Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer

Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease¹. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at $P < 5 \times 10^{-8}$ with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 16% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer.

GWAS have identified 107 SNPs that are independently associated with breast cancer risk^{2–32}. Association studies focused on ER-negative disease, or *BRCA1* mutation carriers, who are more likely to develop ER-negative disease (70–80% of cases)³³, have identified 11 of these SNPs^{3,9,12,19,29,30}. We aimed to discover additional susceptibility variants for ER-negative breast cancer by performing a GWAS in women of European origin.

New genotyping data were generated for 9,655 ER-negative cases and 45,494 controls from 68 Breast Cancer Association Consortium (BCAC) studies and 15,566 *BRCA1* mutation carriers (7,784 with breast cancer) from 58 Consortium of Investigators of Modifiers of *BRCA1/2* (CIMBA) studies (**Supplementary Tables 1** and **2**) using the Illumina OncoArray BeadChip, a 570,000-SNP custom array with genome-wide coverage³⁴. Imputation was used to derive estimated genotypes for ~21 million SNPs, using the 1000 Genomes Project (Phase 3) as the reference; ~11.5 million of these SNPs with imputation $r^2 > 0.3$ and minor allele frequency (MAF) > 0.005 were included in further analyses. For BCAC data, we estimated per-allele odds ratios (ORs) using logistic regression, adjusting for country and principal components. For CIMBA data, we estimated per-allele hazard ratios (HRs) using a retrospective cohort analysis framework, modeling time to breast cancer and stratifying by country, Ashkenazi

Jewish origin and birth cohort^{35,36} (Online Methods). These analyses were also applied to an independent set of previously generated data from other genome-wide genotyping of additional European participants in 44 BCAC studies (11,813 ER-negative cases and 55,100 controls)^{9,12,16,20,37,38} and 54 CIMBA studies (3,342 *BRCA1* mutation carriers, 1,630 with breast cancer) (**Supplementary Tables 1** and **2**). Fixed-effects meta-analysis was used to combine results across genotyping initiatives within consortia and, assuming that the odds ratio and hazard ratio estimates approximate the same underlying relative risk, across consortia³⁹.

Results from the combined meta-analysis are summarized in **Supplementary Figures 1** and **2**. There was minimal inflation of test statistics ($\lambda_{1,000} = 1.004$; **Supplementary Fig. 3**). We identified ten variants at nine new loci that were independently associated with risk of ER-negative breast cancer at $P < 5 \times 10^{-8}$ (**Table 1**, **Supplementary Figs. 4–11** and **Supplementary Table 3**). Two independent signals were observed within 12 kb of each other at 11q22.3, for rs74911261 (MAF = 0.02) and rs11374964 (MAF = 0.42); odds ratio estimates and statistical significance were largely unchanged when each variant was adjusted for the other (**Supplementary Table 4**). The association with rs66823261 at 8p23.3 was not observed for *BRCA1* mutation carriers (P = 0.32, P value for heterogeneity (P_{het}) = 0.030).

For each of these ten new signals, we identified candidate causal SNPs analytically^{40,41} (Online Methods) and combined multiple sources of in silico functional annotation from public databases^{42–52} to identify likely functional variants and target genes. Results are summarized in Figure 1, Supplementary Table 5 (including UCSC Genome Browser links; also see the Supplementary Note) and Supplementary Figures 4–11 (data sources in Supplementary Table 6). Many candidate causal SNPs lie in predicted regulatory regions and are associated with expression of nearby genes in blood or other tissues. At 2p23, the predicted target genes include ADCY3 and NCOA1 (Supplementary Fig. 4). At 6q23.1 (Supplementary Fig. 5), the most plausible target gene is L3MBTL3 (ref. 53). A predicted target at 8q24.13 is FBXO32, which is expressed in ER-negative human mammary epithelial cells (HMECs) but not ER-positive MCF7 breast cancer cells (Supplementary Fig. 7) and has a known role in cancer cachexia⁵⁴. At 11q22.3 (Fig. 1), a predicted target gene of common risk-associated variants is NPAT55. The rarer SNPs underlying the other 11q22.3 signal are predicted to target ATM, a known breast cancer susceptibility gene⁵⁶. Three rare coding variants (MAF \leq 0.03) in ATM, NPAT and KDELC2 are also among the candidate causal

A full list of authors and affiliations appears at the end of the paper.

Received 30 May 2016; accepted 11 January 2017; published online 23 October 2017; doi:10.1038/ng.3785

Table 1 Ten new loci associated with risk of estrogen-receptor-negative breast cancer using meta-analysis of BCAC and CIMBA data

							BCAC E	BCAC ER-negative disease ^b	eb	O	IMBA BRU	CIMBA $\it BRCA1$ mutation carriers $^{ m c}$	arriers ^c	Meta-analysis	Heterogeneity
Location	SNP	Chr.	SNP Chr. Position (bp) Nearest gene Alleles ^a	Nearest gene	Alleles ^a	MAF	OR	95% CI	P value	MAF	HR	95% CI	P value	<i>P</i> value	P value ^d
2p23.3	rs200648189	2	24,739,694	NCOA 1	CT/C	0.19	0.94	0.91-0.97	4.7×10^{-4}	0.20	0.88	0.84-0.92	3.3×10^{-7}	9.7×10^{-9}	2.0×10^{-2}
6q23.1	rs6569648	9	130,349,119	L3MBTL3	T/C	0.23	0.93	0.90-0.95	4.3×10^{-8}	0.22	0.94	0.90-0.98	5.4×10^{-3}	8.3×10^{-10}	0.64
8p23.3	rs66823261	∞	170,692	RPL23AP53	T/C	0.23	1.09	1.06 - 1.12	5.6×10^{-9}	0.22	1.02	0.98-1.07	0.32	3.3×10^{-8}	3.0×10^{-2}
8q24.13	rs17350191	∞	124,757,661	ANXA13	C/T	0.34	1.07	1.04-1.09	2.0×10^{-8}	0.34	1.08	1.04 - 1.12	1.9×10^{-4}	1.7×10^{-11}	0.81
11q22.3	rs11374964	11	108,345,515	KDELC2	G/GA	0.42	0.94	0.92-0.96	3.6×10^{-8}	0.43	0.91	0.88-0.95	1.3×10^{-6}	4.1×10^{-13}	0.26
11q22.3	rs74911261	11	108,357,137	KDELC2	G/A	0.02	0.82	0.75-0.89	2.3×10^{-6}	0.02	0.74	0.65-0.84	2.0×10^{-6}	5.4×10^{-11}	0.17
16p13.3	rs11076805	16	4,106,788	ADCY9	C/A	0.25	0.92	0.90-0.95	2.2×10^{-8}	0.25	96.0	0.92-1.00	0.073	1.4×10^{-8}	0.14
18q12.1	rs36194942	18	25,401,204	CDH2	A/AT	0.30	0.94	0.91-0.96	2.5×10^{-7}	0.31	0.95	0.91-0.99	1.4×10^{-2}	1.4×10^{-8}	0.50
19p13.2	rs322144	19	11,423,703	TSPAN16	5/0	0.47	0.95	0.93-0.97	2.4×10^{-5}	0.46	0.92	96.0-68.0	3.7×10^{-5}	7.4×10^{-9}	0.23
19q12	rs113701136 19	19	30,277,729	CCNE1	C/T	0.32	1.07	1.04-1.09	1.7×10^{-7}	0.32	1.05	1.01-1.09	1.2×10^{-2}	6.8×10^{-9}	0.57

*More common allele listed first, minor allele listed second. *Combined data from 21,468 ER-negative cases and 100,594 controls of European ancestry from the Breast Cancer Association Consortium (BCAC). *Combined data from 18,908 BRCA1/2 (CIMBA), 9,414 of whom had developed breast cancer. *Test for heterogeneity in effect size for ER-negative disease and overall disease for BRCA1/2 (CIMBA), 9,414 of whom had developed breast cancer. *Test for heterogeneity in effect size for ER-negative disease and overall disease for BRCA1/2 (CIMBA), 9,414 of whom had developed breast cancer. *Test for heterogeneity in effect size for ER-negative disease and overall disease for BRCA1/2 (CIMBA). Chr., chromosome; MAF, minor allele frequency; OR, odds ratio per copy of the minor allele; CI, confidence interval; HR, hazard ratio per copy of the minor allele.

SNPs at this locus. At 16p13, predicted target genes include *ADCY9* and *CREBBP* (**Supplementary Fig. 8**). At 19q12 (**Supplementary Fig. 11**), a potential target gene (*CCNE1*) encodes cyclin E1, which is involved in cell cycle control and phosphorylation of NPAT⁵⁷.

Expression quantitative trait locus (eQTL) associations were assessed for each candidate causal variant and genes within 1 Mb using 79 ER-negative breast tumors from The Cancer Genome Atlas (TCGA) and 135 normal breast tissue samples from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)^{58–60}. The strongest associations identified were for rs6569648 at 6q23.1 with L3MBTL3 ($P=4.3\times10^{-6}$) and for rs12965632 at 18q12.1 with CDH2 ($P=1.0\times10^{-4}$), both in METABRIC (**Supplementary Table 5**). SNP rs6569648 was the top cis-eQTL (of all imputed variants within 1 Mb) for L3MBTL3, while the P value for the eQTL effect of rs12965632 on CDH2 was within two orders of magnitude of those for the top cis-eQTLs for this gene (**Supplementary Figs. 12** and **13**).

For 10 of the 11 variants previously identified through GWAS of ER-negative disease or overall disease for BRCA1 mutation carriers^{3,9,12,18,19,30,31} or reported as more strongly associated with ER-negative breast cancer²⁹, associations with ER-negative disease were replicated (P < 0.05) using OncoArray data from BCAC, which do not overlap with any of the discovery studies (**Table 2**). Effect sizes were generally similar to those originally reported. Using all available CIMBA data, 6 of these 11 variants were associated with breast cancer risk (P < 0.05) for BRCA1 mutation carriers (**Table 2**). No evidence of association was observed for rs2284378 at 20q11 (ref. 12) in either BCAC or CIMBA ($P \ge 0.46$).

On the basis of odds ratios estimated using BCAC data for all cases with known ER status (16,988 ER negative and 65,275 ER positive), all ten new and ten previously reported and replicated susceptibility SNPs for ER-negative disease were more strongly associated with risk of the ER-negative subtype than the ER-positive subtype ($P_{\rm het}$ < 0.05, except for the new signal for rs322144 at 19p13.2; **Supplementary Table 7**). Two variants (rs4245739 at 1q32.1 and rs67397200 at 19p13.11) were not associated with ER-positive disease. For four variants (rs11374964 (11q22.3), rs74911261 (11q22.3), rs6678914 (1q32.1) and rs4577244 (2p23.2)), the risk-associated allele for ER-negative disease was associated with reduced risk of ER-positive disease (P < 0.05).

For these 20 susceptibility SNPs for ER-negative breast cancer, we also assessed association by triple-negative status (negative for ER, progesterone receptor and HER2; Table 3), tumor grade (Table 4) and age at diagnosis (Supplementary Table 8) using BCAC data only. Five SNPs, including the new susceptibility variants at 11q22.3 (rs11374964 and rs74911261), were more strongly associated with both risk of triple-negative disease and risk of higher-grade disease (P < 0.05); however, after adjustment for triple-negative status, heterogeneity in effect by tumor grade was observed only for the variants at 11q22.3 (rs74911261) and 1q32.1 (rs4245739) (*P* < 0.05). For rs4577244 at 2p23.3, heterogeneity was observed for tumor grade only, while rs2747652 at 6q25.2 was more strongly associated with risk of other (non-triple-negative) ER-negative breast cancer subtypes (P < 0.05). At younger ages at diagnosis, associations appeared to be stronger for two variants (rs10069690 (5p15.33) and rs67397200 (19p13.11)) and weaker for one (rs2747652 (6q25.2)) (P < 0.05).

Elsewhere, we report 65 new susceptibility loci for overall breast cancer¹. Three of these are located within 500 kb of the new susceptibility loci for ER-negative disease reported here (variants rs200648189 (2p23.3), rs6569648 (6q23.1) and rs17350191 (8q24.13)). We assessed associations with risk of ER-negative disease, and with risk of overall breast cancer for *BRCA1* mutation carriers, for SNPs at the remaining 62 loci, as well as for the 96 previously reported breast cancer susceptibility

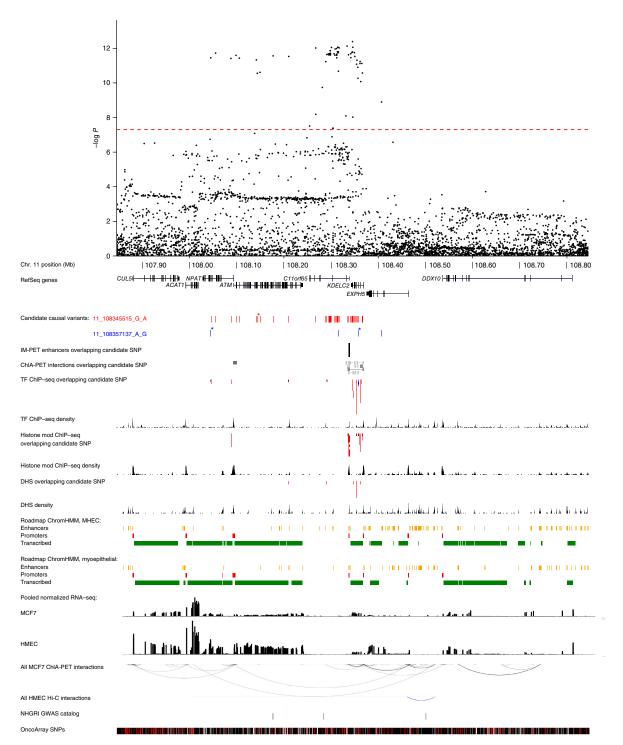


Figure 1 Genomic region around the independent ER-negative risk-associated variants $11_108345515_G_A$ (rs11374964) and $11_108357137_G_A$ (rs74911261). A 1-Mb regional association plot shows the statistical significance of all genotyped and imputed SNPs with the genome-wide significance level ($P = 5 \times 10^{-8}$) represented by the dashed red line. The positions of candidate causal variants for two independent signals (depicted as red and blue ticks) are shown in relation to RefSeq genes. Missense variants are labeled with asterisks. Mammary cell enhancers overlapping candidate SNPs predicted to target nearby genes by IM-PET⁴⁶ are depicted as black bars. Chromatin interactions from ENCODE ChIA-PET data in MCF7 cells overlapping candidate variants are shaded to reflect interaction confidence scores with darker shading indicating greater confidence. Epigenomic features (derived from publicly available ChIP-seq and DNase-seq data sets) that overlap candidate variants are shown as red or blue segments, depending on the intersected signal. Density tracks show the summed occurrence of ChIP-seq and DNase-seq peak signals at each position. Roadmap Epigenomics Project chromatin state models for HMECs and myoepithelial cells grouped into enhancer, promoter or transcribed annotations are shown as yellow, red and green segments, respectively. Transcript levels in MCF7 cells and HMECs are represented by histograms depicting mean normalized RNA-seq expression. All MCF7 ChIA-PET (ENCODE) and HMEC Hi-C⁴⁷ chromatin interactions are represented by black and blue arcs, respectively. NHGRI GWAS catalog SNPs are shown as green ticks. All OncoArray SNPs (genotyped or imputed) are shown as black ticks, and uninterrogated, common SNPs (dbSNP138, European (EUR) MAF > 1%) are shown as red ticks. Features may be examined in detail via exploration of a custom UCSC Genome Browser session accessible via hyperlinks within **Supplementary Table 5**. TF, transcription factor; DHS, DNase I-hypersensitive site.

Table 2 Previously reported associations with estrogen-receptor-negative disease: replication using independent data from BCAC and combined results using all BCAC and CIMBA data

Location SNP 1q32.1 rs6678914 1q32.1 rs4245739 2p24.1 rs12710696	Chr. 2					7	0	:					2		
				Nearest		DCAC	, EK-nega.	BCAC ER-negative disease (UncoArray) ^b	ncoArray) ^b	BC	BCAC ER-negative disease ^c	e disease ^c	CIMBA	CIMBA BRCA1 mutation carriers ^d	on carriers ^d
_	1 1 2 5		Ref.	gene	Allelesa	MAF	OR	95% CI	P value	OR	95% CI	P value	HR	95% CI	P value
_	7 7 7	202,187,176	19	1GR6	G/A	0.41	0.94	0.91-0.97	1.1×10^{-4}	0.92	0.90-0.94	2.6×10^{-12}	86.0	0.95-1.02	0.31
_	0 0	204,518,842	19	MDM4	A/C	0.26	1.12	1.09 - 1.17	9.2×10^{-11}	1.14	1.11 - 1.16	3.1×10^{-23}	1.09	1.04 - 1.13	7.3×10^{-5}
	2	19,320,803	19	MIR4757	C/T	0.37	1.04	1.00-1.07	2.5×10^{-2}	1.06	1.04 - 1.09	6.5×10^{-8}	1.01	0.98 - 1.05	0.49
		29,120,733	30	WDR43	C/T	0.34	0.93	0.89-0.96	9.6×10^{-5}	0.92	0.90-0.95	1.5×10^{-9}	0.92	0.88-0.96	1.3×10^{-4}
5p15.33 rs10069690	2	1,279,790	9,18	TERT	C/T	0.26	1.19	1.14 - 1.23	3.8×10^{-21}	1.18	1.15 - 1.21	1.5×10^{-35}	1.18	1.14 - 1.23	3.7×10^{-16}
6q25.1 rs3757322	9	151,942,194	59	ESR1	1/G	0.32	1.14	1.10 - 1.18	5.5×10^{-14}	1.15	1.12 - 1.18	2.8×10^{-31}	1.14	1.10 - 1.19	2.9×10^{-12}
6q25.2 rs2747652	9	152,437,016	59	ESR1	C/T	0.48	0.92	0.89-0.95	1.1×10^{-7}	0.91	0.89-0.93	1.9×10^{-18}	1.00	0.97 - 1.04	96.0
13q22.1 rs6562760	13	73,957,681	30	KLF5	G/A	0.24	0.92	0.88-0.95	5.0×10^{-6}	0.92	0.90-0.95	8.7×10^{-10}	0.89	0.86-0.93	3.5×10^{-7}
16q12.2 rs11075995	16	53,855,291	19	FTO	T/A	0.30	1.07	1.03 - 1.11	3.3×10^{-4}	1.09	1.06 - 1.12	1.0×10^{-10}	1.01	0.97-1.06	0.49
19p13.11 rs67397200	19	17,401,404	3,31	ANKLE1	D/O	0.32	1.17	1.13 - 1.21	7.0×10^{-20}	1.17	1.14 - 1.19	2.7×10^{-37}	1.18	1.14 - 1.23	2.7×10^{-17}
20q11.21 rs2284378	20	32,588,095	12	RALY	C/T	0.32	0.99	0.95-1.02	0.46	1.03	1.01 - 1.06	1.7×10^{-2}	1.00	0.97 - 1.04	0.81

Chr., chromosome; ref., publication(s) in reference list in which the association was identified; MAF, minor allele frequency; OR, odds ratio per copy of the minor allele; Cl., confidence interval; HR, hazard ratio per copy of the minor allele. Association constituting the second. **Directorer Association Consortium (BCAC) OncoArray data from 9,655 ER-negative cases and 45,442 controls were not included in previous ypublished and refer to 21,468 ER-negative cases and the second. **Directorer cases and the second in previous of European ancestry from BCAC, including samples overlapping with previous publications for all SNPs. domained afform 18,908 BRCAI mutation carriers from the Consortium of Investigators of Modifiers of **BRCAII.2* (CIMBAA), 9,414 of whom had developed horsast cancer, including samples overlapping with previous publications for SNPs rs4457322, rs2747652 and rs6562760.

variants that were not specific to ER-negative disease. Of these 158 SNPs, 105 were associated (P < 0.05) with risk of ER-negative breast cancer and 24 were associated with overall risk for BRCA1 mutation carriers (**Supplementary Tables 9** and **10**). Results for BRCA2 mutation carriers are presented in **Supplementary Table 11**.

Pathway analysis based on mapping each SNP to the nearest gene was performed using summary association statistics from the meta-analysis of BCAC and CIMBA data combined⁶¹⁻⁶⁴ (Online Methods). This identified several pathways implicated in ER-negative disease (enrichment score (ES) \geq 0.41; Supplementary Fig. 14 and **Supplementary Tables 12** and **13**), including a subset of pathways that were not enriched in susceptibility to ER-positive disease (ES < 0; **Supplementary Table 14**). One of the latter subsets was the adenylate cyclase (AC)-activating pathway (ES = 0.62; **Supplementary Fig. 15**). Two of the predicted target genes for the ten new susceptibility variants for ER-negative breast cancer, based on the eQTL analysis (Supplementary Table 5), ADCY3 ($P_{TCGA} = 6.7 \times 10^{-3}$) and ADCY9 $(P_{\text{METABRIC}} = 1.3 \times 10^{-4})$, are part of this pathway, and their association signals were critical to the elevated enrichment scores observed (Supplementary Fig. 14). ADCY9 is stimulated by β2 adrenergic receptor (β2AR) signaling⁶⁵ in ER-negative breast cancer⁶⁶ and in turn drives AC-cAMP signaling, including, for example, mitogenic signaling through the β-arrestin–Src–ERK pathway⁶⁷.

To further explore the functional properties of the genome that contribute to heritability of ER-negative breast cancer, we conducted a partitioned heritability analysis using linkage disequilibrium (LD) score regression⁶⁸. Considering 52 'baseline' genomic features, we observed the greatest enrichment for super-enhancers (2.5-fold, $P = 2 \times 10^{-7}$) and the H3K4me3 histone mark (2.4-fold, P = 0.0005), with 33% depletion (P = 0.0002) observed for repressed regions (Supplementary Table 15). No differences in enrichment for these features were observed between susceptibility to ER-negative and ER-positive breast cancer, but baseline genomic features are not specific to cell type⁶⁸. The estimated correlation between ER-negative and ER-positive breast cancer based on ~1 million common genetic variants^{69,70} was 0.60 (standard error (SE) = 0.03), indicating that, although these two breast cancer subtypes have a shared genetic component, a substantial proportion of their genetic bases is distinct. The estimated correlation between ER-negative disease in the general population and overall breast cancer for BRCA1 mutation carriers was 0.72 (SE = 0.11).

In summary, in this study of women of European origin, we have identified ten new susceptibility variants for ER-negative breast cancer and replicated associations with ER-negative disease for ten SNPs identified by previous GWAS. Most of these variants were not associated or were more weakly associated with ER-positive disease, consistent with the findings from pathway and partitioned heritability analyses showing that ER-negative breast cancer has a partly distinct genetic etiology. We also observed consistent associations with ERnegative disease for a further 105 susceptibility SNPs for breast cancer overall. Together, these 125 variants explain ~14% of an assumed twofold increased risk of developing ER-negative disease for the firstdegree female relatives of women affected with this subtype (the newly identified SNPs explain ~1.5%; **Supplementary Table 16**) and ~40% of the estimated familial risk that is attributable to all variants imputable from the OncoArray (Online Methods). We have also identified 9 new breast cancer susceptibility variants for BRCA1 mutation carriers and confirmed associations for a further 30 previously reported SNPs; these 39 variants explain ~8% of the variance in polygenic risk for carriers of these mutations (Supplementary Table 17). However, the lower number of risk-associated variants in disease with BRCA1 mutation may merely be a consequence of the smaller sample size, as the genetic

Table 3 Associations for ten new and ten previously reported (and replicated) susceptibility loci for estrogen-receptor-negative breast cancer, by triple-negative status

			Triple-negative disea	ase	Ot	Heterogeneity		
Location	SNP	OR	95% CI	P value	OR	95% CI	P value	P value ^a
Loci identified	by the present study							
2p23.3	rs200648189	0.95	0.90-1.00	4.8×10^{-2}	0.96	0.91-1.03	0.24	0.36
6q23.1	rs6569648	0.93	0.89-0.97	1.4×10^{-3}	0.93	0.88-0.98	5.6×10^{-3}	0.91
8p23.3	rs66823261	1.11	1.05-1.16	3.3×10^{-5}	1.12	1.07-1.19	2.4×10^{-5}	0.91
8q24.13	rs17350191	1.07	1.03-1.11	7.9×10^{-4}	1.07	1.02-1.12	4.0×10^{-3}	0.67
11q22.3	rs11374964	0.88	0.85-0.91	1.9×10^{-11}	0.99	0.95-1.04	0.75	1.5×10^{-5}
11q22.3	rs74911261	0.76	0.66-0.87	1.1×10^{-4}	0.98	0.84-1.13	0.76	3.0×10^{-2}
16p13.3	rs11076805	0.91	0.87-0.96	1.5×10^{-4}	0.95	0.90-1.00	4.5×10^{-2}	0.20
18q12.1	rs36194942	0.93	0.89-0.96	2.4×10^{-4}	0.92	0.88-0.97	9.9×10^{-4}	0.94
19p13.2	rs322144	0.94	0.91-0.98	5.9×10^{-3}	0.94	0.90-0.98	9.7×10^{-3}	0.68
19q12	rs113701136	1.10	1.06-1.15	9.1×10^{-7}	1.07	1.02-1.12	4.4×10^{-3}	0.12
Previously repo	orted loci (associations re	plicated by the	e present study)					
1q32.1	rs6678914	0.94	0.91-0.98	2.1×10^{-3}	0.91	0.87-0.95	2.0×10^{-5}	0.45
1q32.1	rs4245739	1.18	1.13-1.23	4.3×10^{-15}	1.04	1.00-1.10	7.5×10^{-2}	6.5×10^{-4}
2p24.1	rs12710696	1.07	1.03-1.11	1.1×10^{-3}	1.04	1.00-1.09	6.1×10^{-2}	0.52
2p23.2	rs4577244	0.90	0.86-0.94	5.3×10^{-6}	0.94	0.89-0.99	1.9×10^{-2}	0.15
5p15.33	rs10069690	1.28	1.23-1.33	2.4×10^{-33}	1.07	1.02-1.12	5.4×10^{-3}	5.6×10^{-8}
6q25.1	rs3757322	1.15	1.10-1.19	4.3×10^{-12}	1.14	1.10-1.20	4.8×10^{-9}	0.35
6q25.2	rs2747652	0.93	0.89-0.96	5.7×10^{-5}	0.87	0.83-0.91	2.9×10^{-10}	9.6×10^{-3}
13q22.1	rs6562760	0.94	0.90-0.98	2.8×10^{-3}	0.92	0.87-0.96	8.8×10^{-4}	0.46
16q12.2	rs11075995	1.06	1.02-1.11	6.5×10^{-3}	1.08	1.03-1.13	3.1×10^{-3}	0.81
19p13.11	rs67397200	1.27	1.22-1.32	2.0×10^{-32}	1.05	1.01-1.10	2.7×10^{-2}	4.7×10^{-10}

Only Breast Cancer Association Consortium (BCAC) data are shown. BCAC data were combined from 6,877 triple-negative and 4,467 other ER-negative cases and 83,700 controls. OR, odds ratio per copy of the minor allele; CI, confidence interval.

^aAnalysis of ER-negative cases only, by triple-negative status.

correlation with ER-negative breast cancer is high. These findings may inform improved risk prediction, both for the general population and *BRCA1* mutation carriers^{30,71,72}. Further investigation is required for other populations of non-European origin. Fine-mapping

and functional studies should lead to a better understanding of the biological basis of ER-negative breast cancer and may perhaps inform the design of more effective preventive interventions, early detection and treatments for this disease.

Table 4 Associations for ten new and ten previously reported (and replicated) susceptibility loci for ER-negative breast cancer, by tumor grade

			Grade 1			Grade 2			Grade 3		Heterogeneity
Location	SNP	OR	95% CI	P value	OR	95% CI	P value	OR	95% CI	P value	P value ^a
Loci identif	ied by the present	study									
2p23.3	rs200648189	1.11	0.92-1.33	0.28	0.95	0.88-1.03	0.23	0.96	0.91-1.00	6.8×10^{-2}	0.70
6q23.1	rs6569648	0.93	0.79-1.09	0.37	0.93	0.87-0.99	1.6×10^{-2}	0.94	0.91-0.98	3.8×10^{-3}	0.34
8p23.3	rs66823261	1.13	0.96-1.34	0.14	1.12	1.04-1.19	1.2×10^{-3}	1.10	1.05-1.15	1.3×10^{-5}	0.11
8q24.13	rs17350191	1.16	1.01-1.34	3.0×10^{-2}	1.05	0.99-1.11	0.10	1.09	1.05-1.12	4.1×10^{-6}	0.94
11q22.3	rs11374964	0.91	0.79-1.04	0.16	0.99	0.94-1.05	0.85	0.93	0.90-0.96	1.3×10^{-5}	3.0×10^{-2}
11q22.3	rs74911261	1.22	0.81-1.84	0.35	0.89	0.73-1.07	0.21	0.74	0.65-0.85	7.4×10^{-6}	6.7×10^{-4}
16p13.3	rs11076805	0.90	0.76-1.06	0.21	0.93	0.87-0.99	3.2×10^{-2}	0.92	0.88-0.95	4.5×10^{-5}	0.71
18q12.1	rs36194942	0.97	0.84-1.13	0.73	0.93	0.88-0.99	2.2×10^{-2}	0.96	0.92-0.99	2.3×10^{-2}	0.98
19p13.2	rs322144	0.94	0.81-1.08	0.38	0.95	0.90-1.01	0.11	0.96	0.93-1.00	6.4×10^{-2}	0.48
19q12	rs113701136	1.02	0.89-1.18	0.77	1.06	1.01-1.13	3.0×10^{-2}	1.10	1.06-1.14	2.5×10^{-7}	0.12
Previously r	eported loci (assoc	iations rep	licated by the p	resent study)							
1q32.1	rs6678914	0.95	0.83-1.09	0.46	0.90	0.85-0.95	9.3×10^{-5}	0.92	0.89-0.95	1.2×10^{-6}	0.75
1q32.1	rs4245739	1.02	0.88-1.19	0.75	1.05	0.99-1.12	8.7×10^{-2}	1.1)	1.14-1.22	2.5×10^{-18}	4.3×10^{-5}
2p24.1	rs12710696	1.08	0.94-1.23	0.28	1.10	1.04-1.16	9.6×10^{-4}	1.04	1.01-1.08	1.6×10^{-2}	0.28
2p23.2	rs4577244	1.02	0.88-1.20	0.77	0.95	0.89-1.01	9.4×10^{-2}	0.90	0.86-0.93	1.2×10^{-7}	4.0×10^{-2}
5p15.33	rs10069690	0.96	0.83-1.12	0.64	1.07	1.01-1.14	2.2×10^{-2}	1.21	1.17-1.26	1.5×10^{-24}	7.3×10^{-4}
6q25.1	rs3757322	1.16	1.01-1.34	0.04	1.13	1.07-1.20	7.5×10^{-6}	1.18	1.14-1.22	4.5×10^{-20}	0.16
6q25.2	rs2747652	0.86	0.75-0.98	0.02	0.92	0.87-0.97	1.9×10^{-3}	0.90	0.87-0.93	1.6×10^{-9}	0.61
13q22.1	rs6562760	0.98	0.84-1.15	0.82	0.92	0.87-0.98	1.4×10^{-2}	0.91	0.88-0.95	1.2×10^{-5}	0.52
16q12.2	rs11075995	1.16	1.00-1.35	4.7×10^{-2}	1.09	1.02-1.15	7.5×10^{-3}	1.08	1.04-1.13	5.2×10^{-28}	0.42
19p13.11	rs67397200	1.01	0.87-1.16	0.91	1.08	1.02-1.14	9.8×10^{-3}	1.22	1.18-1.26	5.3×10^{-37}	1.3×10^{-3}

Only Breast Cancer Association Consortium (BCAC) data are shown. BCAC data were combined from 492 grade 1, 3,243 grade 2 and 8,568 grade 3 cases and 82,347 controls. OR, odds ratio per copy of the minor allele; CI, confidence interval.

aAnalysis of ER-negative cases only, by tumor grade (trend test, 1 degree of freedom).

URLs. Database of Genotypes and Phenotypes (dbGaP), https://www.ncbi.nlm.nih.gov/gap; Breast Cancer Association Consortium (BCAC), http://bcac.ccge.medschl.cam.ac.uk/; Consortium of Investigators of Modifiers of *BRCA1/2* (CIMBA), http://cimba.ccge.medschl.cam.ac.uk/; PCcalc software, http://ccge.medschl.cam.ac.uk/software/pccalc/; SNPTEST, https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html; GeneSets, http://baderlab.org/GeneSets; GenGen package, http://gengen.openbioinformatics.org/en/latest/.

METHODS

Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS

We thank all the individuals who took part in these studies and all the researchers, clinicians, technicians and administrative staff who have enabled this work to be carried out.

Genotyping for the OncoArray was funded by the government of Canada through Genome Canada and the Canadian Institutes of Health Research (GPH-129344), the Ministère de l'Économie, de la Science et de l'Innovation du Québec through Génome Québec, the Quebec Breast Cancer Foundation for the PERSPECTIVE project, the US National Institutes of Health (NIH) (1 U19 CA 148065 for the Discovery, Biology and Risk of Inherited Variants in Breast Cancer (DRIVE) project and X01HG007492 to the Center for Inherited Disease Research (CIDR) under contract HHSN2682012000081), Cancer Research UK (C1287/A16563), the Odense University Hospital Research Foundation (Denmark), the National R&D Program for Cancer Control–Ministry of Health and Welfare (Republic of Korea) (1420190), the Italian Association for Cancer Research (AIRC; IG16933), the Breast Cancer Research Foundation, the National Health and Medical Research Council (Australia) and German Cancer Aid (110837).

Genotyping for the iCOGS array was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10710, C1287/A10118 and C12292/A11174]), NIH grants (CA128978, CA116167 and CA176785) and the Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 (GAME-ON initiative)), an NCI Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, the Ministère de l'Économie, Innovation et Exportation du Québec (PSR-SIIRI-701), the Komen Foundation for the Cure, the Breast Cancer Research Foundation and the Ovarian Cancer Research Fund.

Combination of the GWAS data was supported in part by the NIH Cancer Post-Cancer GWAS initiative (1 U19 CA 148065) (DRIVE, part of the GAME-ON initiative). LD score regression analysis was supported by grant CA194393. BCAC is funded by Cancer Research UK (C1287/A16563) and by the European Union via its Seventh Framework Programme (HEALTH-F2-2009-223175, COGS) and the Horizon 2020 Research and Innovation Programme (633784, B-CAST; 634935, BRIDGES). CIMBA is funded by Cancer Research UK (C12292/A20861 and C12292/A11174).

For a full description of funding and acknowledgments, see the **Supplementary** Note.

AUTHOR CONTRIBUTIONS

Writing group: R.L.M., K.B.K., K. Michailidou, J. Beesley, S. Kar, S. Lindström, S. Hui, G.D.B., P.D.P.P., F.J.C., D.F.E., P.K., G.C.-T., M.G.-C., M.K.S., A.C.A., J. Simard. Conception and coordination of OncoArray synthesis: D.F.E., A.C.A., J. Simard, C.I.A., J. Byun, S.J.C., E.D., D.J.H., A. Lee, P.D.P.P., J.T., Z.W. OncoArray genotyping: M.A., A.C.A., S.E.B., M.K.B., F.B., G.C.-T., J.M.C., K.F.D., D.F.E., N. Hammell, B. Hicks, K.J., C. Luccarini, L.M., J.M., E.P., J. Romm, M.K.S., X.S., J. Simard, P. Soucy, D.C.T., D.V., J. Vollenweider, L.X., B.Z. OncoArray genotype calling and quality control: X.C., J.D., E.D., D.F.E., K.B.K., J. Lecarpentier, A. Lee, M. Lush. Database management: D. Barrowdale, M.K.B., M.L., L.M., Q.W., R. Keeman, M.K.S. Statistical analysis: K.B.K., K. Michailidou, S. Hui, S. Kar, X.J., A. Rostamianfar, H. Finucane, S. Lindström, D. Barnes, P.K., P.D.P.P., G.D.B., R.L.M., A.C.A., D.F.E. Bioinformatic analysis: J. Beesley, P. Soucy, A. Lemaçon, D. Barnes, F.A.-E., A.D., J. Simard, G.C.-T. Provision of DNA samples and/or phenotypic data: ABCTB Investigators, C.M.A., J. Adlard, S. Agata, S. Ahmed,

H.A., J. Allen, K.A., C.B.A., I.L.A., H.A.-C., N.N.A., A.C.A., V.A., N.A., K.J.A., B.A., P.L.A., M.G.E.M.A., J. Azzollini, J. Balmaña, M. Barile, L. Barjhoux, R.B.B., M. Barrdahl, D. Barnes, D. Barrowdale, C. Baynes, M.W.B., J. Beesley, J. Benitez, M. Bermisheva, L. Bernstein, Y.-J.B., K.R.B., M.J.B., C. Blomqvist, W.B., K.B., B. Boeckx, N.V.B., A. Bojesen, S.E.B., M.K.B., B. Bonanni, A. Bozsik, A.R.B., J.S.B., H. Brauch, H. Brenner, B.B.-d.P., C. Brewer, L. Brinton, P.B., A.B.-W., J. Brunet, T.B., B. Burwinkel, S.S.B., A.-L.B.-D., Q.C., T. Caldés, M.A.C., I. Campbell, F.C., O.C., A. Carracedo, B.D.C., J.E.C., L.C., V.C.-M., S.B.C., J.C.-C., S.J.C., X.C., G.C.-T., T.-Y.D.C., J. Chiquette, H.C., K.B.M.C., C.L.C., NBSS Collaborators, T. Conner, D.M.C., J. Cook, E.C.-D., S.C., F.J.C., I. Coupier, D.G.C., A. Cox, S.S.C., K. Cuk, K. Czene, M.B.D., F.D., H.D., R.D., J.D., P.D., O.D., Y.C.D., N.D., S.M.D., C.M.D., S.D., P.-A.D., M. Dumont, A.M.D., L.D., M. Dwek, B.D., T.D., EMBRACE, D.F.E., D.E., R.E., H. Ehrencrona, U.E., B.E., A.B.E., A.H.E., C.E., M.E., L. Fachal, L. Faivre, P.A.F., U.F., J.F., D.F.-J., O.F., H. Flyger, W.D.F., E.F., L. Fritschi, D.F., GEMO Study Collaborators, M. Gabrielson, P. Gaddam, M.D.G., M.G.-D., P.A.G., S.M.G., J. Garber, V.G.-B., M.G.-C., J.A.G.-S., M.M.G., M.G.-V., A. Gehrig, V.G., A.-M.G., G.G.G., G.G., A.K.G., M.S.G., D.E.G., A.G.-N., P. Goodfellow, M.H.G., G.I.G.A., M. Grip, J. Gronwald, A. Grundy, D.G.-K., Q.G., P. Guénel, HEBON, L.H., E. Hahnen, C.A.H., P. Hall, E. Hallberg, U.H., S. Hankinson, T.V.O.H., P. Harrington, S.N.H., J.M.H., C.S.H., A. Hein, S. Helbig, A. Henderson, J.H., P. Hillemanns, S. Hodgson, F.B.H., A. Hollestelle, M.J.H., B. Hoover, J.L.H., C.H., G.H., P.J.H., K.H., D.J.H., N. Håkansson, E.N.I., C.I., M.I., L.I., A.J., P.J., R.J., W.J., U.B.J., E.M.J., N.J., M.J., A.J.-V., R. Kaaks, M. Kabisch, K. Kaczmarek, D.K., K. Kast, R. Keeman, M.J.K., C.M.K., M. Keupers, S. Khan, E.K., J.I.K., J.A.K., I.K., V.-M.K., S.-W.K., P.K., V.N.K., T.A.K., K.B.K., A.K., Y.L., F. Lalloo, K.L., D.L., C. Lasset, C. Lazaro, L.l.M., J. Lecarpentier, M. Lee, A. Lee, E.L., J. Lee, F. Lejbkowicz, F. Lesueur, J. Li, J. Lilyquist, A. Lincoln, A. Lindblom, S. Lindström, J. Lissowska, W.-Y.L., S. Loibl, J. Long, J.T.L., J. Lubinski, C. Luccarini, M. Lush, A.-V.L., R.J.M., T.M., E.M., K.E.M., I.M.K., A. Mannermaa, S. Manoukian, J.E.M., S. Margolin, J.W.M.M., M.E.M., K. Matsuo, D.M., S. Mazoyer, L.M., C. McLean, H.M.-H., A. Meindl, P.M., H.M., K. Michailidou, A. Miller, N.M., R.L.M., G.M., M.M., K. Muir, A.M.M., C. Mulot, S.N., K.L.N., S.L.N., H.N., I.N., D.N., S.F.N., B.G.N., A.N., R.L.N., K. Offit, E.O., O.I.O., J.E.O., H.O., C.O., K. Ong, J.C.O., N.O., A.O., L.O., V.S.P., L.P., S.K.P., T.-W.P.-S., Y.P.-K., R.L., I.S.P., B. Peissel, A.P., J.I.A.P., P.P., J.P., G.P., P.D.P.P., C.M.P., M.P., D.P.-K., B. Poppe, M.E.P., R.P., N.P., D.P., M.A.P., K.P., B.R., P.R., N.R., J. Rantala, C.R.-F., H.S.R., G.R., V.R., K.R., A. Richardson, G.C.R., A. Romero, M.A.R., A. Rudolph, T.R., E.S., J. Sanders, D.P.S., S. Sangrajrang, E.J.S., D.F.S., M.K.S., R.K.S., M.J. Schoemaker, F.S., L. Schwentner, P. Schürmann, C. Scott, R.J.S., S. Seal, L. Senter, C. Seynaeve, M.S., P. Sharma, C.-Y.S., H. Shimelis, M.J. Shrubsole, X.-O.S., L.E.S., J. Simard, C.F.S., C. Sohn, P. Soucy, M.C.S., J.J.S., A.B.S., C. Stegmaier, J. Stone, D.S.-L., G.S., H. Surowy, C. Sutter, A.S., C.I.S., R.M.T., Y.Y.T., J.A.T., M.R.T., M.-I.T., L. Tong, M. Tengström, S.H.T., M.B.T., A.T., M. Thomassen, D.L.T., K. Thöne, M.G.T., L. Tihomirova, M. Tischkowitz, A.E.T., R.A.E.M.T., I.T., D.T., M. Tranchant, T.T., K. Tucker, N.T., H.-U.U., C.V., D.v.d.B., L.V., R.V.-M., A. Vega, A. Viel, J. Vijai, L.W., Q.W., S.W.-G., B.W., C.R.W., J.N.W., C.W., J.W., A.S.W., J.T.W., W.W., R.W., A.W., A.H.W., X.R.Y., D.Y., D.Z., W.Z., A.Z., E.Z., K.K.Z., I.d.-S.-S., kConFab AOCS Investigators, C.J.v.A., E.v.R., A.M.W.v.d.O. All authors read and approved the final version of the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/ reprints/index.html. Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

- Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. Nature (in press).
- Ahmed, S. et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat. Genet. 41, 585–590 (2009).
- Antoniou, A.C. et al. A locus on 19p13 modifies risk of breast cancer in BRCA1
 mutation carriers and is associated with hormone receptor-negative breast cancer
 in the general population. Nat. Genet. 42, 885–892 (2010).
- Cai, Q. et al. Genome-wide association study identifies breast cancer risk variant at 10q21.2: results from the Asia Breast Cancer Consortium. Hum. Mol. Genet. 20, 4991–4999 (2011).
- Cox, A. et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat. Genet. 39, 352–358 (2007).
- Easton, D.F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).
- Fletcher, O. et al. Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. J. Natl. Cancer Inst. 103, 425–435 (2011).
- Ghoussaini, M. et al. Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat. Genet. 44, 312–318 (2012).
- Haiman, C.A. et al. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer. Nat. Genet. 43, 1210-1214 (2011).

- Hein, R. et al. Comparison of 6q25 breast cancer hits from Asian and European genome wide association studies in the Breast Cancer Association Consortium (BCAC). PLoS One 7, e42380 (2012).
- Hunter, D.J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 39, 870–874 (2007).
- Siddiq, A. et al. A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. Hum. Mol. Genet. 21, 5373–5384 (2012).
- Stacey, S.N. et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor–positive breast cancer. Nat. Genet. 39, 865–869 (2007).
- Stacey, S.N. et al. Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat. Genet. 40, 703-706 (2008).
- Thomas, G. et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat. Genet. 41. 579–584 (2009).
- Turnbull, C. et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat. Genet. 42, 504–507 (2010).
- 17. Zheng, W. et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat. Genet. 41, 324–328 (2009).
- Bojesen, S.E. et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat. Genet. 45, 371–384. e1–e2 (2013).
- Garcia-Closas, M. et al. Genome-wide association studies identify four ER negativespecific breast cancer risk loci. Nat. Genet. 45, 392–398, e1–e2 (2013).
- 20. Michailidou, K. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat. Genet. 45, 353–361, e1–e2 (2013).
- Cai, Q. et al. Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1. Nat. Genet. 46, 886– 890 (2014).
- 22. Long, J. *et al.* Genome-wide association study in east Asians identifies novel susceptibility loci for breast cancer. *PLoS Genet.* **8**, e1002532 (2012).
- Michailidou, K. et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat. Genet. 47, 373–380 (2015).
- Milne, R.L. et al. Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium. Hum. Mol. Genet. 23, 6096–6111 (2014).
- Gaudet, M.M. et al. Identification of a BRCA2-specific modifier locus at 6p24 related to breast cancer risk. PLoS Genet. 9, e1003173 (2013).
- Meyer, K.B. et al. Fine-scale mapping of the FGFR2 breast cancer risk locus: putative functional variants differentially bind FOXA1 and E2F1. Am. J. Hum. Genet. 93, 1046–1060 (2013).
- Orr, N. et al. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2. Hum. Mol. Genet. 24, 2966–2984 (2015).
- French, J.D. et al. Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers. Am. J. Hum. Genet. 92, 489–503 (2013).
- Dunning, A.M. et al. Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nat. Genet. 48, 374–386 (2016).
- Couch, F.J. et al. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nat. Commun. 7, 11375 (2016).
- Lawrenson, K. et al. Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nat. Commun. 7, 12675 (2016).
- Wyszynski, A. et al. An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. Hum. Mol. Genet. 25, 3863–3876 (2016).
- Mavaddat, N. et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol. Biomarkers Prev. 21, 134–147 (2012).
- Amos, C.I. et al. The OncoArray Consortium: a network for understanding the genetic architecture of common cancers. Cancer Epidemiol. Biomarkers Prev. 26, 126–135 (2017)
- Antoniou, A.C. et al. A weighted cohort approach for analysing factors modifying disease risks in carriers of high-risk susceptibility genes. Genet. Epidemiol. 29, 1–11 (2005).
- Barnes, D.R., Lee, A., Easton, D.F. & Antoniou, A.C. Evaluation of association methods for analysing modifiers of disease risk in carriers of high-risk mutations. *Genet. Epidemiol.* 36, 274–291 (2012).
- Ahsan, H. et al. A genome-wide association study of early-onset breast cancer identifies PFKM as a novel breast cancer gene and supports a common genetic spectrum for breast cancer at any age. Cancer Epidemiol. Biomarkers Prev. 23, 658–669 (2014).
- Stevens, K.N. et al. 19p13.1 is a triple-negative-specific breast cancer susceptibility locus. Cancer Res. 72, 1795–1803 (2012).
- Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. *Bioinformatics* 26, 2190–2191 (2010).

- Maller, J.B. et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).
- Udler, M.S., Tyrer, J. & Easton, D.F. Evaluating the power to discriminate between highly correlated SNPs in genetic association studies. *Genet. Epidemiol.* 34, 463–468 (2010).
- 42. ENCODE Project Consortium. A user's guide to the Encyclopedia of DNA Elements (ENCODE). *PLoS Biol.* **9**, e1001046 (2011).
- Kheradpour, P. & Kellis, M. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments. *Nucleic Acids Res.* 42, 2976–2987 (2014).
- 44. Kundaje, A. *et al.* Integrative analysis of 111 reference human epigenomes. *Nature* 518, 317–330 (2015).
- Boyle, A.P. et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797 (2012).
- He, B., Chen, C., Teng, L. & Tan, K. Global view of enhancer-promoter interactome in human cells. *Proc. Natl. Acad. Sci. USA* 111, E2191–E2199 (2014).
- 47. Rao, S.S. *et al.* A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. *Cell* **159**, 1665–1680 (2014).
- Corradin, O. et al. Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res. 24, 1–13 (2014).
- Forrest, A.R. et al. A promoter-level mammalian expression atlas. Nature 507, 462–470 (2014).
- GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).
- Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).
- Westra, H.J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).
- James, L.I. et al. Small-molecule ligands of methyl-lysine binding proteins: optimization of selectivity for L3MBTL3. J. Med. Chem. 56, 7358–7371 (2013).
- Sukari, A., Muqbil, I., Mohammad, R.M., Philip, P.A. & Azmi, A.S. F-BOX proteins in cancer cachexia and muscle wasting: emerging regulators and therapeutic opportunities. *Semin. Cancer Biol.* 36, 95–104 (2016).
- Ling Zheng, L. et al. Interaction of heat shock protein Cpn10 with the cyclin E/Cdk2 substrate nuclear protein ataxia-telangiectasia (NPAT) is involved in regulating histone transcription. J. Biol. Chem. 290, 29290–29300 (2015).
- Easton, D.F. et al. Gene-panel sequencing and the prediction of breast-cancer risk. N. Engl. J. Med. 372, 2243–2257 (2015).
- Rogers, S. et al. Cyclin E2 is the predominant E-cyclin associated with NPAT in breast cancer cells. Cell Div. 10, 1 (2015).
- Li, Q. et al. Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell 152, 633–641 (2013).
- Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).
- Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).
- Merico, D., Isserlin, R., Stueker, O., Emili, A. & Bader, G.D. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. *PLoS One* 5, e13984 (2010).
- 62. Wang, K., Li, M. & Bucan, M. Pathway-based approaches for analysis of genomewide association studies. *Am. J. Hum. Genet.* **81**, 1278–1283 (2007).
- Wang, K., Li, M. & Hakonarson, H. Analysing biological pathways in genome-wide association studies. *Nat. Rev. Genet.* 11, 843–854 (2010).
- Wang, L., Jia, P., Wolfinger, R.D., Chen, X. & Zhao, Z. Gene set analysis of genomewide association studies: methodological issues and perspectives. *Genomics* 98, 1–8 (2011).
- Hacker, B.M. et al. Cloning, chromosomal mapping, and regulatory properties of the human type 9 adenylyl cyclase (ADCY9). Genomics 50, 97–104 (1998)
- 66. Melhem-Bertrandt, A. et al. β-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J. Clin. Oncol. 29, 2645–2652 (2011).
- Pon, C.K., Lane, J.R., Sloan, E.K. & Halls, M.L. The β2-adrenoceptor activates a positive cAMP-calcium feedforward loop to drive breast cancer cell invasion. *FASEB J.* 30, 1144-1154 (2016).
- Finucane, H.K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).
- 69. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. *Nat. Genet.* 47, 1236–1241 (2015).
- Bulik-Sullivan, B.K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
- Milne, R.L. & Antoniou, A.C. Genetic modifiers of cancer risk for *BRCA1* and *BRCA2* mutation carriers. *Ann. Oncol.* 22 (Suppl. 1), i11–i17 (2011).
- Mavaddat, N. et al. Prediction of breast cancer risk based on profiling with common genetic variants. J. Natl. Cancer Inst. 107, div036 (2015).

Roger L Milne^{1,2,334}, Karoline B Kuchenbaecker^{3,4,334}, Kyriaki Michailidou^{3,5,334}, Jonathan Beesley⁶, Siddhartha Kar⁷, Sara Lindström^{8,9}, Shirley Hui¹⁰, Audrey Lemaçon¹¹, Penny Soucy¹¹, Joe Dennis³, Xia Jiang⁹, Asha Rostamianfar¹⁰, Hilary Finucane^{9,12}, Manjeet K Bolla³, Lesley McGuffog³, Qin Wang³, Cora M Aalfs¹³, ABCTB Investigators¹⁴, Marcia Adams¹⁵, Julian Adlard¹⁶, Simona Agata¹⁷, Shahana Ahmed⁷, Habibul Ahsan¹⁸, Kristiina Aittomäki¹⁹, Fares Al-Ejeh²⁰, Jamie Allen³, Christine B Ambrosone²¹, Christopher I Amos²², Irene L Andrulis^{23,24}, Hoda Anton-Culver²⁵, Natalia N Antonenkova²⁶, Volker Arndt²⁷, Norbert Arnold²⁸, Kristan J Aronson²⁹, Bernd Auber³⁰, Paul L Auer^{31,32}, Margreet G E M Ausems³³, Jacopo Azzollini³⁴, François Bacot³⁵, Judith Balmaña³⁶, Monica Barile³⁷, Laure Barjhoux³⁸, Rosa B Barkardottir^{39,40}, Myrto Barrdahl⁴¹, Daniel Barnes³, Daniel Barrowdale³, Caroline Baynes⁷, Matthias W Beckmann⁴², Javier Benitez⁴³⁻⁴⁵, Marina Bermisheva⁴⁶, Leslie Bernstein⁴⁷, Yves-Jean Bignon⁴⁸, Kathleen R Blazer⁴⁹, Marinus J Blok⁵⁰, Carl Blomqvist⁵¹, William Blot^{52,53}, Kristie Bobolis⁵⁴, Bram Boeckx^{55,56}, Natalia V Bogdanova^{26,57,58}, Anders Bojesen⁵⁹, Stig E Bojesen⁶⁰⁻⁶², Bernardo Bonanni³⁷, Anne-Lise Børresen-Dale⁶³, Aniko Bozsik⁶⁴, Angela R Bradbury⁶⁵, Judith S Brand⁶⁶, Hiltrud Brauch⁶⁷⁻⁶⁹, Hermann Brenner^{27,69,70}, Brigitte Bressac-de Paillerets⁷¹, Carole Brewer⁷², Louise Brinton⁷³, Per Broberg⁷⁴, Angela Brooks-Wilson^{75,76}, Joan Brunet⁷⁷, Thomas Brüning⁷⁸, Barbara Burwinkel^{79,80}, Saundra S Buys⁸¹, Jinyoung Byun²², Qiuyin Cai⁵², Trinidad Caldés⁸², Maria A Caligo⁸³, Ian Campbell^{84,85}, Federico Canzian⁸⁶, Olivier Caron⁷¹, Angel Carracedo^{87,88}, Brian D Carter⁸⁹, J Esteban Castelao⁹⁰, Laurent Castera⁹¹, Virginie Caux-Moncoutier⁹², Salina B Chan⁹³, Jenny Chang-Claude^{41,94}, Stephen J Chanock⁷³, Xiaoqing Chen⁶, Ting-Yuan David Cheng⁹⁵, Jocelyne Chiquette⁹⁶, Hans Christiansen⁵⁷, Kathleen B M Claes⁹⁷, Christine L Clarke⁹⁸, Thomas Conner⁹⁹, Don M Conroy⁷, Jackie Cook¹⁰⁰, Emilie Cordina-Duverger¹⁰¹, Sten Cornelissen¹⁰², Isabelle Coupier¹⁰³, Angela Cox¹⁰⁴, David G Cox^{105,106}, Simon S Cross¹⁰⁷, Katarina Cuk²⁷, Julie M Cunningham¹⁰⁸, Kamila Czene⁶⁶, Mary B Daly¹⁰⁹, Francesca Damiola³⁸, Hatef Darabi⁶⁶, Rosemarie Davidson¹¹⁰, Kim De Leeneer⁹⁷, Peter Devilee^{111,112}, Ed Dicks⁷, Orland Diez¹¹³, Yuan Chun Ding⁴⁷, Nina Ditsch¹¹⁴, Kimberly F Doheny¹⁵, Susan M Domchek⁶⁵, Cecilia M Dorfling¹¹⁵, Thilo Dörk⁵⁸, Isabel dos-Santos-Silva¹¹⁶, Stéphane Dubois¹¹, Pierre-Antoine Dugué^{1,2}, Martine Dumont¹¹, Alison M Dunning⁷, Lorraine Durcan^{117,118}, Miriam Dwek¹¹⁹, Bernd Dworniczak¹²⁰, Diana Eccles¹¹⁸, Ros Eeles¹²¹, Hans Ehrencrona¹²², Ursula Eilber⁴¹, Bent Ejlertsen¹²³, Arif B Ekici¹²⁴, A Heather Eliassen^{125,126}, EMBRACE¹⁴, Christoph Engel^{127,128}, Mikael Eriksson⁶⁶, Laura Fachal⁷, Laurence Faivre^{129,130}, Peter A Fasching^{42,131}, Ulrike Faust¹³², Jonine Figueroa^{73,133}, Dieter Flesch-Janys^{134,135}, Olivia Fletcher¹³⁶, Henrik Flyger¹³⁷, William D Foulkes¹³⁸, Eitan Friedman^{139,140}, Lin Fritschi¹⁴¹, Debra Frost³, Marike Gabrielson⁶⁶, Pragna Gaddam¹⁴², Marilie D Gammon¹⁴³, Patricia A Ganz¹⁴⁴, Susan M Gapstur⁸⁹, Judy Garber¹⁴⁵, Vanesa Garcia-Barberan⁸², José A García-Sáenz⁸², Mia M Gaudet⁸⁹, Marion Gauthier-Villars⁹², Andrea Gehrig¹⁴⁶, GEMO Study Collaborators¹⁴, Vassilios Georgoulias¹⁴⁷, Anne-Marie Gerdes¹⁴⁸, Graham G Giles^{1,2}, Gord Glendon²³, Andrew K Godwin¹⁴⁹, Mark S Goldberg^{150,151}, David E Goldgar¹⁵², Anna González-Neira⁴³, Paul Goodfellow¹⁵³, Mark H Greene¹⁵⁴, Grethe I Grenaker Alnæs⁶³, Mervi Grip¹⁵⁵, Jacek Gronwald¹⁵⁶, Anne Grundy¹⁵⁷, Daphne Gschwantler-Kaulich¹⁵⁸, Pascal Guénel¹⁰¹, Qi Guo¹⁵⁹, Lothar Haeberle⁴², Eric Hahnen^{160–162}, Christopher A Haiman¹⁶³, Niclas Håkansson¹⁶⁴, Emily Hallberg¹⁶⁵, Ute Hamann¹⁶⁶, Nathalie Hamel³⁵, Susan Hankinson¹⁶⁷, Thomas V O Hansen¹⁶⁸, Patricia Harrington⁷, Steven N Hart¹⁶⁵, Jaana M Hartikainen^{169–171}, Catherine S Healey⁷, HEBON¹⁴, Alexander Hein⁴², Sonja Helbig⁵⁸, Alex Henderson¹⁷², Jane Heyworth¹⁷³, Belynda Hicks¹⁷⁴, Peter Hillemanns⁵⁸, Shirley Hodgson¹⁷⁵, Frans B Hogervorst¹⁷⁶, Antoinette Hollestelle¹⁷⁷, Maartje J Hooning¹⁷⁷, Bob Hoover⁷³, John L Hopper², Chunling Hu¹⁰⁸, Guanmengqian Huang¹⁶⁶, Peter J Hulick^{178,179}, Keith Humphreys⁶⁶, David J Hunter^{9,126}, Evgeny N Imyanitov¹⁸⁰, Claudine Isaacs¹⁸¹, Motoki Iwasaki¹⁸², Louise Izatt¹⁸³, Anna Jakubowska¹⁵⁶, Paul James^{85,184}, Ramunas Janavicius¹⁸⁵, Wolfgang Janni¹⁸⁶, Uffe Birk Jensen¹⁸⁷, Esther M John^{188,189}, Nichola Johnson¹³⁶, Kristine Jones¹⁷⁴, Michael Jones¹⁹⁰, Arja Jukkola-Vuorinen¹⁹¹, Rudolf Kaaks⁴¹, Maria Kabisch¹⁶⁶, Katarzyna Kaczmarek¹⁵⁶, Daehee Kang^{192–194}, Karin Kast¹⁹⁵, kConFab/AOCS Investigators¹⁴, Renske Keeman¹⁰², Michael J Kerin¹⁹⁶, Carolien M Kets¹⁹⁷, Machteld Keupers¹⁹⁸, Sofia Khan¹⁹⁹, Elza Khusnutdinova^{46,200}, Johanna I Kiiski¹⁹⁹, Sung-Won Kim¹⁵⁸, Julia A Knight^{201,202}, Irene Konstantopoulou²⁰³, Veli-Matti Kosma^{169–171}, Vessela N Kristensen^{63,204,205}, Torben A Kruse²⁰⁶, Ava Kwong²⁰⁷⁻²⁰⁹, Anne-Vibeke Lænkholm²¹⁰, Yael Laitman¹³⁹, Fiona Lalloo²¹¹, Diether Lambrechts^{55,56}, Keren Landsman²¹², Christine Lasset²¹³, Conxi Lazaro²¹⁴, Loic Le Marchand²¹⁵,

Julie Lecarpentier³, Andrew Lee³, Eunjung Lee¹⁶³, Jong Won Lee²¹⁶, Min Hyuk Lee²¹⁷, Flavio Lejbkowicz²¹², Fabienne Lesueur^{218–221}, Jingmei Li⁶⁶, Jenna Lilyquist²²², Anne Lincoln²²³, Annika Lindblom²²⁴, Jolanta Lissowska²²⁵, Wing-Yee Lo^{67,68}, Sibylle Loibl²²⁶, Jirong Long⁵², Jennifer T Loud¹⁵⁴, Jan Lubinski¹⁵⁶, Craig Luccarini⁷, Michael Lush³, Robert J MacInnis^{1,2}, Tom Maishman^{117,118}, Enes Makalic², Ivana Maleva Kostovska²²⁷, Kathleen E Malone²²⁸, Siranoush Manoukian³⁴, JoAnn E Manson²²⁹, Sara Margolin²³⁰, John W M Martens¹⁷⁷, Maria Elena Martinez^{231,232}, Keitaro Matsuo^{233,234}, Dimitrios Mavroudis¹⁴⁷, Sylvie Mazoyer²³⁵, Catriona McLean²³⁶, Hanne Meijers-Heijboer^{13,237}, Primitiva Menéndez²³⁸, Jeffery Meyer¹⁰⁸, Hui Miao²³⁹, Austin Miller²⁴⁰, Nicola Miller¹⁹⁶, Gillian Mitchell^{85,184}, Marco Montagna¹⁷, Kenneth Muir^{241,242}, Anna Marie Mulligan^{243,244}, Claire Mulot²⁴⁵, Sue Nadesan⁵⁴, Katherine L Nathanson⁶⁵, NBSC Collaborators¹⁴, Susan L Neuhausen⁴⁷, Heli Nevanlinna¹⁹⁹, Ines Nevelsteen¹⁹⁸, Dieter Niederacher²⁴⁶, Sune F Nielsen^{60,61}, $Børge\ G\ Nordestgaard^{60-62},\ Aaron\ Norman^{165},\ Robert\ L\ Nussbaum^{247},\ Edith\ Olah^{64},\ Olufunmilayo\ I\ Olopade^{248},\ Aaron\ Norman^{165},\ Robert\ L\ Nussbaum^{247},\ Edith\ Olah^{64},\ Olufunmilayo\ I\ Olopade^{248},\ Aaron\ Norman^{165},\ Robert\ L\ Nussbaum^{247},\ Edith\ Olah^{64},\ Olufunmilayo\ I\ Olopade^{248},\ Aaron\ Norman^{165},\ Robert\ L\ Nussbaum^{247},\ Edith\ Olah^{64},\ Olufunmilayo\ I\ Olopade^{248},\ Norman^{165},\ Norman^{165},\ Robert\ L\ Nussbaum^{247},\ Edith\ Olah^{64},\ Olufunmilayo\ I\ Olopade^{248},\ Norman^{165},\ Norman^{$ Janet E Olson¹⁶⁵, Curtis Olswold¹⁶⁵, Kai-ren Ong²⁴⁹, Jan C Oosterwijk²⁵⁰, Nick Orr¹³⁶, Ana Osorio^{44,45}, V Shane Pankratz²⁵¹, Laura Papi²⁵², Tjoung-Won Park-Simon⁵⁸, Ylva Paulsson-Karlsson²⁵³, Rachel Lloyd²⁵⁴, Inge Søkilde Pedersen²⁵⁵, Bernard Peissel³⁴, Ana Peixoto²⁵⁶, Jose I A Perez²⁵⁷, Paolo Peterlongo²⁵⁸, Julian Peto¹¹⁶, Georg Pfeiler¹⁵⁹, Catherine M Phelan²⁵⁹, Mila Pinchev²¹², Dijana Plaseska-Karanfilska²²⁷, Bruce Poppe⁹⁷, Mary E Porteous²⁶⁰, Ross Prentice³¹, Nadege Presneau¹¹⁹, Darya Prokofieva²⁰⁰, Elizabeth Pugh¹⁵, Miquel Angel Pujana²⁶¹, Katri Pylkäs^{262,263}, Brigitte Rack^{114,186}, Paolo Radice²⁶⁴, Nazneen Rahman²⁶⁵, Johanna Rantala²⁶⁶, Christine Rappaport-Fuerhauser¹⁵⁸, Gad Rennert^{212,267}, Hedy S Rennert^{212,267}, Valerie Rhenius⁷, Kerstin Rhiem^{160–162}, Andrea Richardson²⁶⁸, Gustavo C Rodriguez²⁶⁹, Atocha Romero^{82,270}, Jane Romm¹⁵, Matti A Rookus²⁷¹, Anja Rudolph⁴¹, Thomas Ruediger²⁷², Emmanouil Saloustros²⁷³, Joyce Sanders²⁷⁴, Dale P Sandler²⁷⁵, Suleeporn Sangrajrang²⁷⁶, Elinor J Sawyer²⁷⁷, Daniel F Schmidt², Minouk J Schoemaker¹⁹⁰, Fredrick Schumacher²⁷⁸, Peter Schürmann⁵⁸, Lukas Schwentner¹⁸⁶, Christopher Scott¹⁶⁵, Rodney J Scott^{279,280}, Sheila Seal²⁶⁵, Leigha Senter²⁸¹, Caroline Seynaeve¹⁷⁷, Mitul Shah⁷, Priyanka Sharma²⁸², Chen-Yang Shen^{283,284}, Xin Sheng¹⁶³, Hermela Shimelis¹⁰⁸, Martha J Shrubsole⁵², Xiao-Ou Shu⁵², Lucy E Side²⁸⁵, Christian F Singer¹⁵⁸, Christof Sohn²⁸⁶, Melissa C Southey²⁸⁷, John J Spinelli^{288,289}, Amanda B Spurdle⁶, Christa Stegmaier²⁹⁰, Dominique Stoppa-Lyonnet⁹², Grzegorz Sukiennicki¹⁵⁶, Harald Surowy^{79,80}, Christian Sutter²⁹¹, Anthony Swerdlow^{190,292}, Csilla I Szabo²⁹³, Rulla M Tamimi^{9,125,126}, Yen Y Tan¹⁵⁸, Jack A Taylor^{275,294}, Maria-Isabel Tejada²⁹⁵, Maria Tengström^{169,296,297}, Soo H Teo^{298,299}, Mary B Terry³⁰⁰, Daniel C Tessier³⁵, Alex Teulé³⁰¹, Kathrin Thöne¹³⁵, Darcy L Thull³⁰², Maria Grazia Tibiletti³⁰³, Laima Tihomirova³⁰⁴, Marc Tischkowitz^{138,305}, Amanda E Toland³⁰⁶, Rob A E M Tollenaar³⁰⁷, Ian Tomlinson³⁰⁸, Ling Tong¹⁸, Diana Torres^{166,309}, Martine Tranchant¹¹, Thérèse Truong¹⁰¹, Kathy Tucker³¹⁰, Nadine Tung³¹¹, Jonathan Tyrer⁷, Hans-Ulrich Ulmer³¹², Celine Vachon¹⁶⁵, Christi J van Asperen³¹³, David Van Den Berg¹⁶³, Ans M W van den Ouweland³¹⁴, Elizabeth J van Rensburg¹¹⁵, Liliana Varesco³¹⁵, Raymonda Varon-Mateeva³¹⁶, Ana Vega^{317,318}, Alessandra Viel³¹⁹, Joseph Vijai²²³, Daniel Vincent³⁵, Jason Vollenweider¹⁰⁸, Lisa Walker³²⁰, Zhaoming Wang^{73,321}, Shan Wang-Gohrke¹⁸⁶, Barbara Wappenschmidt¹⁶⁰⁻¹⁶², Clarice R Weinberg³²², Jeffrey N Weitzel⁴⁹, Camilla Wendt²³⁰, Jelle Wesseling^{102,274}, Alice S Whittemore^{189,323}, Juul T Wijnen^{112,314}, Walter Willett^{126,324}, Robert Winqvist^{262,263}, Alicja Wolk¹⁶⁴, Anna H Wu¹⁶³, Lucy Xia¹⁶³, Xiaohong R Yang⁷³, Drakoulis Yannoukakos²⁰³, Daniela Zaffaroni³⁴, Wei Zheng⁵², Bin Zhu¹⁷⁴, Argyrios Ziogas²⁵, Elad Ziv³²⁵, Kristin K Zorn³⁰³, Manuela Gago-Dominguez^{87,231}, Arto Mannermaa^{169–171}, Håkan Olsson⁷⁴, Manuel R Teixeira^{256,326}, Jennifer Stone^{254,327}, Kenneth Offit^{328,329}, Laura Ottini³³⁰, Sue K Park^{192–194}, Mads Thomassen²⁰⁶, Per Hall^{66,331}, Alfons Meindl³³², Rita K Schmutzler^{160–162}, Arnaud Droit¹¹, Gary D Bader^{10,335}, Paul D P Pharoah^{3,7,335}, Fergus J Couch^{108,335}, Douglas F Easton^{3,7,335}, Peter Kraft^{9,126,335}, Georgia Chenevix-Trench^{6,335}, Montserrat García-Closas^{73,335}, Marjanka K Schmidt^{102,333,335}, Antonis C Antoniou^{3,335} & Jacques Simard^{11,335}

¹Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia. ²Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia. ³Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. ⁴Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK. ⁵Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus. ⁶Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. ⁷Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, UK. ⁸Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA. ⁹Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA. ¹⁰Donnelly Centre, University of Toronto, Ontario, Canada. ¹¹Genomics Center, Centre Hospitalier University de Québec Research Center, Laval University, Québec City, Québec, Canada. ¹²Department of Mathematics, Massachusetts Institute of Technology,

Cambridge, Massachusetts, USA. 13 Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands. 14A list of members and affiliations appears in the **Supplementary Note**. ¹⁵Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. ¹⁶Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK. ¹⁷Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto (IOV), IRCCS, Padua, Italy. ¹⁸Center for Cancer Epidemiology and Prevention, University of Chicago, Chicago, Illinois, USA. ¹⁹Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland. 20 Personalised Medicine Team, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. ²¹Roswell Park Cancer Institute, Buffalo, New York, USA. ²²Center for Genomic Medicine, Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, USA. 23 Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada. ²⁴Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. ²⁵Department of Epidemiology, University of California, Irvine, Irvine, California, USA. 26N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus. ²⁷Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. ²⁸Institute of Clinical Molecular Biology / Department of Gynecology and Obstetrics, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany. 29Department of Public Health Sciences and Cancer Research Institute, Queen's University, Kingston, Ontario, Canada. 30 Institute of Human Genetics, Hannover Medical School, Hannover, Germany. 31 Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. 32 Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA. 33Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands. 34Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Istituto Nazionale dei Tumori (INT), Milan, Italy. 35McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada. 36Department of Medical Oncology, University Hospital, Vall d'Hebron, Barcelona, Spain. 37 Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy. 38 Bâtiment Cheney D, Centre Léon Bérard, Lyon, France. 39Laboratory of Cell Biology, Department of Pathology, Landspitali, Reykjavik, Iceland. 40BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland. 41Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. 42Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany. 43 Human Genotyping Unit -Centro Nacional de Genotipado (CEGEN), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. ⁴⁴Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain. ⁴⁵Spanish Network on Rare Diseases (CIBERER), Madrid, Spain. 46Institute of Biochemistry and Genetics, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, Russian Federation. ⁴⁷Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, USA. ⁴⁸Université Clermont Auvergne, INSERM, U1240, Imagerie Moléculaire et Stratégies Théranostiques, Centre Jean Perrin, Clermont-Ferrand, France. 49Clinical Cancer Genetics, City of Hope, Duarte, California, USA. ⁵⁰Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands. ⁵¹Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland. ⁵²Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA. 53International Epidemiology Institute, Rockville, Maryland, USA. 54City of Hope Clinical Cancer Genomics Community Research Network, Duarte, California, USA. ⁵⁵Vesalius Research Center, VIB, Leuven, Belgium. ⁵⁶Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium. ⁵⁷Department of Radiation Oncology, Hannover Medical School, Hannover, Germany. ⁵⁸Gynaecology Research Unit, Hannover Medical School, Hannover, Germany. ⁵⁹Department of Clinical Genetics, Vejle Hospital, Vejle, Denmark. ⁶⁰Copenhagen General Population Study, Herley and Gentofte Hospital, Copenhagen University Hospital, Herley, Denmark, 61Department of Clinical Biochemistry, Herley and Gentofte Hospital, Copenhagen University Hospital, Herley, Denmark. 62 Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. 63 Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway. 64Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary. 65 Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA. 66Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. 67Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany. 68University of Tübingen, Tübingen, Germany. 69German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. 70 Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany. ⁷¹Gustave Roussy, Biopathology Department, Villejuif, France. ⁷²Department of Clinical Genetics, Royal Devon and Exeter Hospital, Exeter, UK. ⁷³Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA. 74 Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden. ⁷⁵Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada. ⁷⁶Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada. ⁷⁷Genetic Counseling Unit, Hereditary Cancer Program, IDIBGI (Institut d'Investigació Biomèdica de Girona), Catalan Institute of Oncology, Girona, Spain. 78 Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany. ⁷⁹Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany. ⁸⁰Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. ⁸¹Department of Medicine, Huntsman Cancer Institute, Salt Lake City, Utah, USA. ⁸²Medical Oncology Department, CIBERONC, Hospital Clínico San Carlos, Madrid, Spain. ⁸³Section of Molecular Genetics, Department of Laboratory Medicine, University of Pisa and University Hospital of Pisa, Pisa, Italy. 84Research Department, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia. 85Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia. 86Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. 97Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, Servizo Galego de Saúde SERGAS, Santiago de Compostela, Spain. 88 Centro de Investigación en Red de Enfermedades Raras (CIBERER) and Centro Nacional de Genotipado (CEGEN-PRB2), Universidade de Santiago de Compostela, Santiago de Compostela, Spain. 89 Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA. 90 Oncology and Genetics Unit, Instituto de Investigación Biomédica (IBI) de Orense-Pontevedra-Vigo, Xerencia de Xestión Integrada de Vigo, Servizo Galego de Saúde SERGAS, Vigo, Spain. ⁹¹Centre François Baclesse, Caen, France. ⁹²Service de Génétique Oncologique and INSERM U830, Institut Curie, Paris, France - Université Paris Descartes, Sorbonne Paris Cité. ⁹³Cancer Genetics and Prevention Program, University of California, San Francisco, San Francisco, California, USA. 94University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 95 Division of Cancer Prevention and Population Sciences, Roswell Park Cancer Institute, Buffalo, New York, USA. 96 Unité de Recherche en Santé des Populations, Centre des Maladies du Sein Deschênes-Fabia, Hôpital du Saint-Sacrement, Québec City, Québec, Canada. 97Center for Medical Genetics, Ghent University, Ghent, Belgium. 98 Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia. 99 Huntsman Cancer Institute, Salt Lake City, Utah, USA. 100 Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK, 101 Cancer and Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France. 102 Division of Molecular Pathology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands. 103 Unité d'Oncogénétique, CHU Arnaud de Villeneuve, Montpellier, France. 104 Academic Unit of Molecular Oncology, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK. 105 Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK. 106 INSERM U1052, Cancer Research Center of Lyon, Lyon, France. 107 Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK. 108 Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA. 109 Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA. 110 Department of Clinical Genetics, South Glasgow University Hospitals, Glasgow, UK. 111 Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands. 112 Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands. 113Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Clinical and Molecular Genetics Area, Vall d'Hebron University Hospital, Barcelona, Spain. 114 Department of Gynecology and Obstetrics, Ludwig Maximilians University of Munich, Munich, Germany. 115 Cancer Genetics Laboratory, Department of Genetics, University of Pretoria, Arcadia, South Africa. 116 Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK. 117 Southampton Clinical Trials Unit, Faculty of Medicine, University of Southampton, Southampton, UK. 118Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK. 119Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, UK. 120 Institute of Human Genetics, University of Münster, Germany. 121Oncogenetics Team, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK. 122Department of Clinical Genetics, Lund University Hospital, Lund, Sweden. 123 Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark. 124 Institute of Human Genetics, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany. 125Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. 126 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA. 127 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany. 128LIFE-Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany.

129Genetics Department, Dijon University Hospital, Dijon, France. 130Oncogenetics, Centre Georges-François Leclerc, Dijon, France. 131Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA. 132 Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany. 133Usher Institute of Population Health Sciences and Informatics, CRUK Edinburgh Centre, University of Edinburgh Medical School, Edinburgh, UK. 134Institute for Medical Biometrics and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 135Department of Cancer Epidemiology, Clinical Cancer Registry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 136Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK. 137Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herley, Denmark. 138 Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montréal, Québec, Canada. 139 Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Chaim Sheba Medical Center, Ramat Gan, Israel. 140 Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel. 141School of Public Health, Curtin University, Perth, Western Australia, Australia. 142Clinical Cancer Genetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York, USA. 143Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. 144 Division of Cancer Prevention and Control Research, Jonsson Comprehensive Cancer Center, Schools of Medicine and Public Health, University of California, Los Angeles, Los Angeles, California, USA. 145 Cancer Risk and Prevention Clinic, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. 146Centre of Familial Breast and Ovarian Cancer, Department of Medical Genetics, Institute of Human Genetics, University Würzburg, Würzburg, Germany. 147 Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece. 148 Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark. 149 Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA. 150 Department of Medicine, McGill University, Montréal, Québec, Canada. 151 Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montréal, Québec, Canada. 152 Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA. 153 Department of Obstetrics and Gynecology, Ohio State University James Comprehensive Cancer Center, Columbus, Ohio, USA. ¹⁵⁴Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA. 155Department of Surgery, Oulu University Hospital, University of Oulu, Oulu, Finland. 156Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland. 157Centre de Recherche du Centre Hospitalier de Université de Montréal (CHUM), Montréal, Québec, Canada. 158 Department of Obstetrics and Gynaecology and Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria. 159Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. 160Center for Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany. 161 Center for Integrated Oncology (CIO), University Hospital of Cologne, Cologne, Germany. 162 Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany. 163 Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA. 164 Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. 165 Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA. 166 Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany. 167 Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Amherst, Massachusetts, USA. 168 Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark. 169Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland. Onstitute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland. 171 Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland. ¹⁷²Institute of Genetic Medicine, Centre for Life, Newcastle-upon-Tyne Hospitals NHS Trust, Newcastle-upon-Tyne, UK. 173School of Population Health, University of Western Australia, Perth, Western Australia, Australia. 174Cancer Genomics Research Laboratory (CGR), Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA. 175 Medical Genetics Unit, St George's, University of London, London, UK. ¹⁷⁶Family Cancer Clinic, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands. ¹⁷⁷Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, the Netherlands. 178Center for Medical Genetics, NorthShore University HealthSystem, Evanston, Illinois, USA. 179 Pritzker School of Medicine, University of Chicago, Evanston, Illinois, USA. 180 N.N. Petrov Institute of Oncology, St. Petersburg, Russian Federation. 181Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA. 182Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan. 183 Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK. 184 Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. 185 State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania. 186 Department of Gynaecology and Obstetrics, University of Ulm, Ulm, Germany. ¹⁸⁷Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark. ¹⁸⁸Department of Epidemiology, Cancer Prevention Institute of California, Fremont, California, USA. 189 Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California, USA. ¹⁹⁰Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK. ¹⁹¹Department of Oncology, Oulu University Hospital, University of Oulu, Oulu, Finland. 192 Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea. 193 Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea. 194 Cancer Research Institute, Seoul National University, Seoul, Republic of Korea. 195 Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. ¹⁹⁶School of Medicine, National University of Ireland, Galway, Ireland. ¹⁹⁷Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands. 198 Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium. ¹⁹⁹Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland. ²⁰⁰Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russian Federation. ²⁰¹Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada. ²⁰²Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. ²⁰³Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece. ²⁰⁴Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. 205 Department of Clinical Molecular Biology, Oslo University Hospital, University of Oslo, Oslo, Norway. 206 Department of Clinical Genetics, Odense University Hospital, Odense, Denmark. 207 Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong. 208 Department of Surgery, University of Hong Kong, Hong Kong, Hong Kong, 209 Department of Surgery, Hong Kong Sanatorium and Hospital, Hong Kong. 210 Department of Pathology, University Hospital of Region Zealand, Division Slagelse, Slagelse, Denmark. 211 Genetic Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK. 212Clalit National Cancer Control Center, Haifa, Israel. 213Unité de Prévention et d'Epidémiologie Génétique, Centre Léon Bérard, Lyon, France. 214 Molecular Diagnostic Unit, Hereditary Cancer Program, IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, Barcelona, Spain. 215 University of Hawaii Cancer Center, Honolulu, Hawaii, USA. 216 Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea. 217 Department of Surgery, Soonchunhyang University and Hospital, Seoul, Republic of Korea. 218 Institut Curie, Paris, France. ²¹⁹PSL Research University, Paris, France. ²²⁰INSERM U900, Paris, France. ²²¹Mines Paris Tech, Fontainebleau, France. ²²²Department of Health Sciences Research, Mayo Clinic, Scottsdale, Arizona, USA. 223 Clinical Genetics Research Laboratory, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA. ²²⁴Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. ²²⁵Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland. ²²⁶German Breast Group, Neu Isenburg, Germany. ²²⁷Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', Macedonian Academy of Sciences and Arts, Skopje, Macedonia. 228 Division of Public Health Sciences, Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. 229 Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. 230 Department of Oncology, Pathology, Karolinska Institutet, Stockholm, Sweden. 231 Moores Cancer Center, University of California, San Diego, La Jolla, California, USA. 232 Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California, USA. 233 Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan. 234 Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan. 235Lyon Neuroscience Research Center-CRNL, INSERM U1028, CNRS UMR 5292, University of Lyon, Lyon, France. ²³⁶Anatomical Pathology, Alfred Hospital, Melbourne, Victoria, Australia. ²³⁷Department of Clinical Genetics, VU University Medical Centre, Amsterdam, the Netherlands. ²³⁸Servicio de Anatomía Patológica, Hospital Monte Naranco, Oviedo, Spain. ²³⁹Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 240NRG Oncology, Statistics and Data Management Center, Roswell Park Cancer Institute, Buffalo, New York, USA. 241Institute of Population Health, University of Manchester, Manchester, UK. ²⁴²Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK. ²⁴³Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. 244 Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada. ²⁴⁵Université Paris Sorbonne Cité, INSERM UMRS 1147, Paris, France. ²⁴⁶Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany. 247 Department of Medicine, University of California, San Francisco, San Francisco, California, USA. ²⁴⁸Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, Illinois, USA. ²⁴⁹West Midlands Regional Genetics Service, Birmingham Women's Hospital Healthcare NHS Trust, Edgbaston, Birmingham, UK. 250 Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. 251University of New Mexico, Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA. 252Unit of Medical

Genetics, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy. 253 Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden. 254 Curtin UWA Centre for Genetic Origins of Health and Disease, Curtin University and University of Western Australia, Perth, Western Australia, Australia. 255 Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark. 256 Department of Genetics, Portuguese Oncology Institute, Porto, Portugal. ²⁵⁷Servicio de Cirugía General y Especialidades, Hospital Monte Naranco, Oviedo, Spain. ²⁵⁸IFOM, FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy. ²⁵⁹Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA. ²⁶⁰South East of Scotland Regional Genetics Service, Western General Hospital, Edinburgh, UK. ²⁶¹ProCURE, Catalan Institute of Oncology, IDIBELL (Bellvitge Biomedical Research Institute), Barcelona, Spain. 262 Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland. 263 Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland. 264 Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Istituto Nazionale dei Tumori (INT), Milan, Italy. 265 Section of Cancer Genetics, The Institute of Cancer Research, London, UK. 266 Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden. 267 Carmel Medical Center and B. Rappaport Faculty of Medicine-Technion, Haifa, Israel. 268 Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. 269 Division of Gynecologic Oncology, NorthShore University HealthSystem, University of Chicago, Evanston, Illinois, USA. 270 Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain. 271 Department of Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands. ²⁷²Institute of Pathology, Staedtisches Klinikum Karlsruhe, Karlsruhe, Germany. ²⁷³Hereditary Cancer Clinic, University Hospital of Heraklion, Heraklion, Greece. ²⁷⁴Department of Pathology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands. ²⁷⁵Epidemiology Branch, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, USA. 276 National Cancer Institute, Bangkok, Thailand. 277 Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA. ²⁷⁸Research Oncology, Guy's Hospital, King's College London, London, UK. ²⁷⁹Division of Molecular Medicine, Pathology North, John Hunter Hospital, Newcastle, New South Wales, Australia. ²⁸⁰Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia. 281 Clinical Cancer Genetics Program, Division of Human Genetics, Department of Internal Medicine, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA. 282 Department of Internal Medicine, University of Kansas Medical Center. Kansas City, Kansas, USA. ²⁸³School of Public Health, China Medical University, Taichung, Taiwan. ²⁸⁴Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. 285 North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Trust, London, UK. 286 National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany. 287 Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia. 288 Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada. 289School of Population and Public Health, University of British Columbia, Vancouver. British Columbia, Canada. 290 Saarland Cancer Registry, Saarbrücken, Germany. 291 Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany. ²⁹²Division of Breast Cancer Research, The Institute of Cancer Research, London, UK. ²⁹³National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA. 294 Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, USA. 295 Molecular Genetics Laboratory, Clinical Genetics Service, Cruces University Hospital and BioCruces Health Research Institute, Barakaldo, Spain. ²⁹⁶Cancer Center, Kuopio University Hospital, Kuopio, Finland. ²⁹⁷Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland. ²⁹⁸Cancer Research Malaysia, Subang Jaya, Malaysia. ²⁹⁹Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia. 300 Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA. 301Genetic Counseling Unit, Hereditary Cancer Program, IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, Barcelona, Spain. 302 Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. 303 Ospedale di Circolo ASST Settelaghi, Varese, Italy. 304 Latvian Biomedical Research and Study Centre, Riga, Latvia. 305 Department of Medical Genetics, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK. 306Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA. 307 Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands. 308 Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK. 309 Institute of Human Genetics, Pontificia Universidad Javeriana, Bogotá, Colombia. 310 Hereditary Cancer Clinic, Department of Medical Oncology, Prince of Wales Hospital, Randwick, New South Wales, Australia. 311 Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA. 312 Frauenklinik der Stadtklinik Baden Baden, Baden Baden, Germany. 313 Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands. 314Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands. 315Unit of Hereditary Cancer, Department of Epidemiology, Prevention and Special Functions, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) AOU San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy. 316 Institute of Human Genetics, Campus Virchov Klinikum, Charite Berlin, Berlin, Germany. 317 Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde SERGAS, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain. 318 Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, Santiago de Compostela, Spain. 319Unit of Functional Onco-genomics and Genetics, CRO Aviano, National Cancer Institute, Aviano, Italy. 320Oxford Regional Genetics Service, Churchill Hospital, Oxford, UK. 321 Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. 322 Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, USA. 323 Department of Biomedical Data Sciences, Stanford University School of Medicine, Stanford, California, USA. 324 Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA. 325 Department of Medicine, Institute for Human Genetics, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA. 326 Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal. 327 Department of Obstetrics and Gynaecology, University of Melbourne and the Royal Women's Hospital, Melbourne, Victoria, Australia. 328 Clinical Genetics Research Laboratory, Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA. 329Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA. 330 Department of Molecular Medicine, University La Sapienza, Rome, Italy. 331 Department of Oncology, South General Hospital, Stockholm, Sweden. 332 Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany. 333 Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands. 334These authors contributed equally to this work. 335These authors jointly directed this work. Correspondence should be addressed to R.L.M. (roger.milne@cancervic.org.au).

ONLINE METHODS

Study subjects. Supplementary Table 1 summarizes the studies from BCAC that contributed data. The majority were case–control studies. Sixty-eight BCAC studies participated in the ER-negative breast cancer component of the OncoArray, contributing 9,655 cases and 45,494 controls. All studies provided core data on disease status and age at diagnosis/observation, and the majority provided information on clinicopathological and lifestyle factors, which has been curated and incorporated into the BCAC database (version 6). ER status for most (~70%) cases was obtained from clinical records. After removal of overlapping participants, genotype data were also available from eight GWAS^{9,12,16,37,38} (4,480 ER-negative cases and 12,632 controls) and 40 studies previously genotyped using the Illumina iCOGS custom array²⁰ (7,333 ER-negative cases and 42,468 controls).

A total of 21,468 ER-negative cases were included in the combined analyses. Of these, 5,793 had tumors that were also negative for progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) and were defined as triple negative. PR and HER2 status were also obtained predominantly from clinical records. A further 4,217 cases were positive for PR or HER2 and were considered non–triple negative. The remainder had unknown PR or HER2 status. All participating studies were approved by their appropriate ethics review boards, and all subjects provided informed consent.

Subjects included from CIMBA were women of European ancestry aged 18 years or older with a pathogenic variant for *BRCA1*. The majority of the participants were sampled through cancer genetics clinics. Multiple members of the same family were included in some instances. Fifty-eight studies from 24 countries contributed OncoArray genotype data. After quality control and removal of participants overlapping with the BCAC OncoArray study, data were available on 15,566 *BRCA1* mutation carriers, of whom 7,784 were affected with breast cancer (**Supplementary Table 2**). We also obtained iCOGS genotype data on 3,342 *BRCA1* mutation carriers (1,630 with breast cancer) from 54 studies through CIMBA. All mutation carriers provided written informed consent and participated under ethically approved protocols.

OncoArray SNP selection. Approximately 50% of the SNPs for the OncoArray were selected as a 'GWAS backbone' (Illumina HumanCore), which aimed to provide high coverage for the majority of common variants through imputation. The remaining allocation was selected from lists supplied by each of six disease-based consortia, together with a seventh list of SNPs of interest to multiple disease study groups. Approximately 72,000 SNPs were selected specifically for their relevance to breast cancer, on the basis of prior evidence of association with overall or subtype-specific disease, with breast density or with breast-tissue-specific gene expression. Lists were merged as described previously³⁴.

Genotype calling and quality control. Details of the genotype calling and quality control for the iCOGS and GWAS are described elsewhere^{19,20,23,30}, and those for OncoArray are described in the **Supplementary Note**.

Imputation. Genotypes for ~21 million SNPs were imputed for all samples using the October 2014 (Phase 3) release of the 1000 Genomes Project data as the reference panel and based on 800 haplotypes. The iCOGS, OncoArray and six of the GWAS data sets were imputed using a two-stage imputation approach, with SHAPEIT⁷³ for phasing and IMPUTEv2 (ref. 74) for imputation. Imputation was performed in 5-Mb non-overlapping intervals. All subjects were split into subsets of ~10,000 samples, with subjects from the same study grouped in the subset. The Breast and Prostate Cancer Cohort Consortium (BPC3) and Breast Cancer Family Registry (BCFR) GWAS performed imputation separately using MACH and Minimac^{75,76}. We imputed genotypes for all SNPs that were polymorphic (MAF > 0.1%) in either European or Asian samples. For the BCAC GWAS, data were included in the analysis for all SNPs with MAF >0.01 and imputation r^2 >0.3. For iCOGS and OncoArray, we included data for all SNPs with imputation r^2 >0.3 and MAF >0.005.

Statistical analyses of BCAC data. Per-allele odds ratios and standard errors were generated for the OncoArray and iCOGS data sets and for each GWAS, adjusting for principal components, using logistic regression. The OncoArray and iCOGS analyses were additionally adjusted for country and study, respectively. For the OncoArray data set, principal-components analysis was

performed using data for 33,661 SNPs (which included the 2,318 markers of continental ancestry) with MAF \geq 0.05 and maximum correlation of 0.1, using purpose-written software (PCcalc; see URLs) to allow standard calculations to be performed sufficiently rapidly on a very large data set. We used the first ten principal components, as the inclusion of additional components did not further reduce inflation of the test statistics. We used nine principal components for the iCOGS data set and up to ten principal components for the other GWAS, where this was found to reduce inflation.

Odds ratio estimates were derived using MACH for the BCFR GWAS, ProbABEL⁷⁷ was used for the BPC3 GWAS, SNPTEST (see URLs) was used for the remaining GWAS and purpose-written software was applied for the iCOGS and OncoArray data sets. Odds ratio estimates and standard errors were combined by a fixed-effects inverse-variance-weighted meta-analysis using METAL³⁹. This was first done across the eight GWAS, applying genomic control, as described previously²⁰. It was then applied (without genomic control) to combine findings from the three BCAC genotyping initiatives (GWAS, iCOGS and OncoArray).

The independence of the signals from two variants at 11q22.3 was assessed by fitting the logistic regression models described above with both variants as covariates. This was done separately for iCOGS and OncoArray data, and results for each variant were combined by meta-analysis.

For selected SNPs, we estimated per-allele odds ratios by ER status using all available BCAC data for 82,263 cases with known ER status and 87,962 controls from the iCOGS and OncoArray studies. We also estimated per-allele odds ratios by triple-negative status (triple-negative versus other ER-negative subtypes) and tumor grade, using available BCAC data for ER-negative cases and corresponding controls. Tests for heterogeneity by subtype were derived by applying logistic regression to cases only. This was done separately for the iCOGS and OncoArray data sets, adjusting as before, and results were then combined in a fixed-effects meta-analysis. Multinomial regression was applied to cases only to test for a linear trend for tumor grade, with the model constrained so that the difference between grade 1 and grade 3 was double that for the difference between grade 2 and grade 3; this method was also used to test for a linear trend with age at diagnosis, with ordinal values 1, 2, 3 and 4 representing ages <40, 40–49, 50–59 and ≥60 years, respectively.

Statistical analyses of CIMBA data. Associations between genotype and breast cancer risk for *BRCA1* mutation carriers were evaluated using a 1-degree-offreedom per-allele trend test ($P_{\rm trend}$), based on modeling the retrospective likelihood of the observed genotypes conditional on breast cancer phenotypes³⁶. This was done separately for iCOGS and OncoArray data. To allow for non-independence among related individuals, an adjusted test statistic was used that took into account correlation in genotypes³. All analyses were stratified by country of residence and, for countries where the strata were sufficiently large (United States and Canada), by Ashkenazi Jewish ancestry. The results from the iCOGS and OncoArray data sets were then pooled using fixed-effects meta-analysis. We repeated these analyses modeling ovarian cancer as a competing risk and observed no substantial difference in the results obtained.

The independence of the signals from two variants at 11q22.3 was assessed using OncoArray data only, fitting a Cox regression model with per-allele effects for both variants, adjusting for birth cohort, stratifying by country of residence, and using robust standard errors and clustered observations for relatives. This approach provides valid significance tests of association, although the resulting hazard ratio estimates can be biased³⁵.

Meta-analysis of BCAC and CIMBA. A fixed-effects meta-analysis of the results from BCAC and CIMBA was conducted using an inverse-variance-weighted approach assuming fixed effects, as implemented in METAL³⁹. The effect estimates used were the logarithm of the per-allele hazard ratio estimate for association with breast cancer risk for *BRCA1* mutation carriers from CIMBA and the logarithm of the per-allele odds ratio estimate for association with risk of ER-negative breast cancer based on BCAC data, both of which were assumed to approximate the same relative risk. We assessed genomic inflation using common (MAF > 1%) GWAS backbone variants. As λ is influenced by sample size, we calculated $\lambda_{1,000}$ so that the values were comparable with those from other studies.

All statistical tests conducted were two-sided.

doi:10.1038/ng.3785

Definition of known association signals. We identified all associations previously reported from genome-wide or candidate analyses at a significance level of $P < 5 \times 10^{-8}$ in overall breast cancer, in ER-negative or ER-positive breast cancer, for BRCA1 or BRCA2 mutation carriers, or in meta-analyses of these categories. We included only one SNP in any 500kb interval unless joint analysis provided genome-wide significant evidence (conditional $P < 5 \times 10^{-8}$) of more than one independent signal. Where multiple studies reported associations in the same region, we considered the first reported association unless a later study identified a different variant in the same region that was more strongly associated with breast cancer risk. One hundred and seven previously reported association signals were identified, 11 of which were found through GWAS of ER-negative disease or of breast cancer for BRCA1 mutation carriers or were reported as being more strongly associated with ER-negative breast cancer. These are listed in Table 2. The other 96 previously reported association signals are listed in Supplementary Table 10.

Definition of new association signals. To search for new loci, we assessed all SNPs excluding those within 500 kb of a known association signal. This approach identified 206 SNPs in nine regions that were associated with disease risk at $P < 5 \times 10^{-8}$ in the meta-analysis of BCAC ER-negative breast cancer and breast cancer for CIMBA *BRCA1* mutation carriers. The SNP with the lowest P value from this analysis was considered to be the lead SNP. No additional loci were detected from analysis of BCAC data only. Imputation quality, as assessed by the IMPUTE2 imputation r^2 value in the OncoArray data set, was ≥0.89 for the ten lead SNPs reported (**Supplementary Table 3**).

Candidate causal SNPs. To define the set of potentially causal variants at each of the new susceptibility loci, we selected all variants with P values within two orders of magnitude of the P value for the most significant SNP at each of the ten new loci. This is approximately equivalent to selecting variants whose posterior probability of causality is within two orders of magnitude of that of the most significant SNP^{40,41}. This approach was applied to identify potentially causal variants for the signal given by the more common lead SNP at 11q22.3 (rs11374964). A similar approach was applied for the rarer lead SNP at this locus (rs74911261), but this was based on P values from analyses adjusted for rs11374964.

Proportion of familial risk explained. The relative risk of ER-negative breast cancer for the first-degree female relative of a woman with ER-negative disease has not been estimated. We therefore assumed that the twofold increase in risk observed for overall disease also applied to ER-negative disease. To estimate the proportion of this risk explained by the 125 variants associated with ER-negative disease, we used MAF and odds ratio estimates from the OncoArray-based genotype data and applied the formula

$$\sum_{i} p_i (1 - p_i) (\beta_i^2 - \tau_i^2) / \ln(\lambda)$$

where p_i is the MAF for variant i, β_i is the log(OR) estimate for variant i, τ_i is the standard error of β_i and $\lambda=2$ is the assumed overall familial relative risk. The corresponding estimate for the familial relative risk due to all variants is the frailty-scale heritability, defined as

$$h_f^2 = \sum_{i} 2p_i (1 - p_i) \gamma_i^2$$

where γ_i is the true relative risk conferred by variant i, assuming a log-additive model. We first obtained the estimated heritability based on the full set of summary estimates using LD score regression⁶⁸, which derives a heritability estimate on the observed scale. We then converted this to an estimate on the frailty scale using the formula

$$h_f^2 = h_{\rm obs}^2 / P(1 - P)$$

where P is the proportion of samples in the population that are cases.

Proportion of polygenic risk-modifying variance explained for BRCA1 mutation carriers. The proportion of the variance in polygenic frailty

modifying risk for BRCA1 mutation carriers explained by the set of associated SNPs was estimated by

$$\sum_{i} \ln c_i / \sigma^2$$

where c_i is the squared estimated coefficient of variation in incidence associated with SNP i (ref. 78) and σ^2 is the total polygenic variance, estimated from segregation data⁷⁹.

In silico annotation of candidate causal variants. We combined multiple sources of in silico functional annotation from public databases to help identify potential functional SNPs and target genes, on the basis of previous observations that breast cancer susceptibility alleles are enriched in cis-regulatory elements and alter transcriptional activity^{28,80-82}. The influence of candidate causal variants on transcription factor binding sites was determined using the ENCODE-Motifs resource⁴³. To investigate functional elements enriched across the region encompassing the strongest candidate causal SNPs, we analyzed chromatin biofeatures data from the Encyclopedia of DNA Elements (ENCODE) Project⁴² and the Roadmap Epigenomics Project⁴⁴ together with other data obtained through the NCBI Gene Expression Omnibus (GEO), namely chromatin state segmentation by hidden Markov models (chrom-HMM), DHSs, and histone modifications for the epigenetic marks H3K4, $\ensuremath{\mathsf{H3K9}}$ and $\ensuremath{\mathsf{H3K27}}$ in HMECs, myoepithelial cells, and T47D and MCF7 breast cancer cells and transcription factor ChIP-seq in a range of breast cell lines (Supplementary Table 6). To identify the SNPs most likely to be functional, we used RegulomeDB45; to identify putative target genes, we examined potential functional chromatin interactions between distal and proximal regulatory transcription factor binding sites and promoters in the risk regions, using Hi-C data generated in HMECs⁴⁷ and ChIA-PET data generated in MCF7 cells. This approach detects genome-wide interactions brought about by or associated with CCCTC-binding factor (CTCF), RNA polymerase II (Pol II) and ER, all of which are involved in transcriptional regulation⁴⁷. Annotation of putative cis-regulatory regions and predicted target genes used the integrated method for predicting enhancer targets (IM-PET)⁴⁶, the predicting specific tissue interactions of genes and enhancers (PreSTIGE) algorithm⁴⁸, Hnisz⁵¹ and FANTOM⁴⁹. Intersections between candidate causal variants and regulatory elements were identified using Galaxy, BedTools v2.24 and HaploReg v4.1 and were visualized in the UCSC Genome Browser. Publically available eQTL databases, including Gene-Tissue Expression (GTEx⁵⁰; version 6, multiple tissues) and Westra⁵² (blood), were queried for candidate causal variants.

eQTL analyses. eQTL analyses were performed using data from the TCGA and METABRIC projects^{59,60}.

The TCGA eQTL analysis was based on 79 ER-negative breast tumors that had matched gene expression, copy number and methylation profiles together with corresponding germline genotypes available. All 79 individuals were of European ancestry, as ascertained using the genotype data and the local ancestry in admixed populations (LAMP) software package (LAMP estimate cutoff > 95% European)83. Germline genotypes were imputed into the 1000 Genomes Project reference panel (October 2014 release) using IMPUTE2 (refs. 75,84). Gene expression had been measured on the Illumina HiSeq 2000 RNA-seq platform (gene-level RSEM normalized counts⁸⁵), copy number estimates were derived from the Affymetrix SNP 6.0 array (somatic copy number alteration minus germline copy number variation called using the GISTIC2 algorithm⁸⁶) and methylation β values were measured on the Illumina Infinium HumanMethylation450 array, as previously described⁵⁹. Primary TCGA eQTL analysis focused on all potentially causal variants in the ten new regions associated with breast cancer risk in the meta-analysis of ER-negative cases and controls from BCAC and BRCA1 mutation carriers from CIMBA. We considered all genes located up to 1 Mb away on either side of each of these variants. The effects of tumor copy number and methylation on gene expression were first removed using a method described previously⁵⁸, and eQTL analysis was performed by linear regression as implemented in the R package Matrix eQTL⁸⁷.

The METABRIC eQTL analysis was based on 135 normal breast tissue samples resected from patients with breast cancer of European ancestry. Germline genotyping for the METABRIC study was also performed on the Affymetrix

NATURE GENETICS doi:10.1038/ng.3785

SNP 6.0 array, and ancestry estimation and imputation for this data set were conducted as described for TCGA. Gene expression in the METABRIC study had been measured using the Illumina HT12 microarray platform, and we used probe-level estimates. As for TCGA, we considered all genes in ten regions using Matrix eQTL.

We also performed additional eQTL analyses using the METABRIC data set for all variants within 1 Mb of *L3MBTL3* and *CDH2* and expression of these specific genes.

Global genomic enrichment analyses. We performed stratified LD score regression analyses ⁶⁸ for ER-negative breast cancer using the summary statistics based on meta-analyses of the OncoArray, GWAS, iCOGS and CIMBA data sets. We used all SNPs in the 1000 Genomes Project Phase 1 v3 release that had MAF >1% and imputation quality score $R^2 > 0.3$ in the OncoArray data. LD scores were calculated using the 1000 Genomes Project Phase 1 v3 EUR panel. Further details are provided in the **Supplementary Note**.

We tested the differences in functional enrichment between ER-positive and ER-negative subsets for individual features through a Wald test, using the regression coefficients and standard errors for the two subsets based on the models described above. Finally, we assessed the heritability due to genotyped and imputed SNPs 70 and estimated the genetic correlation between ER-positive and ER-negative breast cancer 69 . The genetic correlation analysis was restricted to the ~ 1 million SNPs included in HapMap 3.

Pathway enrichment analyses. The pathway gene set database Human_GOBP_AllPathways_no_GO_iea_January_19_2016_symbol.gmt (GeneSets; see URLs)⁶¹ was used for all analyses. Pathway size was determined by the total number of genes in the pathway to which SNPs in the imputed GWAS data set could be mapped. To provide more biologically meaningful results and reduce false positives, only pathways that contained between 10 and 200 genes were considered.

SNPs were mapped to the nearest gene within 500 kb; SNPs that were further than 500 kb away from any gene were excluded. Gene significance was calculated by assigning the lowest P value observed across all SNPs mapped to a gene^{63,64}, on the basis of the meta-analysis of BCAC and CIMBA data described above.

The gene set enrichment analysis (GSEA)⁶¹ algorithm, as implemented in the GenGen package (see URLs)^{62,63}, was used to perform pathway analysis. Briefly, the algorithm calculates an enrichment score (ES) for each pathway based on a weighted Kolmogorov–Smirnov statistic⁶². Pathways that have most of their genes at the top of the ranked list of genes obtain higher ES values.

We defined an ES threshold (ES \geq 0.41) to yield a true positive rate (TPR) of 0.20 and a false positive rate (FPR) of 0.14, with true positive pathways defined as those observed with false discovery rate (FDR) < 0.05 in a prior analysis carried out using the analytic approach defined above applied to iCOGS data for ER-negative disease.

To visualize the pathway enrichment analysis results, an enrichment map was created using the Enrichment Map (EM) v $2.1.0~\rm app^{61}$ in Cytoscape v3.30 (ref. 88), applying an edge-weighted force-directed layout. To measure the contribution of each gene to enriched pathways and annotate the map, we reran the pathway enrichment analysis multiple times, each time excluding one gene. A gene was considered to drive the enrichment if the ES dropped to zero or less (pathway enrichment driver) after it was excluded. Pathways were

grouped in the map if they shared >70% of their genes or their enrichment was driven by a shared gene.

See the Supplementary Note for further details.

Data availability. A subset of the data that support the findings of this study is publically available via dbGaP (see URLs; accessions phs001265.v1.p1 for BCAC data and phs001321.v1.p1 for CIMBA data). Requests for data can be made to the corresponding author or the Data Access Coordination Committees (DACCs) of BCAC (see URLs) and CIMBA (see URLs). BCAC DACC approval is required to access data from the ABCFS, ABCS, ABCTB, BBCC, BBCS, BCEES, BCFR-NY, BCFR-PA, BCFR-UT, BCINIS, BSUCH, CBCS, CECILE, CGPS, CTS, DIETCOMPLYF, ESTHER, GC-HBOC, GENICA, GEPARSIXTO, GESBC, HABCS, HCSC, HEBCS, HMBCS, HUBCS, KARBAC, KBCP, LMBC, MABCS, MARIE, MBCSG, MCBCS, MISS, MMHS, MTLGEBCS, NC-BCFR, OFBCR, ORIGO, pKARMA, POSH, PREFACE, RBCS, SKKDKFZS, SUCCESSB, SUCCESSC, SZBCS, TNBCC, UCIBCS, UKBGS and UKOPS studies (Supplementary Table 1). CIMBA DACC approval is required to access data from the BCFR-ON, CONSIT TEAM, DKFZ, EMBRACE, FPGMX, GC-HBOC, GEMO, G-FAST, HEBCS, HEBON, IHCC, INHERIT, IOVHBOCS, IPOBCS, MCGILL, MODSQUAD, NAROD, OCGN, OUH and UKGRFOCR studies (Supplementary Table 2).

- Delaneau, O., Marchini, J. & Zagury, J.F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2011).
- Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. *PLoS Genet.* 5, e1000529 (2009).
- Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G.R. Fast and accurate genotype imputation in genome-wide association studies through prephasing. *Nat. Genet.* 44, 955–959 (2012).
- Li, Y., Willer, C.J., Ding, J., Scheet, P. & Abecasis, G.R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. *Genet. Epidemiol.* 34, 816–834 (2010).
- Aulchenko, Y.S., Struchalin, M.V. & van Duijn, C.M. ProbABEL package for genomewide association analysis of imputed data. *BMC Bioinformatics* 11, 134 (2010).
- 78. Antoniou, A.C. & Easton, D.F. Polygenic inheritance of breast cancer: implications for design of association studies. *Genet. Epidemiol.* **25**, 190–202 (2003).
- Antoniou, A.C. et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br. J. Cancer 98, 1457–1466 (2008).
- Darabi, H. et al. Polymorphisms in a putative enhancer at the 10q21.2 breast cancer risk locus regulate NRBF2 expression. Am. J. Hum. Genet. 97, 22–34 (2015)
- Glubb, D.M. et al. Fine-scale mapping of the 5q11.2 breast cancer locus reveals at least three independent risk variants regulating MAP3K1. Am. J. Hum. Genet. 96, 5–20 (2015).
- 82. Ghoussaini, M. et al. Evidence that breast cancer risk at the 2q35 locus is mediated through *IGFBP5* regulation. *Nat. Commun.* **4**, 4999 (2014).
- 83. Baran, Y. et al. Fast and accurate inference of local ancestry in Latino populations. Bioinformatics 28, 1359–1367 (2012).
- 84. Abecasis, G.R. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).
- Li, B. & Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics* 12, 323 (2011).
- Mermel, C.H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).
- Shabalin, A.A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353–1358 (2012).
- Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

doi:10.1038/ng.3785