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Single-cell profiling of healthy human kidney
reveals features of sex-based transcriptional
programs and tissue-specific immunity
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Sonya A. MacParland1,2,4,13, Gary D. Bader 8,9,12,14,15,
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Knowledge of the transcriptional programs underpinning the functions of
human kidney cell populations at homeostasis is limited. We present a single-
cell perspective of healthy human kidney from 19 living donors, with equal
contribution from males and females, profiling the transcriptome of 27677
cells to map human kidney at high resolution. Sex-based differences in gene
expression within proximal tubular cells were observed, specifically, increased
anti-oxidantmetallothionein genes in females and aerobicmetabolism-related
genes in males. Functional differences in metabolism were confirmed in
proximal tubular cells, with male cells exhibiting higher oxidative phosphor-
ylation and higher levels of energy precursor metabolites. We identified
kidney-specific lymphocyte populations with unique transcriptional profiles
indicative of kidney-adapted functions. Significant heterogeneity in myeloid
cells was observed, with aMRC1+LYVE1+FOLR2+C1QC+ population representing
a predominant population in healthy kidney. This study provides a detailed
cellular map of healthy human kidney, and explores the complexity of par-
enchymal and kidney-resident immune cells.

Kidneys perform complex functions and maintain body homeostasis
through a diverse range of specialized parenchymal cells residing in
distinct compartments. Within tissues, resident immune popula-
tions have specialized functions in surveillance, maintenance of self-
tolerance, response to infection and injury, and interface with par-
enchymal cells to maintain tissue homeostasis1–3. There is limited
understanding of the network of kidney parenchymal and resident
immune cells in human kidney due to lack of access to healthy, fresh
tissue, making it challenging to delineate alterations in transcriptional
programs and harmful immune responses that occur in native kidney
diseases and following kidney transplantation.Much of our knowledge

is based on studies that used kidneys rejected for transplant or
tumour-adjacent nephrectomy specimens, where parenchymal popu-
lations can have alteredmolecular programs, and immunepopulations
and their signalling circuitsmay not be entirely reflective of the steady-
state4,5. Further, sex-based dichotomy in gene expression within
human kidney cell populations has not been thoroughly examined, but
is of great significance to acute and chronic kidney disease, ischemia-
reperfusion injury (IRI) and progression of diabetic kidney disease,
which exhibit a male preponderance6–8.

In this study, we define cell populations and transcriptomic sig-
natures of healthy human kidney using the gold standard of tissue
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sources – living donor kidney biopsies. We provide a map of healthy
human kidney using single-cell RNA sequencing (scRNAseq) of 19 liv-
ing donors, capturing parenchymal and immune cell transcriptomes
reflective of a healthy state. Our map includes common and rare cell
types and demonstrates that <1% of all cells in healthy kidney are
immune cells.Given knowndichotomies betweenmales and females in
manykidneydiseases andoutcomes,we examinedunderlying baseline
transcriptome differences between healthy male and female kidney.
We identify sex-specific gene expression profiles among kidney cell
populations, and functionally validate differences in proximal tubular
(PT) cell metabolism. Finally, as it’s known that the immune system
responds rapidly to tissue alterations, we examined differences in
immune cell subsets and functions in living donor kidney and com-
pared to those observed previously in studies of tumour-unaffected
nephrectomy and deceased donor kidney. We report unique immune
populations, including an alternatively-activated myeloid population
and kidney-resident lymphocytes, validating markers which differ-
entiate them from their circulating counterparts. Collectively, we
demonstrate a unique immune niche in healthy living donor kidney
and define molecular programs that distinguish male and female par-
enchymal PT cell populations at homeostasis.

Results
Single-cell map of healthy human kidney
We examined the cellular landscape of human kidney using pre-
implantation kidney biopsies from 19 sex-matched living kidney
donors (Fig. 1a, b). Our dissociation method was developed to max-
imize viability while preserving the representation of rare and fragile
cell populations, and we employed rigorous quality control. We noted
minimal immune cell representation in healthy kidneys (~0.3% of cells
captured), and therefore incorporated CD45-enrichment for immune
cells in 10/19 biopsy samples (5 female, 5 male) (Fig. 1a). Of 27677 cells
in ourmap, 6899 cells were fromCD45-enriched samples, while 20778
cells were from non-CD45-enriched samples. Twenty-three clusters
were identified, including several distinct immune cell populations,
alongside all anticipated parenchymal populations of the nephron
(Fig. 1c, Supplementary Fig. 1a). Clusters were comprised of cells
captured frommultiple donors, there was no exceptional variability in
cell cycle state across clusters, and most clusters had symmetrical
distribution of donor sex (Fig. 1b-e, Supplementary Fig. 1).

As anticipated, Proximal Tubular (PT) cells comprised 75%
of sequenced cells. Sub-clustering revealed 6 distinct clusters (PT1-
PT6) (Fig. 1d, Supplementary Fig. 2a), with some heterogeneity
between individuals, methods of sample preparation, and sexes noted
(Supplementary Fig. 2b). PT segment-specific separation is evident;
PT1, 4, and 6 are enriched for PT segment 1 (S1) marker SLC5A2 and S1/
2-abundant genes (SLC7A7, ANK2, SLC4A4, SLC6A19, SLC22A8),
while PT2 shows increased expression of S3-abundant genes (DCXR,
AGXT, SLC22A7, SLC7A13) (Fig. 1e)9,10. PT3 highly expresses dissociation
stress-associated genes3, together with general (LRP2, CUBN) and
segment-specific PT genes, indicating cell contributions from all PT
segments (Fig. 1e, Supplementary Fig. 2c). PT5 (VIM
+S100A6+VCAM1+DCDC2+ANXA4+) displays similarity to a putative
regenerative PT population – termed ‘scattered tubular cells’ (STC)11,12.
These genes also characterize a population which expands following
IRI and is postulated to reflect failed PT repair, though expression was
also observed in healthy kidney13,14. Some STC-associated genes were
exclusively expressed by PT5 or PT3, while others were expressed by
both populations (Supplementary Fig. 2d-f). This transcriptional
overlap between the regenerative STC-like PT5 and stressed PT3 cells
may indicate attempted initiation of repair in PT3 cells. Transcription
factor analysis (Supplementary Fig. 2g) of PT5 genes revealed potential
upstream regulators directing cell differentiation and migration
(SNAI2, ZNF217), and epithelial phenotype maintenance (ELF3),
alongside NFE2L2, a key regulator of antioxidant and cytoprotective

genes15. Predicted upstream regulators for PT3 (EGR1, FOS, and JUN)
are associated with oxidative stress and fibrogenesis. Predicted reg-
ulator ATF3 (protective in renal IRI16) supports potential reparative
processes in this cluster (Supplementary Fig. 2g).

VCAM1+ PT cells were recently described in a dataset derived from
non-tumour portions of nephrectomy samples by single nucleus RNA
sequencing (snRNAseq)14. We explored the similarities between
VCAM1+ PT cells in our dataset and those described byMuto et al. in an
unbiased manner. We annotated PT cells from our dataset based on
their overall transcriptional correlation to PT clusters in Muto et al.14,17.
PT5 cells from our dataset were the most highly correlated with the
‘PT_VCAM1’ cluster fromMuto et al. (Supplementary Fig. 3a), and cells
from our dataset annotated by label transfer as ‘PT_VCAM1’ clearly
derive from the PT5 cluster (Supplementary Fig. 3b). Next, we inte-
grated both datasets into one data object (Supplementary Fig. 3c).
Although clustering fails to completelyovercome technical differences
associated with different sequencing modalities (Supplementary
Fig. 3d), the conformation of cells in dimensionality reduction again
confirms that PT_VCAM1 cells co-localize with our PT5 cells. Addi-
tionally, we note greater diversity in the PT_VCAM1 population, as
some cells from this annotation also co-localizedwith PT3 cells andU1/
2, supporting the likely overlap in functions among injured/stressed
PT cells and STCs (Supplementary Fig. 3e). Finally, correlation analysis
betweenPT5cluster defininggenes and thoseof PT_VCAM1 identified a
significant positive correlation (Spearman’s rho = 0.524, p = 8.542e-11)
(Supplementary Fig. 3f).

Fourteen non-PT parenchymal cell populations were identified9

(Fig. 1f, g) including rare but important glomerular populations such as
podocytes, mesangial cells, and parietal epithelial cells. We detected
notable heterogeneity in CTAL and endothelial populations. Two CTAL
subpopulations expressing CLDN10 and CLDN16, respectively, identify
cells with differing paracellular cation-resorption preferences in
CLDN10-dominant (Na+) versus CLDN16-dominant (Ca2+, Mg2+) tight
junctions (Supplementary Fig. 4a–e)18. Among endothelial subpopula-
tions (Endo1-4) (Fig. 1f),we identified twopopulations (Endo1, Endo3)of
peritubular capillary cells (PLVAP+TMEM88+DNASE1L3+) (Supplementary
Fig. 4a, f, g). Endo1 expressed ESM1 – required for VEGF-related main-
tenance of the peritubular capillary network19, while Endo3 expressed
motility and angiogenesis markers MARCKS, CLU, ACKR1, and SEMA3D
(Supplementary Fig. 4f). Endo2 (SOX17+SERPINE2+CLDN5+CXCL12+)
represents afferent arterioles and vasa recta, exhibiting reduced KDR
expression and increased expression of extracellular matrix-encoding
genes (Supplementary Fig. 4g). Endo4 expresses the glomerular
microvascular endothelial cell markers EDH3, SOST, and TBX3, a tran-
scriptional regulator critical to fenestrated glomerular endothelial
development (Supplementary Fig. 4f)20. Our description of diversity in
intra-renal endothelial populations may have implications for those
developing endothelial-targeting therapies for transplant21.

Identification of sex-based transcriptomic differences in
proximal tubular cells
Leveraging the sex-balanced large sample size, we examined differ-
ences in gene expression in healthy human kidney between males and
females. Using varimax-rotated principal component analysis, we
examined individual kidney populations for separation due to donor
sex, and observed a clear separation for the PT population (Fig. 2a,
Supplementary Fig. 5a). Such separation was not evident in other cell
populations, perhaps reflecting insufficient power with fewer cells.
Consequently, subsequent analyses focused on PT cells. Using
machine learning, we identified the most discriminant subset of genes
in our dataset that could correctly classify cell sex. Model-1 (80 genes)
correctly classified cell sex with an area under the curve (AUC) of 0.98
(training dataset), and an accuracy of 84% (validation dataset) (Fig. 2b,
Supplementary Fig. 5b–d). As X- and Y-linked genes potentially drive
sex-biased effects22, we removed all sex chromosome-encoded genes
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Fig. 1 | Identification and annotation of kidney parenchymal cells. a Different
cell type proportions were captured by sequencing total kidney homogenate and
CD45-enriched samples to create the total combined dataset. bUMAP clustering of
total combineddatasetwith cell type annotations. cGraphical depiction of location
of nephron cell types captured within the data. d UMAP plot of compartment-
specific analysis of 20772 proximal tubular cells, comprising 6 clusters. eHeatmap
showing the expression levels of cluster marker genes. f UMAP plot of
compartment-specific analysis of 4436 non-proximal tubular parenchymal cells,

with 14 cell populations represented, including four distinct endothelial clusters.
g Heat map showing the expression levels of cell type marker genes across the 14
non-PT cell populations. PT Proximal tubule, DCT Distal convoluted tubule, CNT
Connecting tubule, LOH Loop of Henle, cTAL Cortical thick ascending limb, CCD
Cortical collecting duct, PC Principal cell, IC Intercalated cell, Mes Mesangial, Podo
Podocyte, Endo Endothelial, PEC Parietal epithelial cell, NK Natural Killer, MNP
Mononuclear phagocyte.
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and derived Model-2 (15 genes), which correctly classified cell sex in
the training dataset (AUC0.85), but had reduced accuracy (68%) in the
validation set (Supplementary Fig. 5d–f). Using an independent single-
cell kidney dataset for validation23, our gene signatures accurately
classified cell sex in 79% (Model-1) and 66% (Model-2) of cells (Sup-
plementary Fig. 5d). Next, we identified genes with significant differ-
ential expression between males and females (n = 75 genes, p value
<0.05, LogFC>0.25) (Fig. 2c). As our conservative analysis excluded
genes expressed uniquely by one sex (e.g. Y-chromosome-encoded
genes), these genes (n = 12) were added for downstream analyses
(Fig. 2d). Results from our three analyses were compared (Supple-
mentaryData 1). In agreementwithprevious studies24,25, themajority of
the sex-biased genes uncovered are located in autosomes, rather than
in sex chromosomes. Several sex-biased genes are consistent with
previous reports of genes upregulated in murine male (NAT8, FKBP5,
KDM5D, DGKG) and female (MGST3, SLC3A1, CYP4A11, RPS29) PT cells,
respectively24–26.

Twenty-twogenes featured in all three analyses (Fig. 2e), including
9 Y- and 3 X-chromosome encoded genes. An additional 18 genes
featured in differential expression analysis (MAST + ) and one other
analysis (Fig. 2e). The X-chromosome genes reported are known to
escapeX-chromosome inactivation, explaining their higher expression
in females22. Many of the autosomal-encoded genes or their family
members are associated with primary sex determination (SRSF527,
GATM28,GADD45A), sex-biased expression (CISH, SRSF5, ACTG1,GATM,
AOX1), or sex-specific effects (SLC2A929). Intriguingly, many of the
genes have established links with kidney disease, including SLC27A2
(diabetic kidney disease)30, SLC3A1 (cystinuria), and GATM31; while
others are associated with hypoxia (PHGD, CA12), inflammation (PPIA),
and genotoxic stress (ASS1). Metallothionein gene family members
(MT1F, MT1G, MT1H), which encode cysteine-rich antioxidant
proteins32, were notably higher in females (Fig. 2c, e). Additional dif-
ferentially expressed genes also relate to cysteine-glutathione avail-
ability and metabolism, including SLC3A133, MGST3, and HRASLS2.

Fig. 2 | Identifying genes differentially expressed between male and female
proximal tubular cells. 2-Dimensional plots of (a) Varimax-rotated PCA and (b)
sPLS-DA showing separation ofmale and female cells, and (c) volcano plot showing
differential expression of genes between sexes from MAST analysis with sample
randomeffect.dGenes expressed exclusively by all samples of one sex and none of
the opposite sex, which were added to the MAST results for comparison across
methods in e (termedMAST + ). eVenn diagramdepicting genes identified through
each analysis, with bubble plots highlighting genes identified by all three methods
or by MAST plus one additional method. The size of the circle is proportional to
absolute logFC and the colour indicates whether the gene was higher in male
(orange) or female (dark purple) PT cells. Source data are provided in Supple-
mentary Data 1. f Differences in gene expression of KDM5D (p <0.0001, t = 17.32,

df=30), UTY (p <0.0001, t = 18.75, df=30), EIF1AY (p <0.0001, t = 18.04, df=30),
EIF1AX (p <0.0001, t = 9.077, df=29), DDX3X (p <0.0001, t = 5.619, df=29), MT1F
(p <0.0001, t = 16.04, df=30), MT1G (p <0.0001, u =0), and MT1H (p <0.0001,
t = 6.286, df=30) were determined in primary male and female PT cells, and nor-
malized to RPL31 (n = 3 donors/sex; n = 16 replicates/sex). Source data are provided
as a source data file. Group-to-group differences were assessed using two-tailed
unpaired t-tests for variables following a normal distribution (KDM5D,UTY, EIF1AY,
EIF1AX, DDX3X, MT1F, MT1H), and Mann-Whitney tests for variables with a non-
parametric distribution (MT1G). Data are presented as mean values + /- SEM.
****p <0.0001. Orange = males, dark purple = females. Circle, square, and triangle
symbols indicate biologically independent donors for each sex.
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Gene expression signatures derived by scRNAseq from tissues
may be affected by the stress induced by tissue dissociation. Notably,
male tissues are more susceptible to ischemic damage7,34. To ensure
dissociation stress did not differentially impact male versus female
PT cells, we calculated a genemodule score using genes reported to be
overexpressed in warm collagenase dissociation35, and found no dif-
ference in gene score between male and female PT cells, suggesting
that the gene expression differences identified exist independently of
susceptibility to dissociation stress (Supplementary Fig. 6a). To further
verify that genes identified as having sex-biased expression did not
relate to stress-induced artifact, we performed an unbiased analysis by
integrating data from a single biopsy processed for both scRNAseq
(50%of tissue) and snRNAseq (theother 50%of tissue) (Supplementary
Fig. 6b, c), and identified many differences in PT cell gene expression
between the two sequencing techniques (Supplementary Data 2,
Supplementary Fig. 6d). From our gene signature differentiating male
from female PT cells, we found 20/40 sex-biased genes overexpressed
in scRNAseq versus snRNAseq (using at least 2 methods) and 8/40
overexpressed in snRNAseq versus scRNAseq (Supplementary Fig. 6e),
likely due to cytosolic versus nuclear localization of the transcripts of
interest leading to differential representation in transcript abundance
between techniques36. This is particularly notable for metallothionein
genes which were captured exclusively in scRNAseq data and relevant
to female oxidative stress responses as noted above (Supplementary
Fig. 6d). We further assessed sex-biased expression within the
Muto et al. dataset, which is comprised of 3 male and 2 female
samples14, but is generated using snRNAseq which relies on direct lysis
of intact tissues. We found a significant positive correlation in DEGs
differentiating male and female PT cells between these snRNAseq
and scRNAseq datasets (rho =0.7318, p =0.004129) (Supplemen-
tary Fig. 6f).

We next aimed to validate sex-biased gene expression profiles
using commercially-available human primary PT cells from 3male and
3 female independent healthy donors (Supplementary Table 1, age
range of donors: 50-59 years old). As expected, Y-linked genes KDM5D,
UTY, and EIF1AY were exclusively expressed in male PT cells (Fig. 2f).
We also studied the X-linked genes EIF1AX andDDX3X. While proposed
as ‘X-inactivation escapees’, the extent of X-inactivation can be highly
variable across genes, tissues, and individuals37. In agreement with our
scRNAseq findings, primary female PT cells displayed increased tran-
script levels of EIF1AX and DDX3X, compared to male cells (Fig. 2f).
Female sex is linked to lower oxidative stress markers in the kidney
in vivo6 but whether the sex of PT cells is a major contributor to this
effect is unknown. Gene expression of MT1F, MT1G, MT1H was sig-
nificantly increased in primary female PT cells, compared tomale cells,
as identified by scRNAseq and validated with qPCR in these indepen-
dent donors (Fig. 2c, e, f).

Next, we investigated the biological processes enriched among
the genes showing sex-biased expression in PT cells. Pathway analysis
(Fig. 3a, Supplementary Data 3) revealed processes related to amino
acid metabolism, PT transport, and regulation of the inflammatory
response as increased in females. Among the pathways increased in
males, processes related to mitochondrial aerobic metabolism (‘oxi-
dative phosphorylation’, ‘tricarboxylic acid (TCA) cycle’ and ‘electron
transport chain’) predominated. Two additional metabolic processes,
namely ‘generation of precursor metabolites’ and ‘nucleoside tripho-
sphate metabolism’, were also enriched in males. To validate these
observations, we studied functional differences in mitochondrial
metabolism and precursor metabolite generation in male and female
PT cells. We exposed primary male and female PT cells to minimal
media containing glucose and glutamine, which serve as mitochon-
drial substrates. We then measured their oxygen consumption rate
(OCR), as a marker of mitochondrial respiration38. Supporting our
pathway analysis, male PT cells showed a significant increase inOCR at
baseline and after metabolic stress, compared to female PT cells

(Fig. 3b). By calculating the corresponding areas under the OCR
curves, we determined that male PT cells had a significantly higher
basal respiration, ATP-linked respiration, maximal respiratory capa-
city, and reserve capacity than female cells (Fig. 3c). Together with
mitochondrial respiration, glycolysis is amajormechanismof glucose-
derived energy production39. Thus, a parallel increase in glycolysis and
aerobic respiration is often indicative of a higher energy state40. In
addition to increased OCR, our male PT cells displayed an increase in
glycolytic capacity (Supplementary Fig. 7), suggesting that they are
energetically more active than female PT cells. Mitochondrial respira-
tion results in the generation of two key energy precursors – NAD and
ATP41. In line with increased aerobic metabolism, male PT cells exhib-
ited a significant increase in the intracellular levels of NAD, β-
nicotinamide mononucleotide (NAD precursor), ATP, and three addi-
tional nucleoside triphosphate metabolites – GTP, ITP, and UTP
(Fig. 3d). In summary, these data support distinct metabolic function
and gene expression in male and female PT cells.

Immune landscape of healthy human kidney
Despite the relative paucity of immune cells in healthy human kidney,
we examined kidney-resident immune cells to delineate their steady-
state phenotypes and functions. Sub-clustering of immune cells yiel-
ded 12 clusters (Fig. 4a). T cells (CD3E+), Natural Killer (NK) cells
(NKG7+CD3E-), and a small B cell population (CD79A+) mainly expres-
sing the immunoglobulin chain IGHM were identified (Fig. 4b, Sup-
plementary Fig. 8a). Plasma cells (CD38+XBP1+) were scarce in healthy
kidney tissue (Supplementary Fig. 8b). Myeloid clusters (CD68+)
(Fig. 4b) displayed enrichment of phagocyte-related pathways
including “receptor-mediated endocytosis”, “regulation of TLR sig-
naling”, and “antigen processing and presentation via MHC class II”
(Supplementary Fig. 8c).

T cell cluster T1 expressed CD4+ T helper (Th) cell genes (IL7R+

CD40LG+LTB +) and enrichment of “T-helper cell differentiation” and
“Interleukin-7-mediated signaling” pathways (Fig. 4c, Supplementary
Fig. 8c). T1 also included CCR7+ SELL+ cells, suggesting central
memory T cell identity (Supplementary Fig. 9)42. T2 demonstrates
expression of a cytotoxic program (GZMA, GZMB, GZMH, GNLY, PRF1)
alongside NK receptor genes (KLRD1, KLRG1), consistent with effec-
tor memory T cell or NKT cell identity (Fig. 4c). T2 also contained
some gamma-delta (γδ) T cells, marked by co-expression of TCR
chain components TRDV2 and TRDC (Fig. 4b). T3 had sparse
expression of resident memory T cell (Trm) markers (CXCR6, ITGA1),
while T4 was marked by high GZMK expression, a marker of circu-
lating age-associated memory T cells (Fig. 4b, c)43. FOXP3+CD4+ reg-
ulatory T cells were notably absent from scRNAseq and flow
cytometry analyses (Supplementary Fig. 10a), while typically
observed in kidney pathologies44,45, indicating they are likely recrui-
ted during inflammation. NK cell cluster NK1 displayed a cytotoxic
gene program and broad FCGR3A(CD16) expression. Flow cytometry
confirmed ~95% of renal NK cells are CD56dimCD16+(Supplementary
Fig. 11a). Low abundance of ILC2s, ILC3s and CD56bright NK cells was
suggested by a predictive classifier and confirmed by flow cytometry
(Supplementary Fig. 11b, c).

As we noted differences in our lymphocytes signatures to those
reported using other tissue sources, we directly compared lym-
phocytes in living donor kidney with tumor-unaffected renal tissue
using scRNAseq (Supplementary Fig. 12a). We confirmed the pre-
sence of many similar immune populations across tissue sources,
yet also observed differences in abundance and transcriptional
signatures. When T cell clusters were compared between these
different tissue sources, alterations in checkpoint molecule
expression (i.e TIGIT, CTLA4, PDCD1) were noted alongside NR4A1
(encoding Nur77, which is induced upon antigen receptor
signalling)46 (Supplementary Fig. 12b). Several of these differences
were also observed at the protein level by flow cytometry
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(Supplementary Fig. 12c, d). Similarly, NK cell clusters exhibited
differential expression of NR4A1, AREG, and TIGIT (Supplementary
Fig. 12e), with validation of significant differences in TIGIT and AREG
expression by flow cytometry (Supplementary Fig. 12f, g). We also
observed high donor heterogeneity in immune infiltration and
generally a greater proportion of immune cells in nephrectomy
specimens, corroborating that the immune niche in tumor-
unaffected nephrectomy samples is altered from healthy kidney
(Supplementary Fig. 12h).

Mononuclear phagocytes (MP) acquire tissue-adapted pheno-
types and functions47. Definitively attributing macrophage or DC
identity to myeloid populations based on gene expression alone is
particularly challenging within the kidney due to a lack of consensus
on lineage defining markers48 and here they are annotated more gen-
erally as five MP populations. Cluster MP1 highly expressed comple-
ment components (C1QA, C1QB, C1QC) and markers of alternative
macrophage activation or anti-inflammatory function (CD163, LYVE1,
STAB1, MRC1, VSIG4, FOLR2) (Fig. 4b, c, Supplementary Fig. 13).

Fig. 3 | Sex differences in mitochondrial respiration and energy precursor
metabolism of proximal tubular cells. a Depiction of selected significant
(FDR<0.25) terms identified by GSEA analysis as being enriched in males and
females, respectively. Source data are provided in Supplementary Data 3. P values
were calculated by Wilcoxon rank sum test without multiple comparison adjust-
ment. b Oxygen consumption rate (OCR) was monitored to assess the mitochon-
drial respiration of male and female PT cells at baseline and after metabolic stress
(n = 3 donors/sex; n = 21 replicates/male sex, and 23 replicates/female sex). To
induce metabolic stress, the following sequence of drugs was injected: 1μM oli-
gomycin, 0.3μM FCCP, 100mM 2-DG, 1mM Rot/AA. The OCR was monitored in
male and female PT cells (n = 3 donors/sex; n = 21 replicates/male sex, and 23
replicates/female sex). Data are presented asmean values + /- SEM. cThe basal OCR
(p <0.0001, u = 48), ATP-linked respiration (p <0.0001, t = 5.223, df=42), reserve
capacity (p <0.0001, t = 5.018, df=42) and maximal respiratory capacity
(p <0.0001, t = 5.281, df=42) of male and female PT cells were calculated from the
OCR curves in b. Group-to-group differences were assessed using two-tailed
unpaired T tests for variables following a normal distribution (ATP-linked

respiration, reserve capacity, maximal respiratory capacity), and Mann-Whitney
tests for variables with a non-parametric distribution (Basal respiration). Data are
presented as mean values + /- SEM. d In a separate experiment, the intracellular
levels of ATP (p <0.0001, t = 5.959, df=34), NAD (p =0.029, u = 93), β-nicotinamide
mononucleotide (p <0.0001, t = 4.575, df=34), GTP (p <0.0001, t = 7.45, df=34), ITP
(p =0.0001, u = 46), andUTP (p =0.0001, t = 4.316, df=34)were determined inmale
and female PTcells (n = 3donors/sex;n = 6 replicates/donor). Data are presented as
mean values + /- SEM. Source data for (b–d) are provided as a source data file.
Group-to-group differences were assessed using two-tailed unpaired T tests for
variables following a normal distribution (ATP, β-nicotinamide, GTP, UTP), and
Mann-Whitney tests for variables with a non-parametric distribution (NAD, ITP).
*p<0.05;**p <0.01;***p <0.001;****p <0.0001. PT proximal tubule, AUC area under
the curve, OCR oxygen consumption rate, FCCP p-trifluoromethoxy carbonyl cya-
nide phenyl hydrazone, 2-DG 2-deoxyglucose, Rot rotenone, AA antimycin A,
df degrees of freedom. Orange = males, dark purple = females. Circle, square, and
triangle symbols indicate biologically independent donors for each sex.
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Efferocytosis receptor MERTK expression supports homeostasis or
repair functions (Supplementary Fig. 13). MP3 contained cells expres-
sing cDC2 markers (CLEC10A, CD1C), alongside a subgroup of cells co-
expressing lipid-associated genes (CD9, TREM2, APOE, APOC1)
(Fig. 4b). Similar populations have been identified as kidney-resident
macrophages and are expanded in fibrotic tissues49. MP2 and MP4
(FCGR3A+SIGLEC10+FCN1+) resemble CD16+ non-classical monocytes

(Fig. 4b, c, Supplementary Fig. 13). MP4 had elevated expression of
IL1B, MHCClass-II genes, and CX3CR1whileMP2 hadhigher expression
ofCXCR4 and FPR1 (Supplementary Fig. 8d).MP5 expressedmarkers of
classical CD14+ monocytes (S100A8, S100A9, CD14, VCAN), yet was
predominantly derived from one individual with elevated hemoglobin
transcripts, indicative of increased circulating cells in this sample
(Fig. 4b, c, Supplementary Fig. 8e). Flow cytometry confirmed greater
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Fig. 4 | Identification and annotation of kidney immune cells. a Compartment-
specific analysis of 2491 immune cells comprising 12 clusters and b cell type mar-
kers used for cluster annotations. c Heatmap of cell-type defining and highly
expressed genes by each cluster separated by lymphoid and myeloid lineage.

d UMAP plot showing the living donor myeloid cell data clustered together with
Stewart and Ferdinand et al., Zimmerman et al., and Argüello et al. to define five cell
states across datasets and their respective cluster markers. e UMAP plots high-
lighting the distribution of dataset membership across the cell states.
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abundance of CD16+ cells in kidney relative to blood, as well as low
proportions of CD14+CD16- MPs resembling MP5 and the presence of
MRC1+HLA-DR+ MPs in kidney that align with MP1 (Supplementary
Fig. 11e, f).

Identification of a distinct resident macrophage population in
healthy kidney
Due to unique aspects of our study, including short ischemic times to
which resident macrophages are especially sensitive50,51, and use of
flushed living donor-derived kidney tissue, we examined shared and
unique MP populations in healthy kidney compared to those reported
previously in scRNAseq studies of kidney tissue from other sources.
CD68+ cells from three prior studies3,52,53 were compared and classified
to match cluster identities of our study. MPs from these studies most
resembledMP5 (classical CD14+ monocyte-like), the lowest abundance
MP cluster in living donor samples (Supplementary Fig. 14a). MP3 (DC-
like and lipid-associated MPs) as well as MP2 and MP4 (CD16+ non-
classical monocyte-like) were shared across datasets. Strikingly, few
cells from these studies corresponded to MP1 (resident macrophages)
– the largest MP population in living donor kidney. Next, CD68+ cells
from these prior studies3,52,53 and our study were merged, identifying
five myeloid cell states (CS) across all studies (Fig. 4d). Based on
transcriptomic profiles, CS2 and CS4 include resident macrophages
and antigen-presenting cells, CS0 is consistent with non-classical
CD16+ monocytes, CS3 represents classical CD14+ monocytes and CS1
may represent a transition state, supported by trajectory analysis
(Supplementary Fig. 14b, c). CS2, which was almost entirely comprised
of living donor kidney cells (Supplementary Fig. 14b), is defined by
expression of genes associated with alternatively activated macro-
phages (C1QA/B/C+RNASE1+CD163+LYVE1+FOLR2+), in contrast to all
other CS which expressed markers associated with monocytes
and classically activated macrophages (S100 family members, FCN1,
LYZ, and pro-inflammatory SOD2) (Fig. 4d, Supplementary Fig. 14b).
This cell state aligns with descriptions of fetal-derived tissue
macrophages54. CS2 constitutes the predominant MP population in
healthy kidney (MP1), whileCS3 andCS4 abundance is limited (Fig. 4e).

Kidney-resident lymphocytes are antigen-experienced with
distinct gene expression
Due to unexpected heterogeneity and previously unrecognized tran-
scriptional profiles in kidney lymphocyte populations (Fig. 5a–c), we
directly compared lymphocyte proportions, signatures, and pheno-
types to those in healthy donor blood. Increased proportions of NK
(CD3-CD56+) and NKT cells (CD3+CD56+) were noted in kidney, while T
cell (CD3+CD56-) abundancewasunchanged (Fig. 5a). CD8+ T cells were
present in higher proportions than CD4+ T cells in kidney and the
presence of γδT cells was validated by flow cytometry (Fig. 5b, Sup-
plementary Fig. 10a).

To identify specificmarkers and transcriptional profiles of kidney-
resident lymphocytes, we integrated our dataset with publicly avail-
able PBMC scRNAseq datasets55,56 (Supplementary Fig. 15a–j, Supple-
mentary Data 4) and validated differences by flow cytometry.
Unsurprisingly, blood lymphocytes exhibited higher expression of
naïve T cell genes (CCR7, SELL, LEF1, TCF7). In contrast, the tissue
residency-associated transcription factor PRDM1 (BLIMP-1)57 was
upregulated in kidney lymphocytes, as was CD69, which marks tissue-
resident memory T cells (Trms) in several organs and prevents tissue
egress via S1PR1 antagonism58 (Supplementary Fig. 15j). Antigen-
experienced T cells upregulate CD45RO and can become Trm59. 60-
98% of kidney CD4+ and CD8+ T cells were CD45RO+ in contrast to low
proportions of Trms in blood (Fig. 5c). NK cells withmemory functions
may also express CD45RO60; however, this was not observed in renal
NK cells (Fig. 5c). Flow cytometry confirmed elevated CD69 on T cells
and NK cells, with CD69+CD103+ co-expression by CD8+ T cells, con-
sistent with a Trm phenotype (Supplementary Fig. 10c). Further

characterization of memory CD4+ T helper (Th) cell subsets revealed
enrichment of Th1/17 cells with reduced Th2 marker expression
(Fig. 5d, Supplementary Fig. 10b).

We also sought to validate Granzyme K production in kidney
lymphocytes, as cluster T4 was marked by high GZMK expression. In
agreementwith scRNAseqfindings,GranzymeKwasdetected in 21%of
kidney T cells (Fig. 5e), with minimal co-expression with Granzyme B,
indicating that Granzyme K+ T cells form a distinct subset of renal
T cells (Fig. 5e). Most Granzyme K+ T cells also did not have detectable
perforin expression (Fig. 5e). This supports an extracellular function
for Granzyme K produced by these T cells, rather than the canonical
cytolytic function of granzymesdependent on intracellulardelivery via
perforin.

Kidney lymphocytes were distinguished from circulating lym-
phocytes by elevated expression of chemokine receptors (CXCR4,
CXCR6), integrin components (ITGB1, ITGA4), and inhibitory NK
receptors (KLRD1, KLRC1) (Fig. 5f, Supplementary Fig. 15j). Flow cyto-
metry confirmed VLA-4 integrin components α4 (CD49d) and β1
(CD29) were highly expressed in renal T cells suggesting VLA-4 con-
tributes to their residency or function (Fig. 5g). This is consistent with
expressionof VLA-4 ligandsfibronectin andVCAM-1 inkidney61. Kidney
NK cells have higher levels of CD69 compared to circulating NK cells,
while no difference in CD29 or CD49d was detected (Fig. 5h). Finally,
CXCR6 protein expression was elevated on kidney T and NK cells,
while CXCR4 was not, despite high gene expression (Fig. 5g–i). Nota-
bly, renal myeloid cells expressed CXCL16, the chemokine ligand for
CXCR6, indicating participation in lymphocyte recruitment, a finding
which was supported by significant aggregate rank scores using cell-
cell communication inference (Supplementary Fig. 10d, Supplemen-
tary Data 5, 6).

Other differentially expressed genes suggest tissue-adapted
function of kidney lymphocytes. AREG, encoding the growth factor
amphiregulin, was highly expressed by NK1 and validated by flow
cytometry (Supplementary Fig. 11d, Supplementary Fig. 12f, g), sug-
gesting tissue-reparative functions. The prostaglandin E2 (PGE2)
receptor PTGER4 and prostaglandin D synthase PTGDS were upregu-
lated (Supplementary Fig. 15j), indicating that kidney lymphocytes
synthesize and recognize prostaglandins, known mediators of kidney
function62. PGE2 promotes Th17 and Th1/17 cell development and
function, perhaps explaining highproportions of Th1/17 cells observed
in healthy human kidney (Fig. 5d)63. Collectively, these studies capture
theheterogeneity ofmyeloid and lymphoid populationswithin healthy
human kidney and provide an important reference of immune cell
phenotypes and functions at steady state.

Discussion
We present a scRNAseq study of healthy human kidney using biopsies
from living donors. Our high-resolution map detailing the diversity in
healthy kidney PT, endothelial, epithelial, and immune subpopulations
will inform future studies addressing underlying mechanisms of kid-
ney pathologies, including chronic kidney disease, fibrosis, ischemia-
reperfusion injury, renal cancer and allograft rejection. In particular,
the non-inflamed nature of this tissue will be particularly relevant as a
baseline for studies of immune-mediated kidney disease.

The sex-balanced design in the present study enabled the exam-
ination of sex-based dichotomy in gene expression among human
kidney cell populations. Prior studies were constrained by small sam-
ple size and use of animalmodels, or instead used bulk transcriptional
analysis where sex-specific signatures of individual kidney cell popu-
lations cannot be resolved22,26,64. Our study is aligned with the con-
clusion of scRNAseq studies in mouse by Ransick et al.26 that PT cells
are sexually dimorphic. However, the overlap in sexually dimorphic PT
genes between human and mouse is small, perhaps due to distinct
orthologues in mouse, small number of samples sequenced, or true
biological differences between human and mouse.
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We report striking sex-based transcriptional differences in
PT cells, suggesting higher baseline metabolic activity in males, and
enhanced expression of antioxidant genes in females. We validated
these sex-based observations at the level of gene expression, meta-
bolite generation, andmetabolic function. Increased oxidative stress is
reported in males65, while female sex hormones augment antioxidant

gene transcription66. Metallothionein genes (MT1F, MT1G, MT1H),
which are potent endogenous antioxidants67, were increased in female
PT cells. Metallothionein depletion exacerbates diabetic and hypoxia-
induced kidney injury68,69, whereas augmented expression is
protective70. Several sex-altered genes further relate to cysteine-
glutathione metabolism. Glutathione is critical to cellular antioxidant

Fig. 5 | Characterizationofkidney-resident T andNKcells. aNKcells (p =0.0025,
t = 3.998, df=10) and NKT cells (p =0.0327, t = 2.476, df=10) are proportionally
enriched in kidney relative to blood, while T cell (p =0.379, t = 0.918, df=10)
abundance is unchanged. (n = 6) (b) Within the kidney T cell population, there is an
enrichment of CD8+ T cells (p =0.0060, t = 3.327, df=12) and a reduction in CD4+ T
cell abundance (p =0.0025, t = 3.815, df=12) with no change in TCRγδ+ T cells
(p =0.2158, u = 14) relative to blood. (n = 6) (c) Kidney T cells are predominantly
antigen-experienced, marked by expression of CD45RO, while NK cells express
minimal CD45RO. dWithin kidney memory CD4+ T cells, there is an enrichment in
the Th1/17 subpopulation (CXCR3+CCR6+) (p = 0.0238, u =0) and a reduction in
Th2 subpopulation (CRTh2+) abundance (p =0.0098, t = 3.513, df=7) relative to
blood while Th1 (CXCR3+) (p = 0.3810, u = 5) and Th17 (CCR6+) (p =0.5476, u = 6)
proportions were unchanged. (n = 3) (e) T cells expressing Granzyme K do not co-
express perforin, indicating that they are a distinct T cell subset from Granzyme B+

Perforin+ cytotoxic T cells. f Violin plots showing differential gene expression of
select markers in kidney T cells and NK cells relative to blood. g Surface levels of

CD29 (p =0.0061, t = 3.869, df=7), CD49d (p =0.0027, t = 4.519, df=7) and CD69
(p =0.0203, t = 2.756, df=10) were higher on kidney T cells relative to blood as
measured by flow cytometry, while CXCR4 (p =0.5887, u = 14) was not (n = 6).
h Surface CD69 (p =0.0427, t = 2.321, df=10) was higher on kidney NK cells relative
to blood while CD29 (p =0.6899, t =0.4159, df=7), CD49d (p =0.9040, t =0.1250,
df=7), and CXCR4 (p =0.9326, t =0.0868, df=10) were not. (n = 6) (i) CXCR6
abundance was higher at the protein level on both T cells (p =0.0086, t = 3.258,
df=10) (n = 6) and NK cells (p =0.0364, t = 2.414, df=10) (n = 6) relative to blood.
(j) Histograms showing no difference in CXCR4, increased CD69 and increased
CXCR6 protein abundance in kidney T cells relative to blood. Group-to-group dif-
ferences were assessed using two-tailed unpaired T tests for variables following a
normal distribution, and Mann-Whitney tests for variables with a non-parametric
distribution. *p <0.05;**p <0.01;***p <0.001;****p <0.0001. PBMCPeripheral blood
mononuclear cells, NK Natural Killer cell, NKT Natural Killer T cells. Gray = PBMCs,
Blue = Kidney. Source data for all panels provided as a source data file.

Article https://doi.org/10.1038/s41467-022-35297-z

Nature Communications |         (2022) 13:7634 9



defences71 and glutathione metabolism exhibits sexual
dimorphism25,72. Identification of these sex-based differences in PT
gene expression (enabled by use of scRNAseq which can capture
transcripts localized to the mitochondria and cytosol), may provide
insights into the well-recognized, but previously unexplained sexual
dimorphism observed in most kidney diseases. In particular, why
females may be less susceptible to metabolism-related kidney
injury6–8,73,74.

Our study provides a steady-state map of the kidney immune
niche and identifies differences in abundance and phenotype of mye-
loid and lymphoid populations compared to other kidney tissue
sources and peripheral blood. Kidney T cells are predominantly Trms
and exhibit unique phenotypes previously unreported in kidney,
including Granzyme K+ T cells. The function of Granzyme K+ T cells in
humans is poorly characterized, and here we show that Granzyme K+

T cells are a distinct subset separate fromGranzyme B+Perforin+ T cells
in the kidney. The lack of perforin co-expression suggests that Gran-
zyme K produced by renal T cells may have extracellular targets, such
as inducing endothelial cell activation75, promoting sensitivity to LPS-
induced inflammation76, and regulating angiogenesis77.

Renal CD4+ memory Th cells are skewed towards a Th1/17 phe-
notype, which may be relevant to Th17-related kidney diseases
including glomerulonephritis, lupus nephritis, and rejection78,79.
Renal abundance of CD56+CD16+ NK cells with high expression of
amphiregulin compared to circulating NK cells suggests non-
canonical tissue-adapted functions. We demonstrate an enrichment
of a resident macrophage population, akin to fetal-derived tissue
macrophages, with little-to-no presence in prior datasets from dis-
carded deceased donor or tumor nephrectomy specimens, suggest-
ing altered kidney environments impact this myeloid population.
Indeed, sensitivity of self-renewing resident macrophage popula-
tions to extended ischemic injury and inflammation is reported51.
Additional comparison of lymphocyte populations in tumor-
unaffected versus living donor renal tissue revealed alterations in
tumor-unaffected tissue relative to the steady-state immune niche in
healthy living donor kidney. Increased B and T cell proportions,
increased expression of activation and exhaustion-associated mole-
cules by lymphocytes, in addition to a trend for increased immune
infiltration in tumour-adjacent nephrectomy specimens was
observed (Supplementary Fig. 12), in agreement with prior reports
that tumour-affected kidneys can have altered immune infiltrates5,80.
These findingsmay have implications on the future studies exploring
alterations in immune cells in unaffected kidney tissue of renal can-
cer patients, for development of immunotherapies.

There are some limitations to using scRNAseq for tissue studies.
One such limitation is that tissues must undergo dissociation into
single cells, which can result in cell stress and damage, as well as loss of
their spatial relationships.While we took care tominimize cell damage
in our kidney dissociation protocol, including establishing a very short
20minute dissociation time and minimizing additional processing,
warm dissociation can impact cells, in particular, epithelial cells. This
often results in proportional increases in mitochondrial transcripts, as
damaged cell membranes are leaky to cytosolic transcripts. Sequen-
cing chemistry can further impact this issue. For example, the pro-
portion of mitochondrial reads captured by 10X Genomics 3’ v3 kits is
2-3 times greater than that captured by v2 kits81,82. Other groups have
addressed this by using higher mitochondrial thresholds for tissues
sequenced with 10X Genomics 3’ v3 kits as compared with 10X
Genomics 3’ v2 kits within the same study82. 10X Genomics 3’ v3 pro-
vides higher mRNA detection sensitivity which results in increased
power to detect differentially expressed genes, and is superior to v2
chemistry for profiling immune cells83. Processing tissues with tech-
niques such as microdissection can yield a lower fraction of mito-
chondrial reads than droplet-based scRNAseq84 but does not provide
high throughput capacity to profile a broad range of cells.

Nevertheless, theproportionofmitochondrial reads in our dataset is in
line with other published kidney scRNAseq datasets, which retained
cellswith amaximumof 25-80%mitochondrial reads3,82,85,86. The lack of
batch effects noted across our samples obviated the need for batch
correction tools. Furthermore, the lack of bias in dissociation artifacts
across different sample groups (e.g. male and female PT cells), as well
as our ability to validate observations in external datasets and utilizing
orthogonal methods, leads us to conclude that transcriptional varia-
bility due to dissociation did not greatly impact our data. Several
groups have chosen to use snRNA sequencing to avoid the issue of
dissociation artifacts; however, it is known that certain cell types such
as lymphocytes are notwell suited to captureby snRNAseqdue to their
low nuclear RNA content. In addition, we demonstrate cytosolic epi-
thelial cell transcripts exhibit sex-biased expression, a finding detect-
able using scRNAseq, which is not restricted to nuclear transcripts. It is
likely, however, that dissociation stress would play a greater role in
biologically stressed or damaged tissues, such as in various inflam-
matory contexts including autoimmunity and transplant rejection.
scRNAseq and snRNAseq each offer slightly distinct yet also over-
lapping information, suggesting that combinations of these methods,
togetherwith spatial profiling, would be ideal to dissect kidney biology
further.

Collectively, our study of healthy human kidney provides an
important reference point for understanding the cellular basis of kid-
ney disease development, represents a ‘normal’ target for stem cell-
derived kidney organoids, and expands our understanding of the
complexity of sex-based gene expression and kidney-resident immune
populations.

Methods
Experimental model and subject details
Human specimens. Kidney tissue from tumour-unaffected nephrect-
omy specimens was used for initial method optimization. Pre-
implantation core biopsies were obtained from living donor kidneys
after organ retrieval and flushing. 20 living donor kidney samples (10
male donors and 10 female donors) were processed for sequencing.
One samplewas subsequently removed due to quality control reasons,
as described below. Additional living donor kidney samples were used
in flow cytometry experiments for method optimization and immu-
nophenotyping. All experiments were conducted with institutional
ethics approval from University Health Network (CAPCR: 18-5914,
Living donor; CAPCR: 18-5489.0, Tumour nephrectomy). Patient
demographic information for sequenced samples and samples used
for flow cytometry are summarized in Supplementary Table 2. All
patients provided informed written consent for inclusion in this study.
Compensation was not provided for participation in this study.

Murine specimens. Kidneys from female 8 week old C57BL/6 mice
were used for digestion optimization experiments. Mice were ordered
directly from Jackson Laboratories under Animal Use Protocol 6156
approved by the Toronto General Hospital Research Institute Animal
Care Committee.

Experimental method details
Tissue digestion and CD45-enrichment. All living donor samples
used for sequencing were processed within one hour of organ retrie-
val. Briefly, biopsies were collected in RPMI 1640 (Gibco, cat #
11875119) on ice, and mechanically dissociated with a blade before
enzymatic digestion at 37 °C with 0.1mg/ml DNase I (STEMCELL, cat #
07470), 3300CDAunits/mlCollagenaseMA (VitaCyte, cat #001-2030)
and 1430 NP units/ml BP neutral protease (VitaCyte, cat # 003-1000)
for 20minutes at 37 °C with intermittent agitation in a dissociation
protocol optimized to maximize viability and to preserve representa-
tion of rare and fragile cell populations (Supplementary Fig. 15). Cell
suspensions were filtered through 35 µm cell strainer snap-cap FACS
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tubes (Falcon, cat# 352235) and a plunger from a 1ml syringe was used
to gently mash remaining tissue in the strainer before rinsing strainer
lidwith 1:1 volume of FBS (HyClone, cat # SH3039603PM) on ice. A low
frequency (<1%) of immune cells in the single cell suspension from a
kidney biopsy core (Fig. 1a) necessitated immune enrichment in
10 samples (5 males, 5 females) using magnetic EasySep Human CD45
depletion kit II (STEMCELL, cat# 17898), as per the manufacturer’s
modified instructions for positive selection of CD45-expressing cells.

Single-cell RNA sequencing. Samples were prepared according to
10X Genomics Single Cell 3’ v3 Reagent kit user guide87. The pilot
sequencing sample from tumour-unaffected nephrectomy tissue was
sequenced using 10X Genomics Single Cell 5’ v2 Reagents. Samples
were washed twice in PBS (Life Technologies) plus 0.04% BSA, and
viability was determined by a hemocytometer (Thermo Fisher) via
Trypan Blue staining. Following counting, the appropriate volume for
each sample was calculated for a target capture of 9,000 cells. For
CD45-enriched samples, all cells were sequenced. Samples that were
too low incell concentration as definedby the user guidewerewashed,
re-suspended in a reduced volume and counted again using a hae-
mocytometer prior to loading onto the 10x single cell B chip. After
droplet generation, samples were transferred onto a pre-chilled 96-
well plate (Eppendorf), heat sealed and incubated overnight in a Veriti
96-well thermos cycler (Thermo Fisher). The next day, sample cDNA
was recovered using Recovery Agent provided by 10x and subse-
quently cleaned up using a Silane DynaBead (Thermo Fisher) mix as
outlined by the user guide. Purified cDNA was amplified for 11 cycles
before being cleaned up using SPRIselect beads (Beckman). Samples
were diluted 4:1 (elution buffer (Qiagen):cDNA) and run on a Bioana-
lyzer (Agilent Technologies) to determine cDNA concentration. cDNA
libraries were prepared as outlined by the Single Cell 3’Reagent Kits v3
user guide with modifications to the PCR cycles based on the calcu-
lated cDNA concentration.

Themolarity of each librarywas calculated basedon library size as
measured bioanalyzer (Agilent Technologies) and qPCR amplification
data (Roche). Samples were pooled and normalized to 1.5 nM. Library
pool was denatured using 0.2 N NaOH (Sigma) for 8minutes at room
temperature, neutralized with 400mM Tris-HCL (Sigma). Library pool
at a final concentration of 300pM were loaded to sequence on Nova-
seq 6000 (Illumina). Samples were sequenced with the following run
parameters: Read 1-28 cycles, Read 2- 90, index 1-10 cycles, index 2-10
cycles. Across samples, cells were sequenced to a target depth of
40,000 reads per cell. Mapping and quantification were performed
using the 10X Genomics CellRanger pipeline version 3.1.0. Cell metric
summaries for each sample in Supplementary Data 7.

Single-nucleus RNA sequencing. A pilot single-nucleus RNA sequen-
cing experiment was undertaken to compare single-cell versus single-
nuclear results from a matched sample. The biopsy from a 58-year-old
male was collected fresh and divided into 8 segments, evenly dis-
tributed to be processed fresh for single cell RNA sequencing as above,
and the remainder was flash frozen in liquid nitrogen. The sample was
later retrieved from liquid nitrogen and processed on dry ice according
to the protocol in88 with a lysis buffer containing: 0.32mM sucrose
(BioShop SUC507.1), 5mM CaCl2 (VWR, 97062-820), 3mM MgCl2
(Thermo Fisher AM9530G), 20mM Tris-HCl pH 7.5 (Thermo Fisher,
15567027), 0.1% TritonX-100 (Sigma Aldrich T8787-50ML), 0.1mM
EDTA pH 8.0 (Thermo Fisher AM9260G), 40 U/ml Protector RNAse
inhibitor (Sigma Aldrich 3335399001) in UltraPure DNAse/RNAse-free
water (Thermo Fisher 10977015). The nuclei were captured and
sequenced using 10X Genomics Single Cell 3’ v3 Reagents as above.

Data quality control, clustering, differential expression, pathway
analysis and cell-cell interaction inference. Original study recruit-
ment included samples from 20 donors, however, data from one male

donor was poor quality and was excluded from downstream analysis.
Thus, our final dataset consisted of 19 donors (10 female, 9male), with
10 CD45-enriched samples (5 female, 5 male) and 9 samples not enri-
ched for CD45+ cells referred to as “total kidney” (5 female, 4 males).
Kidney donor information is summarized in Supplementary Table 2.
To preserve representation of rare cell types with uniquely expressed
genes, we retained genes expressed in a minimum of 1 cell in the
individual datasets.

Ambient RNA contamination was corrected using the AutoEst
function in SoupX89 (Supplementary Fig. 17). DoubletFinder90 was used
to identify and remove cells most likely to be doublets, rather than
implementation of a maximum gene or feature threshold. For total
samples, a high doublet rate threshold of 7.5% was applied (as utilized
in comparable studies85), while for CD45-enriched samples, the
doublet ratewas calculated as0.8% per 1000 cells captured, as per 10X
Genomics estimated doublet rates87. The individual datasets were then
merged.Uponmerging all of the individual datasets, the cells clustered
according to cell type rather than donor/batch, and importantly, no
batch correction of the data was required.

Cell type-specific thresholds were set to remove low-quality
cells. For immune cells (clusters expressing PTPRC), all cells with
>10% of UMIs mapped to mitochondrial genes were removed, along
with cells that had low transcript abundance (<1000) or gene diver-
sity (<200 unique genes). Separately, prior to removing cells with low
transcripts/features, data was mined for the presence of granulocyte
lineage cells such as neutrophils which are often removed by typical
QC thresholds due to high RNAse activity and low gene content,
however very few neutrophils (>20) were identified by marker
expression in the raw data across all samples. For parenchymal cells,
all cells with >40% of mitochondrial-mapped UMIs were removed;
this high threshold was imposed due to known high mitochondrial
content of proximal tubular cells91. Additionally, parenchymal cells
with low transcript abundance <1000) and low gene diversity (<750
unique genes) were removed. Cells expressing hemoglobin genes
(HBB, HBA1/2) (n = 160) were removed. Following normalization
(SCTransform92) and feature selection (M3Drop/DANB93), principal
component analysis was used for dimensionality reduction (RunPCA)
and cells were clustered using the Louvain algorithm with 30 prin-
cipal components (FindNeighbors and FindClusters) (Seurat94).
Clusters were visualized using UMAP algorithm95.

The dataset was divided into 3 broad subgroups identified as
being Immune (PTPRC+) or Parenchymal (Proximal Tubular (expres-
sing CUBN, HNF4A, SLC34A1, LRP2, SLC17A1) or non-Proximal Tubular)
in origin. These subgroups were re-clustered and further annotated
using a curated marker list (Supplementary Data 8). Cluster-defining
genes were identified by Seurat’s FindMarkers94. Full lists of both
median and average levels of gene expression per cluster and per cell
type are provided in Supplemental Data 9–12, respectively.

Ranked gene lists were generated using Wilcoxon rank sum
testing from the presto package (wilcoxauc function) (https://
github.com/immunogenomics/presto) were used as input for
pathway analysis using GSEA96. Reference gene sets were acquired
from the Bader lab repository (http://download.baderlab.org/EM_
Genesets/) – Geneset used: (Human_GOBP_AllPathways_no_-
GO_iea_January_13_2021_symbol.gmt.txt). To identify pathways
enriched in immune cell clusters, the ranked gene lists were gen-
erated for each cluster comparing that cluster versus all other
clusters.

Cell-cell communication was inferred from the sequencing data
using LIANA which generates a consensus ranking across several
methods97. The OmniPath interaction database was used98 with the
followingmethods for inferring interactions implemented through the
package: SingleCellSignalR99, iTalk100, NATMI101, Connectome102,
CellChat103 and CellPhoneDB104. Results are summarized in Supple-
mentary Data 5. Separately, SingleCellSignalR, NATMI, iTALK and
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Connectomemethods were used to generate a consensus score using
the CellPhoneDB database to infer interactions inclusive ofmultimeric
complexes as accounted for in the CellPhoneDB interaction database,
summarized in Supplementary Data 6.

Identification of innate lymphoid cells. A predictive tool for cell type
classification (scPred105) was trained on single-cell data generated
from flow cytometry-sorted ILCs106 and T cells107. Using this classifier,
some cells present within our dataset were putatively identified
as ILCs.

Transcription factor analysis. Top cluster-defining genes for PT5 and
PT3, respectively were uploaded to CHEA3108 (https://maayanlab.
cloud/chea3/), and the top 10 predicted upstream regulators were
identified.

Comparison of proximal tubular cells to external datasets. The
dataset associated with Muto et al.14, derived from non-tumour kidney
cortex samples was compared with our dataset of healthy human
kidney. The author-defined annotations, and clustering from Muto
et al. were used as a reference from which to annotate the proximal
tubular cells from our dataset. Our living donor proximal tubular
clusters (PT1-PT6) were annotated using these reference annotations
using SingleR, which assigns identities to cells from query datasets on
the basis of correlation of transcriptional signatures with a reference
dataset17. The annotation in SingleR is performed for each single cell
independently, rather than on a percluster basis.

For correlation analysis, differentially expressed genes defining
male PT cells versus female PT cells, or PT5 and PT_VCAM1 relative to
other clusters within each dataset were identified using Seurat’s
FindMarkers function. Genes overlapping between the twomarker lists
were retained and plotted by LogFC. Spearman correlations were cal-
culated using the rcorr function in the Hmisc package.

Gene signature scoring. The top40genes identified as overexpressed
in warm collagenase dissociation35 were used as an input signature and
the gene module was scored for male versus female proximal tubule
cells using the UCell package109.

Comparison of kidney immune cells to PBMCs. To identify differ-
ences in gene expression between T cells and NK cells from peripheral
blood versus kidney, PBMCdata (GSE148665)55 was integratedwith the
immune only kidney data using Harmony110. A second independent
PBMC dataset56, was separately integrated with the kidney data for
dataset-independent validation. NK cells and T cells (clusters expres-
singNKG7 and/or CD3E) were compared using Seurat’s FindAllMarkers
function. Violin plots and volcano plots were created using Seurat and
EnhancedVolcano111.

Comparison of myeloid cells. To identify differences in myeloid cell
populations in living kidney donors compared to publicly available
human kidney single-cell RNA sequencing datasets from tumour
nephrectomy or deceased donor tissue sources, CD68-expressing
clusters from Stewart & Ferdinand et al.3, Zimmerman et al.52, and
Argüello et al.53 were scored using a random forest classifier
(SingleCellNet112) to identify cells from the published datasets corre-
sponding to the five myeloid clusters in the living donor data. Sepa-
rately, all myeloid cells from this data and the three published studies
were integrated and clustered to identify cell states using OCAT113. The
datasets were also integrated and batch corrected using Seurat v3
integration (FindIntegrationAnchors and IntegrateData functions).
The cell state identities from OCAT were mapped onto the integrated
object and marker genes of cell states were identified using Seurat’s
FindAllMarkers function. Lineage analysis by pseudotime inference
was applied to the OCAT-identified clustering of the combined

myeloid populations using slingshot114, without indicating any clusters
as either start or endpoints.

Sex differences analysis. Principal component analysis (PCA) fol-
lowed by Varimax rotation was performed on all major parenchymal
and immune populations. Varimax-rotated principal components 2:25
were serially plotted against component 1, to identify whether a
separation on the basis of sex was evident. If seen, the top 100 genes
(50 from each end of the gene loading list) associated with the
Varimax-rotated principal component were retained for further
analysis.

Sex differences in proximal tubular cells were identified using
sparse partial least squares discriminant analysis (sPLS-DA) in
mixOmics115. Using the tuning function (tune.splsda), the optimal
values for sparsity parameters were determined to be 1 component
with 80 variables (genes). To test the classifier, the datawere separated
into a training dataset (2/3 of cells sampled) and a query dataset
(remaining 1/3). Next, our 80-gene signaturewas applied to anexternal
dataset (Liao et al.23) for validation. Here, the entire living donor
dataset was used as the training dataset and the external dataset was
used as the query dataset. To determine the contribution of sex
chromosome-encoded genes to the model, all X- and Y-chromosome-
encoded genes were removed from the datasets prior to analysis,
where the tuned parameters identified the optimal model to include 1
component with 15 variables. This 15-gene signature was also validated
in the Liao et al. dataset. Hierarchical structure, zero inflation, and
pseudoreplication bias in single-cell data pose specific challenges for
differential expression analyses116–118. To circumvent these limitations,
we implemented a mixed effects model using MAST118,119. For differ-
ential expression testing between male and female proximal tubule
cells, the dataset was filtered to include only genes which were
expressed in each sample (9792 genes). Differential expression testing
was conducted using MAST with a random effect for sample (zlm~
cellular detection rate + donor sex + (1| sampleID)). As this approach
excluded genes expressed exclusively by one sex (e.g. Y chromosome
encoded genes, and XIST), such genes were added to MAST differen-
tially expressed genes (MAST + ) for comparisonwith the results of the
other methods (Varimax, sPLS-DA).

All significant genes returned usingMAST analysis were subjected
to enrichment analysis (GSEA96,120) using reference gene sets acquired
from the Bader lab repository: (http://download.baderlab.org/EM_
Genesets/); Geneset used: (Human_GOBP_AllPathways_no_GO_iea_Ja-
nuary_13_2021_symbol.gmt.txt).

Cryopreservation. Cells from additional (non-sequenced) fresh living
donor biopsies or cells remaining following 10X cell capture for
sequencing were resuspended in 90% human serum (Sigma, cat#
H4522) and 10% DMSO for cryopreservation and cooled to −80 °C in a
Mr.Frosty (Sigma, cat #C1562), then transferred to liquid nitrogen for
long term storage.

Flow cytometry. After fresh tissue digestion, cells were washed in
PBS + 2% FCS before staining. Cryopreserved cells were thawed and
washed twice in PBS + 2% FCS. Cells were incubated at 4 °C for 15min
with an Fc receptor blocker (BioLegend TruStain FcX, cat # 422302)
according to manufacturer instructions before cocktails of surface
antibodies were added for 30min at 4 °C. If intracellular targets/tran-
scription factors were included in the panel, cells were resuspended in
FOXP3 transcription factor fix perm buffer (eBio, cat # 00-5523-00)
and stained with intracellular antibodies in 1X permeabilization buffer
(eBio, cat # 00-8333-56). If no intracellular targets were included in the
staining panel, cells were fixed in 2% PFA (Thermo Scientific, cat #
J19443) after surface staining.

Cells were stained with the following surface antibodies: Antihu-
man CD8a FITC (1:100, clone RPA-T8, BioLegend, cat # 301050),
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Anti-human TCRgd FITC (1:100, clone B1, BioLegend, cat # 331208),
Anti-human CD3 FITC (1:100, clone UCHT1, BioLegend, cat # 300440),
Anti-human CD8a PerCP (1:50, clone RPA-T8, BioLegend, cat #
301030), Anti-human CXCR6 PerCP Cy5.5 (1:50, clone K041E5, BioLe-
gend, cat # 356010), Anti-human CCR8 PE (1:100, clone L263G8, Bio-
Legend, cat # 360604), Anti-human CD127 PE (1:50, clone hIL-7R-M21,
BD Biosciences, cat # 557938), Anti-human CD15 PE (1:100, clone
W6D3, BD Biosciences, cat # 562371), Anti-human CD163 PE (1:50,
clone GHI/61, BioLegend, cat # 333606), Anti-human CD49d PE Dazzle
594 (1:100, clone 9F10, BioLegend, cat # 304325), Anti-human CRTh2
PEDazzle 594 (1:50, cloneBM16, BioLegend, cat# 350126), Anti-human
CD31 PE Dazzle 594 (1:100, clone WM59, BioLegend, cat # 303130),
Anti-human CD16 PE Dazzle 594 (1:100, clone 3G8, BioLegend, cat #
302054), Anti-human CD45 PE-CF594 (1:100, clone HI30, BD Bios-
ciences, cat # 562279), Anti-human CD29 PE Cy7 (1:100, clone TS2/16,
BioLegend, cat # 303025), Anti-human CD45RO PE Cy7 (1:50, clone
UCHL1, BD Biosciences, cat # 560608), Anti-human MerTK PE Cy7
(1:50, clone 590H11G1E3, BioLegend, cat # 367610), Anti-human TIGIT
PE Cy 7 (1:50, clone MBSA43, Invitrogen, cat # 25-9500-42), Anti-
humanCD94APC (1:100, cloneHP-3D9, eBioscience, cat # 17-5094-42),
Anti-human CCR6 APC (1:25, clone G034E3, BioLegend, cat # 353416),
Anti-human CD206 APC (1:50, clone 15-2, BioLegend, cat # 321110),
Anti-human CD4 Alexa700 (1:50, clone RPA-T4, eBioscience, cat # 56-
0049-42), Anti-human CD127 Alexa700 (1:50, clone eBioRDR5,
eBioscience, cat # 56-1278-42), Anti-human CXCR4 APC Cy7 (1:50,
clone 12G5, BioLegend, cat # 306528), Anti-human CTLA-4 APC Cy7
(1:25, cloneBNI3, BioLegend, cat# 369634), Anti-humanCD56APCCy7
(1:50, clone HCD56, BioLegend, cat # 318332), Anti-human CD45 APC
Cy7 (1:100, clone HI30, BioLegend, cat # 304014), Anti-human CD14
APC eF780 (1:100, clone 61D3, eBioscience, cat # 47-0149-42), Anti-
human CXCR3 BV421 (1:50, clone G025H7, BioLegend, cat # 353716),
Anti-human CD13 BV421 (1:50, clone WM15, BioLegend, cat # 301716),
Anti-human TCRgd BV510 (1:100, clone B1, BioLegend, cat # 331220),
Anti-human TCRab BV510 (1:100, clone IP26, BioLegend, cat #
306734), Anti-humanCD5 BV510 (1:100, clone L17F12, BioLegend, cat #
364018), Anti-humanFcER1 BV510 (1:100, cloneAER-37, BioLegend, cat
# 334626), Anti-human CD303 BV510 (1:100, clone 201 A, BioLegend,
cat # 354232), Anti-human CD123 BV510 (1:100, clone 6H6, BioLegend,
cat # 306022), Anti-human CD34 BV510 (1:100, clone 581, BioLegend,
cat #343528), Anti-human CD20 BV510 (1:100, clone 2H7, BioLegend,
cat # 302340), Anti-human CD3 BV510 (1:100, clone OKT3, BioLegend,
cat # 317332), Anti-human CD14 BV510 (1:100, clone M5E2, BioLegend,
cat # 301842), Anti-humanCD19BV510 (1:100, cloneHIB19, BioLegend,
cat # 302242), Anti-human CD4 BV510 (1:100, clone RPA-T4, BioLe-
gend, cat # 300546), Anti-human CD56 BV605 (1:50, clone HCD56,
BioLegend, cat # 318334), Anti-humanCD69BV650 (1:100, clone FN50,
BioLegend, cat # 310934), Anti-human CD8a BV650 (1:50, clone RPA-
T8, BioLegend, cat # 301042), Anti-human CD326 BV650 (1:100, clone
9C4, BioLegend, cat # 324226), Anti-humanCD107a BV750 (1:50, clone
H4A3, BioLegend, cat # 328638), Anti-human CD103 BV711 (1:100,
clone Ber-ACT8, BioLegend, cat # 350222), Anti-human CD10 BV711
(1:100, clone HI10a, BioLegend, cat # 312226), Anti-human CD45 BV711
(1:100, clone HI30, BioLegend, cat # 304050), Anti-human CD3 BV785
(1:100, clone OKT3, BioLegend, cat # 317330), Anti-human HLA-DR
BV785 (1:50, clone L243, BioLegend, cat # 307642), Anti-human PD-1
BV785 (1:50, clone EH12.2H7, BioLegend, cat # 329930), Anti-human
CD45 BUV395 (1:100, clone HI30, BD Biosciences, cat # 563792), Anti-
human CD16 BUV395 (1:100, clone 3G8, BD Biosciences, cat # 563785),
Anti-human CD3 BUV395 (1:100, clone UCHT1, BD Biosciences, cat #
563546), Anti-humanCD69 BUV496 (1:50, clone FN50, BD Biosciences,
cat # 750214), Anti-human CD16 BUV737 (1:100, clone 3G8, BD Bios-
ciences, cat # 564434). The following antibodies were used for intra-
cellular staining: Anti-human TBET FITC (1:50, clone 4B10, BioLegend,
cat # 644812), Anti-human Granzyme B FITC (1:100, clone QA16A02,
BioLegend, cat # 372206), Anti-human Granzyme K PE (1:25, clone

GM26E7, BioLegend, cat # 370512), Anti-human FOXP3 PE CF594 (1:25,
clone 236 A/E7, BD Biosciences, cat # 563955), Anti-human GATA3 PE
CF594 (1:25, clone L50-823, BD Bioscience, cat # 563510), Anti-human
Amphiregulin PE Cy 7 (1:25, clone AREG559, Invitrogen, cat # 25-5370-
42), Anti-mouseNur77 APC (1:25, clone REA704,Miltenyi, cat # 130-111-
231), Anti-human EOMES APC eF780 (1:25, cloneWD1928, eBioscience,
cat #47-4877-42), Anti-human RORgT BV650 (1:50, clone Q21-559, BD
Biosciences, cat # 563424), Anti-human Perforin eF450 (1:100, clone
dG9, Invitrogen, cat # 48-9994-42). Cells were analyzed on a BD LSR
Fortessa flow cytometer. Data were plotted using FlowJo v10.7.1
(TreeStar) and Prism (Graphpad, v9). Due to the low numbers of
immune cells detected in healthy kidney, samples frombothmales and
females were analysed together and these data, as displayed, are
aggregated for sex. Donor sex and age information is reported in
Supplementary Table 2.

PT cell culture. Commercially available human primary PTs from 6
donors (3males and 3 females), LonzaWalkersville Inc)were expanded
at passage 4, and studied at passage 5. The main donor characteristics
are summarized in Supplementary Table 1. Cells were grown in
custom-made Dulbecco’s modified Eagle’s medium (DMEM) contain-
ing 5.55mMD-glucose, 4mM L-glutamine, and 1mM sodium pyruvate,
and supplemented with 10 ng/mL human EGF, 0.05M hydrocortisone,
1x of Transferrin/Insulin/Selenium (Invitrogen), 10% v/v dialyzed fetal
bovine serum (FBS), 50 g/mL streptomycin, and 50units/mL penicillin,
as previously121,122. Cells were serum-starved for 24 h prior to collection
for gene expression, metabolite measurements, and assessment of
metabolic function. For gene expression experiments, cells were
washed with PBS, harvested with trypsin, and snap-frozen at −80 °C
until further analysis.

Assessment of metabolic function in human primary PT cells.
Mitochondrial respiration was separately assessed in male and female
PTECs by measuring their oxygen consumption rate (OCR) in a Sea-
horse XFe96 analyzer (Agilent). Glycolysis was also assessed by mon-
itoring the extracellular acidification rate (ECAR). Upon 80-90%
confluence, cells were detached with 0.25% trypsin (5min, 37 °C),
counted and seeded in a Seahorse XFe96 Cell Culture Microplate at a
density of 15,000 cells/well in 100 µL of DMEM complete media. After
adhering for 6 h, PT cells were exposed to serum starvation conditions
for 24 h. One hour prior to the metabolic function assay, cells were
washed with phenol-free basal media (Agilent) and exposed to 150 µL
of assay media, which included 2mM glutamine and 5.55mM glucose.
During the assay, OCR and ECAR were recorded at baseline and after
metabolic stress. To induce metabolic stress, 25 µL of oligomycin,
p-trifluoromethoxy carbonyl cyanide phenyl hydrazone (FCCP),
2-deoxyglucose (2-DG), and Rotenone + Antimycin A (Rot + AA) were
sequentially injected into the microplate wells. After optimization, the
following working concentrations were stablished for each drug: oli-
gomycin: 1 µM; FCCP: 0.3 µM, 2-DG: 100mM; Rot: 1 µM; AA: 1 µM. Basal
respiration, ATP-linked respiration, maximal respiratory capacity, and
reserve capacity were assessed by calculating the area under the curve
(AUC) fromOCRcurves (Fig. 3b, c). Basal glycolysis,maximal glycolytic
capacity, and glycolytic reserve were determined by calculating the
AUC from ECAR curves (Supplementary Fig. 7).

Cell metabolite measurements
Sample preparation. Male and female primary PTs were grown on
6-well plates and subjected to starvationasdescribed above. The levels
of intracellular metabolites for each sex were then determined using
liquid chromatography-mass spectrometry. After collecting the
supernatant, 1mL of extraction solvent (80:20 mixture of methanol:-
water) was added into each well, in order to extract intracellular
metabolites. Plates were placed on dry ice. The adherent material was
then triturated, collected into Eppendorf tubes, and stored at −80 °C.
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Cell lysate collection was followed by 3 freeze-thawing cycles in dry ice
(to shift sample temperature between −80 °C and −20 °C). The inso-
luble material from each sample was then precipitated by centrifuga-
tion at full speed for 5min. The resulting pellet was dried at room
temperature and used for total RNA quantification using the Quant-iT
Ribogreen assay (Invitrogen). In turn, the metabolite extract was dried
under high purity nitrogen gas (turbovap) and resuspended with
appropriate volume of buffer (0.5 µL of LC-MS grade water to 1 µg of
RNA) based on total RNA levels. The appropriate volumes of heavy-
labelled (13C/15N) reference metabolites were spiked into each recon-
stituted sample for quantitation. The heavy-labelled metabolites used
as internal reference standards were acquired in as a metabolite
extract from yeast that had been 99% labelled with 13C-glucose and
15N-ammonia. To determine background metabolite signals, a mock
plate without cells and equal volume of media was processed in par-
allel to the study plates.

Liquid chromatography-mass spectrometry (LC-MS). Cellular
metabolites were measured by injecting 2 µL of sample in full scan
MS1mode using an Agilent 6550 qToFmass spectrometer coupled to
an Agilent 1290 binary pump UPLC system. Most polar metabolite
analytes presented here were measured using an Agilent ZORBAX
ExtendC18 1.8 µm, 2.1mm×150mm reverse phase chromatography
using tributylamine as an ion paring agent as previously described123.
The Agilent 6550 qToF was fitted with a dual AJS ESI source and an
iFunnel with a gas temperature set to 150 °C at 14 L/min and 45 psig.
Sheath gas temperature was set to 325 °C at 12 L/min. Capillary and
nozzle voltages were set to 2000V. Funnel conditions were changed
from default to −30V DC, high pressure funnel drop −100V and RF
voltage of 110 V, low pressure funnel drop −50V and RF voltage of
60 V. Metabolite annotation in full scan data was achieved by
matching exactmass and retention time to an in-house database. The
retention time and exactmass databasewere prepared by analyzing a
collection of neat standards using the chromatographic method
described above and confirming retention times by MS/MS frag-
mentation of neat standards.

Metabolite data analysis. Metabolite raw data was extracted directly
from.d folders and integrated in profile mode using an R-based soft-
ware package developed by the Rosebrock Lab; ChromXtractorPro
(personal correspondence K. Laverty and A. Rosebrock, adam.roseb-
rock@stonybrook.edu). The metabolites whose intensity in all the
study samples fell at or below their intensity in the blank (consisting of
resuspension buffer only) were excluded from further analyses. Next,
the integrated light (L) intensity of eachmetabolite was normalized to
the intensity of its internalheavy (H) standard. The L/H ratiominimized
the potential stochastic variation in the signal produced by the
instrument due to changes in humidity and/or temperature, enabling
the relative quantitation and comparative analysis of each metabolite.
The analysis enabled the detection of 158 intracellular metabolites124.
Data corresponding to the intracellular levels of NAD, β-nicotinamide
mononucleotide, ATP, GTP, ITP, UTP were interrogated.

Gene expression validation studies
RNA was extracted from the cell pellets of human primary male and
female PT cells using the RNAeasy Mini Kit (Qiagen). After quantifying
RNA concentration in a Nanodrop instrument (Thermo), 300-700ng
of RNA were retrotranscribed to cDNA using the High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems). Male and female PTs
had each been grown and serum-starved as above. In these cells, gene
levels of KDM5D, UTY, EIF1AY, EIF1AX, DDX3X, MT1F, MT1G, and MT1H
were measured by real-time quantitative PCR using a Power SYBR®
Green PCR Master Mix reagent (Applied Biosystems) and normalized
to RPL31. The fluorescent signal was measured in a LightCycler® 480

Instrument II (Roche). All primer sequences employed in this study are
summarized in Supplementary Table 3.

Quantification and statistical analysis
Statistical tests were conducted within R and using GraphPad Prism
9.1.0 software. For all comparisons, normality was determined using a
Shapiro-Wilk test. Group-to-group differences were assessed using two-
tailed unpaired T tests for variables following a normal distribution, and
Mann-Whitney tests for variableswith a non-parametric distribution. All
p values below 0.05 were considered significant. Significance level for
each test is indicated in the figures. For each experiment, n is reported
in the figure legends and represents the number of samples. Where
appropriate, disaggregated numbers for each sex are also reported.

Figure preparation
All figures were prepared using Adobe Illustrator 2020. Kidney struc-
ture (Fig. 1c), schematic in 2b and Supplementary Fig. 16a were con-
structed using Biorender: https://biorender.com (licence to use
provided).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data generated in this study have been sub-
mitted to NCBI Gene Expression Omnibus under the accession
number GSE202109. The final dataset (containing processed files)
is also available online125 via: https://cells.ucsc.edu/?ds=living-
donor-kidney. Source data and supplementary information are
provided with this paper. Previously published sequencing data
were accessed as follows: Stewart and Ferdinand et al.3. (https://
data.humancellatlas.org/explore/projects/abe1a013-af7a-45ed-
8c26-f3793c24a1f4); Muto et al.14, GSE151302; Zimmerman et al.52,
GSE128993; Argüello et al.53, GSE159913; Wang et al.55, GSE148665;
10X Genomics Datasets (https://support.10xgenomics.com/
single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3)56 and
(https://support.10xgenomics.com/single-cell-gene-expression/
datasets/2.1.0/t_4k)107; and Bernink et al.106, GSE114396. Addi-
tional public data repositories used for our analysis include
CHEA3108 (https://maayanlab.cloud/chea3/) and the Bader lab
repository of genesets: (http://download.baderlab.org/EM_
Genesets/). Source data are provided with this paper.

Code availability
Scripts used for processing the raw data are deposited on Zenodo
(https://doi.org/10.5281/zenodo.6633564).
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