology as a whole. The
absence of PPIN models with explanatory power has, for example, driven researchers interested
in PPIN alignment to formulate novel PPIN models to serve as foundation for their alignment

methods, 5132133 put these models are crudely parameterized and underdeveloped. Superior,
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more reliable PPIN models would enable development of network alignment tools with the

precision and specificity needed to extract relevant biological insights from PPINs.

1.4 Protein-Protein Interaction Network Alignment Visualization

As increasing amounts of molecular biology data have been generated in the past three decades,
there has been a corresponding increase in the number of visualization tools developed to
facilitate human observation and assessment of this data. While in the beginning, generic all-
purpose graph visualization tools were sufficient,:*+3 the flood of data available to molecular
biologists, in particular data of different types, demanded the development of new tools to not
just visualize, but also integrate and partially automate analysis of this data. The “hairball
problem” in particular, wherein large networks appear as a dense, visually indecipherable cluster
when visualized, necessitated tools that could quickly and efficiently prune irrelevant
information and present to users tightly arranged views, which encouraged specialization
amongst network visualization tools. These tools include Cytoscape,® NAViGaTOR,!% and
OrthoNets.**’

However, network alignment visualization is quite limited. OrthoNets, a Cytoscape app, creates
side-by-side visualizations of orthologous subnetworks, but it is rather rigid in its approach,
focused specifically on orthologous proteins and their neighbours, and automatically retrieves
data from fixed, now outdated, sources. With the many network alignment methods now
available, and their shaky ability to reveal biologically meaningful relationships, biologists
interested in using network alignments as an information source need the ability to quickly
visualize and assess the relevant results. This is especially true for global network alignments, as
they may produce suboptimal alignment results in the region of interest in a compromise for
overall alignment quality. Global network alignments also contain an overwhelming amount of
data from the alignment of two whole interactomes, effectively creating a “double hairball”

problem.

Another Cytoscape app for network alignment visualization exists for the network alignment
method GASOLINE®® (see Figure 1-10). Somewhat confusingly, this app is also named
GASOLINE.**® GASOLINE the app is designed to execute GASOLINE the method on user-
provided input files, and display the results. Like with OrthoNets, the rigid workflow integration

in GASOLINE the app limits its utility for those interested in other alignment methods, and there
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is little data integration capability to facilitate incorporation of GASOLINE into more extensive
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Figure 1-10 — Figure 1 from GASOLINE: a Cytoscape app for multiple local alignment of
PPI networks.!3 The GASOLINE app is a tool to help users run the GASOLINE algorithm on
their own input data and visualize the resulting local network alignments. (Reproduced under the
Creative Commons Attribution 4.0 International License.) Original caption: A) GASOLINE
parameters; B) Alignment results; C) Description of selected proteins and associated GO terms;
D) Alignment visualization: intra-edges are represented with solid lines and coloured according
to their weight (green for low values, yellow for medium values and red for high values); inter-
edges are drawn with dashed lines.
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2 Alignment of Interface-Interaction Networks

2.1 Introduction

A major objective of biology is to understand how complex biological systems are assembled
from their components into functional units and how they evolve. In molecular biology, efforts
have increasingly focused on how proteins and other molecules interact, and determining how
their interplay affects biological phenotypes, including disease. This has driven work in
interactomics, as better, cheaper high-throughput methodologies allow us to systematically map
the dynamic molecular interactions in a cell.**® To aid the evolutionary study of these networks,

a number of network alignment methods have been developed.!4

Recently, protein interactions have been mapped at the level of amino acid positions, which can
be represented as an interface-interaction network (I1N), where nodes represent binding sites,
such as protein domains and short sequence motifs.#446:49.109.141 These networks provide a more
accurate picture of how protein interaction networks are organized in biological systems. Thus,
studying the function and evolution of these higher resolution networks should provide new
biological insights. However, current protein interaction network alignment algorithms are not
designed to align these networks and generally fail to do so in practice. In response, we
developed GreedyPlus, the first algorithm designed to align 1INs. In the next sections, we
provide background about the network alignment problem, introduce 1INs and review existing
algorithms. We then describe the GreedyPlus algorithm and associated input data, comparisons
with existing protein-protein interaction network alignment methods and results aligning 11Ns

from different species.
2.1.1 Network Alignment Theory

In the trivial case of finding the ideal alignment of a network to itself, the network alignment
problem is equivalent to the classic graph isomorphism problem, which is of unknown
complexity'#?. However, as biological networks evolve, we expect divergence between the
networks via the addition and deletion of both nodes and edges, and thus the objective of
network alignment is to find similarity between networks rather than perfect isomorphisms. In
the particular case where one network is a subnetwork of the other, the network alignment
problem is specifically the subgraph isomorphism problem.>® In the general case, the network
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alignment problem degenerates into many instances of the subgraph isomorphism problem with
loosened constraints; particularly, the objective is to find a set of non-overlapping, partial
isomorphisms of all possible subnetworks of both networks. Given that the complete protein-
protein interaction networks (PPINSs) of species such as human and yeast!?*143 number in the
thousands of nodes and edges, and that the subgraph isomorphism problem is NP-complete, an

optimal computational approach is unfeasible and heuristics and approximations must be used.
2.1.2 Interface-Interaction Networks

Interface-interaction networks are a refinement of PPINSs wherein proteins are subdivided into
their separate interaction interfaces.** We choose to represent the 1IN using a traditional graph
model where a node represents a specific binding site and an edge represents a physical
interaction between two binding sites on their respective proteins. The 1IN is thus a higher

resolution version of the PPIN.

The higher resolution of 1INs allows for new biological insights that cannot be derived from
standard PPINs. For example, 1INs can distinguish between date hubs — proteins that interact
with many partners, but at different times or in different locations - and party hubs — proteins that
interact with many partners simultaneously.*® While these distinct types of hub proteins will
appear identically in a PPIN, in an 1IN, the former will have few binding sites that are reused for
many different interaction partners whereas the latter will have many binding sites that are
specific for each interaction partner. This is useful to help elucidate the evolutionary processes
and constraints acting on hub proteins. The study of IINs will also help interpret how domain and
binding site gain and loss affect the PPIN, predict PPIN perturbations caused by sequence
mutations that affect binding sites, and allow in-depth analysis of how protein-protein

interactions are formed and lost.*6-48

Network topology differences between IINs and PPINs, however, mean that algorithms designed
to operate on PPINs may not function properly with 1INs. While PPINs are often sparse, IINs are
much more so, with each PPIN node (protein) split into multiple nodes that represent the
different binding sites on that protein. Similarly, while PPINs exhibit a hub-and-spoke network
topology, with many low-degree and fewer high-degree nodes, this characteristic is exaggerated
in IINs. For example, protein-recognition modules, such as protein kinases or SH3 domains, are

often capable of binding many different proteins, leading to relatively few high-degree nodes
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connected to many low degree nodes. Additionally, due to binding specificity similarities,
different domains will often recognize the same ligands, forming a multi-fan network topology.
Methods that depend on the neighbourhoods of nodes having distinct local network topologies to
generate their alignments get confused by these repeated patterns and thus perform

inconsistently.

Experimentally mapped interface-interaction data across species have recently become available,
such as a set of interactions mediated by SH3 domains in Saccharomyces cerevisiae (budding
yeast)*® and Caenorhabditis elegans (worm)*® SH3 domains are peptide-recognition modules
that bind to short linear peptides with characteristic proline-rich motifs. The resulting IINs are
bipartite, though this may not be generally the case. Due to their bipartite property, certain
network topology motifs, such as cliques, are absent while others, such as 4-cycles, are highly
enriched. Existing PPIN alignment algorithms have not been designed for bipartite networks and
can fail to align these networks. The graphlet degree signature similarity measure used by
GRAAL, %14 for example, loses most of its resolution on a bipartite graph due to the absence of
odd cycles. Alternatively, the bipartite nature of the networks confounds IsoRank, as its node
similarity measure can get stuck oscillating between domain and binding site nodes rather than

converging.

To address the 1IN alignment problem, we developed a new algorithm called GreedyPlus, which

considers bipartite 1INs by design.
2.1.3 Protein-Protein Interaction Network Alignment

Even though we argue that IIN alignment represents a different problem to PPIN alignment, the
problems are related in their approach and we review PPIN alignment work here. Previous
network alignment research has focused on protein-protein interaction networks, although other
network types have been studied.* Previous PPIN alignment methods have sought to identify
pairs of orthologous proteins and/or functionally orthologous proteins. Mirroring biological
sequence alignment techniques, PPIN alignment methods have broadly taken two approaches:
local alignment and global alignment. Local alignment algorithms seek small subnetworks that
are similar in network topology, emphasizing regions of high-confidence alignment between the
two networks. Typically, these methods use protein sequence alignment as a primary indicator of

protein orthology, and then incorporate network information to identify clusters of sequence-
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similar proteins; these clusters in the network, then, are considered putatively orthologous

functional units.

PathBLAST,®® one of the first published PPIN alignment methods, and its successor
NetworkBlast®? are examples of local network alignment algorithms. Both methods begin by
identifying all pairs of proteins between the two input networks with significant sequence
similarity (using BLAST E-values),® formulating each pair as nodes within a global alignment
graph, and filling in the edges between these paired protein nodes using interaction data. In the
global alignment graph, edges can be aligned (edges exist in both input networks), gapped (an
edge exists in only one input network), or mismatched (no edge exists in either network),
implying an abstract model of network evolution. A scoring model is then used to score the
aligned proteins, and the high-scoring pairings are combined into a small pathway or complex as
the final result.

Generally, the local network alignment strategy is similar to that for local sequence alignment,
beginning with a seed that can be aligned with high confidence, which is often based on BLAST
scores. A scoring scheme is defined, often based on an explicit evolutionary model, and then the
alignment is extended outwards from the seed along network edges, incorporating as many other
protein pairs as possible and optimizing on the score. NetAligner,®® for example, assumes that
interacting proteins evolve at similar rates as part of scoring edge mismatches and gaps.
MaWISH®* formulates an evolutionary model consisting of three events: match, mismatch, and
duplication, which are used to develop a scoring scheme for optimization and thresholding. The
explicit use of an evolutionary model to generate a scoring scheme is not novel; as with sequence
alignment, any network alignment method implies an evolutionary model. However, as protein-
protein interaction network evolution remains a largely mysterious process, the evolutionary

models underlying the scoring schemes are diverse.

Otherwise, the local network alignment problem is well defined. The objective is to identify
small, well-defined interactomic units — such as protein complexes or pathways — that are
analogs within the input networks. However, by focusing on local regions, they may miss global
aspects of network evolution. Additionally, as certain network topology patterns appear
frequently in PPINSs, such as cliques and hubs, local network alignments can improperly align

subnetworks corresponding to these patterns. This is typically prevented using minimum
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sequence similarity thresholds, explicitly or implicitly, to block the alignment of proteins with
dissimilar sequences. As a result, these methods may miss functionally and topologically similar

protein pairs that have dissimilar sequences.

Global network alignment methods attempt to align all or most of the proteins in two or more
PPINs. These methods typically build interactome-wide alignments either by seeding an initial
alignment and then extending it or by seeking a global optimum according to some scoring
mechanism using methods such as the Hungarian’ or the PageRank> algorithms. Global
alignments likely have much higher false positive rates than local alignments as they align many
more protein pairs, even those for which evidence is weak. Still, global alignment methods have