
Article https://doi.org/10.1038/s41467-025-57157-2

Interpretable single-cell factor
decomposition using sciRED

Delaram Pouyabahar 1,2, Tallulah Andrews 3,4,9 & Gary D. Bader 1,2,5,6,7,8,9

Single-cell RNA sequencing maps gene expression heterogeneity within a tis-
sue. However, identifying biological signals in this data is challenging due to
confounding technical factors, sparsity, and high dimensionality. Data factor-
ization methods address this by separating and identifying signals in the data,
such as gene expression programs, but the resulting factors must be manually
interpreted. We developed Single-Cell Interpretable REsidual Decomposition
(sciRED) to improve the interpretation of scRNA-seq factor analysis. sciRED
removes known confounding effects, uses rotations to improve factor inter-
pretability, maps factors to known covariates, identifies unexplained factors
thatmay capture hidden biological phenomena, and determines the genes and
biological processes represented by the resulting factors. We apply sciRED to
multiple scRNA-seqdatasets and identify sex-specific variation in a kidneymap,
discern strong andweak immune stimulation signals in a PBMCdataset, reduce
ambient RNA contamination in a rat liver atlas to help identify strain variation
and reveal rare cell type signatures and anatomical zonation gene programs in
a healthy human liver map. These demonstrate that sciRED is useful in char-
acterizing diverse biological signals within scRNA-seq data.

Single-cell RNA sequencing (scRNA-seq) maps heterogeneity in gene
expression in large cell populations. This heterogeneity can be
attributed to various factors, both observed and hidden1. We can
broadly categorize sources of this heterogeneity into sample-level
factors, such as experimental conditions or age andweight of patients,
cell-level covariates like cell type identity, cell cycle stage, and library
size, or as gene-level attributes such as pathways. Each of these cate-
gories can be further classified based on their biological or technical
nature and whether they are known during experimental design, or
observed in or inferred based on the data. Despite their importance,
identifying and interpreting factors in scRNA-seq data remains chal-
lenging due to its noise, sparsity, and high dimensionality2.

Matrix factorization (or decomposition) can identify multiple
factors (signals) in a cell by gene scRNA-seq data matrix, each one

capturing a unique pattern of covarying gene expression values that
may represent a covariate, such as a set of genes affected by batch or a
biological gene expression program3. Many factorization methods
exist4–13, however, they generally only identify factors and leave inter-
pretation up to the user. Some recent methods, such as scLVM14,
fscLVM15, and Spectra16, can automatically interpret factors by match-
ing them to pre-annotated gene sets (e.g. pathways), but do not con-
sider a wider range of covariates important in single cell genomics
data, such as sample-level attributes. To address this challenge, we
developed Single-Cell Interpretable REsidual Decomposition (sciRED)
to aid in scRNAseq factor analysis and interpretation.

sciRED enables factor discovery and interpretation in the context
of known covariates and biological gene expression programs. sciRED
provides an intuitive visualization of the associations between factors
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and covariates, along with a set of interpretability metrics for all fac-
tors. These metrics identify clear factor-covariate pairs as well as fac-
tors not matching known covariates but which are potentially
interpretable. Factor-correlated genes and pathways also aid in inter-
pretation. We apply sciRED to diverse datasets including the
scMixology17 benchmark and four biological single-cell atlases that
contain known factors. We showcase its application in identifying cell
identity programs and sex-specific variation in a kidney map, dis-
cerning strong and weak immune stimulation signals in a PBMC data-
set, reducing ambient RNA contamination in a rat liver atlas to unveil
strain-related variation, and revealing hidden biology represented by
rare cell type signatures and anatomical zonation gene programs in a
healthy human liver map. These demonstrate the utility of sciRED for
characterizing diverse biological signals within scRNA-seq datasets.

Results
To improve the efficiency and interpretability of matrix decomposi-
tion of single-cell RNAseq data, sciRED uses four steps to generate and
characterize the resulting factors. These steps are: preprocessing data
and applying matrix decomposition, evaluating factor-covariate rela-
tionships, examining unexplained factors, and determining biological
interpretation of selected factors.

sciRED begins with the input cell by genematrix and proceeds to:
(1) Remove known confounding effects, factorize the residual matrix
to identify additional factors not accounted for by confounding
effects, and use rotations to maximize factor interpretability; (2)
Automatically match factors with covariates of interest; (3) evaluate
unexplained factors that may indicate hidden biological phenomena;
(4) Determine the genes and biological processes represented by
factors of interest (Fig. 1A). In the factor discovery phase, sciRED
removes user-defined unwanted technical factors, such as library size
and sample or protocol, as covariates within a Poisson generalized
linear model (GLM)18. This regresses out the covariates and produces
Pearson residuals. These residuals are then factored using Principal
Component Analysis (PCA)5 with varimax rotation19 to enhance inter-
pretability (Fig. 1B). To identify factors that explain a specific covariate,
sciRED attempts to find matching labels (e.g. cell types, covariates of
interest) for each factor using an ensemble classifier (see methods).
Each cell is represented as a vector of factor weights, which are clas-
sified to predict covariate labels (e.g. “female” or “male” factors in the
covariate “biological sex”) using four machine learning classifiers
(logistic regression20, linear classifier/area under the curve (AUC)21,22,
decision tree23, and extreme gradient boosting (XGB)24). Each factor is
a feature and feature selection across an ensemble of these classifiers
generates factor-covariate-level association (FCA) scores, which are
visualized as a heatmap. To identify high-scoring factor-covariate
pairs, we use three approaches. First, we use visual inspection of the
FCA heatmap. Second, we compare the association scores of each
factor to the background distribution of values in the FCA table to
automatically highlight significant associations (see Methods, Fig. 1C).
Third, we calculate a specificity measure to determine whether an
explained factor captures the gene expression program related to a
unique covariate or is associated with multiple covariate levels simul-
taneously. Interpretation is often easier when a factor matches only
one covariate level.

The third step of sciRED evaluates unexplained factors for
potential interpretability using three types of metrics: separability,
effect size, and homogeneity, which are presented as a factor-
interpretability score (FIS) table (Figs. 1D, S1, see Methods). For
unexplained factors that should be prioritized for follow-up explora-
tion because they may contain a hidden signal, ideally, cells should be
scored highly by the factor (measured by effect size), there should be
two populations of cells, ones that score highly and ones that don’t
(bimodal distribution,measured by separability) and the potential new
signal is expected to be strong in cells ranked highly by that factor,

while other signals (e.g., known technical covariates) should be evenly
distributed across this ranking (measured by homogeneity). The
fourth step evaluates the factor loadings (gene lists) for biological
signals. This involves manually investigating top genes and enriched
pathways associated with the factor (Fig. 1E).

sciRED improves factor discovery
We evaluated sciRED’s factor discovery alongside eight other factor
analysis methods (PCA, ICA8, NMF6, scVI25, Zinbwave9, cNMF12,
scCoGAPs13, and Spectra16) on two datasets: the scMixology17 bench-
mark dataset and a stimulated PBMC dataset26, representing distinct
biological and technical contexts (Figs. S2-S5). The scMixology dataset
includes scRNA-seq profiles from a mixture of three cancer cell lines
(H2228, H1975, HCC827), sequenced across three batches with differ-
ent library preparation platforms (Drop-seq, Celseq2, and 10x Geno-
mics) representing controlled single-cell datawithwell-defined signals.
In contrast, the stimulated PBMC dataset consists of 10x Genomics
droplet-based scRNA-seq data from eight lupus patients, collected
before and after a6-hour treatmentwith interferon (IFN)-β, providing a
real-world example of biological single-cell data.

Fourmetrics were used to compareperformance acrossmethods:
(1) the number of entangled covariates (indicating covariates matched
to multiple factors); (2) the number of factors split across multiple
covariates; (3) the number of covariate levels without an associated
factor; and (4) runtime. Lower values for all metrics indicate stronger
performance.

sciRED outperformed other methods, with the exception of
scCoGAPs, in minimizing both entangled covariates and factors dis-
tributed across multiple covariates in both datasets. All methods
showed comparable results in associating covariate levels with factors,
especially in capturing biological signals. However, scCoGAPs missed
identifying the megakaryocyte cell type in the PBMC dataset. The
runtime analysis highlights sciRED’s scalability as among the top four
fastest on scMixology and second fastest to PCA on the larger PBMC
data set, while scCoGAPs and Zinbwave were particularly slow running
over 35 hours on scMixology; and on PBMCs scCoGAPs required
139 hours, whereas Zinbwave crashed after 24 hours due to RAM lim-
itations. All methods were run single-threaded with default parameter
settings on a workstation with Intel 3.0GHz Xeon E5-2687W chip and
64 GB RAM.

Notably, sciRED’s runtime scales linearly with both cell and gene
counts (Fig. S6). This was shown using a human lung transplant
dataset27 (over 108,000 cells) and subsampling of both cell and gene
counts. Runtime was tested across various cell numbers (20 K, 40K,
60K, 80K, and 100K cells with genes fixed at 2000) and gene counts
(500, 2000, and 5000 highly variable genes with cells fixed at 40K).

sciRED finds cell type identity programs and sex-specific pro-
cesses in a human healthy kidney map
We applied sciRED to a single-cell map of healthy human kidneys
(Fig. 2) obtained from 19 living donors, with nearly equal contributions
fromboth females andmales (10 female, 9male)28. sciRED successfully
identified cell type identity programs for diverse kidney cell types
(Fig. 2A, B, Fig. S7, Source Data) as well as a factor representing sex-
specific differences. For instance, factors F1 and F13 capture the
identity programs of proximal tubules and endothelial cells, respec-
tively, while F18 represents sex-specific differences (Fig. 2C). Factor F18
has a high association score with male and female covariates based on
the FCA heatmap, indicating it has captured sex variation. Further
evaluation of the distribution of factor F18 across different cell types
reveals a cell-type dependent distribution of sex-related variation, with
a strong representation in the proximal tubule cell type population
(Fig. 2D). The FIS heatmap indicates that F18 is highly specific and
shows a low homogeneity score across sex covariates, confirming that
cells from male and female individuals are not uniformly distributed
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along F18 (Fig. 2E). Consistent with the original study, pathway analysis
shows an increase in processes related to aerobic metabolism (such as
aerobic respiration, oxidative phosphorylation, tricarboxylic acid
(TCA) cycle, and electron transport chain) in males (Fig. 2F, G). These

findings align with the higher basal respiration and ATP-linked
respiration processes in males, as functionally validated in the origi-
nal study28. This highlights sciRED’s ability to identify cell type identity
signatures and sample covariate-specific variation.

Fig. 1 | sciRED overview. A sciRED comprises four main steps: factor discovery,
factor interpretation, factor evaluation and biological characterization. B In the
factor discovery step, a Poisson generalized linearmodel is applied to the data to
remove technical covariates, followed by extraction of residuals and factoriza-
tion using PCA. The resulting score and loading matrices are then rotated for
enhanced interpretability. The score matrix represents the projection of the
original data onto the new factor space, illustrating the relationship between
cells and factors. Each entry in this matrix reflects how much each cell con-
tributes to the factors. The loading matrix contains the weights or coefficients
that define the factors as linear combinations of theoriginal genes. Theseweights

can be used to rank genes according to their contribution to each factor, facil-
itating further interpretation of the factors. Models and algorithms are color-
coded in blue, while input, output, and intermediate data elements are repre-
sented as white boxes. C Factor interpretation uses an ensemble classifier to
match factors with given covariates, generating a Factor-Covariate Association
(FCA) table. Covariate-matched factors are identified by thresholding FCA scores
based on the distribution of all FCA scores. Unannotated factors may capture
novel biological processes or other covariates. D Factor-interpretability scores
(FIS) are computed for each factor. E The top genes and enriched pathways
associated with a selected factor are identified for manual interpretation.
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sciRED identifies stimulation signals across lymphoid and mye-
loid cells in a stimulated PBMC dataset
We used sciRED to analyze a benchmark dataset comprising 10x
Genomics droplet-based scRNA-seq PBMC data from eight lupus
patients before and after a 6-hour treatment with interferon (IFN)-β26

(Fig. 3). Our sciRED analysis successfully identifies cell type identity
programs and stimulation-to-control axes of variation (Fig. 3A, Source
Data). We identified two factors, F9 and F2, which capture stimulation
signals (Fig. 3B). The FIS table indicates a high bimodality (separability)
score for both factors, a high effect size for F2, and high specificity for
F9 (Fig. 3C), illustrating the utility of the FIS table for capturing bio-
logical signals. Differential evaluation of the cell type representation
within the two factors reveals a predominance of lymphoid and mye-
loid cells for F9 and F2, respectively (Fig. 3D). In particular, F9 repre-
sents a stronger overall stimulation signal and stimulation in lymphoid
populations and F2 captures a stimulation signal in myeloid popula-
tions. Examination of the cell type distribution across F9 and F2
highlights distinct clustering between the non-stimulated control and
stimulated groups along both factors (Fig. 3E, H). Immune response-
related genes and biological processes, including interferon signaling,
stress or pathogen response, and cytokine signaling, are enriched in
both factors (Fig. 3F, G, I, J). This indicates sciRED’s ability to identify
both cell-type-specific gene expression activity programs, including
stimulated cellular states.

sciRED alleviates ambient RNA contamination for group-based
comparison
Weapplied sciRED to ahealthy rat liver atlasmapped inDarkAgouti (DA)
and Lewis (LEW) strains29. This atlas contains hepatocyte-derived ambi-
ent RNA contamination, a known artifact likely caused by fragile hepa-
tocytes leaking RNA into the cell homogenate before sequencing30.
sciRED identified factorswith cell type identities, as expected, alongwith
two factors capturing strain-associated variation (F6 and F20)
(Fig. 4A–F and S8A, Source Data). The FIS table shows that factor F6 has
high specificity and separability, as well as low strain homogeneity
(Fig. 4B). Factor F20 is the second strongest factor following F6
(Fig. 4B, C). F6 and F20 represent strain differences within the hepato-
cyte (Fig. 4D) andmyeloid cell types (Figs. 4E, F, S8BandC), respectively.
Standard differential expression analysis is not able to identify this signal
due to strong ambient RNA contamination29 (Fig. 4G). For instance, four
hepatocyte genes—Fabp1, Tmsb4x, Fth1, Apoc1—are among the top dif-
ferentially expressed genes within the myeloid cell type of both DA and
LEW strains and are estimated to be ambient RNA by SoupX31 (Fig. 4G,
Source Data, see Methods). However, the top 50 myeloid strain-
associated genes identified by sciRED F20 are free of such con-
taminants (Fig. 4H, SourceData). Thesemyeloid-specific strain variations
were experimentally validated in the original study. This shows the utility
of sciRED in deconvolving biological signals from contamination to
facilitate factor interpretation and group-based comparisons.

Fig. 2 | Deciphering cell type identity programs and sex-specific processes in a
human healthy kidney map. We applied sciRED to a single-cell healthy human
kidney map obtained from 19 living donors, with similar contributions from both
females and males. A FCA heatmap with covariate levels as rows and associated
factors as columns. Arrow highlights factor F18, which demonstrates a high asso-
ciation score with female and male covariates. B FCA score distribution for all
factors. The red line indicates the automatically defined threshold used to identify

significant factor-covariatematches in the heatmap in (A). Distribution of cells over
factor F1 and factor F18 colored based onC sex andD cell type covariates indicates
the predominant representation of sex-related variationwithin the proximal tubule
cell type. E FIS heatmap representing the interpretability scores of the selected
factors. F Pathway analysis results on the top positive (female) and negative (male)
loaded genes of factor F18. G Top 20 positively and negatively loaded genes of
factor F18.
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Exploring hidden biology in the healthy human liver atlas cap-
tured by unannotated factors
We applied sciRED to a healthy human liver atlas32 and explored the
unannotated biological signals (Fig. S9, Source Data). sciRED’s FCA
heatmap shows that most signals correspond to liver cell type identity
programs (Fig. 5A). For example, F3 most strongly captures the cell
identity of liver sinusoidal endothelial cells (LSECs), while F4 captures
non-inflammatory macrophages. The FCA heatmap highlights nine
factors (1, 10, 19, 20, 22, 26, 28, 29, 30) that are not associated with
annotated cell types (Fig. 5B). To discern whether these factors repre-
sent technical or biological signals, we calculated the correlation
between each factor and three major technical covariates—library size,
number of expressed genes, and percentage of mitochondrial gene
expression—as well as cell cycle (S and G2M) phase scores (Fig. 5C). Out
of the nine factors, F1, F20, and F22 are correlated with technical cov-
ariates (R >0.45). The remaining factors include five (F10, F19, F26, F28,
and F30) that may represent unannotated biological signals, as well as
F29, which shows a strong correlation with the cell cycle signature,
indicating it might have captured a proliferative cell population. Eval-
uating the FIS table reveals that, among the six factors analyzed, all

except F19 are well-mixed based on the sample covariate, suggesting a
possible sample-specific effect for F19. F10 and F29 stand out with
higher bimodality scores, indicating they might more effectively sepa-
rate a subpopulation of cells. F26 and F28 factors exhibit a low effect
size, indicating weak signals (Fig. 5D). Factor F10 exhibits significant
enrichment of a subpopulation of cells within the cholangiocyte cluster
(Fig. 5E). The top loaded genes within this factor includeMUC5A,MUC1,
TFF1, LGALS2, SLPI, TFF2, TFF3, KRT19, LGALS4, and PIGR. The enrich-
ment of biological processes such as ion export, regulation of transport
activity, localization, and response to ER stress strongly suggests that
F10 has captured the cellular program of a rare population of mucus-
producing cholangiocytes that was not identified in the original study
but was reported in a more comprehensive subsequent human liver
single cell map33. Factor F30 is enriched within a subpopulation of cells
labeled as plasma cells in the originalmap (Fig. 5F). The top genes in the
loading vector include IgK+IgG+ B cell marker genes, including IGHG4,
IGHG1, IGHG3, IGKV1-12, HERPUD1, IGKV1-18, IGKC, SSR4, IGKV3-20, and
IGKV3-21 (Fig. 5F). Pathway enrichment analysis highlights biological
processes such as protein folding and maturation, antibody-mediated
complement activation, protein transport, and ER to cytosol transport

Fig. 3 | Identifying interferon-β stimulation signals across lymphoid and
myeloid cells in a PBMC dataset. We used sciRED to analyze PBMC scRNA-seq
from eight lupus patients before and after an interferon-β (IFN-β) treatment.A FCA
heatmap displaying covariate levels as rows and associated factors as columns.
Arrows highlight factors F9 and F2, which capture stimulation signals. B Sorted
factors based on FCA score values for the stimulated covariate level. F9 and F2 are
the top factors associatedwith the stimulation covariate.C FIS heatmap illustrating
the interpretability scores of the selected factors. Red boxes highlight factors
capturing IFN-β stimulation. D Cell distribution over factors F9 and F2, colored
based on cell type covariates. The red dashed line represents the diagonal line

passing through theorigin. Solid lines are the regression lines that fit each cell type.
Lines with larger slopes than the diagonal represent cell types with higher asso-
ciationwith F9, while lineswith smaller slopes represent cell typesmore associated
with F2. EDistribution of cells over factors F9 and F1 colored based on stimulation/
control covariates, revealing distinct clustering between control and stimulated
groups along the F9 axis. F Pathway analysis based on the top-loaded genes of
factor F9.GTop30positively loadedgenes of factor F9.HDistributionof cells over
factors F1 and F2 colored by simulation state covariate (“stimulated” or “control”/
non-stimulated). I Pathway analyses based on the top-loaded genes of factor F2. J
Top 30 positively loaded genes of factor F2.
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(Fig. 5F). These findings suggest that F30 may represent an antibody-
secreting IgK+IgG+ B cell33 gene expression program, not described in
the original study due to its low frequency, but later captured in an
expanded human liver single-cell map33. Factor F19 is enriched in two
hepatocyte clusters, Hep1 and Hep2, which were annotated as peri-
centrally zonedhepatocytes in theoriginal study (Fig. 5G). Thepresence
of pericentral markers such as CYP3A4, GLUL, and OAT, along with
enrichment in biological processes such as xenobiotic metabolic pro-
cesses, smallmoleculemetabolism, and lipid and fatty acidmetabolism,
suggests that F19 captures the anatomical pericentral signature within
the hepatic lobules30,32,34(Fig. 5G). Factor F29 is correlatedwith cell cycle
signatures and inversely enriched within a population of γδ T cells
(Fig. 5H). The top loaded genes for F29 include cell-cycle-related reg-
ulatory genes UBE2C35, TOP2A36, KPNA237, CKS238, and BIRC539, and
pathway analysis reveals enrichment in cell cycle and cell division, RNA
splicing and processing, and nuclear division (Fig. 5H). Together, these
results suggest that this factor captures the cell cycle statewithin the γδ
T cell subset. We could not clearly interpret factors F26 and F28. In
conclusion, sciRED is able to identifyweak signals, such as rare cell types
and subtle cell states, that were overlooked by standard single-cell
analysis pipelines in the original study.

Discussion
We developed sciRED, a novel single-cell transcriptomics data inter-
pretation method that combines unsupervised factor analysis and

supervised covariate modeling to identify biological and technical
signals within single-cell transcriptomics data. We introduce new
metrics to assess factor interpretability to help characterize knownand
unknown sources of variation in the data. We also showed that
regressing out known technical factors before factorization aids in
data interpretation.

To test sciRED, we analyzed a series of datasets with diverse
known covariates and showed that sciRED could recover factors
associated with these covariates. This works well, but may miss unin-
terpreted signals in the original data. Although many single-cell tran-
scriptomics simulation tools exist9,40–45 to assist in benchmarking
analysis methods, there has been little focus on factor simulation. We
simulated factors to evaluate interpretability metrics, but our
approach was simplistic and can be improved. sciRED uses PCA cou-
pledwith varimax rotation as a high-performingmatrix decomposition
method, though many other factor analysis methods exist46. Our
benchmarking results on the controlled scMixology dataset and a
biologically complex PBMC dataset indicate that sciRED generally
outperforms other methods in terms of combined interpretability and
runtime efficiency. Tools dedicated to simulating loading and score
matrices from single-cell transcriptomics, ranging from simple to
complex structures, could aid in benchmarking the performance of
matrix factorization methods across different scenarios. Such tools
could also help answer questions such as determining the minimal
sample size required to recover a factor with weak loadings. These

Fig. 4 | sciRED identifies strain-based variation despite ambient RNA con-
tamination in a rat liver map.We applied sciRED to a healthy atlas of the rat liver
from two rat strains, Dark Agouti (DA) and Lewis (LEW) containing hepatocyte-
derived ambient RNA contamination.A FCA heatmap displaying covariate levels as
rows and associated factors as columns. B FIS heatmap illustrating the interpret-
ability scores of the selected factors.C Factors F6 and F20 aremost associatedwith
strain variation. D Distribution of cells over factors F6 vs. F1 colored by strain and
E factors F20 vs. F1 colored by strain and F by cell type, indicating that factor F20

captures strain variation within the myeloid population. G Volcano plot of differ-
ential expression between strains within myeloid cells. Red dots are hepatocyte-
derived ambient RNA transcripts as estimated by SoupX. Four hepatocyte genes—
Fabp1, Tmsb4x, Fth1, andApoc1—are labeled among the topdifferentially expressed
genes within the myeloid cell type of both DA and LEW strains. These genes are
among the top 50 ambient RNA transcripts derived from SoupX in all four rat liver
samples (see Source Data).H Top 50myeloid strain-associated genes identified by
sciRED factor 20, free of contamination from hepatocyte-derived ambient RNA.

Article https://doi.org/10.1038/s41467-025-57157-2

Nature Communications |         (2025) 16:1878 6

www.nature.com/naturecommunications


simulation methods could draw inspiration from factor simulation
techniques used in psychometric studies47–50.

We present a suite of metrics designed to evaluate the interpret-
ability of factors derived from a matrix factorization method within a
single dataset. sciRED’s modular design enables flexible integration
with external data processing and factorization methods. Pre-
processed data can enter directly at the factor identification stage, and

previously derived factors and covariates can be imported for factor-
covariate association, bypassing the initial steps if matrix factorization
has already been applied using another method. Both FCA and FIS
heatmaps can provide guidance for interpreting factors derived from
other matrix factorization methods (Fig. S10). These metrics help
identify which of the K factors generated by a given factorization
algorithm are likely to be interpretable. However, factor distributions

Fig. 5 | Exploring hidden biology in the healthy human liver atlas using unan-
notated factors. We demonstrate how sciRED facilitates the identification of hid-
den biology in a healthy human liver single-cell transcriptomic atlas.A sciRED’s FCA
heatmap reveals signals corresponding to human liver cell type identity gene
expression programs.BDistribution of the number ofmatched covariate levels per
factor identifiesnine unannotated factors (F1, F10, F19, F20, F22, F26, F28, F29, F30)
not associated with any given covariate. C Correlation analysis between unan-
notated factors and technical covariates (library size, number of expressed genes,
percentage of mitochondrial gene expression) and cell cycle (S and G2M) phase
scores.D FIS heatmap indicating the interpretability scores of unexplained factors
uncorrelated with technical covariates. E–H The first row shows the distribution of
selected factors on the atlas tSNE plot, where each dot represents a cell, and colors
indicate factor score values. The second row presents boxplots of factor scores
across cell types, with the box representing the interquartile range (IQR), the line
indicating the median, whiskers extending to 1.5 × IQR, and dots representing

individual cell factor scores identified as outliers. The third row displays the top-
loaded genes, and the fourth row provides pathway analysis for factors (E) F10, (F)
F30, (G) F19, and H) F29. E Factor 10 exhibits significant enrichment within a sub-
population of cells within the cholangiocyte cluster, suggesting the capture of a
rare population of mucus-producing cholangiocytes. F Factor 30 demonstrates
positive enrichment within a subpopulation of cells labeled as plasma cells in the
original map, suggesting that it captures antibody-secreting IgK+IgG+ B cells. G
Factor 19 is positively enriched in pericentrally zoned hepatocytes (clusters Hep1
and Hep2), capturing an anatomical pericentral gene expression signature within
hepatic lobules. H Factor 29 is correlated with cell cycle signatures and inversely
enriched within a population of γδ T cells, suggesting capture of cell cycle state
within this T cell subset. Pathway enrichment analysis of the top 200 genes from
ordered loadings was performed using gProfiler in “ranked” mode with default
Gene Ontology Biological Process and Reactome databases.
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can exhibit various patterns that the provided metrics may not fully
capture. For unexplained factors, even one high metric value can be
sufficient to highlight them as potentially interesting. In such cases,
further interpretation should rely on enriched genes and pathways.
Moreover, the optimal factorization method and its specific settings—
such as the number of genes included—may vary depending on the
input dataset. Variables like sample complexity (including diversity of
cell types, presence of rare populations, and number of covariates in
the experimental design), signal-to-noise ratio (including contamina-
tion level and dropout rate), number of batches, and variation in dis-
sociation protocols and capture technologies in multi-sample studies
can influence the choice of factorization method. Developing metrics
to compare and identify the optimal factor analysis method and its
parameter settings to generally improve interpretability across dif-
ferent methods would be beneficial but remains a challenge.

In sciRED we focused on matrix factorization. However, a limita-
tion of this approach is the assumption that cells canbe represented as
linear combinations of gene expression signatures, which may limit
our ability to capture non-linear patterns. Alternative approaches, such
as deep learning-based latent variable models like variational auto-
encoders (VAEs), can incorporate non-linearities and interactions
between latent variables25 in the factorization step. While the inter-
pretability measures we developed would be applicable to VAE-
derived latent spaces, non-linear patterns may inherently be more
challenging to interpret. Thus, there remains a trade-off between
interpretability and the ability to model complex biological phenom-
ena effectively. The proportion of cellular programs that can be
effectively captured by linear versus non-linear approaches remains
uncertain for any given dataset. Enhancing the interpretability of deep
learning-basedmodels, such as VAEs, while maintaining their ability to
capture complex biological phenomena is an active research area51,52.

We only consider applying sciRED to scRNAseq data. However, it
could be applied to bulk RNAseq datasets with tens to hundreds of
samples.We do not recommend using the Poisson GLM step in sciRED
for full-length, plate-based datasets such as Smart-seq2, as these data
typically follow a different statistical distribution compared to UMI-
based data53,54. However, users can apply their custom preprocessing
approach and then input these data into sciRED’s factor identification
whichwould allow sciRED to be used on Smart-seq2 data. sciRED could
also be extended to function with spatial and multi-omics data with
multi-sampledatasets, appropriate factor analysismethods and agood
understandingofhow technical variationaffects thesedata.Analysis of
one spatial transcriptomics dataset shows that sciRED can identify
spatially distinct gene expression patterns within complex tissue
structures (Figs. S11 and S12). However, further refinement may be
needed to enhance its handlingof spatial data andother emergingdata
types, particularly in terms of selecting appropriate error models, and
optimizing the metrics used to assess factor quality across diverse
experimental technologies. We expect that as single-cell and multi-
omics technologies evolve, integrating and comparing factors
extracted frommany datasets and various data modalities will deepen
our understanding of cellular systems in healthy and diseased tissue.

Methods
sciRED factor discovery framework
We model the read counts for n cells and g genes (i.e., Yn× g) as a
combination of annotated and unannotated factors as follows:

Yn× g = Cn×pβp× g + Fn× f Af × g + Un×uHu× g + εn× g

Where:
Yn× g represents the observed data matrix, typically with dimen-

sions n× g (where n is the number of samples or cells and g is the
number of variables or genes)

Cn×p is the matrix of technical covariates with dimensions n×p
(where p is the number of covariates), such as library size, batch ID, cell
cycle stage

βp× g represents the coefficient matrix for technical covariates
with dimensions p× g

Fn× f is the matrix of annotated factors with dimensions n× f
(where f is the number of factors)

Af × g is the matrix of loadings for annotated factors with dimen-
sions f × g

Un×u is the matrix of unannotated factors with dimensions n ×u
(where u is the number of unannotated factors)

Hu× g represents the matrix of loadings for unannotated factors
with dimensions u× g

εn× g is the error term, with dimensions n× g
Annotated factors are those matched with known (given) covari-

ates as indicated in the factor-covariate association (FCA) table. The
solution to the above equation is reached through a two-step process.

1. Derivation of residuals
The first step aims to remove the effect of technical covariates

from the data.
Input counts, represented by the matrix Yn× g are modeled as a

Poisson generalized linear model (GLM) to account for the matrix’s
distributional properties11,55,57. Technical covariates Cn ×p are incorpo-
rated into the model to capture their effects on the count data. The
statsmodels package58 (version 0.11.0) is used for GLM implementation.

Pearson residuals from thismodel are computed as the difference
between observed and predicted counts divided by the square root of
the predicted counts:

ri =
yi � ŷiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR ŷi

� �q

where VAR is the variance. For Poisson GLM, VAR ŷi
� �

= ŷi.
The Pearson residuals are used for subsequent matrix

decomposition.
Two additional residual types were evaluated, but not used in

sciRED. Response residuals represent the difference between the
observed count and the predicted mean count for each observation.

Response Residuals: residi = yi � ŷi
Deviance residuals represent the individual contributions of

samples to the devianceD, calculated as the signed square roots of the
unit deviances. Deviance Residuals:

di = sign yi � ŷi
� �

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 × ðyi log yi=ŷi

� �� yi � ŷi
� �Þq

Pearson residuals are used for sciRED because they are estab-
lished inother single cell analysismethods55,56. However, sciRED results
are robust to the choice of residual (among Pearson, response,
deviance) (See Methods section “Classifier ensemble”).

2. Residual decomposition
After obtaining Pearson residuals from the count data, a matrix

factorization technique is employed to uncover underlying patterns,
including the annotated and unannotated factors. PCA factors are
calculated using Singular Value Decomposition (SVD)59 as imple-
mented in scikit-learn60 (version 0.22.1). Following factor decomposi-
tion, we apply varimax rotation to enhance the interpretability of the
principal axes in the feature space. To achieve this, we reimplemented
the optimized estimation procedure as described below.

Rotation types
Factor analysis typically comprises two sequential stages. Initially,
loadings are computed to best approximate the observed variances
within the data. However, these initial loadings may lack interpret-
ability; thus, we apply rotation to generate a revised set that is more
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easily interpretable. There are two primary rotation types in factor
analysis: orthogonal and oblique rotations. Orthogonal rotation, such
as varimax, seeks to produce orthogonal factors with zero correla-
tions. Intuitively, varimax rotation aims to identify factors associated
with a limited number of variables, thereby it promotes the detection
of distinct factors rather than those affecting all variables evenly.
Mathematically, interpretability is achieved by maximizing the var-
iance of the squared loadings along each principal component axis.
Varimax rotation seeks to maximize the Kaiser criterion:

v=
X
j

vj =
X
j

g
X
i

l2ij=h
2
i

� �2
�

X
i
l2ij=h

2
i

� �2" #
=g2

( )

Where v is the Kaiser criterion and lij is the loading value of ith gene and
jth factor, and g is the total number of genes. The communality hi is
calculated as the squared sum of the loading values for each gene.

h2
i =
X

j
l2ij

To explicitly specify the rotation matrix, we can reformulate the
Kaiser criterion using the following notation. Let L be a g × k loading
matrix (eigenvectors), and R denote a rotation matrix such that
RTR= Ik , where Ik is the k × k identity matrix. Additionally, let Rij

represent the scalar element in the i th row and j th columnofmatrixR.
Varimax rotations can now be described as follows:

Rvarimax =argmaxR
Xk

j = 1

Xg

i = 1
LRð Þ4ij �

1
g

Xk
j = 1

Xg

i = 1
ðLRÞ2ij

� �2 !

where Rvarimax denotes the resulting rotation matrix.
The rotationmatrix is computedusing an iterativemethod relying

on SVD to achieve sparsity in the loadings. Subsequently, the rotated
loadings and score matrices are derived by multiplying the original
loadings and scorematrices with the rotationmatrix, respectively. The
optimization algorithm is elaborated on in detail in Appendix A of
Stegmann et al.61. We re-implemented the base R varimax rotation
function in Python.

Oblique rotations, such as Promax62, allow factors to be corre-
lated, thereby relaxing the orthogonality assumption63. This flexibility
can be beneficial when factors are expected to be correlatedwithin the
underlying structure of the data. Promax initially applies the varimax
method to generate a set of orthogonal results. Subsequently, it con-
structs an ideal oblique solution to exaggerate the orthogonal rotated
gene-loading matrix. Finally, it rotates the orthogonal results to
achieve a least squares fit with this ideal solution.

We define a pattern matrix P = ðpijÞ, as the following ðk > 1Þ:

pij =
jlk + 1ij j
lij

Each element of P matrix is the kth power (typically 3rd power) of
the corresponding element in the row-column normalized varimax
loading matrix. Next, the least squares fit of the orthogonal matrix of
factor loadings to the pattern matrix is computed.

RPromax = argminRjjP � LrotRjj2

RPromax = ðL0rotLrotÞ�1L0rotP

where RPromax is the unnormalized rotation matrix, Lrot is the varimax
rotated loadings, and P is the pattern matrix defined above. The col-
umns of RPromax are normalized such that their sums of squares are

equal to unity. We reimplemented the base R promax function in
Python.

To evaluate the impact of factor rotations, we applied PCA, sciRED
(varimax-based19), and promax-rotated62 PCA to the Pearson residual
of the scMixology dataset after regressing out protocol and library
size. The factor-covariate association scores reveal a high correlation
between sciRED and Promax. Both methods enhance specificity and
achieve one-to-one association between factors and cell line covari-
ates, outperforming unrotated PCA (Figure S13). We used varimax as
the default rotation method for sciRED, as it has been established to
perform well for interpretable factor analysis64,65.

Factor identification benchmarking
For both scMixology and PBMCdatasets, PCA and ICA were applied to
normalized (library-regressed) data, whileNMF, scVI, Zinbwave, cNMF,
and scCoGAPS were run on filtered raw counts. All methods used the
top 2000 highly variable genes, following sciRED’s standard pipeline.
The number of factors (K) was set to 30 across all methods; for addi-
tional comparison, K was also set to 10 for the scMixology dataset.

Spectrawas applied exclusively to the PBMCdataset, as it relies on
the Cytopus knowledge base, which contains gene sets tailored for
standard scRNA-seq data but lacks coverage for cancer cell line-
specific gene sets. For PBMC, cell type labels were standardized to
CD4-T, mono, cDC, NK, CD8-T, and B, with an “all-cells” category used
for cell types without specific annotations. The number of factors per
cell type was set to five to approximate the total number of factors
used in the other methods.

All methods were run in single-threaded mode with default
parameters on a workstation with Intel 3.0 GHz Xeon E5-2687W chip
and 64 GB RAM.

Data pre-processing and handling of batch effects with sciRED
sciRED takes raw count (not batch corrected) data as input, removing
cells and genes with zero total read count and retaining only the top
highly variable genes, typically the top 2000 as in standard scRNA-seq
workflows. While using all genes is an option, the first step—fitting the
Poisson GLM—becomes more time-consuming with larger gene sets;
thus, a smaller set of highly variable genes is used. The minimum
required covariate is library size (total read count per cell), which
serves as an equivalent normalization step.

Additional covariates can be incorporated into the GLM model
based on specific analysis goals; however, technical covariates should
be removed with caution to prevent the unintentional exclusion of
biologically relevant signals. For instance, in analyses focused on sex-
specific variations, adjusting for sample IDs as covariates can inad-
vertently eliminate sex-associated signals if sample and sex effects are
confounded.

In multi-sample analyses, we recommend merging all samples
without batch correction. Batch correction is generally unnecessary
with sciRED, as our analyses demonstrate robust batch effect handling
without directly correcting the data matrix or latent embedding. To
evaluate batch effect handling, sciRED was tested on two PBMC data-
sets profiled using 10x Genomics single-cell 3’ and 5’ gene expression
libraries with strong batch effects (Fig. S14). sciRED was applied to the
combined count matrices, with library and sample IDs regressed as
covariates in the Poisson GLM step. The UMAP projection (Figures
S14AB) reveals batch-related clustering without correction; however,
sciRED analysis (Fig. S14C, D) showswell-integrated cell type identities,
even across assay types. For instance, Factors F1 and F4, which identify
CD14+ monocytes and B cells, respectively, are well integrated across
both assays. The distributions of cells over F1 and F4, colored by cell
type and assay, demonstrate effective batch integration, and the cor-
responding box plots and UMAP enrichment patterns further confirm
these results (Fig. S14E–J).
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Impact of data sparsity on factor decomposition performance
To assess the impact of data sparsity on sciRED’s decomposition, we
systematically varied the sparsity level (0.01, 0.3, 0.5, 0.7, 0.9, 0.95,
0.99) in the human liver atlas dataset by incrementally replacing
randomly selected gene expression values with zeros (Fig. S15). For
each level, we evaluated the factors based on average andmaximum
variance explained, the percentage of matched factors, and the
percentage of matched covariates. Our results indicate that the
average variance explained by all factors remains largely robust
across different sparsity levels, likely due to sciRED’s rotation step,
as this trend is not observed for PCA factors. Themaximum variance
explained by factors is also more stable with sciRED’s rotated fac-
tors compared to PCA as sparsity increases. As expected, the per-
centage of matched factors decreases with rising sparsity, with a
marked drop around a sparsity threshold of ~70%. At lower sparsity
levels (0.01 and 0.5), the FCA heatmaps display a balanced dis-
tribution of matched covariates per factor, while at higher sparsity
(0.95 and 0.99), most covariates align with only a few factors,
reducing interpretability. However, the percentage of matched
covariates remains stable, as most covariates continue to align with
at least one factor.

Impact of factor number (K) on decomposition results
To evaluate the impact of factor count (K) on sciRED’s decomposition
results, we tested various factor numbers—5, 10, 20, 30, and 50—on the
human liver map (Fig. S16). At lower factor counts, such as K = 5, each
factor showed higher covariate associations (e.g., Factor 1 was mat-
ched to nine covariates). As K increased, each factor alignedwith fewer
covariates, and the percentage of matched factors decreased. At
K = 50, 54% of factors had no covariate matches. Correlating factors
between theK = 10 andK = 30 decompositions revealed that individual
factors in K = 10 (e.g., F1, F3, and F7) mapped to multiple factors in
K = 30, suggesting that low factor limits may lead to each factor cap-
turing multiple gene expression programs, complicating interpreta-
tion. Repeating this analysis on the PBMC dataset yielded similar
results: as the number of factors increased, each factor aligned with
fewer covariates, and a higher proportion of factors remained
unmatched at higher K values (Fig. S17).

The ideal factor count varies by dataset and is affected by biolo-
gical and technical signal diversity. While a Scree plot is commonly
used inPCA to determine factor counts, sciRED’s rotation step changes
the ordering by variance explained, making this approach less effec-
tive. Empirically, a moderately high K (e.g., 30) has yielded inter-
pretable results across datasets.We recommend starting with a higher
K value and excluding factors with no covariate matches or low factor
importance scores (FIS).

Feature importance calculation
Weevaluated a range of classifiers for inclusion in the sciRED ensemble
classifier. Each classifier is trained on individual levels of each covariate
separately (e.g., “female” and “male” for a “biological sex” covariate).
Each classifier uses a different approach to estimate feature
importance:
1. Logistic regression: feature importance is the magnitude of the

coefficient for each factor, which represents the change in the log-
odds of belonging to a covariate level per unit of factor weight.

2. Decision trees, random forest66 and extreme gradient boosting:
feature importance scores represent the decrease in covariate
mixing (e.g. Gini impurity or entropy) when the feature is used
within a tree averaged across all trees.

3. K-nearest neighbor67 (KNN): feature importance is estimated as
the decrease in predictive accuracy when the values for that
feature are randomly permuted. This value is calculated as the
average across five permutations for each factor based on the
default scikit-learn package implementation.

4. Linear classifier (AUC): feature importance for a linear classifier
(i.e. fixed threshold) is calculated as the area under (AUC) the
receiver-operating characteristic (ROC) curve. The AUC for one-
dimensional data is equivalent to the Wilcoxon or Mann-Whitney
U test statistic with the relation:

AUC = U=ðn0 ×n1Þ

Where U is theMann-Whitney U statistic, and n0 and n1 are the sample
sizes of the two groups being compared. TheMann-Whitney U test is a
non-parametric test used to assess whether two independent samples
are selected from populations having the same mean rank. Here,
samples are defined as factor scores for the target group (cells labeled
with the covariate level of interest) and the non-target group. In the
context of feature importance, a higher AUC value indicates that the
factor is better at separating the classes, while a lower AUC value
suggests less discriminatory power. The scikit-learn package is used to
implement decision tree, random forest, logistic regression and KNN
classifiers with default parameters. XGBoost (version 1.5.0) and SciPy68

(version 1.4.1) packages are used forXGBand theMann-WhitneyU test,
respectively.

Classifier ensemble
We optimized the sciRED classifier ensemble by evaluating different
classifier combinations on four independent datasets: a healthy human
kidney map, a healthy human liver map, a PBMC atlas, and the
scMixology benchmark dataset (Fig. S18). For each experiment, we
randomly shuffled the covariate labels to generate a null distributionof
classifier association scores and calculated the average number of
significant associated factors (p < 0.05) per covariate level (Fig. S18A).
We defined a one-to-one association between factors and covariates as
the optimally interpretable result. This analysis shows that the sciRED
classifier (ensemble of logistic regression, linear classifier/area under
the curve (AUC), decision tree, and extreme gradient boosting (XGB))
outperforms or matches the performance of the individual classifiers,
depending on the data set. Initially, six classifiers—AUC, K-Nearest
Neighbors (KNN), logistic regression, decision tree, randomforest, and
XGB—were compared on the scMixology benchmark dataset. Due to
KNN’s poor classification performance and random forest’s inferior
scalability, they were excluded from the sciRED ensemble model
(Fig. S18B, C). Benchmarking on the four independent datasets
described above demonstrates sciRED’s superior performance relative
to single classifiers (Fig. S18D–G).

To optimize the ensemble score, we also tested all combinations
of three different scaling methods and two mean calculations
(Fig. S19). Specifically, we considered standardization, min-max scal-
ing, or rank-based scaling combined with arithmetic or geometric
means69. By comparing scores for the real scMixology data vs. per-
muted data labels, we identified standardization followed by arith-
metic mean calculation as the optimal scoring method (Fig. S19).

Standardization, min-max scaling, and rank-based scaling are
defined as follows:

Given a set of feature importance scores for each factor i:
x = fx1, x2, . . . , xng, and their ascending order of ranks
r = fr1, r2, . . . , rng, where n is the total number of features (factors):

standardizedi =
xi �meanðxÞ

stdðxÞ

min�max scaledi =
xi �minðxÞ

max xð Þ �minðxÞ

rank � scaledi =
ri
n
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Rank scaling generates a value between 0 and 1 to each data point
based on its rank within the dataset. Lower values in the original
dataset will have lower rank-based scaled values, while higher values
will have higher rank-based scaled values.

Arithmetic and geometric means across classifiers are calculated
as follows:

Arithmetic mean=
1
n

Xn

i = 1
xi

Where n is the number of values.

Geometric mean=
Yn
i= 1

xi

 !1
n

The geometric mean is the nth root of the product of a set of
values.

The effect of the choice of residual (Pearson, response, deviance)
on sciRED performance was also evaluated, indicating that sciRED
results are robust to the choice of residual (Fig. S20).

Determining significant factor-covariate associations
FCA scores are binarized into significant and non-significant associa-
tions based on a threshold. This threshold is automatically determined
using Otsu thresholding70. Otsu thresholding iterates through all
potential threshold values and computes a separability measure in
each iteration. The threshold value that maximizes this separability
measure is chosen as the optimal threshold to partition the FCA score
distributions into significant and non-significant associations. The sci-
kit-image package71 (version 0.23.2) is used for implementation.

Benchmarking covariate-factor association metrics based on
permutation results
We used a permutation test to evaluate the significance of each
covariate-factor association. This process entailed randomly shuffling
cell covariate labels 500 times and recalculating factor-covariate
association scores for each permutation to create an empirical null
distribution. A shuffled dataset should result in lower-scaled factor-
covariate association scores compared to the original dataset, given
that the cell labels are randomized after each permutation.

Empirical p-values were calculated as the number of permuted
FCA scores that are as or more extreme than the observed association
value, divided by the number of permutations. The number of sig-
nificant associations for each covariate was determined using p-
value < 0.05.We expect one significant factor associationper covariate
level in the ideal case. High values of this metric likely indicate false
positive associations (low specificity) and zero values highlight false
negative results (low sensitivity).

To evaluate model performance without relying on predefined
thresholds (such as p-value = 0.05), we employed the Gini index, an
inequality measure ranging from 0 to 1. A Gini index of 0 signifies
perfect equality, where all values are identical, while a score of 1
indicates perfect inequality, with one value dominating the dis-
tribution. In our context, we aimed to assess the extent of associa-
tion between factors and covariates across various levels of pre- and
post-permutation. Following label shuffling, we expect the factor-
covariate association scores to exhibit uniformity across all covari-
ate levels (Gini score closer to 0). In cases of non-random baseline
labels, sparse associations between factors and covariates would
result in a Gini score closer to 1. To calculate the Gini index for a
given FCA matrix, Gini was calculated for each covariate level
separately and the average Gini index across all covariate levels is

provided.

Gk =
1

2n2�x

Xn

i= 1

Xn

j = 1
jxi � xjj

WhereGk is the Gini coefficient for a covariate level k, n is the number
of factors, and �x are the mean FCA scores for a given covariate level.
We then calculate the global Gini index as:

G=
1
K

XK

i= 1
Gk

Where K is the total number of covariate levels.

Factor evaluation
We defined four categories of metrics: separability, effect size, speci-
ficity, and homogeneity to measure factor interpretability. Two are
label-free (separability, effect size) and the other two are label-
dependent (specificity, and homogeneity). Metrics for each category
are organized into a table of factor interpretability scores (FIS), with
metrics arranged as rowsand factors as columns. Subsequently, the FIS
undergoes row-wise scaling and is visualized as a heatmap to sup-
port the comparison of interpretability scores between factors.

sciRED uses the Silhouette score and bimodality index to assess
separability. Homogeneity is measured using the arithmetic mean of
the average scaled variance (ASV) table. The Simpson index is
employed to evaluate factor specificity, while factor variance serves as
an effect size measure (See Methods section “Correlation between
interpretability metrics and overlap values”).

Separability (bimodality)
We use bimodality scores as an indicator for measuring the separ-
ability of factors. We use existing metrics developed for identifying
genes with bimodal expression distributions, which are typically used
to assess genes with prognostic value in discriminating patient sub-
groups. We selected metrics in accordance with Hellwig et al.’s com-
parative assessment of these scores based on survival times in a breast
cancer dataset72.

Cluster-based bimodality measures
Cluster-based methods group observations into clusters, then calcu-
late various statistics tomeasure the degree of distinctiveness of these
clusters. Clustersweregenerated using a standard k-means73 algorithm
(k = 2) implemented using the scikit-learn60 package. The following
cluster-based bimodality measures are included in sciRED:

• Variance Ratio Score (VRS), also known as Calinski–Harabasz
index (CHI)74 assesses the proportion of variance reduction when
splitting the data into two clusters. We can decompose the total
sumof squares (TSS) to between-cluster sumof squares (BSS) and
within-cluster sum of squares (WSS). VRS is then defined as the
ratio of BSS and WSS.

• Weighted Variance Ratio score (WVRS) is similar to VRS but
measures the variance reduction independent of the cluster
sample sizes. In both cases, higher values indicate better separa-
tion between clusters and reflect bimodality.

• Silhouette score75 measures the cohesion and separation of clus-
ters, ranging from -1 to 1, where higher values indicate better-
defined clusters. Silhouette is calculated based on mean intra-
cluster distance (ICD) and the mean nearest-cluster distance
(NCD). For each data point Silhouette is then given
as ðNCD� ICDÞ=maxðICD,NCDÞ.

• Davies-Bouldin index76 computes the average similarity between
each cluster and its most similar cluster. It measures similarity as
the ratio of within-cluster distances to between-cluster distances.
The minimum value is zero with lower values indicating better
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cluster separation. To ensure consistency with other metrics, we
scale the inverse Davies-Bouldin Index.

Calinski–Harabasz, Silhouette, and Davies-Bouldin Indices were
implemented using scikit-learn.

Bimodality index. The Bimodality Index77 is another bimodalitymetric
which was initially introduced to rank bimodal gene expression sig-
natures within cancer gene expression datasets. We adopt the
bimodality index to assess the bimodal nature of factor scores by
modeling them as a mixture of two normal distributions using a
Gaussian Mixture Model (GMM). Let μ1 and μ2 represent the means of
the two normal distributions, and σ the standard deviation. Given an
equal variance assumption, the standardized distance δ between the
distributions is calculated by:

δ =
jμ1 � μ2j

σ

Given GMM estimated parameters, we can calculate the propor-
tion of observations in the first component π. We then compute the
bimodality index (BI) as:

BI =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π 1� πð Þ

p
× δ

Ahigher BI indicates a stronger bimodal distribution, aiding in the
identification of bimodal factor signatures. Scikit-learn was used to
fit GMMs.

Dip score. Another bimodality evaluation metric is Hartigan’s dip
test78, a statistical measure used to assess deviations from unim-
odality in distributions. It evaluates multimodality by comparing the
maximum difference between the empirical distribution function
and the unimodal distribution function that minimizes this differ-
ence. The dip score was computed for each factor, indicating the
degree of bimodality present in the factor distribution. Higher dip
scores suggest stronger evidence of bimodality, while lower scores
indicate unimodality. Implementation was based on the diptest
package.

Effect size
The variance of factor scores across cells was employed as a measure
of effect size consistency.

Specificity
We assessed the Simpson diversity index and Shannon entropy as
measures of specificity.

Simpson diversity Index
The Simpson diversity index is a measure commonly used in ecology
to quantify the diversity or evenness of species within a community79.
It assesses the probability of encountering different species within a
community and how evenly distributed these species are. We adopted
the Simpson diversity index to measure specificity for individual fac-
tors within the context of FCA scores. By applying the Simpson index
to each vector of FCA scores, we can evaluate the extent to which a
factor uniquely characterizes a particular covariate level.

Mathematically, the Simpson diversity index D is expressed as

D=
Xn

i= 1
p2
i

Where pi denotes the scaled score of factor-covariate level association
(probability of a factor being chosen for a given covariate level i), and n
represents the total number of covariate levels. Here, the Simpson
diversity index ranges between 0 and 1, where 0 indicates low factor
specificity (maximumdiversity, all factor association scores are equally

distributed) and 1 indicates greater specificity (minimumdiversity) of a
factor towards a particular covariate level.

Shannon diversity index
We applied Shannon entropy to measure the specificity of individual
factors within FCA scores. By calculating Shannon entropy for each
vector of FCA scores, we assess how uniquely a factor characterizes a
particular covariate level.

Mathematically, Shannon entropy is defined as:

H = �
XN

i= 1
pilogðpiÞ

where pi is the probability of a factor being associated with a given
covariate level i, andN is the total number of covariate levels. Shannon
diversity index ranges from 0 (high factor specificity) to logðNÞ (low
factor specificity).

Homogeneity
To assess the homogeneity or even distribution of factor scores across
different levels of a covariate, we compute the scaled variance for each
covariate level. Thismetric quantifies the proportion of variance in the
factor scores observed at a specific covariate level ðLÞ relative to the
total variance across all covariate levels80. Thus, the scaled variance SV
for a factor x and a particular covariate level L is computed as

SV =
VarðxLÞ
VarðxÞ

Here, Var xL
� �

denotes the variance of the factor scores x corre-
sponding to the covariate level L, Var xð Þ represents the total variance
of the factor scores across all cells.

To establish a unified metric across all levels of a single covariate
(e.g., Batch1, Batch2, etc., representing levels of the covariate “Batch”),
we adopt different approaches based on the covariate’s number of
unique levels. We compute both the geometric and arithmetic means
of the scaled variances (SV) of all covariate levels for each factor. The
arithmetic mean of SV values was chosen based on factor simulation
results showing it performed best (explained below).

Evaluating factor interpretability metrics using simulation
Simulating mixture Gaussian distribution. Factors were simulated
under the assumption of being generated from a mixture of Gaussian
distributions. Each Gaussian distribution represents the factor scores
of the cells belonging to one covariate level. This simulation process
was implemented using the following mathematical formulation:

LetX be a randomvariable representing the simulated factors.We
generated n samples (cells) from a mixture of K(K=2) normal dis-
tributions, each characterized by its mean μk , standard deviation σk ,
and proportion pk . Themixture distributionX follows the distribution:

XK

k = 1
pk :Nðμk , σ

2
kÞ

where N μk , σ
2
k

� �
denotes the probability density function (PDF) of

the k-th normal distribution.
Given this assumption, 10 factors for 10000 cells were simulated

for 100 rounds. pk was set to 0.5 for simplicity. μ and σ were set by
random sampling from uniform distributions (parameters: σmin = 0.5,
σmax = 1, μmin = 0, μmax = 4).

Correlation between interpretability metrics and overlap values
We assessed the efficacy of the proposed factor interpretability
metrics by examining their correlation with the overlap between the
two Gaussian distributions representing each factor. We anticipated
that factors exhibiting greater overlap would demonstrate lower
separability and specificity scores (negative correlation), along with
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higher homogeneity values (positive correlation), and vice versa.
Our goal was to identify metrics with higher absolute mean
correlation values and lower variability, as illustrated inFig. S21A andB.
Based on simulation results (Fig. S21C), Silhouette and bimodality
index indicate high performance for the separability measure. The
arithmetic mean of the average scaled variance (ASV) table shows
higher performance compared to the geometric mean for the homo-
geneity measure. Our simulation results indicated a superior perfor-
mance of Simpson index compared to Shannon entropy81 to measure
factor specificity.

Calculating overlap between double Gaussian distributions
The overlap between twoGaussian distributions withmeans μ1 and μ2,
and standard deviations σ1 and σ2 respectively, is quantified based on
the intersection of the PDFs of the two distributions. For distributions
with unequal means and standard deviations, the overlap O is com-
puted as:

O= 1� 1
2

erf
c� μ1ffiffiffi
2

p
σ1

 !
� erf

c� μ2ffiffiffi
2

p
σ2

 !" #

where c represents the intersectionpoint of the twoPDFs and erf is the
error function.

Pathway and gene set enrichment analysis
Gene set and pathway enrichment analysis methods were used to
study the biological signatures represented by each factor. The gene
scores corresponding to the factors of interest were selected from the
loading matrix to order the list of genes from most to least contribu-
tion to the given factor. Pathway enrichment analysis was performed
on the top 200 genes of the ordered loadings using the gprofiler282

(version 0.2.3) enrichment tool based on the default Gene Ontology
Biological Process and Reactome gene set database sources, and using
the “ranked” mode.

Interpretation of factors using FCA and FIS tables
The FCA and FIS tables facilitate interpretation of identified factors.
When covariates are available, evaluating the FCA table first can reveal
factors associated with known covariates. Visual inspection of the FCA
heatmap helps identify specific factor-covariate pairs, and automatic
thresholding highlights factor-covariate pairs with scores that stand
out against the background distribution. Ideally, factors of interest will
exhibit high specificity, as summarized in the FIS table. Specificity
measures how uniquely a factor associates with a particular covariate
level (e.g., scRNA-seq technology type), with higher specificity
enhancing interpretability.

The FIS heatmap includes three additional metric scores -
bimodality (separability), effect size, and homogeneity - which capture
distinct aspects of the factor distribution and help prioritize unex-
plained factors for further exploration. Bimodality, which is covariate-
independent, reflects the distribution’s modality, where high values
indicate thepresenceof twodistinct cell populationswith high and low
factor scores. Effect size, also covariate-independent, represents the
distribution’s spread and variance. Higher effect size indicates higher
signal strength. Homogeneity is covariate-dependent and measures
the relative spread of the data specific to a single covariate compared
to the total spread. Homogeneity values closer to one suggest cells are
well-mixed with respect to the covariate along the factor’s axis. These
metrics guide the identification of interpretable factors from a set of K
factors generated by any factorization algorithm. However, factor
distributions may show patterns beyond these metrics, and even one
high metric value can justify follow-up interpretation, guided by enri-
ched genes and pathways or expert knowledge.

Modular design for flexible usage
sciRED’s modular design allows integration with external data pro-
cessing and normalization methods. Preprocessed data can be input
directly into step 2 (factor identification). Additionally, if external
matrix factorization has already been performed, the initial steps can
be bypassed, with factors and covariates imported directly for factor-
covariate association analysis.

Data Preprocessing
The scMixology17 dataset includes three human lung adenocarcinoma
cell lines: HCC827, H1975, and H2228. These cell lines were cultured
individually and subsequently processed. Single cells from each cell
line were combined in equal proportions and libraries were generated
using three protocols: CEL-seq2, Drop-seq, and 10x Genomics Chro-
mium. The processed count data was obtained using the scPipe
package in R and converted to .h5ad for import into Python. The data
underwent log normalization and standardization using the “Stan-
dardScaler” function from scikit-learn package.

The stimulatedPBMCdata26 includes 10xGenomics droplet-based
scRNA-seq PBMC data from eight lupus patients before and after 6h-
treatmentwith interferon-beta. Countdatawas extracted and analyzed
using sciRED (number of components(k)=30) while modeling library
size as a technical covariate. Three outlier cellswere removed from the
sciRED cell-by-factor score matrix, and factors F2 and F9 scores for
29,062 cells were visualized in Fig. 3.

The healthy human kidney map was constructed based on 19 liv-
ing donors (10 female, 9male)28 including the transcriptomes of 27,677
cells. Filtered and normalized data was downloaded and analyzed
using sciRED (k = 30).

The healthy rat total liver homogenate map includes four whole
livers which were acquired from 8-10 week-old healthy male Dark
Agouti and Lewis strain rats, and the resulting total liver homogenates
went through two-step collagenase digestion and 10x Genomics
droplet-based scRNA-seq29. Five outlier cells were removed from the
score matrix, and factors F6 and F20 scores for 23,036 cells were
visualized in Fig. 4. sciRED (k = 30) was applied to the count data while
modeling library size as a technical covariate. Sample was not included
as a technical covariate to preserve the strain-specific variations.
SoupX31 software (version: 1.6.2) was used to identify genes with the
greatest contribution to the ambient RNA. We used the default auto-
matic contamination fraction estimation (Rho) feature in the SoupX
(autoEstCont function) to estimate Rho for each sample included in
the total liver homogenate map of healthy rat livers. Subsequently, we
extracted the estimated ambient RNA profile and identified the top 50
genes contributing themost to the ambient RNA ineach sample. Genes
were selected if they ranked among the high-scoring ambient RNA
contributors in at least two samples. These selected genes were
assessed for their presence among the strain-specificmyeloidmarkers
identified using both sciRED and standard differential expression
methods. Differential expression analysis between the DA and LEW
strains within the myeloid population (cluster 5) of the rat liver map
was conducted using Seurat’s FindMarkers function with default
parameters (logfc.threshold = 0.1, min.pct = 0.01, min.cells.feature = 3,
and min.cells.group = 3), implementing the non-parametric Wilcoxon
rank-sum test.

The healthy human liver map32 includes 8,444 parenchymal and
non-parenchymal cells obtained from the fractionation of fresh
hepatic tissue from five human livers. The liver tissue was obtained
from livers procured from deceased donors deemed acceptable for
liver transplantation. sciRED (k = 30) was applied to the filtered count
while modeling library size as a technical covariate.

The human lung transplant dataset27 includes donor lung biopsies
from six transplant cases and over 108,000 cells. We performed sub-
sampling on both genes and cells to systematically assess sciRED’s
runtime across different dataset sizes.
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The two filtered 10k PBMC datasets, profiled using 10x Genomics
single-cell 3’ and 5’ gene expression libraries, were downloaded from
the 10x Genomics and directly analyzed using sciRED.

We applied sciRED to spatial transcriptomic data from Maynard
et al. 83, focusing on identifying spatial gene expression patterns within
the six-layered human dorsolateral prefrontal cortex (DLPFC). Speci-
fically, we selected Visium samples from two subjects (Br8100 and
Br5292), with four samples per subject. The data were subsetted by
subject. sciRED’s Poisson GLM was applied to adjust for library size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The scMixology17 dataset can be accessed from https://github.com/
LuyiTian/sc_mixology. The stimulated PBMC datasets26 were down-
loaded from muscData package (Kang18_8vs8) at https://github.com/
HelenaLC/muscData. The healthy human kidney atlas28 data files were
downloaded from the UCSC Cell Browser at https://cells.ucsc.edu/?ds=
living-donor-kidney. The processed healthy rat total liver homogenate
map29 was alsodownloaded from theUCSCCell Browser at https://cells.
ucsc.edu/?ds=rat-liver-atlas. The healthy human liver atlas32 data was
obtained from the R package HumanLiver, available at https://github.
com/BaderLab/HumanLiver. The human lung transplant dataset27 was
downloaded from the cellxgene platform with GEO accession code
GSE220797. The filtered 3’ library PBMC dataset was downloaded from
https://cf.10xgenomics.com/samples/cell-exp/4.0.0/Parent_NGSC3_DI_
PBMC/Parent_NGSC3_DI_PBMC_filtered_feature_bc_matrix.h5. The 5’
library PBMC data is available at https://cf.10xgenomics.com/samples/
cell-vdj/5.0.0/sc5p_v2_hs_PBMC_10k/sc5p_v2_hs_PBMC_10k_filtered_
feature_bc_matrix.h5. The human dorsolateral prefrontal cortex spatial
transcriptomics data83 was obtained using the spatialLIBD pack-
age. Source data are provided with this paper.

Code availability
The Pythonpackage for sciRED, alongwith example case scenarios and
the analysis code used in thismanuscript, is freely accessible at https://
github.com/BaderLab/sciRED. The code is archived and citable via
Zenodo: Pouyabahar et al., sciRED, GitHub repository, https://doi.org/
10.5281/zenodo.14593137 (2024).
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