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Systematic analysis of somatic mutations
impacting gene expression in 12 tumour types
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We present a novel hierarchical Bayes statistical model, xseq, to systematically quantify the

impact of somatic mutations on expression profiles. We establish the theoretical framework

and robust inference characteristics of the method using computational benchmarking.

We then use xseq to analyse thousands of tumour data sets available through The Cancer

Genome Atlas, to systematically quantify somatic mutations impacting expression profiles.

We identify 30 novel cis-effect tumour suppressor gene candidates, enriched in loss-of-

function mutations and biallelic inactivation. Analysis of trans-effects of mutations and copy

number alterations with xseq identifies mutations in 150 genes impacting expression

networks, with 89 novel predictions. We reveal two important novel characteristics of

mutation impact on expression: (1) patients harbouring known driver mutations exhibit

different downstream gene expression consequences; (2) expression patterns for some

mutations are stable across tumour types. These results have critical implications for

identification and interpretation of mutations with consequent impact on transcription in

cancer.

DOI: 10.1038/ncomms9554 OPEN

1 Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3. 2 Department of Computer
Science, University of British Columbia, 2366 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4. 3 Centre for the Translational and Applied Genomics,
BC Cancer Agency, 600 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 4E6. 4 Department of Pathology and Laboratory Medicine, University
of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2B5. 5 The Donnelly Centre, University of Toronto, 160 College Street,
Toronto, Ontario, Canada M5S 3E1. 6 Canada’s Michael Smith Genome Sciences Centre, 570 West 7th Avenue, Vancouver, British Columbia, Canada
V5Z 4S6. Correspondence and requests for materials should be addressed to S.P.S. (email: sshah@bccrc.ca).

NATURE COMMUNICATIONS | 6:8554 | DOI: 10.1038/ncomms9554 | www.nature.com/naturecommunications 1

& 2015 Macmillan Publishers Limited. All rights reserved.

mailto:sshah@bccrc.ca
http://www.nature.com/naturecommunications


H
uman cancers acquire malignant properties following a
stepwise accumulation of somatic genomic alterations1

and subsequent evolutionary selection on resultant
phenotypic changes. Genomic mutations (loosely classified as
single-nucleotide variants (SNVs), small insertions and deletions
(indels), copy number alterations and genomic rearrangements)
show widespread variation in their functional impacts on gene
products, biochemical pathways and phenotypic properties.
Consequently, the effect of a mutation is often difficult to
predict. Previous computational approaches to predict functional
effects of mutations include: evolutionary conservation of the
mutation sites across species, the chemical properties of amino-
acid substitutions2 and the frequency of mutations of a gene of
interest relative to its expected background rate of mutations3.
These approaches rely on interpretation of DNA sequences alone
and do not consider other molecular measurements such as gene
expression, methylation or proteome measurements that are
co-acquired from the same tumour samples. Thus, histological or
molecular context of mutations is often ignored in their
interpretation. To address this deficiency, we propose that
additional patterns representing functional consequences of
mutations can be determined through simultaneous analysis of
mutation and gene expression data.

We have assessed the impact of mutations on gene expression
as a means of quantifying potential phenotypic effects, and for
novel cancer gene discovery. This concept is motivated by
biological hypotheses predicting that some functional mutations
will exhibit a ‘transcriptional shadow’, resulting from a mechan-
istic impact on the gene expression profile of a tumour.
For example, loss-of-function mutations (nonsense mutations,
frame-shifting indels, splice site mutations or homozygous copy
number deletions) occurring in tumour suppressor genes such as
TP53 can cause loss of expression due to nonsense-mediated
messenger RNA (mRNA) decay4 or gene dosage effects. In this
context, we define a cis-effect as a genetic or epigenetic aberration
that results in upregulation or downregulation of the gene itself.
In contrast, some mutations can disrupt the expression of other
genes in the same biochemical pathway (trans-effects5). This class
of mutations tends to cast a long transcriptional shadow over
many genes across the genome5. b-Catenin (CTNNB1) mutations,
which drive constitutive activation of Wnt signalling in several
cancer types, are a potent example of mutational impact on gene
expression.

Large-scale data sets generated by international consortia
provide opportunities to define the landscape of mutations
impacting gene expression in thousands of tumours across the
major cancer types. The Cancer Genome Atlas (TCGA) projects
have generated genomic and transcriptomic data from multiple
cancer types, providing a systematic characterization of somatic
mutations6, copy number alterations7, oncogenic processes8,
mutated sub-networks or pathways9, and genomic signature-
defined tumour subtypes10.

There are few computational tools available11 to systematically
identify mutations impacting gene expression (Supplementary
Table 1 summarizes representative methods). CONEXIC12 is a
probabilistic approach to detect driver copy number regulators
and their target genes. EPoC13 derives driver copy number
alterations and their target genes using differential equations to
model the expression synthesis rate of a gene as a function of its
copy number and the regulatory effects of other genes. MOCA14

detects differently expressed genes in the presence of mutations in
a gene, and tests the significance of the correlation (between
mutation and gene differential expression). PARADIGM15

integrates copy number and expression to identify disrupted
pathways. DriverNet16 uses a combinatorial approach and a
greedy algorithm to nominate cancer driver genes. However,

none of these methods can identify individual mutations that
correlate with dysregulated gene networks.

We present a novel statistical model, xseq, using a hierarchical
Bayes approach and apply it to the analysis of thousands
of tumour data sets available through TCGA, systematically
examining the impact of somatic mutations on expression profiles
across 12 tumour types. We demonstrate the robustness of xseq
by conducting extensive computational benchmarking, and by
testing xseq on an independent breast cancer data set. We identify
30 novel cis-effect tumour suppressor gene candidates, enriched
in loss-of-function mutations and frequent biallelic inactivations.
We identify 150 genes from trans-effect analysis impacting
expression networks in the 12 cancer types, with 60 known cancer
genes and 89 novel predictions. Notably, 29 of these newly
predicted genes are known interacting partners of cancer driver
genes. On the basis of the trans-analysis, we find two important
characteristics of mutations impacting gene expression that could
not be revealed with other methods: (1) a stratification of patients
harbouring known driver mutations, but that exhibit different
downstream gene expression consequences; (2) identification of
mutations driving expression patterns that are stable across
tumour types, thereby nominating important molecular targets
for therapeutic intervention, transcending anatomic sites of
origin.

Results
Data sets. We used somatic point mutation, copy number
alteration and gene expression data in 12 cancer types, from the
TCGA Pan-Cancer project17 (Table 1). A total of 2,786 patients
with all three types of data were included in our analyses. For
trans-analysis, focal copy number homozygous deletions and
amplifications (with four or more copies) predicted by GISTIC7,18

were also encoded as inputs to xseq. We did not analyse the
cis-effects of copy number alterations since the majority of them
have cis-effects on gene expression19.

Modelling the effects of mutations on expression with xseq.
To address the central question of whether somatic mutations
in a patient’s tumour impact gene expression, we developed a
generative probabilistic model, xseq. We present the conditional

Table 1 | List of the twelve cancer types analysed.

Data Mutation RNASeq SNP6.0 Overlap

BLCA 99 96 125 94
BRCA 772 822 879 743
COAD 155 192 414 149
GBM 291 167 576 144
HNSC 306 303 306 295
KIRC 417 428 452 390
LAML 196 173 197 167
LUAD 230 355 358 169
LUSC 178 220 342 177
OV 316 266 581 159
READ 69 71 163 65
UCEC 248 333 493 235

BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; COAD, colon
adenocarcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell
carcinoma; KIRC, kidney renal clear cell carcinoma; LAML, acute myeloid leukaemia, also
denoted as AML; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma;
OV, ovarian serous cystadenocarcinoma; READ, rectum adenocarcinoma; UCEC, uterine corpus
endometrioid carcinoma.
The numbers are the sample counts. Totally, 563,024 somatic mutations in the overlapped
samples (363,676 missense mutations, 132,981 synonymous mutations, 33,838 nonsense
mutations, 13,260 frameshift indels, 6,952 non-coding RNA mutations, 8,699 splice site
mutations, 3,141 in-frame indels and 477 stop gain mutations). In trans-analysis, we added the
37,308 homozygous deletions in 2,084 genes (focal copy number deletion peaks), and 69,643
amplifications in 960 genes (focal copy number amplification peaks).
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probability distributions and descriptions of the random variables
of the model in Supplementary Table 2. The model specification,
assumptions and inference algorithm are fully explained in the
Supplementary Methods and the Methods sections. We briefly
describe them here.

The xseq model is predicated on the idea that mutations with
functional effects on transcription will exhibit measurable signals
in mRNA transcripts biochemically related to the mutated gene—
thus imposing a transcriptional shadow across part (or all) of a
pathway. To infer this property, three key inputs are required for
the model (Fig. 1a): a patient-gene matrix encoding the presence/
absence of a mutation (any form of somatic genomic aberrations
that can be ascribed to a gene, for example, SNVs, indels or copy
number alterations); a patient-gene expression matrix encoding
continuous value expression data (for example, from RNA
sequencing or microarrays); and a graph structure encoding
whether two genes are known to be functionally related (for
example, obtained through literature, databases or co-expression
data). xseq uses a precomputed ‘influence graph’20 as a means to
incorporate prior gene–gene relationship knowledge into its
modelling framework (Methods). For analysis of mutation impact
in-cis, the graph reduces to the simple case where the mutated
gene is only connected to itself. Given the inputs, we calculate the
actual expression of the nth gene connected to mutated gene g in
patient m, denoted by Yg,m,n.

The output of xseq consists of: (a) the probability that a
recurrently mutated gene g influences gene expression across the
population of patients (denoted by P(Dg¼ 1), Supplementary
Table 2); and (b) the probability that an individual mutation in

gene g in an individual patient m influences expression within
that patient (denoted by P(Fg,m¼ 1)).

In addition to the random variables Dg, Fg,m and Yg,m,n, xseq
also models the gene expression distribution over the patient
population with gene-specific three component mixture models
of Student’s t-emission densities. The three mixture components
represent downregulation, neutral or upregulation, respectively
(Fig. 1a). Gg,m,nA{downregulation, neutral, upregulation} denotes
the status of the nth gene connected to gene g in patient m. The
central assumption is that a mutation in gene g of patient m
impacting gene expression (denoted by Fg,m¼ 1) more frequently
co-associates with non-neutral states in its connected genes,
compared with the mutations that do not impact expression. The
specific direction of expression is encoded by Hg,nA{downregula-
tion, upregulation} to denote the nth gene connected to gene g is
upregulated or downregulated when mutations in g influence
expression. (We also consider a simplified model, xseq simple
without modelling the directionality of gene regulation for a
specific gene, that is, without the H variable in Fig. 1b for
simplicity of inference.) To represent a recurrent pattern of
expression impact across multiple patients, we consider informa-
tion across all patients with a mutation in gene g. This allows for
borrowing of statistical strength across multiple gene expression
patterns co-associating with mutations to generalize whether a
mutated gene is impacting expression across the population
(denoted by Dg¼ 1). (Supplementary Fig. 1a shows a simple xseq
model.)

We use the Belief Propagation algorithm21 for inference and
the Expectation Maximization (EM) algorithm for parameter
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Figure 1 | Overview of the xseq modelling framework. (a) The inputs to the xseq model: a mutation matrix typically from next-generation sequencing,

a gene interaction network and a gene expression matrix. xseq models the expression of a gene across all the patients by mixture distributions. The three

mixture components represent downregulation, neutral and upregulation, respectively. (b) The graphical model representation of xseq with the plate

notation. Circles represent random variables and arrows denote dependencies between variables. Boxes are plates that represent replicates. For example,

the graph represents a gene mutated in M patients (we assume that a gene is mutated only once in a patient), and the gene is connected to N genes.

(c) xseq predicts the posterior marginal probabilities of each gene (P(D)), each mutation (P(F)) influencing expression and the regulatory probabilities of

the genes connected to the mutated gene in a patient (P(G)).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9554 ARTICLE

NATURE COMMUNICATIONS | 6:8554 | DOI: 10.1038/ncomms9554 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


learning22 (Supplementary methods). The inference problem is to
compute the posterior probabilities P(Dg), P(Fg,m) and P(Gg,m,n)
given the input. The learning problem is to estimate the
conditional probabilities of a variable given its parents, for
example, yF¼ 1|D¼ 1—the probability of a mutation impacting
expression in a specific patient given that this gene’s mutations
impact expression across patients (Fig. 1b; Supplementary
Table 2). For clarity of presentation, we have removed the
subscripts and directly refer to D, F, G and Y. For example, we use
P(D), P(F) and P(G) to denote the posteriors P(Dg), P(Fg,m) and
P(Gg,m,n), respectively.

To add interpretative capacity to xseq outputs, we developed
binary classifiers to determine if genes with high P(D) showed
tumour suppressor properties P(TSG) or activating oncogenic
properties P(OCG) (Methods, Modelling loss-of-function muta-
tions and hotspot mutations). The classifiers were motivated by
the pattern of distributed loss-of-function mutations across a
gene for tumour suppressors (for example, TP53) and hotspot
mutations at one or relatively few loci for oncogenes (for example,
KRAS).

Computational benchmarking and validation of xseq. We
examined the theoretical performance of xseq via simulation and
permutation analyses. To investigate the performance of xseq
under different noise levels, we simulated data (Supplementary
Fig. 2; Supplementary Methods) from 9 hyperparameter sets, and
10 independent realizations of data for each hyperparameter set.
Overall, xseq had high sensitivity and specificity in recovering the
latent variables, for example, even for the most challenging data
we simulated, xseq achieved mean area under the curves of 0.99
and 0.94 for D and F, respectively (Fig. 2). xseq performance was
improved when given the true values for H (Supplementary
Fig. 3). xseq simple also performed well, but with inferior per-
formance relative to xseq (Supplementary Figs 4–5). We per-
formed a simulation analysis of the cis-effects of somatic
mutations, and found that the results were similar to those
obtained from trans-simulations (Supplementary Fig. 6). We also
permuted the TCGA acute myeloid leukaemia (Table 1) data set23

for testing. The false discovery rates (FDRs) for D and F were
0.002 and 0.02, respectively (Fig. 3; Methods).

We executed a cross-validation analysis by splitting each
TCGA data set into approximately equally sized discovery and
validation data sets. We trained a model on the discovery data set,
and used the trained model to predict the validation data set, with
10 repeats for each tumour type. We defined the validation rate as
the proportion of high-probability predicted genes (P(D)Z0.8,
see next section on picking the threshold) in the training data also
predicted to have high probabilities in the validation data. For
bona fide cancer genes (Supplementary Data 1; Methods), the
median validation rate was 0.625 across all the 12 tumour types
(Supplementary Fig. 7; Supplementary Table 3). For all of the
predictions from the discovery data, the median validation rate
was 0.492. The validation rate is sensitive to the number of
patients (for example, the median validation rate for the predicted
bona fide cancer genes in colon adenocarcinoma and breast
invasive carcinoma (BRCA) was 0 and 0.73, respectively).
Restricting analysis to genes with at least five mutations in both
the discovery and validation data sets, median validation rates
for the bona fide cancer genes and all the predicted genes
increased to 0.68 and 0.63, respectively (Supplementary Fig. 8;
Supplementary Table 4).

To examine how the model would translate to independently
generated data, we used the METABRIC data5 to validate the
predicted copy number alterations from TCGA in breast cancer.
METABRIC copy number alterations24 were generated with

Affymetrix SNP6.0; however, gene expression was generated
using Illumina microarrays. We applied the xseq model trained
on the TCGA breast cancer data to analyse the METABRIC
breast cancer data. This analysis generated 14 genes with high
probability (P(D)Z0.8), representing a strict subset of the 42
genes predicted in the TCGA breast cancer data (Supplementary
Table 5; Supplementary Figs 9–10).

Finally, we quantitatively benchmarked xseq against
CONEXIC12 and xseq simple (Supplementary Methods). We
found that xseq was more specific but potentially less
sensitive than CONEXIC in predicting copy number alterations
influencing expression (Supplementary Table 6). xseq increased
sensitivity without loss of specificity of results relative to xseq
simple (Supplementary Table 7; Supplementary Figs 11–12).

Cis-effect loss-of-function mutations across the TCGA data.
We began analysis of the TCGA data by focusing on the cis-effect
impacts of loss-of-function mutations (frameshift, nonsense and
splice site mutations) on gene expression, yielding 65 genes across
the 12 data sets with P(D)Z0.8 (Fig. 4a; Supplementary Data 2).
(We chose the threshold of 0.8 for P(D) to balance prediction
of novel genes with introduction of false positives, see
Supplementary Fig. 13. Changes to the results with thresholds in
the range 0.75 to 0.85 were minor.) To place these predictions
in the context of known cancer genes, we compiled a list of
603 bona fide cancer genes (Methods) from the Cancer Gene
Census (CGC) database25 (Fig. 4a, black coloured genes),
Vogelstein et al.1 and Lawrence et al.26 (Fig. 4a, blue coloured
genes). In total, 34/65 xseq predictions overlapped bona fide
cancer genes. We compared xseq predictions with those6

predicted by an orthogonal method, MuSiC27, which computes
the statistical significance of the population mutation frequency
of a gene above an expected background mutation rate to predict
its role as a cancer gene. As MuSiC uses only mutation data, and
not expression data, we used it as a benchmark to determine the
effect of integrating gene expression data on cancer gene
discovery. MuSiC predicted 22/65 genes as significantly
mutated. Importantly, 13/43 of the xseq genes that were not
predicted by MuSiC were present in the list of bona fide cancer
genes, suggesting that integrating gene expression information
can complement the existing mutation frequency-based methods
to identify mutated cancer genes.

We next characterized the tumour suppressor properties of the
65 xseq cis-effect predictions for consistency with known patterns
of enrichment for loss-of-function mutations (Methods). We
found 51/65 genes with tumour suppressor characteristics
(P(TSG)Z0.2, Supplementary Fig. 14a–b; Supplementary
Data 2). Results were robust to a more conservative threshold,
yielding 47/65 genes with P(TSG)4¼ 0.5 (Supplementary
Fig. 15). The cis-effect loss-of-function mutations were
co-associated with genomic copy number (one-way analysis of
variance test P valueo0.001, Fig. 4c–d), with xseq cis-effect genes
enriched for coincidence with hemizygous deletion (Fisher’s exact
test P valueo0.001, Fig. 4c–d. The statistical test method when
reporting P values is omitted from this point onwards if Fisher’s
exact test is used.)

Additional biological characterization of the cis-effect
genes suggested strong enrichment for transcription factors,
phosphoproteins and X chromosome genes. Nearly half (30/65)
of the cis-effect genes encode transcription factors (Fig. 4a;
P valueo0.001), as annotated in the Checkpoint database28.
Most of the cis-effect genes (54/65, P valueo0.001) encode
human phosphoproteins (Supplementary Data 2), consistent with
recent work predicting cancer driver genes based on enriched
mutations in phosphorylation regions29. Finally, cis-effect
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genes were disproportionately found on chromosome X30 (8/65,
P valueo0.01; Fig. 4a). Taken together, these data indicate xseq
cis-effect predicted genes’ properties are well aligned with known
characteristics of tumour suppressor genes.

For the 30 novel predictions (not in our bona fide cancer driver
gene list nor significantly mutated based on MuSiC analysis),
we searched for literature in support of their tumour suppressor
roles in cancer. In total, we found strong connections to tumour
suppressor genes for at least 17 genes (Supplementary Discussion).
The tumour suppressor roles of several of these genes have recently
been elucidated (for example, UBQLN1 (ref. 31) and MED23 (ref.
32)). Notably, three genes (AMOT, AMOTL1 and ITCH) encode
proteins in the Hippo signalling pathway, involved in restraining
cell division and promoting apoptosis. We further characterized the
30 genes according to criteria presented above for all the 65 genes.
Of the 30 novel predictions, 18 genes accumulated enriched loss-of-
function mutations (P(TSG)Z0.2, P valueo0.001), 10 genes
encode transcription factors (P valueo0.05), 21 genes (P
valueo0.001) encode human phosphoproteins, three genes reside
on the X chromosome (P valueo0.1). All of the novel genes were
rarely mutated in the 12 studied cancer types (based on MuSiC
results; Supplementary Fig. 16). A total of 51/252 loss-of-function
mutations in these genes were in hemizygous deletion regions
(P valueo0.05).

As a comparison with a negative control group of genes, we
used the 30 genes flagged as false-positive cancer driver genes in a
recent study3. These genes are not significantly mutated after
correction for gene length, DNA replication time and other
factors in estimating the background mutation rates3. All 30
genes had P(TSG)o0.1. In addition, loss-of-function mutations

in these genes were not enriched in hemizygous deletion regions
(P value¼ 0.7; Fig. 4c–d) and all 30 were predicted to have
probabilities P(D)o0.6 by the xseq model (the P(D) histogram is
in Supplementary Fig. 17), suggesting that the FDR for xseq is
relatively low in the TCGA data, as shown in the permutation
analysis.

We next estimated the proportion of known tumour
suppressor genes harbouring cis-effect loss-of-function muta-
tions. We began by enumerating a set of 131 known tumour
suppressor genes from both CGC25 and Vogelstein et al.1

(Supplementary Data 3). We found that 23/131 genes
(significant enrichment of cis-effect genes, P valueo0.001) were
predicted to exhibit cis-expression effects indicating that loss-of-
function mutations in B17.6% of tumour suppressor genes yield
concomitant changes in mRNA expression levels.

Trans-effect mutations across the TCGA data. Application of
xseq to predict mutations impacting expression in trans resulted
in a total of 150 genes across the 12 cancer types (P(D)Z0.8;
Supplementary Table 7; Supplementary Fig. 18a). Sixty of the
150 (40%) genes are bona fide cancer genes. We characterized
these 60 trans-effect genes with annotated roles in cancer
according to biological functions and found that 30/60 genes
encode transcription factors (P valueo0.001), 14/60 genes encode
protein kinases (P valueo0.001) and 4/60 genes (ATRX, BAP1,
KDM5A, SETD2, P valueo0.01) are chromatin regulatory factors.
Moreover, 26/60 genes encode cell cycle proteins (gene ontology
term: GO:0007049). By comparison, MuSiC only predicted 35/60
of these genes (Supplementary Data 4). One gene (ACVR2A) was
predicted by both xseq and MuSiC but was not in the bona fide
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cancer gene list. Taken together, xseq uniquely predicted
89 novel genes through trans-impacting expression analysis
(Supplementary Data 5).

Further investigation revealed that 29/89 of the novel predicted
genes were known interacting partners of previously character-
ized bona fide cancer genes. The gene (protein) interactions were
assessed based on the high-quality protein–protein interaction
networks33 (downloaded from the Center for Cancer Systems
Biology website34). As for the 60 genes above, 23/89 genes encode
transcription factors (P valueo0.1), 7/89 genes encode protein
kinases (P valueo0.05), 3/89 genes are chromatin regulatory
factors (P valueo0.1), 18/89 genes encode proteins of the cell
cycle process (P valueo0.01). Pathway analysis indicated these
genes encode proteins involved in major cancer pathways such as
cell proliferation, apoptotic process, mitotic cell cycle, chromatin
modification, cell migration and focal adhesion (Supplementary
Data 6). Nineteen genes were predicted to have P(TSG) or
P(OCG)Z0.2 (Supplementary Data 5). The gene which har-
boured the largest number of high-probability mutations was
KPNA2 in breast cancer (Supplementary Fig. 19, 43 mutations
with P(F)Z0.5. As shown in Supplementary Fig. 18b–c, P(F)
follows a bimodal distribution centred at 0 and 1. Results are
similar if choosing slightly different thresholds for P(F).)

To examine other sources of evidence of functional effects, we
analysed high-probability missense mutations across all the
tumour types, and computed the enrichment of phosphoryla-
tion-related SNVs (pSNVs)29,35. (We found 839 missense
mutations with P(F)Z0.5 in the genes with P(D)Z0.8, and also
overlapped the set of missense mutations analysed35.) Of these
mutations, 620 were unique when the same amino-acid residue
replacement in different patients was considered. We performed
two analyses where the same amino-acid substitution missense
mutations (from different patients) were considered as separate

events or collapsed into the same event (unique). The Pan-Cancer
data set included 241,700 (236,367 unique) missense mutations.
Among them, 16,840 (16,074 unique) mutations were pSNVs.
Of the high-probability SNVs, 232/839 of them were pSNVs
(134/620 unique). The high-probability missense mutations were
highly enriched in pSNVs in both analyses (P value o0.001).
These results provided additional data to support functional
activity of the xseq predictions specifically related to impact on
phosphorylation.

Expression dysregulation across tumour types. Certain genes
are frequently mutated in multiple tumour types6. We asked
whether these mutations across tumour types correlated with
the dysregulation of the same set of genes. We focused on those
genes whose mutations were predicted to influence gene
expression in multiple tumour types. For each gene connected
to the mutated gene g in a tumour type, we counted how many
times this gene was dysregulated (P(G¼ ‘upregulation’)Z0.5 or
P(G¼ ‘downregulation’)Z0.5) in the presence of high-probability
mutations (P(F)Z0.5). We analysed downregulation and
upregulation independently using a binomial exact test to test
the significance of this correlation (high-probability mutations
and gene dysregulation). The binomial distribution parameters
were obtained by maximum likelihood estimation from all count
data. From this analysis, we found 17/20 recurrent genes had at
least 1 gene upregulated or downregulated in 2 tumour types
(Supplementary Data 7–8). Mutations in RB1 correlated with the
same group of gene dysregulations across several tumour types. In
particular, we observed that RB1 mutations correlated with E2F
family gene upregulations (for example, E2F1; Supplementary
Data 7; Supplementary Fig. 20) in bladder urothelial carcinoma
(BLCA), BRCA, glioblastoma multiforme (GBM), lung squamous
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cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV)
and uterine corpus endometrioid carcinoma (UCEC; Table 1), as
well as genes encoding mini-chromosome maintenance proteins,
for example, MCM5 (Supplementary Data 7; Supplementary
Fig. 21) in BRCA, GBM, lung adenocarcinoma, LUSC and OV.
To confirm these correlations, for each gene connected to RB1 in

the original full influence graph (Methods), in each tumour type,
we compared the expression of this gene in the patients with
RB1 mutations to the patients without RB1 mutations using the
Limma package36. We then aggregated all the obtained P values
from the genes connected to RB1 across tumour types, and
computed the FDRs37. We found that E2F1 was upregulated in
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BLCA, BRCA, GBM, LUSC and UCEC (FDRo0.1,
Supplementary Fig. 22). We performed a similar analysis for
MCM5 and found it was upregulated in BRCA, GBM, LUSC, OV
and UCEC (FDRo0.1; Supplementary Fig. 23).

In addition, aberrations (mutations and amplifications) in the
transcription factor NFE2L2 in six different tumour types (BLCA,
head and neck squamous cell carcinoma, kidney renal clear cell
carcinoma, lung adenocarcinoma, LUSC and UCEC) exhibited
trans-effects on gene expression (P(D)Z0.8). Two genes, MAFG
(Supplementary Figs 24–25) and FECH (Fig. 5; Supplementary
Fig. 26) were significantly upregulated in five and four tumour
types, respectively, in the presence of NFE2L2 aberrations
(FDRo0.1; Supplementary Data 7). As MAFG, FECH and
NFE2L2 reside on chromosome 17, 18 and 2, respectively, the
correlations are not likely caused by gene dosage effects. Several
other genes were also upregulated in the presence of NFE2L2
aberrations, for example, NQO1, TXNRD1, PRDX1, GSR, GPX2,
GCLM, FTL, AKR1C1, TXN, SQSTM1, GSTA1, KEAP1, GSTA4,
ABCC1, and GCLC were upregulated in six to three tumour types
(Supplementary Data 7). The boxplots in Supplementary Fig. 27
and the scatter plots in Supplementary Fig. 28 show the
correlation between NFE2L2 aberrations and its direct regulator
and binding partner, KEAP1 expression upregulation.

Stratifying patients harbouring the same gene mutations. We
investigated whether xseq probabilities P(F) could stratify patients
harbouring mutations in the same cancer driver gene. We
analysed each of the 127 genes from Kandoth et al.6 in each

tumour type for the presence of bimodal xseq P(F) distributions
over patients harbouring mutations in the genes of interest
(Supplementary Methods). Twenty-two commonly mutated
genes exhibited bimodal distributions in at least one tumour
type (Supplementary Table 8; Fig. 6b; Supplementary Fig. 29).
This was particularly evident for CTNNB1 mutations in UCEC
(Fig. 6a); 53/72 patients harboured high-probability CTNNB1
mutations (P(F)Z0.5), with all 53 patients harbouring CTNNB1
hotspot mutations (mutations hitting codons between 31 and 45).
By contrast, only 9/19 patients without high xseq probability
CTNNB1 mutations harboured hotspot mutations (Fig. 6c). In
addition, 9/19 patients harboured POLE mutations, or were
annotated as ‘ultramutated’ (tumours with more mutations than
Q3þ IQR� 4.5, where Q3 is the third quartile of mutation
counts across a corresponding tumour type, and IQR is the
interquartile range, as defined in syn1729383), suggesting that the
CTNNB1 mutations were inconsequential passenger mutations
(Supplementary Fig. 30, CTNNB1 P(F) distribution). Moreover,
patients in the P(F)Z0.5 group were significantly younger than
patients with P(F)o0.5 (mean age 57.5 versus 65.7 years old,
one-sided t-test P valueo0.01).

Similar results for RB1 mutations in UCEC are shown in
Fig. 6d. All 11 loss-of-function mutations (in eight patients) were
predicted to have high probabilities (P(F)Z0.5); however, only
2/13 patients that did not harbour loss-of-function mutations
were predicted to accumulate high-probability mutations
(P(F)Z0.5, Fig. 6d). Taken together, although genes such as
CTNNB1 and RB1 frequently harbour driver mutations, they
still likely accumulate passenger mutations without impact on
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gene expression. As such, patients’ tumours with these ‘inert’
mutations do not exhibit expected pathway dysregulation. xseq is
therefore capable of sub-stratifying patients into meaningful
phenotypic groups, separating patients with mutations and
dysregulated pathways from those patients with mutations, but
normal pathway activities.

TP53 mutations in UCEC also showed bimodal distributions
(Supplementary Fig. 31). TP53 frequently accumulates both loss-
of-function mutations and missense mutations. The variation
in P(F) cannot be explained by the types and positions of the
mutations (Supplementary Fig. 32). However, patients with

P(F)4¼ 0.5 were more likely to harbour copy number hemi-
zygous deletions (36 patients harboured co-occurring hemizygous
deletions, compared with eight patients with P(F)o0.5; only nine
patients lacked copy number alterations in the group with
P(F)Z0.5 compared with 12 in the group with P(F)o0.5,
P valueo0.005.)

Discussion
We developed a probabilistic model, xseq to quantitatively assess
the association of mutations with dysregulated gene expression in
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12 tumour types. Computational benchmarking and assessment
of independent data sets have demonstrated the robustness of
xseq. Our results have implications for the interpretation of
somatic mutations in retrospective, discovery-based studies.

Systematic analysis of mutation and expression landscapes
from 42,700 tumours uncovered several novel patterns. We
revealed 30 novel tumour suppressor candidate genes by cis-effect
loss of expression analysis. These genes showed the hallmarks
of tumour suppressor genes including a distribution of loss-of-
function mutations, and biallelic inactivation through loss-of-
function mutations and heterozygous deletions. In addition, we
assessed the landscape of mutations impacting gene expression
in trans across the 12 tumour types. These results implicated 89
novel genes with mutations impacting gene expression. In total,
33% of these genes had functional relationships with cancer genes
in core tumourigenic processes. These genes were not nominated
by mutation analysis alone, suggesting that integrated analysis of
mutations and gene expression is a complementary approach
towards comprehensive identification of functional mutations.
Recent synthesis of mutation rates and discovery ‘saturation’ in
genome-wide sequencing studies has indicated that current
standard of study design has under-sampled important muta-
tions, and that for some 50 tumour types, sequencing of 42,000
cases are needed to reach comprehensive sampling26. The
combined cis- and trans-analyses led to the elucidation of
4100 novel candidate cancer genes predicted to impact
expression. Integration of gene expression data directly into
analysis of mutations will therefore help to bridge the discovery
gap left by DNA mutation analysis alone.

Results from xseq analysis identified two important
characteristics for biological interpretation of mutations. The
trans-analysis revealed that the same mutated gene in different
patients can exhibit distinct expression impacts. In our analysis,
constitutive activation of Wnt signalling genes due to CTNNB1
mutation segregates almost exclusively with known hotspot
mutations. However, several cases exhibited mutation in
CTNNB1 without evidence of Wnt activation, resulting in low
xseq probabilities. These cases were primarily phenotyped as
hypermutators due to mismatch repair deficiency and/or POLE
mutations38, and patients were statistically older at diagnosis.
Thus, a real phenotypic distinction associates with low and high
xseq P(F) probabilities, providing evidence for integrative analysis
of mutations and expression as a route to stratifying
phenotypically distinct tumours in the context of the same
mutations.

xseq analysis identified several genes that had consistent
expression impact across tumour types. Despite distinct
histologies and cell contexts of source tumours, RB1 loss-of-
function mutations and NFE2L2 mutations/amplifications
exhibited similar expression patterns. RB1 binds and inhibits
the E2F transcription factor family. Accordingly, we observed that
RB1 mutations correlated with E2F family gene upregulation
across tumour types. NFE2L2 binds to its regulator KEAP1 and
regulates the expression of antioxidant-related genes to protect
against oxidative damage. We observed NFE2L2 mutations
correlated with upregulation of KEAP1, as well as of oxidative
stress genes (for example, GCLM, GCLC, TXNRD1, GPX2 and
NQO1). While therapeutic responses to targeted inhibitors
administered against the same mutation can have variable effects
due to intrinsic gene expression context (for example, BRAF
inhibition in melanoma and colorectal cancer39), the mutations
we outlined (such as RB1 and NFE2L2 mutations) exhibit
stable profiles and represent important targets for future
development of broadly applicable therapeutics. An intriguing
evolutionary implication arises from these mutations: phenotypic
impact is selected for in multiple heterogeneous tumour

microenvironments, indicating independent convergence of
phenotype transcending cell context.

xseq is not able to distinguish different mutations of a gene
within a specific patient—a limitation, as these mutations may
result in different functional impacts. Although genes are rarely
mutated multiple times within a single patient, some large
tumour suppressor genes (such as ARID1A) accumulate multiple
mutations, as a result of their long coding sequences. Similarly, in
glioblastoma and lung cancers, EGFR is frequently mutated
multiple times in single patients, often due to the emergence
of clonal populations following the administration of EGFR
inhibitors40. Examining the expression impact properties of such
mutations in clonal populations would likely require advanced
single-cell methods41.

In conclusion, this work provides a route towards closing
the cancer gene discovery gap in the field of cancer genome
sequencing. Direct, model-based integration of mutations and co-
acquired gene expression measurements from tumour samples
enhances interpretation capacity of discovered mutations leading
to optimal selectivity of targets for functional studies and
development of novel therapeutics.

Methods
A generative model of the effects of mutations on expression. The xseq model
specifies how the expression Y of a group of genes in a patient is influenced by the
somatic mutation status of a gene g in the patient (Fig. 1b; Supplementary Fig. 1).
The main question we address is whether gene g co-associates with disrupted
expression to itself (cis-method) or its connected genes as defined by an influence
graph (see below).

On the basis of the xseq model structure in Fig. 1b, for a mutated gene g, xseq
specifies a joint distribution42 (assuming g is mutated in M patients and g has N
connected genes):

PðD; F1; . . . ; FM ; H1; . . . ; HN ; G1;1; . . . ; G1;N ; . . . ;

GM;1; . . . ; GM;N ; Y1;1; . . . ; Y1;N ; . . . ; YM;1; . . . ; YM;N Þ

¼ yD

YM
m¼1

yFm jD
YN
n¼1

yIðFm¼1Þ
Gm;n j Fm¼1;Hn

yIðFm¼0Þ
Gm;n j Fm¼0p Ym;n j Gm;n

� � ð1Þ

where Ið�Þ is the indicator function, and IðxÞ ¼ 1 when x¼TRUE, otherwise
IðxÞ ¼ 0. The ys are the parameters (conditional probabilities) of xseq
(Supplementary Table 2). These parameters can take different values based on the
subscripts, for example, yD can take yD¼ 0 and yD¼ 1 based on the value of D. For
simplicity, we consider the case with only one mutated gene and we remove ‘g’ in
the notations. Here we assume that a gene is just mutated once in a specific patient,
that is, M equals to the number of accumulated mutations in gene g. Therefore, m
is the patient (mutation) index, and n is the gene index, that is, Ym,n represents the
expression of the nth gene connected to g in the mth patients harbouring mutations
in g. We now explain how we execute parameter learning and inference over this
joint distribution.

Inference of latent variables and parameter estimation. It is computationally
intractable to marginalize the joint distribution in equation (1) to infer the
posterior marginals P(D), P(F) and P(G). Instead, xseq uses the belief propagation
algorithm21,43 to efficiently do exact inference of these posterior marginals. Here
we assume that the variable HA{l,G} (l and G means downregulation of
expression and upregulation of expression, respectively) has been estimated
(estimation of H is discussed below). Then, we can convert the non-tree-structured
xseq model to a tree for efficient inference (Supplementary Methods). The belief
propagation algorithm has time and memory complexity exponential in the
maximum number of parents per node (two for xseq when H is given). Detailed
descriptions of the belief propagation algorithm for xseq inference can be found in
Supplementary Methods.

The EM algorithm22 is used to learn the parameters (Supplementary Table 2) in
xseq. EM algorithm iterates between the E-step and the M-step to find a local
maximum of the objective likelihood function. Below, we listed the M-step update
equations, and present the detailed derivations of the formulas in Supplementary
Methods.

yD / P D j Yð Þ
yF jD / P F;D j Yð Þ
yG j F¼0 / P G; F ¼ 0 j Yð Þ
yG j F¼1;H / P G; F ¼ 1 j Y ;Hð Þ
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The terms P(D | Y), P(F,D | Y), P(G,F¼ 0 | Y) and P(G,F¼ 1 | Y,H) are computed in
the E-step using the belief propagation algorithm.

Fixing H is key for converting the model to a tree structure for efficient
inference and learning (Supplementary Methods). There may be several ways to
estimate H, for example, using differential expression analysis to test whether a
gene is upregulated or downregulated, or directly getting this information from
pathway databases. In our experiments, to systematically analyse all the data sets,
for the nth gene connected to gene g, we estimate the upregulation probability by
PðHn ¼ GÞ ¼

QM
m¼1 PðGm;n ¼ G j ym;nÞ, where m is the mth patients harbouring

gene g mutations, M is the total number of patients harbouring gene g mutations
and ym,n is the expression of the nth gene connected to g in patient m.
Gm,nA{l,N ,G} means downregulation, neutral and upregulation of the nth gene
connected to g in patient m, respectively. The probability P(Gm,n¼G | ym,n) is
estimated off-line by the posterior distribution of ym,n being generated from the
‘upregulation’ component (see Conditional distributions of gene expression
values). Similarly, we can estimate the downregulation probability:
P Hn ¼Lð Þ ¼

QM
m¼1 P Gm;n ¼L j ym;n

� �
.

Conditional distributions of gene expression values. The conditional distribu-
tions p(Y¼ y | G) are modelled as Student’s t-distributions and estimated off-line.
For example, the conditional distribution of gene g expression distribution is
modelled as a Student’s t-distribution when gene g is downregulated:

p Y ¼ y j G ¼Lð Þ ¼
Z
N Y ¼ y j mL;sL=zð Þgamma z j n

2
;
n
2

� �
dz

where y is the expression level of gene g, mL; sL and n are the parameters of the
Student’s t-distribution. As the parameter n increases, the Student’s t-distribution
approaches a Gaussian distribution N mL; sLð Þ. Compared with Gaussian
distributions, the Student’s t-distributions are more robust to outliers, especially
when n is small. Now, the observed gene expression distribution is a mixture of
three Student’s t-distribution:

p Y ¼ yð Þ ¼
X

k2 L;N ;Gf g
ok p Y ¼ y j G ¼ kð Þ

where ok is the mixture weight of mixture component k. We also use the EM
algorithm to uncover the parameters of the Student’s t-distributions.

Influence graph. In principle, the influence graph can be any such graph encoding
gene regulation. The ith vertex of the graph represents gene (protein) gi and edge
wi,j represents the association strength between gene (protein) gi and gj. For analysis
presented in this study, we constructed a combined functional gene association
network by merging the STRING v9.1 (ref. 44) functional protein association
network, the pathway data sets from KEGG45, WikiPathway46 and BioCyc47, and
transcription factor-targets networks. The pathways have already been integrated
into the IntPath database48. The transcription factor-targets network49 is
downloaded through the transcription factor encyclopedia web API. The
ENCODE50 transcription factor ‘proximal’ and ‘distal’ networks are also included
in the combined network (download from the website51). The majority of these
interactions are transcription factor-target gene interactions (B1% between
transcription factor interactions in the ‘proximal’ network50).

For each data set, we construct a weighted network. The weight of an
interaction represents our prior confidence of the interaction. For the data sets that
do not provide weights for interactions, a default weight of 0.8 is used. The
STRING protein–protein interaction network is already a weighted network so we
use their provided weights. To merge these networks, for a specific interaction, we
take the largest weight for this interaction across different networks. We then only
keep the interactions with at least median confidence (threshold of 0.4, the default
threshold suggested for the STRING database). In this combined network, 17,258
genes (proteins) connect to 19,070 genes (proteins) through 898,032 interactions.
This network is almost weakly connected (22 genes do not connect to rest genes).

Then, for each mutated gene, we test whether the genes connected to it are
differentially expressed with adjusted P value (BH method) threshold of 0.05. If
there exist differentially expressed genes, we only keep these genes and set their
connection weights to 1. In addition, if a gene is not differently expressed in a
specific tumour type but differently expressed in other tumour types based on
Fishers’ combined P value FDRr0.05, we also set their connection weights to 1.
If no differentially expressed genes exist for a given mutated gene, we use the
network from the original weighted network.

Code availability. The model and the influence and learning algorithms have been
implemented in the statistical programming language R52, and can be downloaded
from The Comprehensive R Archive Network53, or from our website54.

Permutation analysis. We performed several permutations to investigate the
influence of each component of xseq on the final predictions. First, we switched the
patient names within the mutation matrix (Fig. 3a, permute sample;
Supplementary Figs 33–34). Even after permutation, some mutations were still
predicted to have high probabilities P(F). To help explain this phenomenon, we
generated an expression heatmap (Fig. 3b), which showed the expression of genes

connected to RUNX1. We can see that some patients without RUNX1 mutations
still showed similar expression pattern to those with RUNX1 mutations. This
‘phenocopy’55 effect could result in some patients without mutations but high
predicted probabilities P(F). Phenocopying may be a common event in cancer
because of DNA methylation and other epigenetic alterations, and it may suggest
novel treatment opportunities. For example, there is increasing evidence that
treating of patients based on phenotypes (expression) instead of genotypes (DNA
mutations) produces better outcomes in some types of cancer56. We also switched
the gene names within the mutation matrix (Fig. 3a, permute gene), and the results
showed similar performance to those by switching patients.

Next, we randomly drew the same number of connected genes as given by the
combined network (Fig. 3a, permute network). Because the gene regulation
information is sparse and some master regulators can influence the expression of
huge number of genes, the model may still predict a few mutations with high
probability P(F) because these ‘randomly drawn’ genes might be truly regulated by
the mutated genes. Finally, if both the mutation matrix and the network were
shuffled, there were very few predicted high-probability mutations (dashed orange
curves in Fig. 3a, permute all). We performed the same processing steps after
permutations thus minimizing the possibility of introducing bias. In addition,
we kept the expression matrix the same in all permutation analyses.

Collecting bona fide driver genes. We collected the genes from the manually
curated, and widely used CGC database25 and two major recent review papers1,26

as our reference bona fide cancer driver genes. Specifically, we collected 519 genes
from CGC25, 125 genes predicted by the ‘20/20 rule’1(more details below),
66 recently discovered frequently mutated genes collected in the Supplementary
Table 4 of Lawrence et al26 and 33 genes predicted by MutSig and have strong and
consistent connections to cancer26. In summary, these data sets include 603 unique
genes in total (Supplementary Data 1). The 127 significantly mutated genes
predicted by the MuSiC suite6 are not counted because we use this data set for
several comparisons. Notice that in our analysis, we use the samples with
expression, copy number alterations and mutations. Therefore, xseq analyzes a
subset of mutations used by the MuSiC suite.

Modelling loss-of-function mutations and hotspot mutations. The mutation
patterns of most known tumour suppressor genes, and oncogenes are highly
characteristic and non-random1. In a recent review1, a ‘20/20 rule’ is used to
identify driver genes: for oncogenes, at least 20% of all the mutations are required
to be hotspot missense mutations or in-frame indels; for tumour suppressor genes,
at least 20% of all the mutations are required to be loss-of-function mutations.

Here we extend the ‘20/20 rule’ using mixture-of-binomial modelling of loss-of-
function mutations and hotspot mutations. We analyse oncogenes and tumour
suppressor genes separately. When predicting oncogenes, we first count the
number of hotspot mutations ng,rec (recurrent missense mutations and in-frame
indels) in gene g and the total number of mutations Ng in gene g. Then, we model
the mutation count distribution as a mixture of two binomial distributions: one
component for oncogenes and the other component for non-oncogenes:

P ng;rec jNg
� �

¼o1binomial ng;rec jNg ; p1
� �

þo2binomial ng;rec jNg ; p2
� �

P OCGð Þ¼o1binomial ng;rec jNg ; p1
� �

=P ng;rec jNg
� �

Then P(OCG) is defined as the posterior of ng,rec in the mixture component with
higher success rate, namely p1 here. The mixture parameters x¼ (o1,o2) and
success rates p¼ (p1,p2) are estimated by the EM algorithm.

Similarly, when predicting tumour suppressor genes, we first count the number
of loss-of-function mutations ng,loss in gene g, and Ng. Then, we model the count
distribution as a mixture of two binomial distributions: one component
representing tumour suppressor genes and the other representing non-tumour
suppressor genes:

P ng;loss j Ng
� �

¼o1binomial ng;loss j Ng ; p1
� �

þo2binomial ng;loss j Ng ; p2
� �

P TSGð Þ ¼o1binomial ng;loss j Ng ; p1
� �

=P ng;loss j Ng
� �

P(TSG) is defined as the posterior of ng,loss in the mixture component with higher
success rate (p1 here). Again, the mixture parameters x and success rates p are
estimated by the EM algorithm.

The mixture-of-binomial approach can be considered as a generation of the
‘20/20 rule’ because of its ability to estimate the parameters from data, and to
account for the total number of mutations to compute posterior probabilities of
genes to be oncogenes or tumour suppressor genes. To make the estimated
parameters more accurate, we also added extra genome-wide screen data from
COSMIC v64 (ref. 57), downloaded from syn1855816, and the Pan-Cancer data
downloaded from syn1710680. Supplementary Figure 14 shows the binomial
mixture modelling of oncogenes and tumour suppressor genes for all the genome-
wide screen somatic mutation data. We used a threshold of 0.2 for P(TSG) and
P(OCG) to call genes with tumour suppressor gene properties and oncogene
properties, respectively (Supplementary Fig. 15).

Expression information in predicting driver mutations. Some mutated genes are
not expressed in cancer cells, and therefore the mutations in these genes are less
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likely to be pathogenic. Currently, the expression information has not yet been fully
explored for the identification of driver mutations58, and only a few methods take
expression information into account to assess the background mutation rates3.

We adopted a mixture modelling approach to predict whether a gene is ‘highly
expressed’ in a tumour type. We first log2 transform the tumour gene RNA-seq by
Expectation Maximization (RSEM) abundance estimation values. To prevent
taking the log2 of 0, we remove the gene expression values if they are p0 before
log2-transformation. We then compute the 90th percentile of the expression of a
gene across patients in a tumour type to represent the overall expression of that
gene. Here we use the 90th percentile instead of median considering the gene
dosage effects of copy number deletions on expression in cancer. It is unlikely that
a gene is deleted in 90% of all the analysed samples (for example, for the Pan-
Cancer data sets, the mostly frequently homozygously deleted gene is CDKN2A,
which is deleted in 57% of patients in GBM). If we also consider heterozygous
deletions, then the most frequently deleted gene is EBF3, which is deleted in 90% of
patients in GBM. The 90th percentile expression of a gene may overestimate the
expression level of the gene in the studied tumour type (since we are more
concerned about losing important genes). Next, we model the 90th percentile
expression of genes as a mixture of two Gaussian distributions: one component
representing ‘highly expressed’ and the other component representing ‘lowly
expressed’. A gene is considered to be ‘highly expressed’ if its posterior probability
in the ‘highly expressed’ group is Z0.8. In the presence of outliers (some genes are
expressed at extremely high or low levels), we first remove outliers based on the
boxplot rule, and then fit the data. We assign a posterior probability of 1 to the
highly expressed outliers, and a posterior probability of 0 to the lowly expressed
outliers. Supplementary Figure 35 shows Gaussian mixture modelling of expression
across the 12 cancer types.

We note parenthetically that another approach to prevent taking log2 of 0 is to
add a small number, for example, 0.5 to the RSEM abundance estimation values
before log2 transformation59. As we use 90th percentile of the expression of a gene
across patients to represent the expression of that gene, this approach may result in
many lowly expressed genes to have exactly the same expression value
(Supplementary Fig. 36a, gene expression data from acute myeloid leukaemia).
Consequently, a mixture of Gaussian distributions may not fit the data well since it
is rare to observe exact the same value from a continuous distribution. Despite this
limitation, posterior probabilities computed from both approaches are highly
correlated as can be seen from the scatter plots in Supplementary Fig. 36b (Pearson
correlation coefficient of 0.984, Spearman correlation coefficient of 0.995).

Compensating for the cis-effects of copy number alterations. Before analysing
the trans-effects of somatic mutations, we first remove the cis-effects of copy
number alterations on expression; copy number alterations are common in cancer
and the majority have cis-effects on expression. Numerous studies have carried out
integrative analysis of copy number and gene expression data60–63. Here we use the
Gaussian process (GP) regression to model the expression yi of a gene in a patient i,
as a function of its copy number log2 value xi. GP regression is flexible to add extra
variables such as DNA methylation data as independent variables if necessary, and
can capture nonlinear relationships between copy number alterations and
expression.

GP regression models the joint distribution of yi as a joint Gaussian
distribution. The covariance matrix is constructed based on the given copy number
data, cov(xi,xj)¼ k(xi,xj), where k is the squared exponential kernel function.
The hyperparameters of the kernel function are computed by optimizing the
log-marginal likelihood function using scaled conjugate gradient algorithms.
To remove the cis-effects of copy number alterations, we subtract the regression
values from the original expression values to get the residuals that are considered to
be regulated by trans-effect mutations. Supplementary Figure 37 shows the scatter
plots of copy number alteration and expression values for PTEN across the 12
cancer types. The GP regression lines and the 95% confidence intervals of the
regression lines are overlaid on the scatter plots. Supplementary Figure 38 shows
the scatter plots of PTEN expression across cancer types after removing the
cis-effects of copy number alterations on expression.
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