
Tutorial: guidelines for annotating single-cell
transcriptomic maps using automated and
manual methods
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Single-cell transcriptomics can profile thousands of cells in a single experiment and identify novel cell types, states and
dynamics in a wide variety of tissues and organisms. Standard experimental protocols and analysis workflows have been
developed to create single-cell transcriptomic maps from tissues. This tutorial focuses on how to interpret these data to
identify cell types, states and other biologically relevant patterns with the objective of creating an annotated map of cells.
We recommend a three-step workflow including automatic cell annotation (wherever possible), manual cell annotation
and verification. Frequently encountered challenges are discussed, as well as strategies to address them. Guiding
principles and specific recommendations for software tools and resources that can be used for each step are covered, and
an R notebook is included to help run the recommended workflow. Basic familiarity with computer software is assumed,
and basic knowledge of programming (e.g., in the R language) is recommended.

S ingle-cell genomics enables the molecular profiling of
thousands of cells in a single experiment1–3 to create
comprehensive maps of cellular heterogeneity in multi-

cellular systems4,5. In particular, single-cell RNA sequencing
(scRNA-seq) and single-nuclei RNA sequencing can be used to
measure single-cell transcriptomes and map novel cell
types6, states7 and dynamics8 in a wide variety of tissues
and organisms.

Single-cell transcriptomics data are often presented as a two-
dimensional ‘map’ organizing cells on the basis of the similarity
of their gene expression profiles. Data visualized in this way
naturally identify groups (or ‘clusters’) of highly similar cells, as
well as gradients and other transcript-based patterns. Such
artifacts must be interpreted and annotated to define cell types
and states to support biological discovery (Fig. 1). Standard
experimental protocols and analysis workflows detail how to
create single-cell transcriptomic maps from tissues9–12. Briefly,
tissues are dissociated into single cells and profiled using a
single-cell transcriptomic technology. Computational analysis is
then used to perform quality control filtering on the results
(e.g., removing low-quality cells), quantify the expression of
each mapped gene in each cell13, identify groups of similar cells
using a clustering algorithm14–18 and visualize all cells in two

dimensions using techniques such as t-distributed stochastic
neighbor embedding (t-SNE)19 or uniform manifold approx-
imation and projection (UMAP)20 to produce an unannotated
‘single-cell map’ image (Box 1)21. To interpret this map biolo-
gically, it is necessary to determine which cell types or cell states
are represented by clusters or other patterns (e.g., gradients)
observed in the data. These interpretations can then be labeled
on the map, which helps place them in a conceptual framework
useful for better understanding tissue biology. This tutorial
offers a guide to the map interpretation and labeling process,
starting from clustered data and resulting in a completely
annotated single-cell map (Fig. 1). The general workflow for
annotating cells in scRNA-seq data has three major steps:
automatic annotation, manual annotation and verification
(Fig. 2). First, automatic annotation uses a predefined set of
‘marker genes’ (i.e., genes that are specifically expressed in a
known cell type) or reference single-cell data (i.e., an existing
expertly annotated single-cell map) to identify and label indi-
vidual cells or cell clusters by matching their gene expression
patterns (signatures) to those of known cell types. A second
major step is manual annotation, which involves studying genes
and gene functions specific to each cell cluster or pattern to
verify automatic cell annotations and identify novel cell types
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and states. Finally, verification can confirm the identity and
function of select cell types using independent methods, such as
new validation experiments.

Step 1: automatic cell annotation
Automatic cell annotation is an efficient way to label cells or cell
clusters using a computer algorithm and an appropriate set of
prior biological knowledge. The general principle is to identify a
gene expression signal (pattern or signature) in a single cell or
cell cluster that matches a characteristic gene expression sig-
nature of a known cell type or state; the cell or cluster is then
assigned the respective label. Labels often have an associated
confidence score.

There are two major automatic cell annotation approaches.
One is to use known marker genes for each of the cell types that
are likely to be found in the sample to be annotated (referred to
as ‘marker-based automatic annotation’). In this case, known
relationships between marker genes and cell types are obtained
from databases, such as SCSig22, PanglaoDB23 and CellMar-
ker24, or manually from the literature. Then, cells or clusters are
labeled according to the marker genes they characteristically
express. The second approach is to compare single-cell RNA-
seq data to be annotated (the ‘query’ data set) to an existing,
similar, expertly annotated scRNA-seq data set (the ‘reference’
data set) and transfer the label from a reference cell or cluster
to a sufficiently similar one in the query (referred to as ‘refer-
ence-based automatic annotation’). Reference single-cell data
are obtained from sources such as Gene Expression
Omnibus (GEO)25, the Single Cell Expression Atlas26 or cell
atlas projects27,28.

Automatic cell annotation methods can be applied to
individual cells (either before or after clustering) or to
clusters of cells, which occurs only after clustering the cells. In
the case of annotating clusters, the gene expression profile for
each cluster is determined by averaging the expression
profiles of all cells within the cluster. Annotating individual
cells is ideal, because this reduces the chance of missing
important differences between cells. However, some
scRNA-seq experimental data are based on low numbers of
transcript reads per cell; thus, there may be insufficient
data for cell-based annotation to function correctly, making
clustered data sets easier to work with. Annotating clusters is
faster, because there are fewer clusters than cells to process; it
can also be more accurate than the single-cell approach, con-
sidering that it is based on more reliable expression level esti-
mates averaged across all cells in a cluster. However, not all cells
can be easily grouped into clusters, especially for dynamic
systems like developing tissues29 or tissues that contain gene
expression gradients30,31.

A major challenge with automatic cell annotation is that
many cell types do not have well-characterized gene expression
signatures, resulting in incomplete or inaccurate labeling for
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Fig. 1 | An annotated single-cell transcriptomic map. A completely
annotated single-cell transcriptomic map of the human liver from data
generated using scRNA-seq applied to five human liver samples (8,444
cells) reported in MacParland et al.100 and visualized using a t-SNE plot.
LSECS, liver sinusoidal endothelial cells; NK, natural killer.

Box 1 | Visualizing single-cell data in a 2D projection

An scRNA-seq data set is typically visualized as a 2D scatter plot where cells (points) with similar transcriptomes are placed near each other. This
2D representation is projected from a higher dimensional space where each cell is described by the expression of thousands of genes, each of
which is considered a separate dimension. The three most popular projection methods used for scRNA-seq data are t-SNE19, UMAP20 and PCA110.
t-SNE (Fig. 6c) is a nonlinear projection that preserves local groups of similar cells, while equalizing the density of cells within each group111. The
scale of a ‘local group’ is controlled by the ‘perplexity’ parameter, with higher values creating larger local groups112. t-SNE effectively visualizes
distinct robust clusters, making it easy to observe discrete cell types; however, global relationships between cell types are not maintained, and thus
cluster-to-cluster relationships cannot be inferred and may be misleading. Cell subtypes can be combined into one large cluster or split into distinct
plot regions depending on the perplexity111.
UMAP (Extended Data Fig. 1) is a nonlinear projection method that differentiates discrete cell clusters20. UMAP is typically regarded as better for
visualizing global relationships and gradients than t-SNE, although these differences are probably due to default parameters113. UMAP is often less
computationally intensive to run than t-SNE114.
PCA (Fig. 6b) performs a linear transformation of normalized and scaled scRNA-seq data, to identify independent principal components (PCs) that
capture major axes of variation in the data, which could represent biological factors, like cell types and states, or technical factors115. PCs are ranked
in decreasing order of variance, and typically the first two PCs are used to visualize the data, but more can be considered to detect more subtle
expression patterns between cells110. PCA can be useful for visualizing cell gradients and states.
Although these methods visually group similar cells and help visualize clusters, they do not define clusters and, therefore, are not clustering
algorithms. Cell-clustering algorithm output is typically visualized as colors on the plot, and these colors may or may not correspond to patterns
observed in the 2D plot.
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some cells. Automated methods typically work better for
major cell types and may not be able to effectively distinguish
subtypes. Thus, automatic cell annotation is useful to
quickly identify known cell types and highlight unknown cell
types for further exploration. The main caveats and
recommendations for automatic cell annotation are
summarized in Table 1.

Marker-based automatic annotation
Marker-based automatic annotation labels cells or cell clusters
on the basis of the characteristic expression of known marker
genes. To be successful, the marker gene or gene set (a collec-
tion of marker genes) should be specifically and consistently
expressed in a given cell, cluster or class of cells (e.g., immune
cells). Markers are readily available for well-characterized
organisms and cell types (e.g., human peripheral blood
mononuclear cell (PBMC) samples32). Marker-based automatic
annotation works well once a relevant and sufficiently large set
of marker genes is collected33.

To label individual cells, one of the most reliable marker-
based annotation tools is semi-supervised category identifica-
tion and assignment (SCINA)34. SCINA assumes that each
marker follows a bimodal gene expression distribution, where
one peak corresponds to cells from the associated cell type, and
the other peak contains the rest of the cells in the experiment. A
cell of a particular type is assumed to have expression in the
upper part of this distribution for all the markers of that cell
type, consequently requiring markers provided as input to
SCINA to be specific to only one cell type. AUCell35 is another
good marker-based labeling method that classifies individual
cells or clusters. AUCell ranks the genes in each cell by

decreasing expression value, and cells are labeled according to
their most active (highly expressed) marker gene sets. AUCell
works best with cell types that have a sufficiently large set of
marker genes such that multiple markers are detected in each
cell. It has the advantage of scoring a whole set of marker genes
at once, which may increase sensitivity over methods that
examine each marker gene independently.

To label whole clusters, gene set variation analysis36 (GSVA)
has been benchmarked to be fast and reliable37. GSVA works
similarly to AUCell: given a database of marker gene sets, it
identifies sets that are enriched in the gene expression profile of
a cluster. The GSVA software has the practical advantage that it
can annotate all clusters in one operation.

Marker-based automatic cell annotation methods often have
the advantage that they will assign labels only to cells associated
with known markers, and other cells will remain unlabeled33.
However, this depends on the specific tool and the parameters
used; see Table 2 and Supplementary Table 1 for details on
which tools have the option to leave cells unlabeled. A dis-
advantage of these tools is that markers are not easily accessible
for all cell types.

Reference-based automatic cell annotation
Reference-based cell annotation is based on the concept of ‘guilt
by association’, whereby a cell or cluster label in the reference
data is transferred to an unlabeled cell or cluster in the query
data with a similar gene expression profile. Consequently, this
approach is possible only if high-quality and relevant annotated
reference single-cell data are available. Studying the original
clustering and annotation steps performed on the reference
data can help determine its quality and ensure that errors in the
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Fig. 2 | Cell annotation workflow. The recommended cell annotation process is composed of three major steps: automatic cell annotation, manual cell
annotation and verification. The scRNA-seq data typically enter the workflow as a clustered gene-by-cell matrix, which is visualized using a
dimensionality reduction method. An automatic cell annotation method is used to annotate cells either by comparison of the data with annotated
reference data (e.g., a single-cell atlas) or using known marker genes indicative of a specific cell type. Manual annotation confirms or provides further
detail for annotated cells or clusters or identifies the cell type of unlabeled clusters. Cell type can be manually inferred using a combination of marker
genes, pathway analysis and differentially expressed genes with known functional information. Cell annotations are often verified using independent
sources, such as new validation experiments, or comparison to complementary data, such as spatial transcriptomics data.
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reference will not be propagated to new data. Tissue-specific
reference data can be obtained from public databases (e.g., the
GEO25 or the Expression Atlas26) or large cell atlas projects
(e.g., the Human Cell Atlas27, the Tabula Muris or Mouse Cell
Atlas5 or others4,28,38–40), although the required associated cell
annotations are not always easily available. These atlases typi-
cally contain hundreds of thousands of cells and dozens of
different annotated cell types.

scmap41 is one of the best performing tools for reference-
based automatic cell or cluster annotation in terms of both
accuracy of assigned labels and avoiding incorrect labeling of
novel cell types33. Other tools for reference-based automatic
annotation include SingleCellNet42 and SingleR43. Single-
CellNet has high accuracy when all cell types are well repre-
sented in the reference data but has low accuracy if the
reference data are incomplete or represent a poor match33. The
main advantage of SingleR is that a reasonable, general refer-
ence data set is included with the tool, but this may not perform

as well as a reference specifically matched to the query data set.
An alternative to using specific software packages for reference-
based cell annotation is to train a machine learning tool, such as
a support vector machine44 or random forest classifier45, on
selected reference data. This model can then be applied to
classify cells or clusters as specific cell types in novel data. These
methods can outperform any of the prepackaged automatic-
annotation software tools33 but require substantial computa-
tional expertise to use.

Another approach to reference-based cell annotation is to
integrate a query data set with a reference data set using an
integration algorithm, enabling clusters to be identified that
span both data sets (Box 2). The reference labels can then be
transferred to within-cluster query data cells. This approach
supports the identification of novel cell types, distinct cell types
and gradients in cell state but can be computationally expensive
to run, and additional problems, such as overintegration, may
be encountered.

Table 1 | Comparison of the caveats and recommendations for different approaches to cell annotation

Stage of
analysis

Aspect of analysis Potential caveats Recommendation

Automatic cell
annotation

All automatic methods Fast, but not effective for poorly
characterized cells

Use manual annotation for poorly
characterized cells

Annotating clusters May miss important differences
between cells

Use automatic annotation of clusters to get a
general idea of cell type and then refine labels
manually. In addition, use multiple cluster-based
methods and compare results

Annotating individual cells Ideal, but requires high reads per cell Experiments with low reads per cell require
cluster-based annotation

Marker-based annotation
methods

Marker genes not easily accessible for all
cell types; may result in conflicting or
absent cell labels

Requires expert knowledge to curate more
extensive marker lists

Reference-based annotation
methods

Perform poorly with incomplete or poorly
matched reference data, which may
result in conflicting or absent cell labels

Use well-matched reference data or marker-based
methods if such data are unavailable

Often requires batch correction, which
may reduce the accuracy of results

Analyze the reference data for strong biological
signals. Use a good experimental protocol that will
prevail over batch effects

Mistakes in reference data get carried
over to results

Analyze reference data for potential errors
before using

Comparing results from
different automatic annotation
methods

Results may not agree with each other Compare confidence scores of respective labels
and consider label agreement (majority rule);
resolve conflicts using manual annotation

Consider the possibility of cell subtypes, new cell
types or gradients and cell states

Expert manual
cell annotation

All manual methods Slow, labor-intensive Whenever possible, begin with automatic
annotation to determine general cell labels

Subjective Work with an expert; consider multiple cell-type
conclusions

Marker-based annotation Cell types not distinguishable by a
single marker

Use multiple markers for each cell type

Known markers not distinguishing
cell types

Curate larger lists of markers from the literature,
additional experiments or experts

Conflicting marker gene sets between
sources

Select a marker gene set that best represents the
biological signal being looked for in the data (e.g., if
looking for cell subtypes, use more extensive gene
sets than what is used for general cell-type
annotation)
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Refining automatic annotation
Benchmarking studies show variable performance of automatic
annotation tools, depending on the data set and distinctiveness
of the gene expression profiles of the cell types to be anno-
tated33,37. For instance, distinguishing T cells from B cells is
relatively straightforward, but automatic tools sometimes can-
not accurately distinguish CD8+ cytotoxic T cells from natural
killer cells (Fig. 3). Thus, we recommend applying multiple,
complementary annotation tools with multiple available marker
gene databases to a single data set.

When applying multiple cell annotation methods to
a data set, cells or clusters will acquire multiple, sometimes
conflicting, cell-type labels. A set of annotations on a cell or
cluster can easily be resolved to a single label if all labels
are in agreement. If conflicts exist, most tools provide label
confidence scores that can be used to identify a single
high-scoring label. However, confidence scores are not stan-
dardized between tools, so they are often not comparable.
Conflicts can also be resolved via a majority-rule
approach, which selects the most frequent label (Fig. 4), or

Box 2 | Correcting confounding factors

ScRNA-seq data contain a mix of biological (e.g., cell types, states, age, sex and disease condition) and technical (e.g., batch effects) factors116. It is
important to correct for undesired (i.e., ‘confounding’) factors while maintaining biological signals of interest. Confounding factors can either be
regressed out of the data or adjusted for when integrating data from multiple samples (Fig. 7). Batch effects can be identified when cells from
different batches form distinct stripes within groups or completely separate groups in a 2D visualization (Box 1). Harmony, mnnCorrect, Seurat v3
and LIGER are among the top-performing scRNA-seq integration or batch-correction tools117.
Harmony105 iteratively merges data sets represented by top PCs, which are then used to cluster cells. Each cell is iteratively adjusted on the basis of
an estimated correction vector to shift it closer to the center of its cluster until convergence. MNN approaches, such as mnnCorrect/FastMNN107

or Seurat v321, identify the most similar cells (MNNs), called ‘anchors’, across data sets that are used to estimate and correct the cell type–specific
batch effects. LIGER108 identifies shared (common biology) and unique (biological or technical) factors between data sets using non-negative
matrix factorization. LIGER is recommended when specific cell types appear to be present in some of the data sets and missing in others117.
Integration methods can suffer from overcorrection, where different cell types are merged, or undercorrection, when resulting clusters contain cells
from only one input data set. Multiple integration methods may need to be evaluated to find a balance that best represents the data.
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percent agreement between methods. If no label can be con-
fidently decided, the cells or cluster must be manually
annotated.

Conflicting annotations within a cluster may reflect
important information about that cluster, such as whether
it contains cell subtypes. However, if subtypes cannot be
clearly defined, a more general cell-type annotation may be
more appropriate. For example, if a cluster is annotated as
regulatory T cells, naive T cells and helper T cells by different
methods, it may be most appropriate to assign the general
label of ‘T cells’. In this case, the original clustering
parameters should be altered to better capture cell subtypes
(see ‘The impact of experimental and analysis parameters
on annotation’).

If the conflicting annotations are not subtypes of the
same cell type, then the cluster may represent an intermediate
cell state or gene-expression gradient. Because many
automatic annotation tools assume discrete cell types, they
often assign clusters or cells within a larger gradient to a
well-defined endpoint. However, gradients often contain cells of
various phenotypes; thus, multiple methods may assign the
same cell to different ends of the gradient. Recommendations
for handling gradients are discussed in Annotating cell states
and gradients. Alternatively, a conflicting label on a cell could
indicate that the cell is actually a doublet; a scenario in
which two or more cells of different types are captured by the
same cell-barcode. This case can be detected using
doublet-finding methods46–48.

Most automatic annotation tools are designed to annotate
individual cells (Table 2 and Supplementary Table 1). Advan-
tages of this approach are the ability to identify insufficiently
resolved cell types and cellular gradients and the independence
to choose clustering resolution, feature selection and dimen-
sionality reduction parameters. Interestingly, the resulting
annotations can be used to inform these analysis choices. For
example, cell annotation could help optimize the clustering
process to result in one cluster per cell type.

Finally, a cluster may have a novel cell identity that is absent
from the reference data. This often results in widely varying
results from automatic annotation methods or insufficient
confidence for any tool to assign any label. In such situations,
manual annotation must be performed.

Step 2: expert manual cell annotation
Although automated cell annotation methods are convenient
and systematic, they require an appropriate reference database
and do not always result in high-confidence annotations. When
these methods result in lower confidence, conflicting or absent
cell labels, expert manual annotation is required. In manual cell
annotation, cells are manually examined for clues to their
function using various resources, following the same principles
as marker-based automatic annotation. Manual annotation
usually operates at the cluster level for convenience, but rare
cells can be individually examined. Expert manual annotation is
typically regarded as the gold-standard method for annotating
cells; however, it is slow and labor intensive and can
be subjective.

If automatic annotation has not been performed, marker-
based annotation should first be manually applied. Usually,
each known marker gene is individually visualized on the 2D
projected data map (Box 1) to create a ‘gene expression overlay’
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plot (Fig. 5). The entire list of markers may also be simulta-
neously visualized across clusters as a heat map (Extended Data
Fig. 1) or dot plot (Fig. 6). A dot plot is more informative than a
heat map, because it can communicate mean detected gene
expression levels and the proportion of cells in a cluster in
which each gene is detected, whereas a heat map typically
describes only average gene expression levels per cluster. If
many marker genes for a known cell type are highly expressed
across cells in a cluster, this is often sufficient support for it to
be labeled as that cell type. Easy-to-use software such as the free
Loupe Cell Browser for 10x Genomics scRNA-seq data supports
this visualization and analysis process. Challenges in this
approach are that well-known markers are often too few in
number to completely annotate an scRNA-seq data set, and
some well-known markers may not be as specific within an
scRNA-seq data set as expected. Additional markers often must
be manually found via searching the literature and mining
existing single-cell transcriptomic data for gene expression
signatures related to the query data set. Master transcription
factors that drive cell fate49,50 often make better gene expression
markers than cell-surface proteins that are commonly used to
classify cell populations with methods such as like flow cyto-
metry5,39, presumably because mRNA and protein levels may
not be strongly correlated51. Furthermore, there may not be any
single distinguishing gene expression marker, in which case,
multiple genes must be used together to distinguish a cell type
from others in the data.

The ideal primary source for cell-defining genes is a single-
cell atlas from a relevant organism, organ and disease context.
In the absence of this, gene expression markers can be collected
from bulk RNA-seq data from purified cell populations isolated
from the same tissue source52. Given that protein expression
may correlate with mRNA expression, protein expression
markers can be gathered and used as potential gene expression
markers53 from published evidence of staining patterns within
the tissue (i.e., using immunohistochemistry or immuno-
fluorescence), flow cytometry and western blots. Integrating
markers from independent sources can be challenging because
of conflicts between lists. For instance, PanglaoDB23 contains
220 markers for B cells, and CellMarker24 contains 1,426
markers, yet only 66 are shared. If species-specific data are
scarce, then data can be transferred by orthology from model
organisms (Box 3) or other models (e.g., in vitro cell culture or
organoids).

Ideally, each cluster will uniquely express the markers
of one cell type. However, in some instances a cluster
may not express markers of any known cell type; conversely,
it may express markers of more than one cell type. Clusters that
express markers of more than one cell type may represent
doublets. Typically, such clusters will be very small compared
to the clusters of true single cells, and they may express
more genes than single cells. There are various doublet
detection tools that can help determine if a cluster is
composed of doublets46–48. If a cluster does not express markers

a

b

CD68

Macrophages

LYZ

Inflammatory macrophages

MARCO

Non-inflammatory macrophages

ALB

Hepatocytes

CYP3A4

Pericentral hepatocytes

SCD

Periportal hepatocytes

40

20

–20

–40

40

20

–20

–40

–40 –20 20 40

17.8

0

tSNE_1

–40 –20 20 40

14.61

0

tSNE_1

–40 –20 20 400

tSNE_1

–40 –20 20 400

tSNE_1

–40 –20 20 400

tSNE_1

–40 –20 20 400

tSNE_1

tS
N

E
_2

tS
N

E
_2

0

0 7.71 0 9.23 11.03

10.51

0

0

20

40

–20

–40

tS
N

E
_2 0

0

40

20

–20

–40

tS
N

E
_2 0

0

40

20

–20

–40

tS
N

E
_2 0

40

20

–20

–40

tS
N

E
_2 0

0

Fig. 5 | Visualizing well-known markers. Human liver marker genes are visualized as gene expression data overlaid on a t-SNE plot. The various
markers represent: immune cells and immune cell subtypes that can be easily identified by well-known markers (a) and hepatocytes and inferred
hepatocyte subtypes that are difficult to identify because the markers are not as well characterized and may vary across individual samples (b). Gene
expression data are reported in MacParland et al.100.

REVIEW ARTICLE NATURE PROTOCOLS

8 NATURE PROTOCOLS |www.nature.com/nprot

www.nature.com/nprot


of any known cell type, it may contain poor-quality cells or
represent a novel cell type.

Once cell-type information from known markers is
exhausted, cells that have not been confidently annotated must
be manually examined, cluster by cluster. Potential novel
markers are identified by computing differential expression
between a cluster and all other cells54–56 (Fig. 6 and Extended
Data Fig. 1). All marker genes are then manually researched to
find functional information that may help identify the cell type

of the cluster with which they are associated. Pathway
enrichment analysis should also be applied to each cluster to
identify cluster-specific pathways using standard workflows57

and tools such as gene set variation analysis (GSVA)36 or
single-sample gene set enrichment analysis (ssGSEA)58. Path-
way enrichment analysis simultaneously scores multiple func-
tionally related genes for gene expression activity within a
cluster at once and can be more sensitive than individual
gene-based analysis.
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Box 3 | Cell annotation across species

Sometimes the best reference single-cell map to use for cell annotation is from a different organism. To use such a reference for cell annotation,
genes from the query organism must be mapped by orthology to genes from the reference, using databases such as Ensembl118 or EggNOG119 or
tools such as OrthoFinder120, before being input to data integration or marker-based annotation methods. Typically, one-to-one orthologs are
used100,121, which better ensures the conservation of function, although it is possible to use one-to-many and many-to-many relationships to
increase gene coverage. The latter can be accomplished by grouping paralogs to create artificial gene groupings called ‘meta-genes’122. If
homologous genes are unavailable, genes from each species can be aggregated into pathways or ‘biological process activities’, which are compared
across species to improve sensitivity of cross-species mapping123. If the query species genome has not been sequenced, RNA transcripts can be
assembled de novo from the entire pool of RNA-seq reads from all cells, which are then used to quantify gene expression and identify orthologs.
Evolutionarily close reference species should be chosen; otherwise, integration may not be able to map similar cell types for annotation transfer.
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Some cells may be challenging to annotate, including novel
cell types, which can be described on the basis of the function of
genes they express. Furthermore, it can be particularly difficult
to differentiate between tissue-resident cells (e.g., tissue-resident
macrophages) and non-tissue-resident cells (e.g., monocytes
circulating in the blood) of the same overall type. One approach
to identify tissue-resident cells is to modify the experimental
design to remove passenger cells from the tissue in question
with a perfusion step. However, the number and types of cells
removed by flushing will depend on the specific tissue and
protocol. In situations where this flushing is not possible, one
may profile PBMCs from the same individual and then subtract
those cell signatures from the tissue map using the cell
annotation methods mentioned above.

Ultimately, when annotating cell types, it is prudent to use
standard nomenclature, such as from the Cell Ontology, which
is a hierarchically organized controlled vocabulary of cell types
and subtypes59–61. This enables maps to be more easily inte-
grated across studies.

Annotating cell states and gradients
When analyzing and characterizing novel cell types, it is
important to determine whether they represent a stable cell type
or contain multiple cell states. The definitions of cell type and
state are not yet standardized, but a stable cell type may be
expected to have homogeneous gene expression across a cluster
and be compact in a 2D projection plot (Box 1), whereas cell
gradients appear as a spread-out string of cells and cell states
(e.g., cell cycle state) (Fig. 6). Expression gradients indicate
continuous differences that are present in the cell population,
which could represent states like the cell cycle62, immune
activation63, spatial patterning64 or transient developmental
stages65,66. Care must be taken to distinguish biologically
meaningful cell states and experimental batch effects, which can
manifest in a similar way (Box 2, Fig. 7).

Annotating the intermediate stages of a gradient is often
difficult, because these regions rarely express unique marker
genes. It is often easier to label the ends of a gradient and then
characterize intermediate stages using the order of specific
genes that mark these ends as increasing or decreasing across
the gradient. Extracting the cells in the gradient and performing
principal component analysis (PCA) on them is often a useful
visualization for gradients, because it preserves the large-scale
distances between cells (Fig. 6). There are currently no auto-
mated gradient annotation methods; thus, gradients must be
manually annotated, making use of known structure and cell-
type transitions relevant to the particular experiment7,59.

Similarly, homogeneous or similar cell states or cell types are
often difficult to annotate because they share many of the same
marker genes (Fig. 3). For instance, when annotating T cells within

a tissue sample, it is common for all the T-cell subtypes to exhibit
common T-cell markers; the subtype-specific markers are hidden
within or below the general T-cell signal. In this case, it is often
useful to subcluster the population, or to test each subpopulation
specifically against the other related clusters to identify the
subtype-specific markers. Very fine distinctions between highly
similar cell types may not be visible transcriptionally and may be
visible only in other genomic layers, such as chromatin state
(assay for transposase-accessible chromatin using sequencing
(ATAC-seq) and DNA methylation).

Step 3: annotation verification
The above tools and approaches can provide confident cell-type
labels for scRNA-seq data. However, because of the various
challenges discussed above, it is important to confirm cell
annotation labels using independent methods such as statistical
methods67 or by consulting an expert. Furthermore, because
mRNA measurements only partially define cell type and func-
tion, important conclusions about novel cell types must be
experimentally validated.

As an example, cell-type labels of tissue-resident immune
cells can be refined using T-cell receptor (TCR)68 and B-cell
receptor69 clonotyping, to examine the transcriptional signature
of T and B cells as stratified by the TCRs and B-cell receptors,
respectively, that they express. For instance, mucosal-associated
invariant T cells express the marker genes SLCA4A10 and
KLRB170, which can be identified in an scRNA-seq experiment,
as well as the known semi-invariant TCRs that are found in
MAIT cells (TRAV1-2/TRAJ12/20/3), which can be revealed by
TCR clonotyping. In addition, identifying the B-cell receptor
repertoire within single-cell data sets enables annotation of
naive versus mature B cells. Naive B cells express both IgM and
IgD heavy chains, whereas mature B cells, which have under-
gone antibody class switching by V(D)J recombination, express
IgG, IgA or IgE heavy chains. Other traditional methods to
increase cell annotation confidence include in vitro functional
assays, such as cytokine secretion, proliferative capacity and
cytotoxic potential measures; imaging experiments, such as
fluorescence in situ hybridization71 of source tissue samples72;
and single-cell qPCR to verify the co-expression of a novel
combination of marker genes in a larger number of sam-
ples73,74. Complementary single-cell genomic methods are also
useful, such as cellular indexing of transcriptomes and epitopes
by sequencing51, which simultaneously immunophenotypes cell
surface proteins and measures scRNA-seq; single-cell ATAC-
seq, which maps chromatin state; and spatial transcriptomics,
which combines cell imaging and scRNA-seq to measure spatial
transcript patterns and cell morphology in one experiment75.

In the context of tumor biology, mutations are important to
distinguish cancer and normal cell types. Genetic alterations such

Fig. 7 | Batch correction. Three PBMC samples were assayed with the 10x platform using different library construction protocols: 5′ (green, 7,726
cells), 3′ V1 (orange, 5,419 cells) and 3′ V2 (blue, 7,726 cells). a and b, UMAP diagrams showing clusters annotated by the SCINA using PBMC
markers collected by Diaz-Mejia et al.37 c–f, Bar graphs indicating the proportions of cells per cluster. The left column (a,c and e) shows the data
merged without batch correction, and the right column (b,d and f) shows the data integrated using the Harmony batch correction method. Before
Harmony, cells group by experimental protocol, clusters rarely contain cells from multiple experiments and multiple clusters of the same cell type exist
(e.g., there is one B-cell cluster for each experimental protocol, circled in e). After Harmony, cells group by cell type, clusters contain cells from various
protocols and fewer clusters share a cell identity.
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as single-nucleotide variants and copy-number variants (CNVs)
can be detected in single-cell data using tools developed for bulk
RNA-seq data76, despite challenges with sequencing coverage.
CNV inference methods identify consistently up or down
expression values relative to a reference across large numbers of
genomically contiguous genes to call amplification or deletion
events, respectively. HoneyBADGER77 and CaSpER78 methods
predict CNVs using other cells in the data as a reference, whereas
InferCNV79,80 uses a given set of normal cells.

Experimental design considerations
The impact of experimental and analysis parameters on
annotation
Cell-type annotation quality is affected by many data analysis
pipeline parameters, such as data filtering and data quality
settings, and the selected clustering resolution. Quality control
filtering often involves removing cells from the data set where
the marker genes are highly enriched in mitochondrial, heat
shock, or other stress-response genes81–83, but this must be
balanced to retain important biological signals that should be
kept and annotated84.

Choosing an appropriate clustering resolution is critical for
accurate cell annotation. If the clustering resolution is too low,
rare cell types may be merged with larger clusters, or related cell
subtypes may be merged with each other. If the clustering
resolution is too high, a single cell type may be split across
multiple clusters with few unique markers that are often a result
of experimental noise rather than distinguishing biological
function. To identify rare cell types, it may be necessary to use a
feature selection tool that specifically identifies markers of rare
cell types (e.g., GiniClust85) before clustering the cells. However,
this can lead to overclustering of data sets that do not contain
rare cell types. If cell-based annotation identifies multiple cell
types within a cluster, then increasing the clustering resolution
or subsetting the cluster and rerunning the clustering on the
resulting smaller group of cells to create a zoomed-in map can
help isolate these unique cell groups. Tools such as scClust-
Viz86, Seurat21 and clustree87 help select an appropriate clus-
tering resolution.

Cell-based automatic annotation tools are often useful for
choosing an appropriate clustering resolution, because the
results are independent of the clustering pipeline. Thus, the
clustering parameters can be tuned to identify clusters that
correctly segregate cells annotated to different types. Alter-
natively, the presence of cluster-specific differentially expressed
genes can be used to tune the clustering parameters either by
gradually increasing or decreasing the resolution until the
maximum number of clusters that still exhibit unique differ-
entially expressed genes is identified.

In some cases, the original gene expression matrix generated
by droplet-based technologies can be contaminated by cell-free,
or ‘ambient’, mRNA within the cell suspension. Frequently, the
ambient RNA is derived from one or more cell types that
are sensitive to the tissue dissociation or cell-handling steps of
the scRNA-seq experiment and break apart. As a result, mar-
kers of the contaminating cell types may be spread to all other
cell clusters, which will interfere with marker determination.
It is possible to estimate and correct the background

contamination using methods such as SoupX88, which looks for
nonspecific expression of cell-type markers, or CellBender89,
which uses machine learning to learn and correct cell expres-
sion profiles. However, care is needed to avoid over- or
undercorrecting the data.

Workflow recommendations
The preferred starting approach for transcriptomic cell map
annotation depends on the level of computational skills of the
annotator. We recommend starting with automatic annotation
because it is fast and reproducible, thus efficient for large data
sets with many samples. Automated methods require pro-
gramming, database and data science skills to operate (mainly
using R or Python programming languages). A little pro-
gramming knowledge goes a long way, because many recom-
mended software packages are well documented and easy to use
with basic programming knowledge. We strongly recommend
that anyone working regularly with single-cell genomics data
learn programming. R programming is a good language to start
with, because of its prevalent use in single-cell genomics and
ease of use. This recommendation may change, because an
increasing number of point-and-click tools are being
developed that package automated methods into easy-to-use
workflows90–92. A second recommendation is to use a powerful
computer with lots of memory (e.g., 128 GB of RAM), because
current analysis and visualization methods load all data in
memory for processing.

If needed, the map can be completely annotated manually by
investigating gene expression patterns of cells and associated
gene functions using point-and-click software (e.g., Loupe
Browser, GSEA and Cerebro93) without programming skills.
This process is easier for those knowledgeable about the biology
and markers of the cells in the sample, and it is sufficient for
many projects but is time consuming, especially if it must be
repeated for multiple analysis parameters, such as different
cluster resolutions. Even if automatic cell annotation is used,
some manual annotation is usually needed because of the
incompleteness of known marker databases and single-cell
atlases on which automated methods depend.

Manual annotation should begin by identifying major well-
known cell types, indicated by clearly defined, discrete cell
clusters, because these are easiest to work with. Each cluster
presents its own challenge; in the same experiment, one cluster
could be annotated easily using a single well-known marker,
and another may require iterations of data preprocessing
pipeline optimization to accurately annotate. More challenging
aspects of the map, such as cell subtypes, gradients, highly
homogeneous data or poorly defined clusters, can then be
progressively annotated. Sometimes, it is useful to split the data
into broad subsets (e.g., immune, endothelial and tumor) and
apply the recommended workflow on each one. Consider each
label on the map a scientific claim that a functionally distinct
biological entity (e.g., cell type) exists and that this must be
supported by evidence.

In addition, not all tools are applicable to all data sets; it is
important to consider the availability of reliable known markers
and high-quality reference data sets or if there is sufficient
diversity in a sample to detect differentially expressed genes
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before applying methods that rely on that information. Using
an approach based on known marker genes when there are not
any repeatedly reproduced markers for the cell type of interest
may lead to false conclusions. Likewise, annotating cells or cell
clusters with a poor quality or inaccurately labeled reference
data set will likely lead to the propagation of incorrect cell type
identifications. As a final example, calculating differentially
expressed genes on a largely homogeneous sample will typically
result in a list of markers that are false positives or genes subject
primarily to experimental or technical noise that are unrelated
to the actual biology.

Concluding remarks
Although the field of single-cell genomics is rapidly advancing
and new technologies are being developed that will improve our
ability to interpret, annotate and validate single-cell maps, we
expect the overall workflow described here to remain valid over
time. We expect major improvements in automatic annotation
because of rapidly growing reference atlases, improvements to
resources like the Cell Ontology59 and improved data set
integration algorithms. These methods will also need to scale up
to much larger data set sizes with millions of cells94,95. New
experimental technologies are being developed to measure
more molecular details about each cell, including multi-omics
technologies (e.g., mRNA, ATAC-seq96, methylation97 and
surface proteins98) that can measure multiple types of infor-
mation about individual cells, and these are expected to greatly
improve our ability to understand multicellular systems. For
instance, epigenetic information will help define stem cell
subtypes that are not detectable using transcriptomics99. Data
sets acquired from millions of cells across hundreds of patients
will create computational challenges related to efficient analysis
and annotation, requiring analysis to be performed on high-
performance computing or cloud computing systems. In addi-
tion, meta-analyses across many single-cell maps will more
clearly identify cell-type markers (e.g., macrophage or endo-
thelial) across tissues and states (e.g., inflammation). We also
expect the focus of map interpretation to gradually shift to
comparisons across disease, age, or other conditions, as the
number of samples per study increases.

Data availability
The data used to generate this tutorial are openly available at
the following sources. The sequence data used to generate
Figs. 1 and 4 are available from MacParland et al.100 through
the NCBI GEO accession GSE115469. The analyzed data from
which the map was directly created can also be accessed
interactively as the R package HumanLiver from https://github.
com/BaderLab/HumanLiver. The sequence data used to gen-
erate Figs. 3 and 7 are available from 10x Genomics and can be
downloaded from https://support.10xgenomics.com/single-cell-
gene-expression/datasets. The sequence data used to generate
Fig. 6 are available through the NCBI GEO accession
GSE129788, as reported by Ximerakis et al.101. The analyzed
data can be accessed interactively at http://shiny.baderlab.org/
AgingMouseBrain/. The human bulk RNA-seq data used to
generate the reference data set in the accompanying
R code (https://github.com/BaderLab/CellAnnotationTutorial

and https://codeocean.com/capsule/d67541eb-43f8-4cae-a258-
5ef0069e5301/) are available from the Database of Immune
Cell Expression and can be downloaded in R through the
package ‘celldex’43 by the command DatabaseImmuneCell
ExpressionData(). The query data set used in the accompanying
R code is available from 10x Genomics and can be downloaded
from https://cf.10xgenomics.com/samples/cell-exp/1.1.0/pbmc3k/
pbmc3k_filtered_gene_bc_matrices.tar.gz. The collection of
PBMC marker genes used in the accompanying R code is avail-
able from Diaz-Mejia et al.37 with read data from NCBI Sequence
Read Archive accession number SRX1723926. The supplementary
data from the Diaz-Mejia et al. paper can be accessed at https://
zenodo.org/record/3369934/#.X3CGN5NKjGI. The Gene Matrix
Transposed (GMT) file used for pathway analysis in the accom-
panying R code can be downloaded from http://download.baderla
b.org/EM_Genesets/current_release/Human/symbol/Pathways/
Human_MSigdb_March_01_2021_symbol.gmt.

Code availability
An R script that implements the main workflow described in
this proposal is available at https://github.com/BaderLab/
CellAnnotationTutorial, and a version-controlled copy is
available through Code Ocean at https://codeocean.com/ca
psule/d67541eb-43f8-4cae-a258-5ef0069e5301/.
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Extended Data Fig. 1 | Heat map and UMAP visualizations. An extension of Fig. 6 incorporating the visualization of marker genes for identified cell
types as a heat map (a) and a Mllt11 expression overlaid on a UMAP plot (b). Mllt11 is expressed at various levels across clusters, suggesting a cell-
type gradient across NRP, ImmN, NendC and mNEUR. Both plots are generated from scRNA-seq data from young and old mouse brains101.
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