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Pathway enrichment analysis and visualization
of omics data using g:Profiler, GSEA, Cytoscape
and EnrichmentMap
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Pathway enrichment analysis helps researchers gain mechanistic insight into gene lists generated from genome-scale
(omics) experiments. This method identifies biological pathways that are enriched in a gene list more than would be
expected by chance. We explain the procedures of pathway enrichment analysis and present a practical step-by-step
guide to help interpret gene lists resulting from RNA-seq and genome-sequencing experiments. The protocol comprises
three major steps: definition of a gene list from omics data, determination of statistically enriched pathways, and
visualization and interpretation of the results. We describe how to use this protocol with published examples of
differentially expressed genes and mutated cancer genes; however, the principles can be applied to diverse types of omics
data. The protocol describes innovative visualization techniques, provides comprehensive background and troubleshoot-
ing guidelines, and uses freely available and frequently updated software, including g:Profiler, Gene Set Enrichment
Analysis (GSEA), Cytoscape and EnrichmentMap. The complete protocol can be performed in ~4.5 h and is designed for
use by biologists with no prior bioinformatics training.

Introduction

Comprehensive quantification of DNA, RNA and proteins in biological samples is now routine. The
resulting data are growing exponentially, and their analysis helps researchers discover novel biological
functions, genotype-phenotype relationships and disease mechanisms". However, analysis and
interpretation of these data represent a major challenge for many researchers. Analyses often result in
long lists of genes that require an impractically large amount of manual literature searching to
interpret. A standard approach to addressing this problem is pathway enrichment analysis, which
summarizes the large gene list as a smaller list of more easily interpretable pathways. Pathways are
statistically tested for over-representation in the experimental gene list relative to what is expected by
chance, using several common statistical tests that consider the number of genes detected in the
experiment, their relative ranking and the number of genes annotated to a pathway of interest. For
instance, experimental data containing 40% cell cycle genes are surprisingly enriched, given that only
8% of human protein-coding genes are involved in this process.

In a recent example, we used pathway enrichment analysis to help identify histone and DNA
methylation by the polycomb repressive complex (PRC2) as the first rational therapeutic target for
ependymoma, one of the most prevalent childhood brain cancers’. This pathway is targetable by
available drugs such as 5-azacytidine, which was used on a compassionate basis in a terminally ill
patient and stopped rapid metastatic tumor growth’. In another example, we analyzed rare copy-
number variants (CNVs) in autism and identified several significant pathways affected by gene
deletions, whereas few significant hits were identified with case—control association tests of single
genes or loci™”. These examples illustrate the useful insights into biological mechanisms that can be
achieved using pathway enrichment analysis.
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Fig. 1| Protocol overview. Gene lists derived from diverse omics data undergo pathway enrichment analysis, using
g:Profiler or GSEA, to identify pathways that are enriched in the experiment. Pathway enrichment analysis results are
visualized and interpreted in Cytoscape using its EnrichmentMap, AutoAnnotate, WordCloud and clusterMaker2
applications. Protocol overview is shown on the left, starting from gene list input, and example outputs at each stage
are shown on the right.

Development of the protocol

This protocol covers pathway enrichment analysis of large gene lists typically derived from genome-
scale (omics) technology. The protocol is intended for experimental biologists who are interested in
interpreting their omics data. It requires only an ability to learn and use ‘point-and-click’ computer
software, although advanced users can benefit from the automatic analysis scripts we provide as
Supplementary Protocols 1-4. We analyze previously published human gene expression and somatic
mutation data as examples®”; however, our conceptual framework is applicable to analysis of lists of
genes or biomolecules from any organism derived from large-scale data, including proteomics,
genomics, epigenomics and gene-regulation studies. We extensively use pathway enrichment analysis
for many projects and have evaluated numerous available tools’ . The software packages we cover
here have been selected for their ease of use, free access, advanced features, extensive documentation
and up-to-date databases, and they are ones we use daily in our research and recommend to colla-
borators and students. In addition, we have provided feedback to the developers of these tools,
allowing them to implement features we have needed in published analyses. These tools are
g:Profiler'’, GSEA'", Cytoscape'” and EnrichmentMap'®, all freely available online:

e g:Profiler (https://biit.cs.ut.ee/gprofiler/)

* GSEA (http://software.broadinstitute.org/gsea/)

e Cytoscape (http://www.cytoscape.org/)

¢ EnrichmentMap (http://www.baderlab.org/Software/EnrichmentMap)

Overview of the procedure

This section outlines the major stages of pathway enrichment analysis. A detailed step-by-step

protocol is provided in the Procedure below. Pathway enrichment analysis involves three major stages

(Fig. 1; see Box 1 for basic definitions).

1 Definition of a gene list of interest using omics data. An omics experiment comprehensively
measures the activity of genes in an experimental context. The resulting raw dataset generally
requires computational processing, such as normalization and scoring, to identify genes of interest,
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Box 1 | Definitions
Pathway. Genes that work together to carry out a biological process.

Gene set. A set of related genes. A ‘pathway gene set’ includes all genes in a pathway. Gene sets can be based on
various relationships between genes, such as cellular localization (e.g., nuclear genes) or enzymatic function
(e.g., protein kinases). Details such as protein interactions are not included.

Gene list of interest. The list of genes derived from an omics experiment that is input to pathway enrichment
analysis.

Ranked gene list. In many omics data (e.g., that from RNA-seq for gene expression), genes can be ranked
according to some score (e.g., level of differential expression) to provide more information for pathway
enrichment analysis. Pathways enriched in genes clustered at the top of a ranked list would score higher than if
the pathway genes are randomly scattered across the ranked list.

Pathway enrichment analysis. A statistical technique to identify pathways that are significantly represented in a
gene list or ranked gene list of interest.

Multiple testing correction. Thousands of pathways may be individually tested for enrichment, and this could lead
to significant enrichment P values appearing by chance alone. Multiple testing correction is a statistical technique
to correct the P values from individual enrichment tests to address this problem and reduce the chance of false-
positive enrichment (Box 3).

Leading-edge gene. A subset of genes found in the ranking at or just before the maximal ES in a GSEA analysis.
This subset of genes often accounts for a pathway being defined as enriched.

considering the experimental design. For example, a list of genes differentially expressed between
two groups of samples can be derived from RNA-seq data'’. Gene lists derived from other types of
omics experiments, such as gene expression microarrays'®, quantitative proteomics'”*’, germline
and somatic genome sequencing’' ">, and global DNA methylation assays®**, can be used in this
protocol; however, each type of data may require specific pre-processing steps (see ‘Comparison to
alternative methods’ section).

2 Pathway enrichment analysis. A statistical method is used to identify pathways enriched in the gene
list from stage 1, relative to what is expected by chance. All pathways in a given database are tested
for enrichment in the gene list (see Box 2 for a list of pathway databases). Several established
pathway enrichment analysis methods are available, and the choice of which to use depends on the
type of gene list (see ‘Comparison to alternative methods’ section).

3 Visualization and interpretation of pathway enrichment analysis results. Many enriched pathways
can be identified in stage 2, often including related versions of the same pathway. Visualization can
help identify the main biological themes and their relationships for in-depth study and
experimental evaluation.

Stage 1: definition of a gene list of interest using omics data

Genome-scale experiments generate raw data that must be processed to obtain gene-level information
suitable for pathway enrichment analysis (Supplementary Protocols 1 and 2). The specific processing
steps are particular to the omics experiment type and may be standard, and thus usually straight-
forward to implement, or not, in which case advanced computational skills may be needed for data
processing. Standard processing methods are available for established omics technologies and are
most conveniently performed by the core facility that generates the data.

There are two major ways to define a gene list from omics data: list or ranked list. Certain omics
data naturally produce a gene list, such as all somatically mutated genes in a tumor identified by
exome sequencing, or all proteins that interact with a bait in a proteomics experiment. Such a list is
suitable for direct input into pathway enrichment analysis using g:Profiler (Step 6A). Other omics
data naturally produce ranked lists. For example, a list of genes can be ranked by differential gene
expression score or sensitivity in a genome-wide CRISPR screen. Some pathway enrichment analysis
approaches analyze a ranked gene list filtered by a particular threshold (e.g., FDR-adjusted P value
<0.05 and fold-change >2). Alternative approaches, such as GSEA, are designed to analyze ranked
lists of all available genes and do not require a threshold. A whole-genome ranked list is suitable for
input into pathway enrichment analysis using GSEA (Step 6B). A partial (non-whole-genome) ranked
gene list should be analyzed using g:Profiler.

As an example, we describe the analysis of raw RNA-seq data from ovarian cancer samples to
define a ranked gene list’. DNA sequence reads are quality filtered (e.g., by trimming to remove low-
quality bases) and mapped to a genome-wide reference set of transcripts to enable counting of reads
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Box 2 | Pathway enrichment analysis resources

Pathway databases
We list a selection of large, open-access and conveniently accessible pathway databases that offer the maximal
value for pathway enrichment analysis. Hundreds of pathway databases are available for many purposes®.

Gene set databases

e Gene Ontology (GO)*”: GO provides a hierarchically organized set of thousands of standardized terms for
biological processes, molecular functions and cellular components, as well as curated and predicted gene
annotations based on these terms for multiple species. Biological process GO annotations are the most
commonly used resource for pathway enrichment analysis.

© Molecular Signatures Database (MSigDB)2°®": MSigDB is a database of gene sets based on GO, pathways, curation,
individual omics studies, sequence motifs, chromosomal position, oncogenic and immunological expression
signatures, and various computational analyses maintained by the GSEA team (http://www.msigdb.org).

A relatively non-redundant collection of ‘hallmark’ gene sets is available. The data can be used with many pathway
enrichment methods.

Detailed biochemical pathway databases

These databases are maintained by a team of curators who manually collect detailed pathway information,

including biochemical reactions, gene regulatory events and other gene interactions. The information can be

exported or converted to gene set format.

e Reactome®®: The most actively updated general-purpose public database of human pathways (http://www.
reactome.org).

e Panther®; Human signaling pathways (http://pantherdb.org/pathway).

o NetPath®®: Human signaling pathways with a focus on cancer and immunology (http://www.netpath.org/).

® HumanCyc®®: Human metabolic pathways (http://humancyc.org/).

® National Cancer Institute (NCI) Pathway Interaction Database (PID): Human cancer-related signaling
pathways; this database is no longer updated.

® KEGG®: The KEGG database is most useful for its intuitive pathway diagrams. It contains multiple types of
pathways, some of which are not normal pathways but are rather disease-associated gene sets, such as
‘pathways in cancer’ (http://www.genome.jp/kegg/). Up-to-date GMT files for KEGG pathways are currently
not freely available because of data licensing restrictions.

Pathway meta-databases
These databases collect detailed pathway descriptions from multiple originating pathway databases.

e Pathway Commons**: Collects information from other pathway databases and provides it in a standardized
format (http://www.pathwaycommons.org).

o WikiPathways*®: A community-driven collection of pathways that also includes pathways from other databases
(http://www.wikipathways.org/).

per transcript. Read counts are aggregated at the gene level (counts per gene). Typically, RNA-seq
data for multiple biological replicates (three or more) for each of multiple experimental conditions
(two or more, e.g., treatment versus control) are available. Read counts per gene are normalized
across all samples to remove unwanted technical variation between samples, for example, due to
differences in sequencing lane or total read number per sequencing run”®"*®. Next, read counts per
gene are tested for differential expression across sample groups (e.g., treatment versus control)
(Supplementary Protocols 1 and 2 for RNA-seq and microarray data, respectively). Software packages
such as edgeR*’, DESeq™, limma/voom™"** and Cufflinks’® implement procedures for RNA-seq data
normalization and differential expression analysis. Differential gene expression analysis results
include: (i) the P value of the significance of differential expression; (ii) the related Q value (a.k.a.
adjusted P value) that has been corrected for multiple testing across all genes, for example, by using
the Benjamini-Hochberg false-discovery rate (BH-FDR) procedure34 (Box 3); (iii) effect size and
direction of expression change so that upregulated genes are positive and at the top of the list
and downregulated genes are negative and at the bottom of the list, often expressed as
log-transformed fold-change. The gene list is then ranked by one or more of these values (e.g., —log10
P value multiplied by the sign of log-transformed fold-change) and studied using pathway
enrichment analysis.

Stage 2A: pathway enrichment analysis of a gene list using g:Profiler (Step 6A)
The default analysis implemented in g:Profiler and similar web-based tools’>** searches for pathways
whose genes are significantly enriched (i.e., over-represented) in the fixed list of genes of interest, as
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Box 3 | Multiple testing correction

Repeated statistical testing used in a typical pathway enrichment analysis will result in some apparently
significant P values by chance alone. To correct this, multiple-testing correction methods systematically reduce
the significance of each P value derived from a series of tests. In this protocol, g:Profiler and GSEA automatically
apply multiple-testing correction to P values. The most commonly used method is the BH-FDR (or often simply
FDR)**. It is based on a step-down procedure that estimates the fraction of falsely enriched pathways over
enriched pathways, using the uncorrected P-value threshold and the number of tests. For instance, given that 100
pathways have enrichment P value <0.05 and an FDR of 5% at P value <0.05 means that five of those pathways
are expected to be falsely enriched. As an alternative, the classic Bonferroni multiple-testing correction adjusts
the significance threshold by dividing it by the number of tests. Practically, the method multiplies each
uncorrected P value by the number of conducted tests and applies a significance cutoff (e.g., a P value of 0.001
will become an insignificant Q value 0.1 if 100 pathways have been tested). This technique ensures that the
probability of selecting at least one falsely enriched pathway is below the corrected P value threshold. Bonferroni
correction is typically considered overly conservative for differential gene expression and pathway enrichment
analysis because some fraction of false-positive findings can be tolerated. Importantly, both Bonferroni and BH-
FDR assume tests are independent, whereas pathways are typically not independent because of overlapping
genes and crosstalk. Therefore, BH-FDR estimates for pathway analysis can be inaccurate, although, practically,
they are still useful for filtering and hypothesis generation and thus are routinely used.

compared to all genes in the genome (Step 6A)(Box 4). The P value of the enrichment of a pathway is
computed using a Fisher’s exact test and multiple-test correction is applied (Box 3).

g:Profiler also includes an ordered enrichment test, which is suitable for lists of up to a few
thousand genes that are ordered by a score, whereas the rest of the genes in the genome lack
meaningful signal for ranking. For example, significantly mutated genes may be ranked by a score
from a cancer driver prediction method®. This analysis repeats a modified Fisher’s exact test on
incrementally larger sub-lists of the input genes and reports the sub-list with the strongest enrichment
P value for each pathway™. g:Profiler searches a collection of gene sets representing Gene Ontology
(GO) terms, pathways, networks, regulatory motifs, and disease phenotypes. Major categories of gene
sets can be selected to customize the search.

Pathway enrichment methods that use the Fisher’s exact test or related tests require the definition
of background genes for comparison. All annotated protein-coding genes are often used as default.
This leads to inappropriate inflation of P values and false-positive results if the experiment
can directly measure only a subset of all genes. For example, setting a custom background is
important in analyzing data from targeted sequencing or phosphoproteomics experiments.
The appropriate custom background would include all genes in the sequencing panel or all known
phosphoproteins, respectively.

Stage 2B: pathway enrichment analysis of a ranked gene list using GSEA (Step 6B)
Pathway enrichment analysis of a ranked gene list is implemented in the GSEA software'* (Step 6B)
(Box 4). GSEA is a threshold-free method that analyzes all genes on the basis of their differential
expression rank, or other score, without prior gene filtering. GSEA is particularly suitable and is
recommended when ranks are available for all or most of the genes in the genome (e.g., for RNA-seq
data). However, it is not suitable when only a small portion of genes have ranks available, for
example, in an experiment that identifies significantly mutated cancer genes (Stage 2A; Step 6A).
GSEA searches for pathways whose genes are enriched at the top or bottom of the ranked gene list,
more so than expected by chance alone. For instance, if the topmost differentially expressed genes are
involved in the cell cycle, this suggests that the cell cycle pathway is regulated in the experiment. By
contrast, the cell cycle pathway is probably not significantly regulated if the cell cycle genes appear
randomly scattered through the whole ranked list. To calculate an enrichment score (ES) for a
pathway, GSEA progressively examines genes from the top to the bottom of the ranked list, increasing
the ES if a gene is part of the pathway and decreasing the score otherwise. These running sum values
are weighted, so that enrichment in the very top- (and bottom-) ranking genes is amplified, whereas
enrichment in genes with more moderate ranks are not amplified. The ES score is calculated as the
maximum value of the running sum and normalized relative to pathway size, resulting in a nor-
malized enrichment score (NES) that reflects the enrichment of the pathway in the list. Positive and
negative NES values represent enrichment at the top and bottom of the list, respectively. Finally, a
permutation-based P value is computed and corrected for multiple testing to produce a permutation-
based false-discovery rate (FDR) Q value that ranges from 0 (highly significant) to 1 (not significant)
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Box 4 | Statistical tests in pathway enrichment analysis

A common statistical test used for pathway enrichment analysis of a gene list is a Fisher's exact test based on the
hypergeometric distribution. It determines whether the fraction of genes of interest in the pathway is higher
compared to the fraction of genes outside the pathway (i.e., background set). Since this test was first
introduced®”, many improved tests have been developed® that take advantage of continuous experimental
scores and avoid applying arbitrary thresholds. We categorize types of statistical enrichment tests as follows:

1 Ranked versus non-ranked tests. Ranked tests take as input a ranked gene list, whereas non-ranked tests such as
Fisher's exact test take as input a gene list of interest. Ranked tests are preferable for experiments that
produce meaningful ranks such as differential gene expression, because arbitrary thresholds can be avoided.
Non-ranked tests are preferable for experiments that naturally generate a gene list of interest (e.g., somatic
mutations in cancer, proteins that interact with a bait protein). Examples of ranked tests include the modified
Fisher's exact test implemented in the g:Profiler ‘ordered query’ option, and the modified
Kolmogorov-Smirnov test implemented in GSEA.

2 Exact versus permutation-based tests. Exact tests use a mathematical model (e.g., a distribution) to directly
compute an exact P value. Permutation-based tests utilize data resampling to estimate an empirical P value,
typically expressed as the number of permutations with results as good as or better than the ones observed
for real data, divided by the number of permutations. For example, in a case-control study, we can randomize
the case and control labels 1,000 times, each time repeating the pathway enrichment analysis to see how
frequently we observe an equal or stronger pathway enrichment signal. Permutation tests can be customized
to consider specific data properties and biases. Exact tests, if applicable, are preferable, because these can
quickly compute accurate P values. However, devising the right exact test for a specific application may be
challenging, in which case a custom permutation test is often a preferred option.

3 Competitive versus self-contained tests. Competitive tests determine whether the gene list of interest is enriched
in pathways relative to all genes in the background set. Thus, each pathway ‘competes’ for enrichment in the
gene list against genes of the background set. By contrast, self-contained tests calculate statistics uniquely at
the pathway level, ignoring genes of the background set. For instance, a self-contained test can evaluate
whether the gene expression within a given pathway is different in case samples compared to control
samples®®. Competitive pathway enrichment analysis is most popular and is usually appropriate for gene
expression data. However, self-contained tests must be used if single gene differences are not significant and
need to be pooled at the pathway gene set level to identify signal, for example, when analyzing rare gene
mutations or other data with low per-gene counts®®. Hybrid approaches may be preferable to self-contained
tests in specific circumstances. For instance, for rare CNV data, correcting a self-contained test for global
CNV burden leads to more specific biological results®®. Finally, competitive enrichment tests such as Fisher's
exact test ignore correlation among genes, whereas modified competitive tests such as Camera’' consider
these and thus typically produce more rigorous results (see Supplementary Protocol 3, for example). Self-
contained tests do not present this issue.

In summary, if genes in your data can be ranked, a ranked test should be used. Fisher's exact test is generally

chosen for non-ranked gene lists, and a modified version of the test is available for ranked lists. A competitive

test is adequate in most cases, unless the signal at the gene level is weak.

(Box 3). The same analysis is performed starting from the bottom of the ranked gene list to identify
pathways enriched in the bottom of the list. Resulting pathways are selected using the FDR Q value
threshold (e.g., Q < 0.05) and ranked using NES. In addition, the ‘leading edge’ aspect of the
GSEA analysis identifies specific genes that most strongly contribute to the detected enrichment
signal of a pathway.

GSEA has two methods for determining the statistical significance (P value) of the ES: gene set
permutation and phenotype permutation. The gene set permutation test requires a ranked list, and
GSEA compares the observed pathway ES to a distribution of scores obtained by repeating the
analysis with randomly sampled gene sets of matching sizes (e.g., 1,000 times). The phenotype
permutation test requires expression data for all samples (e.g., biological replicates), along with a
definition of sample groups called ‘phenotypes’ that are compared with each other (e.g., cases versus
controls; tumor versus. normal samples). The observed pathway ES is compared to a distribution of
scores obtained by randomly shuffling the samples among phenotype categories and repeating the
analysis (e.g., 1,000 times), including computation of the ranked gene list and resulting pathway ES.
Gene set permutation is recommended for studies with limited variability and biological replicates
(i.e., two to five per condition). In this case, differential gene expression values should be computed
outside of GSEA, using methods that include variance stabilization (such as edgeR*’, DESeq’’ and
limma/voom®"**) and imported into the GSEA software before pathway analysis. Phenotype per-
mutation should be used with a larger number of replicates (e.g., at least ten per condition). The main
advantage of the phenotype permutation approach is that it maintains the structure of gene sets with
biologically important gene correlations during permutation, in contrast to the gene set permutation
approach. This protocol covers only gene set permutation because it is appropriate for the most
common use case of pathway enrichment analysis. Phenotype permutation is computationally
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expensive and, for the current version of GSEA, requires custom programming to compute ESs and
differential expression statistics separately for thousands of phenotype randomizations. For advanced
users, we provide a supplementary protocol for this procedure (Supplementary Protocol 4).

By default, the GSEA desktop software searches the MSigDB gene set database, which includes
pathways, published gene signatures, microRNA target genes and other gene set types (Box 2). The
user can also provide a custom database as a text-based GMT (Gene Matrix Transposed) file in which
each line defines a pathway, with its name, identifier and a list of genes it contains. Gene identifiers in
the GMT file must match those in the input gene list.

Stage 3: visualization and interpretation of pathway enrichment analysis results (Steps
7-13)

Pathway information is inherently redundant, as genes often participate in multiple pathways, and
databases may organize pathways hierarchically by including general and specific pathways with
many shared genes (e.g., ‘cell cycle’ and ‘M-phase of cell cycle’). Consequently, pathway enrichment
analysis often highlights several versions of the same pathway. Collapsing redundant pathways into a
single biological theme simplifies interpretation. We recommend addressing such redundancy with
visualization methods such as EnrichmentMap'®, ClueGO"’ and others*'~**. An ‘enrichment map’ is
a network visualization that represents overlaps among enriched pathways (Fig. 1), whereas
‘EnrichmentMap’ refers to the Cytoscape application that creates the visualization. Pathways are
shown as circles (nodes) that are connected with lines (edges) if the pathways share many genes.
Nodes are colored by ES, and edges are sized on the basis of the number of genes shared by the
connected pathways. Network layout and clustering algorithms automatically group similar pathways
into major biological themes. The EnrichmentMap software takes as input a text file containing
pathway enrichment analysis results and another text file containing the pathway gene sets used in
the original enrichment analysis. Interactive exploration of pathway ES (filtering nodes) and con-
nections between pathways (filtering edges) is possible (Step 9A(xii and xiii) and 9B(xiii and xiv)).
Multiple enrichment analysis results can be simultaneously visualized in a single enrichment map, in
which case different colors are used on the nodes for each enrichment. If the gene expression data are
optionally loaded, clicking on a pathway node will display a gene expression heat map of all genes in
the pathway.

An enrichment map helps identify interesting pathways and themes. First, expected themes should
be identified to help validate the pathway enrichment analysis results (positive controls). For instance,
growth-related pathways and other hallmarks of cancer** are expected to be identified in analyses of
cancer genomics datasets. Second, pathways not previously associated with the experimental context
are evaluated more carefully as potential discoveries. Pathways and themes with the strongest ESs
should be studied first, followed by progressively weaker signals (Step 12). Third, interesting pathways
are examined in more detail, examining genes within the pathways (e.g., expression heat maps and
the GSEA leading edge genes). Further, gene expression values can be overlaid on a pathway diagram,
if available, from databases such as Pathway Commons*’, Reactome’, KEGG"” or WikiPathways**,
using tools such as PathVisio®. If a diagram is not available, tools such as STRING™” or Gene-
MANIA”" can be used with Cytoscape'” to define an interaction network among pathway genes for
expression overlay. This helps in visual identification of the pathway components (e.g., single genes or
entire signaling cascades) that are the most altered (e.g., differentially expressed) in the experiment. In
addition, master regulators for enriched pathways can be searched for by integrating gene sets of
miRNA” or transcription factor™ targets using the EnrichmentMap post-analysis tool. Finally,
pathway enrichment analysis results can be published to support a scientific conclusion (e.g., func-
tional differences of two cancer subtypes), or used for hypothesis generation or planning
of experiments to support the identification of novel pathways. More pathway enrichment
analysis examples and deeper explanation of core concepts is provided at http://www.pathwa
ycommons.org/guide/.

Advantages and limitations

Pathway enrichment analysis of omics data has several advantages as compared to analysis of single
genes, transcripts or proteins. First, it improves statistical power in two ways: (i) it aggregates counts
of mutations across all the genes and genomic regions involved in the given cell mechanism, pro-
viding a higher number of counts, which makes statistical analyses more reliable; and (ii) it reduces
the dimensionality from tens of thousands of genes or millions of genomic regions (e.g., SNPs) to a
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much smaller number of ‘systems’ or ‘pathways’, thereby reducing the cost of multiple hypothesis
testing. Second, results are often easier to interpret because the analysis is phrased at the level of
familiar concepts such as ‘cell cycle’. Third, the approach can help identify potential causal
mechanisms and drug targets. Fourth, results obtained from related, but different, data may be more
comparable because results are projected onto a smaller, shared feature space (i.e., a limited number
of pathways). Fifth, the approach facilitates integration of diverse data types, such as genomics,
transcriptomics and proteomics, which can all be mapped to the same pathways. Thus, projecting
disease data onto known mechanisms increases statistical and interpretative power.

The following limitations are important to consider when interpreting pathway enrichment
analysis results, in general, including those covered by this protocol. Additional limitations apply,
depending on the omics data type (see ‘Application to diverse omics data’ section). Advantages and
disadvantages of specific and alternative pathway enrichment analysis methods are presented in the
‘Comparison to alternative methods’ section.

e Enrichment analysis is more effective for pathways in which multiple genes have strong biological
signals (e.g., differential expression). For instance, in a transcriptomics experiment, we assume that
evolution has optimized a cell to express a pathway only when needed, and that pathway activation or
deactivation can be identified as coordinated activity of many genes in a pathway. Pathways in which
activity is controlled by only a few genes or not controlled by gene expression (e.g., by post-
translational regulation) will never be observed as enriched. Some pathway analysis methods address
this by using activating and inhibiting gene interactions to construct quantitative models of pathway
activity that include genes that are not differentially expressed yet are still important regulators.
However, these methods require pathway models with detailed biochemical and regulatory gene
interactions that are obtained through focused experiments and thus are in limited supply (Box 2).
Pathway boundaries tend to be arbitrary, and different databases will disagree about which genes are
involved in a given pathway. By using multiple databases, multiple pathway definitions can be
analyzed, and some may be better than others at explaining the experimental data.

Some pathway enrichment methods, such as those based on the Fisher’s exact test, are statistically
more likely to identify larger pathways as significant. Users can address this limitation by selecting an
upper limit for the size of the gene sets considered in the analysis.

Multi-functional genes that are highly ranked in the gene list may lead to enrichment of many different
pathways, some of which are not relevant to the experiment™. Repeating the analysis after excluding
such genes may reveal pathways whose enrichment is overly dependent on their presence or confirm
the robustness of pathway enrichment.

Pathway databases, and therefore enrichment results, are biased toward well-known pathways. In fact,
pathway enrichment analysis ignores genes with no pathway annotations, sometimes called the ‘dark
matter of the genome’, and these genes should be studied separately. For example, non-coding
RNA genes currently lack systematic annotations and are not directly usable in pathway
enrichment analysis.

Most enrichment analysis methods make unrealistic assumptions of statistical independence among
genes as well as pathways. Some genes may always be co-expressed (e.g., genes within a protein
complex), and some pathways have genes in common. Thus, standard FDRs, which assume statistical
independence between tests, are often either more or less conservative than ideal. Nonetheless, they
should still be used to adjust for multiple testing and rank enriched pathways for exploratory analysis
and hypothesis generation. Custom permutation tests may lead to better estimates of false discovery
(see ‘Comparison to alternative methods’ section).

Experimental design
Pathway enrichment analysis benefits greatly from careful experimental design. Otherwise, the
analysis may reveal apparently meaningful results caused by experimental biases or other con-
founders. This section covers a range of experimental aspects that must be considered before per-
forming this protocol.

Experimental conditions

The experimental conditions must be well defined such that the major variations observed are
responses that the experimenter would like to monitor and that are related to the biological question
of interest (e.g., tumor versus normal, treated versus untreated, comparison of four disease
subtypes, time series).
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Number of replicates

Biological replicates are independently processed samples obtained from distinct organisms or cell
lines that are required for measuring variability across samples and to compute statistical significance
(P values). Lack of replication (i.e., one sample per group) will not permit robust estimation of the
significance of the signal. Insufficient replication may result in lack of signal in the data (e.g., no
significantly differentially expressed genes). The larger the variation in the set of samples, the more
biological replicates are needed to accurately measure the signal. For systems with lower variability
(i.e., model organisms with the same genetic background in controlled laboratory conditions, or
stable cell lines derived from the same clone), at least three to four biological replicates are recom-
mended per condition for differential analysis with variance stabilization normalization. Variance
stabilization uses a global statistical model to ‘stabilize’ gene-wise variance estimates to reduce
inaccuracies resulting from few replicates. For experiments with higher variability (e.g., tumor
samples), more replicates are required; ideally, a pilot experiment followed by formal statistical power
calculations’ (sometimes called sensitivity testing) should be used to determine the minimal number
of replicates required to identify the signal of differentially expressed genes or enriched pathways.
Technical replicates comprising repeated experiments of the same samples are usually not needed for
well-established experimental techniques, such as RNA-seq, that have low technical variability, but
can be helpful for novel techniques.

Confounding factors

Differences in factors not related to the experimental question should be avoided or at least balanced
across conditions so that statistical techniques such as generalized linear models can correct for each
factor. Common factors include sequencing batch, nucleic acid extraction protocol, subject age and
many others. Otherwise, it may be impossible to accurately separate the experimental signals coming
from the experimental response from the confounding factors. Knowing important factors in advance
supports correct experimental design. Statistical exploratory analyses such as clustering or principal
component analysis (PCA) can help identify unknown factors. For example, cases and controls are
expected to cluster separately and not by processing batch.

Outliers

Outlier samples may considerably differ from others because of major experimental or technical
problems, such as contamination or sample mix-up. Alternatively, they may present extreme bio-
logical features, such as tumor samples with exceptionally aggressive phenotypes. Unbiased identi-
fication of outlier samples is possible using statistical techniques such as PCA or clustering. Pathway
enrichment analysis should be performed with and without outliers to ensure robust results. Sys-
tematic removal of outliers may be justified to reduce variability in the experiment.

Experimental sensitivity

Some experimental methods can be tuned to be more or less sensitive. For instance, the number of
reads in RNA-seq experiments influences downstream analysis. For quantifying gene expression in a
biological system with modest variability and testing differential expression with variance stabiliza-
tion, at least three to five replicates and 10 million mapped reads are required’®. Substantially greater
sequencing depth, such as 50-100 million mapped reads, is required to investigate splice isoforms,
to detect poorly expressed genes or for samples with complex cellular mixtures such as surgical
resection specimens.

Choice of pathway gene set database

We recommend searching enrichment of pathway gene sets only at first, as these capture familiar
normal cellular processes that are easy to interpret. GO® biological process terms and manually
curated molecular pathways from Reactome’®, Panther’®, HumanCyc™ and NetPath® are good
resources for human pathways (Box 2). GO biological process annotations include a mix of manually
curated and electronically inferred sources.

Filtering GO pathways by evidence code

A large fraction of gene annotations in GO originate from automatic data analysis and are not verified
by human curators. These have the evidence code ‘inferred from electronic annotation” (IEA). Earlier
literature has cautioned against analyzing and interpreting IEA-labeled annotations®', whereas more
recent studies suggest that these are often as reliable as annotations assigned by human curators®’.
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For high-confidence analyses of data from human and common model organisms that have many
manually curated annotations, we generally recommend comparing versions of the analysis with and
without filtering of IEA annotations to verify robustness. However, IEA annotations make up the
majority of information in less-well-studied species and should be used by default in these cases.
Removing IEA-coded annotations may bias the analysis toward well-studied biological processes.

Use of non-pathway gene sets

Different types of gene sets help answer a variety of questions. For instance, non-pathway gene sets
corresponding to microRNA and transcription factor targets can be used to discover important
regulators”>>’, However, simultaneously analyzing all available types of gene sets reduces data
interpretability. It may also lead to false negatives, as the increased number of conducted tests
increases the effect of multiple testing correction and reduces the multiple-test adjusted significance
of individual pathways. We therefore recommend performing the analysis of non-pathway and
pathway gene sets separately.

Gene set size considerations

It is often beneficial to exclude numerous small pathways because they are redundant with larger
pathways and complicate interpretation, and their abundance makes multiple-testing correction more
stringent. Large pathways should be also excluded, as these are overly general (e.g., ‘metabolism’),
they do not contribute to interpretability of results, and their statistical significance can be inflated
when using certain statistical enrichment methods (e.g., Fisher’s exact test). For analyzing human
gene expression data, we often recommend excluding pathway gene sets with <10-15 genes and
>200-500 genes, although upper bounds of 200-2,000 genes can be found in the literature. However,
for non-human organisms and other types of gene sets, which may have different gene set size
distributions, larger sets may need to be included. Filtering of pathways depends on the experimental
context, as different areas of biology have variable coverage in pathway databases. One can determine
the lower and upper bounds of pathway size by examining the sizes of several pathways of interest
that are expected to be relevant to the experiment.

Importance of using updated pathway gene sets

Pathway enrichment analysis depends on gene sets and databases used in the analysis, and many
recent studies using pathway enrichment analysis are strongly impacted by outdated resources''. For
improved reproducibility and transparency of research, investigators should report in publications the
analysis date and versions of pathway enrichment analysis software and gene set databases used, as
well as all analysis parameters. In addition to enrichment maps, authors should consider adding their
studied gene lists and complete tables of enriched pathways as supplementary information.

Choice of gene identifier

Genes are associated with many diverse database identifiers (IDs). We recommend using unambig-
uous, unique and stable IDs, as some IDs become obsolete over time. For human genes, we recom-
mend using the Entrez Gene database IDs (e.g., 4193 corresponds to MDM?2) or gene symbols (MDM?2
is the official symbol recommended by the HUGO Gene Nomenclature Committee). As gene symbols
change over time, we recommend maintaining both gene symbols and Entrez Gene IDs. The g:Profiler
and related g:Convert tools support automatic conversion of multiple ID types to standard IDs.

Unexpected pathway results and experimental design

Unexpected biological themes revealed in a pathway analysis may indicate problems with experi-
mental design, data generation or analysis. For example, enrichment of the apoptosis pathway may
indicate a problem with the experimental protocol that led to increased cell death during sample
preparation. In these cases, the experimental design and data generation should be carefully reviewed
before further data interpretation.

Application to diverse omics data

This protocol uses RNA-seq data’ and somatic mutation data® as examples because these data
types are frequently encountered. However, the general concepts of pathway enrichment analysis
that we present are applicable to many types of experiments that can generate lists of genes, such as
single-cell transcriptomics, CNVs®, proteomics®’, phosphoproteomics®’, DNA methylation®® and
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metabolomics®®. Most data types require protocol modifications, which we only briefly discuss here.

With certain data types, specialized computational methods are required to produce a gene list that is

appropriate for pathway enrichment analysis, whereas with other data types, a specialized pathway

enrichment analysis technique is required. Issues specific to data types and experimental methods
must be considered, including:

e Different gene identifiers are recommended for certain data types. We recommend UniProt accession
numbers for proteins (e.g., Q00987 for MDM2) and Human Metabolome Database IDs for metabolites
(e.g., ATP is denoted as HMDB00538).

e Certain types of omics experiments by design capture only a subset of genes or proteins. To address
this limited coverage, pathway enrichment analysis must define a custom background gene set of the
genes that can be measured in the experiment. For example, phosphoproteomics experiments measure
only proteins with one or more phosphorylation sites and thus must use the set of genes encoding
phosphoproteins as the custom background gene set. Otherwise, pathway enrichment analysis would
reveal inflated P values for general processes such as kinase signaling and protein phosphorylation.

e Pathway enrichment analysis of short non-coding genomic regions such as transcription factor binding
sites from ChIP-seq experiments need additional consideration. Genomic regions must be mapped to
protein-coding genes and corrected for biases such as increased signal in longer genes. Tools such as
GREAT®” automatically perform both tasks.

e Large genomic intervals that span multiple genes (e.g., from genome-wide associations, CNV and
differentially methylated regions) require specialized enrichment tests such as the PLINK CNV gene
set burden test®® or INRICH®. Standard enrichment tests often reveal genes clustered in the genome
whose signals are strongly statistically inflated because each gene is incorrectly counted as an
independent signal. Gene types that are correlated with genomic position include olfactory receptors,
histones, major histocompatibility complex (MHC) members and homeobox transcription factors. A
simple solution to address genomic clustering of genes in a pathway involves selecting only one
representative gene from each functionally homogeneous genomic cluster before enrichment analysis.

e For rare genetic variants, case—control pathway ‘burden’ tests are the most appropriate pathway
enrichment analysis method (see ‘Comparison to alternative’ methods section).

Comparison to alternative methods

Pathway enrichment analysis methods

This protocol recommends the use of g:Profiler and GSEA software for pathway enrichment analysis.

g:Profiler' > analyzes gene lists using Fisher’s exact test and ordered gene lists using a modified

Fisher’s test. It provides a graphical web interface and access via R and Python programming

languages. The software is frequently updated, and the gene set database can be downloaded as a

GMT file (http://biit.cs.ut.ee/gprofiler). GSEA'* analyzes ranked gene lists using a permutation-based

test. The software typically runs as a desktop application (http://software.broadinstitute.org/gsea).

Hundreds of pathway enrichment analysis tools exist (reviewed in ref. ’°), although many rely on out-

of-date pathway databases or lack unique features as compared to the most commonly used tools; as

such, we do not cover them here. The following are alternative free pathway enrichment analysis
software tools. Although we do not cover these tools in our protocol, we recommend the following,
on the basis of their ease of use, unique features or advanced programming features.

e Enrichr’”: This is a web-based enrichment analysis tool for non-ranked gene lists that is based on
Fisher’s exact test. It is easy to use, has rich interactive reporting features, and includes >100 gene set
databases (called libraries), including >180,000 gene sets in multiple categories. Functionality is similar
to that of the g:Profiler web server described in this protocol.

e Camera’": This R Bioconductor package analyzes gene lists and corrects for inter-gene correlations
such as those apparent in gene co-expression data. The software is available as part of the limma
package in Bioconductor (https://bioconductor.org/packages/release/bioc/html/limma.html; this is an
advanced tool that requires programming expertise; Supplementary Protocol 3).

* GOseq’”: This R Bioconductor package analyzes gene lists from RNA-seq experiments by correcting
for user-selected covariates such as gene length (https://bioconductor.org/packages/release/bioc/html/
goseq.html; this is an advanced tool that requires programming expertise).

* Genomic Regions Enrichment of Annotations Tool (GREAT)®”: In contrast to common methods that
analyze gene lists, GREAT analyzes genomic regions such as DNA binding sites and links these to
nearby genes for pathway enrichment analysis (http://bejerano.stanford.edu/great/public/html/). See
‘Application to diverse omics data’ section.
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Visualization tools

This protocol recommends the use of EnrichmentMap for pathway enrichment analysis visualization

to aid interpretation. EnrichmentMap'® is a Cytoscape'” application that visualizes the results from

pathway enrichment analysis and eases interpretation by displaying pathways as a network in which
overlapping pathways are clustered together to identify major biological themes in the results (http://
www.baderlab.org/Software/EnrichmentMap). Two alternative useful visualization tools are:

* ClueGO"’: This Cytoscape application is conceptually similar to EnrichmentMap and provides a
network-based visualization to reduce redundancy of results from pathway enrichment analysis. It also
includes a pathway enrichment analysis feature for analysis of GO annotations using Fisher’s exact
tests. However, it currently supports only GO gene sets.

e PathVisio™®: This desktop application provides a complementary visualization approach to those of
EnrichmentMap and ClueGO. PathVisio enables the user to visually interpret omics data in the
context of gene and protein interactions in a pathway of interest. PathVisio colors pathway genes
according to user-provided omics data (https://www.pathvisio.org). This is the main advantage of
PathVisio as compared to EnrichmentMap and ClueGO.

Topology-aware pathway analysis methods

Most pathway enrichment analysis methods treat all genes in a pathway uniformly and ignore gene
interactions. By contrast, topology-aware methods explicitly model the interactions between genes.
CePa’”, GANPA” and THINK-Back’® use physical gene interactions or co-expression networks to
assign a weight to each gene in each pathway. Weights can be derived from measures of the gene
importance in the network such as degree, the number of gene connections and betweenness cen-
trality, and can be integrated into a traditional pathway enrichment analysis method such as GSEA.
Methods such as SPIA”®, Pathway-Express’” and EnrichNet’® generate an ES for the entire pathway
that considers pathway regulatory interactions such as activation and inhibition. Although useful and
potentially more accurate, regulatory and biochemical gene interactions are available for fewer genes
and pathways as compared to physical interactions networks and co-expression. We anticipate that
these methods will become more useful as more gene interactions in pathways are characterized in
detailed molecular experiments. However collecting and curating high-quality and biochemically
detailed pathway data from the literature is currently complex and expensive. Therefore, pathway
enrichment analysis methods described in this protocol will probably remain the most widely used
approaches for the foreseeable future.

Future perspectives

Current pathway