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Abstract

Single-cell RNA sequencing (scRNA-seq) can map cell types, states and transitions during

dynamic biological processes such as tissue development and regeneration. Many trajec-

tory inference methods have been developed to order cells by their progression through a

dynamic process. However, when time series data is available, most of these methods do

not consider the available time information when ordering cells and are instead designed to

work only on a single scRNA-seq data snapshot. We present Tempora, a novel cell trajec-

tory inference method that orders cells using time information from time-series scRNA-seq

data. In performance comparison tests, Tempora inferred known developmental lineages

from three diverse tissue development time series data sets, beating state of the art meth-

ods in accuracy and speed. Tempora works at the level of cell clusters (types) and uses bio-

logical pathway information to help identify cell type relationships. This approach increases

gene expression signal from single cells, processing speed, and interpretability of the

inferred trajectory. Our results demonstrate the utility of a combination of time and pathway

information to supervise trajectory inference for scRNA-seq based analysis.

Author summary

Single-cell RNA sequencing (scRNA-seq) enables an unparalleled ability to map the het-

erogeneity of dynamic multicellular processes, such as tissue development, tumor growth,

wound response and repair, and inflammation. Multiple methods have been developed to

order cells along a pseudotime axis that represents a trajectory through such processes

using the concept that cells that are closely related in a lineage will have similar transcrip-

tomes. However, time series experiments provide another useful information source to

order cells, from earlier to later time point. By introducing a novel use of biological path-

way prior information, our Tempora algorithm improves the accuracy and speed of cell

trajectory inference from time-series scRNA-seq data as measured by reconstructing

known developmental trajectories from three diverse data sets. By analyzing scRNA-seq

data at the cluster (cell type) level instead of at the single-cell level and by using known

pathway information, Tempora amplifies gene expression signals from one cell using
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similar cells in a cluster and similar genes within a pathway. This approach also reduces

computational time and resources needed to analyze large data sets because it works with

a relatively small number of clusters instead of a potentially large number of cells. Finally,

it eases interpretation, via operating on a relatively small number of clusters which usually

represent known cell types, as well as by identifying time-dependent pathways. Tempora

is useful for finding novel insights in dynamic processes.

This is a PLOS Computational Biology Methods paper.

Introduction

Dynamic tissue-level processes, such as development, aging and regeneration, are critical for

multicellular organisms. Single-cell RNA sequencing (scRNA-seq) enables us to map the range

of cell types and states in these processes at cellular resolution [1]. A single scRNA-seq snap-

shot can be used to infer lineage relationships between cell types and states [2]. Snapshot

scRNA-seq studies have been used to investigate multiple aspects of development, including

the early embryo, blood, different areas of the brain and more [3]. Even though snapshot

scRNA-seq can provide novel insights into development, it has recognized limits [4], including

that cell populations that appear earlier or later than the sampling time cannot be studied.

Time-series scRNA-seq can address some of these limits and has been increasingly applied to

study tissue development, including in cerebral cortex [5], kidney [6], and heart [7].

When using scRNA-seq to study dynamic processes, whether through snapshot or time-

series experiments, it is of interest to order cells at different stages along an axis that represents

how far along they are on the process under study, based on their transcriptional signatures.

The ordering problem, commonly termed pseudotime ordering if it is inferred from data with-

out a known temporal ordering, consists of two main parts: the identification of a trajectory

representing the paths that cells follow, and the determination of pseudotime values for indi-

vidual cells along this trajectory. This inferred trajectory enables us to study the sequential

changes of gene expression during a process, as well as identify branches and instrumental

genes at the branching points. More than 70 computational methods to order cells along pseu-

dotemporal axes, known as trajectory inference methods, have been published, which employ

different strategies to infer lineage and order cells [8]. Most trajectory inference methods are

developed based on the basic premise that cells closer in developmental lineage have more sim-

ilar gene expression signatures, thus a likely trajectory is a path through gene expression space

that maximizes cell-to-cell similarity. Common strategies for trajectory construction include

fitting a minimum spanning tree (MST), which connects all data points in a path that mini-

mizes distance between points, or nonlinear dimensionality reduction that identifies a low-

dimensional manifold that cells lie on. Monocle 1, a pioneering trajectory inference method,

constructs a MST connecting all cells in a reduced dimension space, then determines the lon-

gest path through this tree as the backbone and orders cells along this path [9]. Some methods,

including TSCAN and Slingshot, build the MST on cell cluster centroids, representing cell

types and states, instead of individual cells, and project cells on the MST to determine their

pseudotime values [10,11]. Other methods, such as PAGA and StemID, use graph theory

methods, such as graph partition, to construct trajectories [12,13]. Expanding on the graph

partition idea, Monocle 3, the latest version of Monocle, infers the possible paths cells can take
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through a dynamic process by learning a principal graph on the coarse-grained trajectory con-

structed by PAGA [14]. Many available trajectory inference methods have been evaluated and

integrated in Dyno, a platform that enables users to conveniently apply selected methods to

their data [8].

While many scRNA-seq trajectory inference methods exist, few have been designed to con-

sider time-series information. Trajectory inference methods that explicitly incorporate tempo-

ral information include Waddington-OT, which models cells’ movement through dynamic

processes using the optimal transport framework, and CSHMM, which uses a continuous-

state hidden Markov model to assign cells to developmental paths [15,16]. These methods

demonstrate the utility of time information for trajectory inference. Here, we hypothesize that

trajectory inference can be improved by the combined use of time series information in order-

ing cells and of pathway information to both reduce noise in gene expression data and increase

interpretability of the dynamic process under study. To test this, we developed the Tempora

method to infer cell lineage maps from time-series scRNA-seq data using biological pathway

information. Tempora works at the cell cluster level to align cell types and states (clusters)

across time points using redundancy reduced pathway enrichment vectors, then infers trajec-

tory relationships between these cell types using the available temporal ordering information.

Evaluating Tempora on three diverse time-series scRNA-seq data sets using gold standards

showed that our method outperforms established trajectory inference methods.

Result

Method overview

The Tempora method infers cell type-based trajectories from time-series scRNA-seq data.

Tempora focuses on identifying how cell types are related across the entire time-series data set,

based on the established assumption that cells with similar gene expression profiles are closer

in the underlying cell lineage. After identifying cell type transcriptome similarity relationships,

Tempora orders these links based on the time-series data. Cell types identified primarily in ear-

lier time points are ordered earlier in the trajectory than those identified primarily in later

time points. To build a more robust trajectory, less influenced by small outlier cell populations

and low per cell sensitivity of current scRNA-seq experimental methods, Tempora first clusters

cells with similar transcriptional signatures and infers a trajectory that connects cell clusters

rather than individual cells. These clusters represent putative cell types, such as progenitors,

immune cells, cardiomyocytes, or stable cell states (e.g. cycling, proliferating or metabolizing

[2]). Second, to improve robustness of the trajectory relationship identification step, clusters

are compared to each other based on their redundancy-reduced biological pathway enrich-

ment profiles instead of individual gene expression profiles. This also helps improve biological

interpretability of the trajectory result, as trajectory-related pathway expression patterns can

be automatically identified.

Tempora takes as input a preprocessed gene expression matrix from a time-series scRNA-

seq experiment and cluster labels for all cells. Tempora then calculates the average gene expres-

sion profiles, or centroids, of all clusters before transforming the data from gene expression

space to pathway enrichment space using single-sample gene set variation analysis (GSVA)

[17] (Fig 1). To focus on high variance and non-redundant pathway information, Tempora

applies PCA on the pathway enrichment analysis result and selects important PCs using a

scree plot (the scree plot is output to help the user select the number of PCs to use). Pathways

with high (>0.4, as recommended by [18]) loadings on those PCs are used to construct the

lineage in the next step.
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We abstract the trajectory as a network of cell clusters, where vertices represent the cell

types or states identified as clusters and directed edges represent temporal transitions between

types or states. To infer this network, Tempora uses the established ARACNE [19] method to

identify cluster relationships based on mutual information (MI) of the cluster pathway enrich-

ment profiles. ARACNE filters the MI network using the data processing inequality to remove

edges with the smallest MI in all triples, which helps remove indirect connections (Fig 1). All

resulting ARACNE edges are kept at this step. After constructing the trajectory, Tempora uses

available temporal information from the input data to determine edge directions. First, each

cluster is assigned a temporal score corresponding to its cell composition from each time

point, so that a cluster containing more cells from an early time point will have a low score and

vice versa. Trajectory network edges are then directed so that their sources have a lower tem-

poral score than their targets, indicating a transition from an early cell type to a later cell type.

The trajectory is visualized using the Sugiyama hierarchical layout algorithm [20].

Tempora includes a downstream pathway exploration tool to determine and visualize path-

ways that change significantly over the trajectory. These pathways are identified by fitting a

generalized additive model to the enrichment scores of each pathway across all clusters and

selecting pathways whose expression patterns deviate significantly from the null model of uni-

form pathway enrichment scores across all time points.

Validation on human skeletal muscle myoblast time-series data

We evaluated Tempora’s performance by inferring trajectories from a diverse set of time series

scRNA-seq data sets and comparing them with known, gold standard trajectories that we man-

ually curated from the literature (muscle and neural cortex data) or that accompanied the

scRNA-seq data in original publications (brain cerebellum data). We first applied Tempora to

Fig 1. Schematic of the Tempora algorithm.

https://doi.org/10.1371/journal.pcbi.1008205.g001
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a small human skeletal muscle myoblast (HSMM) data set, which includes 271 cells collected

at 0, 24, 48 and 72 hours after the switch of human myoblast culture from growth to differenti-

ation media. At the optimal clustering resolution (see Methods), five clusters were identified

and automatically annotated using GSVA, with known markers of proliferation (CDK1), mus-

cle differentiation (MYOG) and a known population of contaminating myofibroblast cells

(SPHK1) [9] (S1A–S1D Fig). Tempora identifies a branching trajectory connecting these clus-

ters, rooted at the myoblast cluster that contains mostly cells at 0 hours after the media switch.

This cluster leads to three separate branches, including a branch connected to the fibroblast

cluster, one connected to the myotube cluster, and the last one connected to the partially dif-

ferentiated myotube cluster via an intermediate cluster (Fig 2A). This branching trajectory

agrees with the known biology of muscle differentiation in vitro, in which myoblasts proliferate

and exit the cell cycle before differentiating into myotubes [9]. The fibroblast cluster contains

equal proportions of cells from all time points and uniquely expresses myofibroblast markers

(SPHK1). The equal numbers of cells from all time points in this cluster suggest that the con-

taminating cells were present in the earliest time point and persist in the culture over time,

while its separation from the other two branches suggest that these cells do not participate in

the differentiation process. Thus, Tempora identifies fibroblasts as a source of contamination

in the myoblast culture, consistent with results from other trajectory inference methods [9,10]

and from the literature [21]. Another branch in this trajectory connects the myoblast cluster to

the myotube cluster, which contains MYOG-positive cells mostly at 48 and 72 hours. (Fig 2A).

MYOG is a required transcription factor for the terminal differentiation of myoblasts into

myotubes and is rapidly upregulated when myoblasts start to differentiate around day 2 in
vitro [22]. Therefore, the appearance of MYOG-positive myotubes at 48 hours and their con-

nection to the myoblasts cluster, as predicted by Tempora, aligns with previous findings in the

literature. Finally, the myoblast cluster is also connected to an intermediate cluster, which con-

tains 75% cells from two early time points, expresses lower levels of CDK1 and does not express

MYOG (Fig 2A). The low CDK1 expression suggests that cells in this cluster have begun to exit

the cell cycle to start differentiation, thus representing an intermediate state between prolifer-

ating myoblasts and differentiated muscles that is consistent with our understanding of muscle

differentiation [23]. This intermediate cluster is predicted to give rise to a cluster of partially

differentiated cells, which contains mostly cells from later time points and expresses low levels

of the muscle-specific transcription factor MYOG. Since HSMM cultures have been noted

to differentiate asynchronously and with less than 100% efficiency, cells in this partially

Fig 2. Tempora analysis of the HSMM data set. a. Tempora trajectory built on clusters in the HSMM data set. b-c. Time-dependent pathways in the HSMM data set

identified by Tempora’s pathway exploration feature. Blue dots represent clusters/cell types, the black line is the best fit of a generalized additive model (GAM) on the

pathway enrichment scores of each pathway across all clusters, and grey areas depict 95% confidence intervals of the fitted model.

https://doi.org/10.1371/journal.pcbi.1008205.g002
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differentiated cluster likely represent a cell population that is slower to differentiate or failed to

go through differentiation, as observed in previous studies [22]. Tempora, thus, predicts a

branching trajectory that matches the structure and gene expression patterns of the known tra-

jectory [23].

We used the pathway exploration feature of Tempora to identify pathways whose enrich-

ment changed over time. Tempora identifies pathways that vary over time by fitting a general-

ized additive model (GAM) on the pathway enrichment scores of each pathway across all

clusters/time and using ANOVA to compare the fitted model with the null model of uniform

pathway enrichment over time. Pathways enriched early in the differentiation process include

the cell cycle, biosynthesis and protein translation (Fig 2B and 2C). Pathways upregulated later

are associated with the formation of myotubes, including morphogenesis and phospholipase C

signaling, which regulate myogenic activity [23,24] (Fig 2B and 2C). Thus, Tempora’s pathway

exploration component can be used downstream of trajectory inference to identify pathways

with interesting activity profiles over the time-series.

Validation on murine cerebral cortex time-series data

We next applied Tempora on an embryonic murine cerebral cortex development scRNA-seq

data set, which contains approximately 6,000 neural cells collected at embryonic days 11.5

(E11.5), E13.5, E15.5 and E17.5 [5] (Fig 3A). These cells cover a wide spectrum of neuronal

development, from the early precursors (apical precursors (APs) and radial precursors (RPs))

to intermediate progenitors (IPs) and differentiated cortical neurons. Data at all time points

were aggregated and batch effects were corrected with Harmony before clustering (see Meth-

ods) [25]. We annotated the seven resulting clusters automatically using GSVA and marker

genes for APs, RPs, IPs, newborn neurons and neurons as done in the original publication (S1

Table). This resulted in the annotation of two AP/RP clusters mostly comprising cells at E11.5,

which is consistent with the known emergence of RPs from APs at E11 [5,26], as well as two IP

clusters, one IP/young neuron cluster and two neuron clusters, all of which contain cells from

multiple time points as expected from their gradual specification over time [5] (S2B–S2G Fig).

Tempora predicts three trajectories, two rooted at the two AP/RP clusters and one rooted at

an early IP cluster (Fig 3A). Each of the two AP/RP lineages has two branches: one terminating

at an IP/young neuron cluster and another converging at a late neuron cluster. The lineage

predicted by Tempora aligns with our understanding of AP/RP asymmetric division to gener-

ate IPs and neurons in early corticogenesis [5,26,27,28]. To better understand why there are

two trajectories arising from two AP/RP clusters instead of one AP/RP cluster transforming

into another AP/RP cluster in a single trajectory, we compared the gene expression profiles of

the two clusters and identified cell cycle markers, such as Mki67 and Cdk1, to be differentially

expressed. This suggests that the two AP/RP clusters differ based on their cell cycle state: one is

actively proliferating and expressing cell cycle markers while the other is not (S2D Fig), consis-

tent with the known decreased proliferation of APs as they transition to RPs [5,29]. The obser-

vation that both AP/RP clusters contain equal proportion of cells from all time points suggest

that these two proliferative and non-proliferative AP/RP populations arise before the time-

series started, instead of one transforming into the other. Similarly, the IP cluster that serves as

the root of the third trajectory contains many cells from the earliest time point and is thus

unlikely to come from either of the AP/RP clusters, but may instead arise from earlier APs that

are not captured in this time-series data. This IP cluster is predicted to give rise to a cluster of

young neurons, which then mature into neurons as denoted by a dashed line in Fig 3A. The

dashed line signifies very high temporal score similarity (>99%, default Tempora parameter)

between the young neurons and neurons clusters indicating that we are not confident to assign
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Fig 3. Tempora analysis of the murine cortex data set. a. Tempora trajectory built on clusters in the murine cerebral cortex data set. b-e. Time-

dependent pathways in the murine cerebral cortex data set identified by Tempora’s pathway exploration feature. Blue dots represent clusters/cell types, the

PLOS COMPUTATIONAL BIOLOGY Tempora: Cell trajectory inference using time-series single-cell RNA sequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008205 September 9, 2020 7 / 28

https://doi.org/10.1371/journal.pcbi.1008205


an edge direction based on time ordering. Overall, the transitions predicted by Tempora are

consistent with our understanding of neurogenesis [5,26]. Tempora, thus, accurately identifies

distinct trajectories originating from different populations in the murine cerebral cortex devel-

opment data.

We used the pathway exploration feature of Tempora to analyze time-dependent pathway

activity levels in the data. DNA replication and other mitotic pathways are enriched early (Fig

3B), while neuron-related pathways, such as synapse activity, dendritic morphogenesis and

neurotransmitter synthesis, are enriched later (Fig 3D and 3E). These patterns are consistent

with the known proliferation of neural progenitors at the beginning of neurogenesis [29] and

neuronal activities of newborn neurons later in the process [30]. Tempora also identifies more

subtle changes in signaling pathways over time, such as the early enrichment of Insulin-like

growth factor signaling and the later upregulation of Syndecan-3 mediated signaling, both of

which are consistent with their known roles in early neurogenesis and neural circuit assembly,

respectively [31–33] (Fig 3B–3E).

Validation on murine cerebellar development time-series data

Finally, to test Tempora’s performance on a large data set containing cells from multiple line-

ages, we analyzed a murine cerebellar development time-series scRNA-seq data set of ~55,000

neural cells collected at nine time points (E10, E12, E14, E16, E18 and postnatal day 0 (P0), P5,

P7 and P14) [34]. These cells were isolated from the mesial cerebellum of wild-type mice and

belong to three main cell types found in the cerebellum: GABAergic neurons, glutamatergic

neurons and glia. They span a large developmental spectrum from progenitors to fully differ-

entiated neurons. From the original data set of ~60,000 cells, we removed ~5,000 non-neural

cells, including mesenchymal stem cells, brainstem progenitors, endothelial cells, blood cells,

meninges, pericytes and microglia to focus our analysis on the neural lineages only (see Meth-

ods). We aggregated the filtered data from all time points and batch-corrected with Harmony

before clustering. Unsupervised clustering identified 24 clusters, many of which include cells

from one or a few closely related time points (S3 Fig). Automated cluster labeling with GSVA

and known marker genes (S1 Table) identified clusters of neural stem cells at the earliest time

point, followed by the gradual emergence of cells belonging to the glutamatergic lineage,

including embryonic granule cell progenitors (GCPs), upper rhombic lip cells (URLs) and

nuclear transitory zone (NTZ) neurons, as well as ventricular zone (VZ) progenitors that give

rise to GABAergic cells. In the late embryonic time points (E16-18), NTZ neurons and excit-

atory cerebellar nuclei neurons (ECNNs) in the glutamatergic lineage, as well as GABA inter-

neurons and Purkinje cells in the GABAergic lineage start emerging. The glial lineage is the

last to emerge, with gliogenic progenitors appearing during late embryonic time points and

astrocytes appearing throughout postnatal time points. The annotations and timing of these

clusters are as described in the original publication [34].

Tempora predicts three main trajectories, two stemming from the neural stem cell clusters

in the earliest time point and one from the gliogenic progenitor cluster in the late embryonic/

early postnatal time points (Fig 4A). The first neural stem cell cluster branches out to give rise

to URL and VZ progenitors. The URL progenitors then transition to NTZ neurons, ECNNs,

UBCs, postnatal GCPs and granule cells, largely recapitulating the glutamatergic lineage [34].

The VZ progenitors branch from the first neural stem cells clusters and transition to Purkinje

neurons, one of the three GABAergic cell types known to arise from VZ progenitors. The

black line is the best fit of a generalized additive model (GAM) on the pathway enrichment scores of each pathway across all clusters, and grey areas depict

95% confidence intervals of the fitted model.

https://doi.org/10.1371/journal.pcbi.1008205.g003
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other neural stem cell cluster also transitions to cell types of both glutamatergic and GABAer-

gic lineages, giving rise to embryonic/postnatal GCPs and GABAergic interneurons, respec-

tively. Finally, Tempora predicts a third lineage of glial cells emerging in late embryonic time

points, starting with a VZ progenitors/gliogenic progenitors cluster and branching to astro-

cytes. This aligns with the understanding that glial cells and astrocytes arise from VZ progeni-

tors but differentiate quite late compared to other cerebellar cells [34]. Overall, Tempora

accurately identifies the start and end cell types of the developmental processes and captures

the main structures of the trajectories present in the data set.

We identified pathways that change over time using Tempora’s pathway exploration fea-

ture. Differentiation pathways of multiple cerebellar cell lineages, including GABAergic neu-

rons and granule cells, are enriched later in the time series (Fig 4B), consistent with our

understanding that progenitor cells differentiate into terminal cell fates as time progresses

[34]. Besides differentiation pathways, pathways related to neuronal activities, such as axonal

transport, and signaling pathways, such as TGF-β, are enriched later (Fig 4D). TGF-β’s late

enrichment in the cerebellar development time series, after the emergence of neurons, aligns

with its known role in regulating proliferation and synapse formation in cerebellar neurons

[35,36]. Meanwhile, pathways related to stem cell maintenance and signaling pathways such as

P38 MAPK are enriched early in the time series (Fig 4C). P38 kinase signaling has been shown

Fig 4. Tempora analysis of the murine cerebellar data set. a. Tempora trajectory built on clusters in the murine cerebellar data set. b-d. Time-dependent pathways in

the murine cerebral cortex data set identified by Tempora’s pathway exploration feature. Blue dots represent clusters/cell types, the black line is the best fit of a

generalized additive model (GAM) on the pathway enrichment scores of each pathway across all clusters, and grey areas depict 95% confidence intervals of the fitted

model.

https://doi.org/10.1371/journal.pcbi.1008205.g004
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to be essential for the proliferation of cerebellar granule neuron precursors, consistent with its

early enrichment in the time series [37].

Tempora outperforms other trajectory inference methods

To evaluate Tempora’s performance and compare it to other cell trajectory inference methods,

we measured the ability of a selected set of methods to recapitulate a gold standard set of known

cell trajectories we manually collected from the literature for the three developmental processes

analyzed above (muscle, neural cortex and cerebellum). For ease of comparison, we formalized

all trajectories, both predicted and known, as graphs (networks), with nodes representing cell

types, and directed edges representing parent-child relationships between connected nodes. We

used two performance scores to assess each method: graph edit distance (GED) or ‘mismatch

score’, which measures the number of edge and node additions or removals required to trans-

form the inferred trajectory to the known trajectory, and F1 score or ‘accuracy score’, which is

the harmonic mean of precision and recall of gold standard directed edge identification.

To assess performance on the human skeletal muscle myoblast (HSMM) data set, which

contains 271 cells collected at 0, 24, 48 and 72 hours after the switch of human myoblast cul-

ture from growth to differentiation media, we manually curated a corresponding gold standard

human myoblast in vitro differentiation trajectory through literature search [23,38,39,40] (Fig

5F) and compared Tempora’s inferred trajectories to this gold standard. Human myoblasts,

after exiting the cell cycle, transition through intermediate states before differentiating into

myotubes [23,41]. Since myoblasts have varied differentiating potentials and rates, a portion of

them will become myotubes while the rest remain undifferentiated, i.e. they do not, or have yet

to, express myogenic transcription factors such as MYOG, which leads to two possible

branches from the intermediate state(s) [22]. The starting culture, however, is often contami-

nated with fibroblast cells, which exert paracrine influence on the differentiation process but

cannot differentiate into myotubes [21]. These contaminating cells, thus, form a branch sepa-

rate from the main differentiation trajectory (Fig 5F).

Tempora’s predicted lineage (Fig 2A) closely aligns with the known lineage, except it connects

the myotubes cluster to the myoblasts instead of to the intermediate state. This results in a mis-

match score of 1, which means that one edge need to be changed in Tempora’s output to match

the gold standard (Fig 5G). Furthermore, Tempora achieves a high accuracy (F1) score of 0.78 as

it is able to infer the correct directions of most edges in the trajectory, except for the missing inter-

mediate state to myotubes connection (Fig 5H). This result demonstrates that Tempora is able to

infer a trajectory in the HSMM data set that is mostly consistent with the gold standard.

To assess performance on an embryonic murine cerebral cortex development scRNA-seq

data set, which contains approximately 6,000 neural cells collected at embryonic days 11.5

(E11.5), E13.5, E15.5 and E17.5 [5], we manually curated a corresponding gold standard trajec-

tory [5,26,27,28]. Murine corticogenesis consists of transitions between well-characterized cell

types. The apical precursors (APs), which delaminate from the neuroepithelium, divide asym-

metrically to self-renew and give rise to neurons [26]. At around E11, APs transition to radial

precursors (RPs), which continue the asymmetric division to generate neurons either directly

or indirectly through IPs [26,27] (Fig 6F). Tempora’s inferred trajectory of the murine cerebral

cortex data set achieves a low mismatch score and high accuracy score. It predicts almost all

known transitions between different cell types in the system, only missing the IPs to neuron

connection, which results in a mismatch score of 1 (Fig 6G). Tempora achieves a high accuracy

score of 0.9 on the murine cerebral cortex data set, demonstrating that it can accurately iden-

tify directed connections between cell types in this larger data set with multiple branches

(Fig 6H).
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Finally, to assess performance in a much larger and more complex data set, the murine cer-

ebellar development time-series containing ~55,000 neural cells collected at nine time points

[34], we collected the curated developmental trajectory made available by the authors (Fig 7E)

Fig 5. Performance evaluation on the HSMM data set. a-c. Trajectories of the HSMM data set inferred by by a. PAGA, b. Slingshot, c. TSCAN, d. Monocle 3 and e.

CSHMM. f. The gold standard trajectory used to evaluate the accuracy of all inferred trajectories. g. Mismatch scores and h. accuracy scores of trajectories from the

evaluated methods.

https://doi.org/10.1371/journal.pcbi.1008205.g005
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[34]. Tempora is able to recapitulate the three main lineages present in this data set as well as

their timing. Specifically, Tempora predicts that neural stem cells give rise to VZ and URL pro-

genitors, which then differentiate into multiple cell types of the glutamatergic and GABAergic

lineages, respectively. However, the high number of cell types leads to mistakes in placing

Fig 6. Performance evaluation on the murine cerebral cortex data set. a-c. Trajectories of the murine cerebral cortex data set inferred by by a. TSCAN, b.

PAGA, c. Slingshot, d. Monocle 3 and e. CSHMM. f. The gold standard trajectory used to evaluate the accuracy of all inferred trajectories. g. Mismatch scores

and h. accuracy scores of trajectories from the evaluated methods.

https://doi.org/10.1371/journal.pcbi.1008205.g006
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some clusters into their correct lineages. For example, Tempora mistakenly places a cluster of

ECNNs, a glutamatergic cell type, in the GABAergic lineage and a cluster of GABA interneu-

rons in the glutamatergic lineage. Finally, Tempora separates the glial lineage as a distinct

third lineage instead of connecting it to the VZ progenitor origin. Tempora achieves a mis-

match score of 29 and an accuracy score of 0.5.

We next compared Tempora’s performance with selected state-of-the-art trajectory infer-

ence methods on the validation data sets described above (see Methods). Given the large num-

ber of available trajectory inference methods, we chose to compare Tempora against Slingshot

[11] and PAGA [13] which are top-performing methods as evaluated by Dynverse [8], as well

as TSCAN (cluster-based trajectory inference) [10] and CSHMM (trajectory inference based

on temporal information) [15], which includes concepts similar to Tempora (clusters and time

point ordering, respectively). We also compared Tempora’s performance with Monocle 3, the

latest version of the pioneering trajectory inference method Monocle that has been shown to

perform well with large data sets [14].

When applied to the HSMM data, Tempora outperforms all other methods (Fig 5). Sling-

shot and Monocle 3 predict linear trajectories between myoblasts and myocytes, while TSCAN

predicts a linear trajectory between fibroblasts and myocytes (Fig 5B–5D). The linear topology

of these predicted trajectories does not reflect the separation of the fibroblast population from

the muscle lineage. Furthermore, TSCAN’s trajectory inaccurately connects two cell types of

different lineages (Fig 5C). PAGA and CSHMM both predict branched trajectories (Fig 5A

and 5E). PAGA’s trajectory starts at the myoblast cluster and branches out to the fibroblasts as

Fig 7. Performance evaluation on the murine cerebellar data set. a-e. Trajectories of the murine cerebellar data set inferred by a. TSCAN, b. PAGA, c. Slingshot, d.

Monocle 3. e. The gold standard trajectory used to evaluate the accuracy of all inferred trajectories. f. Mismatch scores and g. accuracy scores of trajectories from the

evaluated methods.

https://doi.org/10.1371/journal.pcbi.1008205.g007
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well as the myoblasts, missing the intermediate state (Fig 5A). CSHMM’s trajectory incorrectly

predicts that myoblasts transitions to fibroblasts before branching out to multiple fibroblast

and myoblast terminal states (Fig 5E). Overall, out of all methods that predict branching trajec-

tories, Tempora performs best in terms of mismatch score as it correctly identifies the expected

cell states and their directions in the HSMM data (Fig 5G). To calculate the accuracy score on

undirected trajectories inferred by other methods, we first determined the origin of the trajec-

tories based on high expression of CDK1, CCND5 for myoblasts in the HSMM data set [9],

then added directions to the inferred trajectories by directing all edges outward from the ori-

gin. Tempora’s accuracy of 0.78 outperforms all other methods, whose accuracy scores range

from 0.25 to 0.6 (Fig 5H).

Tempora outperforms all other methods on the murine cerebral cortex data set, which con-

tains more transitions than the HSMM data set (Fig 6). PAGA infers two distinct trajectories,

one starting at the AP/RP population and transitioning to IP cells then eventually to neurons,

while the other is rooted at the IP population and transitioning to neurons. This inferred tra-

jectory misses the connection between AP/RP and IP cells, as well as omits the young neuron

state from the trajectory (Fig 6A). TSCAN predicts a linear trajectory from AP/RP cells to neu-

rons, which miss the multiple transitions in between the earliest and the latest state (Fig 6C).

Monocle 3 predicts that a small AP/RP population self-renews, then branches out into two

populations, one of which transitions into neurons while the other one remains IPs (Fig 6D).

This trajectory predicts most transitions in the data set in the right order, but inaccurately

labels IPs as a terminal cell type (Fig 6D). The trajectories that most accurately capture the

gold standard are predicted by Slingshot and CSHMM (Fig 6B and 6E). Slingshot predicts a

branched trajectory, with APs/RPs branching out to neurons, young neurons and IPs, which

captures the main transitions but fails to recapitulate their correct ordering (Fig 6B). CSHMM

predicts a mixture of APs/RPs and IPs transitioning to APs/RPs, IPs, young neurons and neu-

rons (Fig 6E). Similar to Slingshot, this trajectory predicts most transitions but misses their

sequence. Overall, the performance of the trajectory inference methods on the murine cortex

varies greatly, leading to a range of mismatch scores between 3 and 8, all of which are worse

than Tempora’s score of 2 (Fig 6G). To calculate accuracy scores on trajectories from these

methods, we used Sox2 neural stem cell marker expression to infer the root of the inferred tra-

jectories of all methods except Tempora and CSHMM, and determined that all edges go out-

ward from this root. Tempora (accuracy score of 0.9) outperforms other methods on the

murine cerebral cortex data set, whose accuracy scores range from 0.25 to 0.66 (Fig 6H).

Finally, we compared Tempora’s performance with other methods when applied to the

large murine cerebellum data set (Fig 7). CSHMM was not able to finish running on this data

set, even after the number of input genes was restricted to the top 1,000 highly variable genes.

TSCAN predicts a linear trajectory connecting an early cluster of glutamatergic NTZ neurons

with a cluster of postnatal GCPs, also belonging to the glutamatergic lineage (Fig 7C). This

simplistic trajectory omits the majority of transitions between cell types present in the data.

Slingshot’s predicted trajectory connects URL progenitors to embryonic GCPs, which then

transition to VZ and gliogenic progenitors, then to granule cells and finally to NTZ neurons

(Fig 7C). This predicted trajectory, even though slightly more complex, erroneously connects

cells from multiple lineages together (URL progenitors, embryonic GCPs, granule cells and

NTZ neurons from the glutamatergic lineage, VZ progenitors from the GABAergic lineage

and gliogenic progenitors from the glial lineage) and the order of transitions does not align

with when certain cell types appear (e.g. granule cells emerge after NTZ neurons but are pre-

dicted to transition to NTZ neurons by Slingshot). PAGA predicts multiple distinct lineages

mostly with connections within cell types, potentially representative of self-renewal or matu-

rity, as well as a lineage including VZ progenitors branching out to gliogenic progenitors and
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VZ progenitors. The latter then connect to GABAergic interneurons, Purkinje neurons and

NTZ neurons (Fig 7A). The lineage PAGA captures is mostly accurate with our understanding

of the GABAergic lineage in the cerebellum, with the exception of VZ progenitors transition-

ing to glutamatergic NTZ neurons. Finally, Monocle 3 predicts a complex trajectory that spans

multiple lineages. It correctly predicts the transition of neural stem cells into URL and VZ pro-

genitors, but subsequently makes multiple errors in organizing the different cell types in the

correct lineages. For example, astrocytes are predicted to emerge from UBCs, which actually

belong to the glutamatergic lineage (Fig 7D). Therefore, even though Monocle 3’s trajectories

span all cell types present in the data set, they also include multiple spurious connections that

are unlikely to occur biologically. To calculate accuracy scores on trajectories from these meth-

ods, we used Nes neural stem cell marker expression to infer the root of the trajectories

inferred by all other methods, except Tempora and CSHMM, and determined that all edges go

outward from this root. Overall, no evaluated method, including Tempora, is able to re-

capitulate all the complex lineages present in the murine cerebellum data set, but PAGA and

Tempora perform best in terms of accuracy score, each obtaining a score of 0.5, which is sub-

stantially better than all other methods (ranging from 0 to 0.25, Fig 7F). Tempora, PAGA,

Slingshot and TSCAN have similar mismatch scores in the high 20s, while Monocle 3’s trajec-

tory results in higher mistmatch scores in the 30s (Fig 7G).

Pathway enrichment information is important for Tempora’s performance

To understand the impact of using pathway enrichment profiles on trajectory inference com-

pared to the gene expression profile input used by other methods, we compared trajectories in

all three benchmarking data sets using Tempora with and without the pathway enrichment

analysis (PEA) step. Removing the PEA step resulted in poorer performance, as evident in an

up to 4-fold increase in mismatch scores and a 3-fold decrease in accuracy scores (Fig 8).

Upon closer examination of the resulting trajectories, we observed that gene-input trajecto-

ries contain more edges between clusters with similar temporal scores compared to pathway-

input trajectories, whose edges often connect clusters from different time points. We propose

that this trend can be explained by the high similarity in gene expression profiles of clusters

that are closer in developmental time, a fundamental assumption made by trajectory inference

methods that rely on gene expression profile-based distance metrics to order cells. To test this

hypothesis and better understand the discrepancies in inter-cluster gene vs. pathway enrich-

ment profile similarity, we calculated the Pearson correlation between the gene and pathway

enrichment profiles of all pairs of clusters in each data set. We found striking differences in the

dynamic range of correlations observed: while correlations between gene expression profiles

are uniformly strong and positive across all pairs of clusters, correlations between pathway

enrichment profiles are negative for clusters of different cell types (neurons vs. APs, myoblasts

vs. fibroblasts) and positive for clusters of the same cell types (neurons vs. neurons) (S4 Fig).

These differences suggest that the highly similar gene expression profiles across clusters make

them less informative than pathway enrichment profiles in capturing changes along a

trajectory.

Time series information is important for Tempora’s performance

Since time is an important component of Tempora, we identified the minimal number of time

points required for Tempora and evaluated the effect of time point down sampling on Tem-

pora’s performance by re-running Tempora on the HSMM and murine cortex data with cells

from one or two time points removed. Tempora’s performance, on average, decreased slightly

on both data sets when one time point was removed and further decreased when two time
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points were removed (S10 Fig). Even though this decrease is observed on average, some time

points are less important than others, as removing some time points resulted in similar perfor-

mance compared to when the full set of time points were used (S10 Fig). For example, when

cells from the 24 hour time point or from the 24 hour and 72 hour time points were removed

from the HSMM data set, the resulting trajectories still contain the majority of the biologically

known connections between cell types (S10A and S10B Fig). These results show that Tempora

is compatible with data containing as few as two time points, however, including additional

time points is beneficial.

We also demonstrated the impact of using available time information in determining tra-

jectory edge directions. Instead of using time ordering information to direct edges, as normally

done by Tempora, we determined edge directions in Tempora-inferred trajectories by first

identifying the root(s) nodes by expression of a known early marker gene, then directing all

edges outwards from the root(s) (see Methods). This is the same approach we used to direct

edges and calculate accuracy scores for trajectories inferred by methods that do not support

automatic edge direction inference (PAGA, Slingshot, TSCAN and Monocle 3). Determining

directions with marker genes does not lead to any changes in the HSMM trajectory, as all clus-

ters are connected to the root myoblast cluster (S11A Fig). However, for more complex trajec-

tories in which there is more than one root state, including the murine cortex and cerebellum

data sets, Tempora’s accuracy scores decrease when directions are determined without using

time ordering as edges not connected to the roots become bidirectional (S11B–S11D Fig).

Thus, incorporating time point order information in trajectory inference enables a more accu-

rate determination of trajectory edge direction compared to traditional marker gene-based

direction inference, especially for larger data sets.

Discussion

We have described and evaluated Tempora, a novel pathway-based cell trajectory inference

method for time-series scRNA-seq data. Tempora uses an information theoretic approach to

build a trajectory at the single cell cluster (or cell type) level based on the clusters’ pathway

enrichment profiles, effectively connecting related cell types and states across multiple time

points. Taking advantage of the available time information, Tempora infers the directions of

all connections in a trajectory that go from early to late clusters. Evaluation on a diverse set of

three time series scRNA-seq data sets with known developmental trajectories demonstrates

that Tempora can accurately predict known trajectories, outperforming leading trajectory

inference methods. Furthermore, downstream analyses using Tempora’s pathway exploration

feature identifies pathways known to be important during the process under study as well as

additional interesting pathways, demonstrating the method’s ability to recapitulate and dis-

cover relevant biological signals during development processes.

Tempora constructs a trajectory at the cluster level, instead of at the single cell level. While

scRNA-seq offers the opportunity to identify the transitions cells undergo during a dynamic

process at cellular resolution, the granularity of a trajectory inferred at the single-cell level can

often render it difficult to interpret, especially for larger data sets. Furthermore, current

scRNA-seq technologies typically have low gene expression sensitivity at the single cell level,

which is a challenge for analysis methods. By analyzing scRNA-seq data at the cluster level

instead of at the single-cell level, Tempora: 1) amplifies gene expression signals from one cell

Fig 8. Performance evaluation of Tempora with and without pathway enrichment analysis (PEA). a-c. Trajectory inferred by

Tempora without PEA of the a. HSMM, b. murine cerebral cortex and c. murine cerebellum data set. d. Accuracy scores and e.

mismatch scores of Tempora trajectories with and without PEA.

https://doi.org/10.1371/journal.pcbi.1008205.g008
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using similar cells in a cluster; 2) eases interpretation, because it operates on a relatively small

number of clusters which usually represent known cell types and which naturally fits with the

standard practice of clustering scRNA-seq data to identify cell types; and 3) reduces computa-

tional time and resources needed to analyze large data sets because it works with a relatively

small number of clusters instead of potentially a very large number of cells. Tempora scales lin-

early with the number of genes and cells (S12 Fig) and takes on average 60 seconds to complete

when applied on the ~19,000 gene x ~55,000 cell gene murine cerebellar development expres-

sion matrix, while Monocle 3 takes 1700 seconds on a personal computer (MacBook Pro with

2.3 GHz Intel Core i9 processor and 16GB RAM). Other methods evaluated here either ran

out of memory (PAGA, Slingshot and TSCAN) or never finished (CSHMM) on this machine.

PAGA, Slingshot and TSCAN required a more powerful server with 120GB of RAM to com-

plete and CSHMM never finished even on this machine after spending 180 hours of compute

time. However, a key drawback of Tempora’s cluster-based approach is that it does not allow

users to analyze gradual gene expression profile changes that occur when cells are transitioning

types or states. Since other time series based trajectory inference methods, such as Wadding-

ton-OT [16], focus on analyzing these gradients, Tempora can be considered a complementary

approach and multiple methods should be used to study a dynamic cellular process.

Our analysis follows established scRNA-seq analysis workflows, in which certain decisions

can affect Tempora’s output. Tempora assumes that user input includes an optimized cluster-

ing solution for their data. If the clustering is not optimal, the output trajectory may be too

general or too detailed. Challenges regarding clustering are inherent to high-dimensional

scRNA-seq data, which relies on user-input parameters to determine the number of clusters,

and no gold standard exists to guide the selection of these parameters [42]. Over-clustering,

when clusters are split too much (e.g. splitting a single cell type into two clusters), can lead to

parallel edges originating from oversplit clusters and terminating at another cluster, ostensibly

suggesting a multiple-parent lineage (S5 Fig). Ideally users will make use of their biological

expertise to tune their clusters and make them biologically relevant. However, for understud-

ied systems or to consider complementary information, users can detect that a data set is over-

clustered when differential gene expression analysis between at least a pair of clusters in their

data returns no differentially expressed gene, suggesting that the two clusters are transcription-

ally similar and thus should be merged into one. This measure is implemented in the scClust-

Viz software, which we use in this work [43]. On the other hand, under-clustering can result in

overly simplified lineages (S5 Fig). Under-clustering can also lead to certain cell types appear-

ing at one time point but absent from another, because they have been clustered with other cell

types at one time point and not the other. If a major expected cell type is not represented with

a cluster after clustering and annotation, while its marker gene is expressed in the data, it is

likely that the data set has been under-clustered and the missing cell type is merged in a large

cluster with another similar cell type. In this case, users should re-cluster their data with

greater resolution to ensure that all expected cell types are detected.

As time-series data are often collected in batches, technical batch effects are important to

consider. We used Harmony to correct for batch effect in the three scRNA-seq data sets used

in this study before downstream trajectory analysis. Without such correction, Tempora’s per-

formance decreased slightly on all gold standards (S6–S8 Figs). This is likely due to the subop-

timal clustering driven by batch effects, which results in less accurate inference of trajectories

based on the resulting clusters. We also tested batch correction with Monocle 3, which inte-

grates the Batchelor [44] batch correction method as an optional feature (S9 Fig). Batch correc-

tion dramatically improved Monocle 3 performance on the muscle data (HSMM), making it

comparable to Tempora, but only slightly on the cerebral cortex data, and reduced perfor-

mance on the murine cerebellar data (S9 Fig). Other methods evaluated here do not have
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integrated data batch correction or do not naturally take Harmony-corrected principal com-

ponents as input. Overall, we recommend applying batch correction to input data before Tem-

pora analysis, but note that this should be evaluated more broadly in future work to support a

more confident and general claim.

Tempora determines trajectory edge direction under the assumption that all differentiation

processes occur unidirectionally, so cells from earlier time points give rise to cells from later

time points. However, this assumption may fail in certain contexts, such as dedifferentiation of

cancer cells to a more stem-like state [45]. Tempora would still be able to infer trajectories in

these contexts; however, users should be cautious with interpreting the results, as cells in later

time points may not be in a more differentiated state compared to cells in earlier time points.

Tempora depends on pathway information, which we found to help distinguish clusters

from each other compared to gene expression profiles. Pathway enrichment of gene expression

profiles increases sensitivity and statistical power, as well as reduces noise [46,47]. We interpret

our results to indicate that these advantageous properties of pathway information are the rea-

son why using pathway information in Tempora performs better than using gene expression

profiles at correctly identifying cell cluster/type transitions. While we have made an effort to

collect a comprehensive set of pathway information, pathway information is incomplete and

many genes are not covered. If there is low pathway coverage of a particular system under

study or if data bias (e.g. gene drop out) correlates with pathway structure, it could negatively

affect Tempora performance.

Time series scRNA-seq is increasingly used to investigate dynamic biological processes,

including development and differentiation. Compared to single snapshot experiments, it offers

advantages in that more cells and types are captured that may only be present at certain time

points, and that cell transition processes are more directly measured. However, many compu-

tational challenges exist with this data, including how to track changing cell types and states

between time points [48]. Time point ordering information is useful to supervise trajectory

inference and enables accurate identification of cell types consisting of cells from different

time points as well as lineage connections between them. When combined with biological

pathway information, time-series based analysis can generate useful insights into dynamic pro-

cesses. Future work to integrate the Tempora framework with other time-series scRNAseq

analysis concepts, including dimensionality reduction with TSEE [49] and population dynam-

ics inference with pseudodynamics [50], may further improve Tempora performance.

Methods

Single-cell RNAseq data

Three time-course scRNA-seq data sets were used to validate Tempora. The first data set con-

sists of cells at four time points during the in vitro differentiation of human skeletal muscle

myoblasts (HSMM). Read count for this data set was accessed from GEO, accession number

GSE52529 [9]. The second data set was sampled at four time points during early murine cere-

bral cortex development. This data set was downloaded from GEO, accession number

GSE107122 [5]. The third data set consists of cells at nine time points during murine cerebellar

development and was accessed from GEO, accession number GSE118068 [34].

All data sets were filtered to remove low expressed genes (defined as those found in less

than 3 cells) and damaged cells with high mitochondrial genome transcript content (4 median

absolute deviations above the median). After this initial filtering step, the murine cerebral cor-

tex data were further filtered to remove non-cortical cells, as done in the original publication

[5]. These included cells expressing Aif1 (microglia), hemoglobin genes (blood cells), collagen

genes (mesenchymal cells), as well as Dlx transcription factors and/or interneuron genes
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(ganglionic eminence-derived cells) [5]. The murine cerebellar data set was also filtered to

remove non-neural cells, including mesenchymal stem cells (expressing Prrx2), brainstem pro-

genitors (expressing Olig3), endothelial cells (expressing Cldn5), blood cells (expressing hemo-

globin genes), meninges (expressing Cxcl12), pericytes (expressing Rgs5) and microglia

(expressing Aif1). The data sets were then normalized using the deconvolution method imple-

mented in the scran R package, which pools cells with similar gene expression profiles and

library sizes together to normalize [51]. Afterwards, cells were iteratively clustered in Seurat at

increasing resolutions until the number of differentially expressed genes between two neigh-

boring clusters reached 0, as determined by scClustViz [43]. We then chose the optimal clus-

tering resolution, defined as the point where the number of clusters was maximized while the

number of DE genes between neighboring clusters remained larger than 0. Cell clusters for all

data sets were annotated using GSVA [17] with known marker genes for expected cell types

published with each data set (S1 Table). Specifically, a pseudo-bulk average expression profile

was determined for each cluster and input into GSVA to evaluate for enrichment in marker

gene sets as recommended in [52]. For each cluster, the cell type that has the highest score (or

cell types in case of tie in scores) output by GSVA is used as the cluster label. The resulting

annotated clusters represent cell types or states that are stable over the developmental process,

such as apical progenitor cells in murine cerebral cortex development and myoblasts in muscle

development. These annotations were performed once and used for all methods and analyses

to ensure consistent comparisons.

Data preprocessing, batch effect correction and clustering

Tempora takes processed scRNA-seq data as input, either as a gene expression matrix with

separate time and cluster labels for all cells, or a Seurat object containing gene expression data

and a clustering result. Tempora does not implement clustering or batch effect correction as

part of its pipeline and assumes that the user has input a well-annotated cluster solution free of

batch effect into the method.

Since a good clustering result is important to the successful application of Tempora on a

data set, we recommend users take advantage of methods such as scClustViz [43] to visualize

clusters at different resolutions, analyze cluster relationships across resolutions as well as inves-

tigate marker gene expression to help choose appropriate clustering parameters [53].

Pathway enrichment analysis

Tempora calculates the average gene expression over all cells in a cluster for all clusters as

input by the users and determines the pathway enrichment profile of each cluster using GSVA

[17]. By analyzing scRNA-seq data on the cluster level instead of the single-cell level, Tempora

amplifies gene expression signals from similar cells in a cluster to alleviate the typical problem

of low sensitivity per cell of popular scRNA-seq experimental methods, as well as to reduce the

number of nodes in the inferred lineage, reducing computational time and allowing users to

interpret the lineage more easily. The default pathway gene set database Tempora uses is the

Bader Lab pathway gene set database without electronic annotation Gene Ontology terms (in

this work, version Human_GO_AllPathways_no_GO_iea_August_01_2019_symbol.gmt was

used, accessed at http://download.baderlab.org/EM_Genesets/current_release/Human/

symbol/Human_GO_AllPathways_no_GO_iea_August_01_2019_symbol.gmt, and Mouse_

GO_AllPathways_no_GO_iea_August_01_2019_symbol.gmt, accessed at http://download.

baderlab.org/EM_Genesets/current_release/Mouse/symbol/Mouse_GO_AllPathways_no_

GO_iea_August_01_2019_symbol.gmt), filtered to include gene sets between 10 and 500 genes

in size [47]. The enrichment scores of all P pathways in each cluster make up the cluster’s
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pathway enrichment profile, which is a vector of length P. Since pathway gene set databases

contain redundant pathways and this redundancy is not evenly distributed across the database

(e.g. well studied pathways are better represented), Tempora uses PCA to reduce redundancy

in all pathway enrichment profiles and identifies the top n principal components, defined as

the components before the slope levels off (“the elbow”), in a scree plot, to input to down-

stream trajectory construction steps. In this study, 5 PCs were used for analysis of the HSMM

data, 6 for the murine cortex data and 8 for the murine cerebellar data. This is a user definable

parameter.

Filtered mutual information network

We conceptualize the cell (cluster) trajectory from different time points of a developmental

process as a graph (network), where vertices represent clusters and edges represent parent-

child relationships between these vertices. Tempora employs the gene expression rank-based

mutual information (MI) approach implemented in ARACNE [19] to calculate MI between all

cluster pairs present in the data. The data-processing inequality is then applied by ARACNE to

remove the edge with the lowest MI in each triple to reduce the number of indirect interactions

between clusters. This results an undirected network where nodes are cell clusters and

weighted edges represent MI strength relationships between clusters. All ARACNE edges are

kept for Tempora analysis (no threshold used).

Direction identification

Tempora uses time information to determine the edge directions in the constructed MI net-

work. Tempora assigns each time point a sequential, ordinal value corresponding with its dis-

tance from the earliest time point and calculates a temporal score for each cluster based on its

composition of cells from each time point. Specifically, the temporal score, Tk, of cluster k con-

sisting of pi percent cells at time point i is calculated as:

Tk ¼
XN

i¼1

pi � i

Where N is the number of time points. Under the assumption that cell differentiation pro-

gresses unidirectionally from stem or progenitor cells (early time points) to differentiated (late

time points) cells, Tempora assigns directions to all edges in the network so that edges point

from clusters with low temporal scores to clusters with high temporal scores. For edges that

connect clusters with similar temporal scores (with the similarity threshold defined by the

users, default used here = 0.01), Tempora does not assign directions as these edges can repre-

sent small transitions in cell states over a short time, in which the unidirectional assumption

may not hold. These undirected edges are visualized as dashed lines in output trajectories and

count as a bidirectional edge in performance comparisons. The 0.01 threshold was optimized

based on the data sets analyzed here.

Identification of time-dependent pathways

Tempora identifies pathways that vary over time by fitting a generalized additive model on the

pathway enrichment scores of each pathway across all clusters over all time points and uses

ANOVA to compare the fitted model with the null model of uniform pathway enrichment

over all time points. Pathways with adjusted p-values below a user-defined threshold, with a

default value of 0.05, are reported as significantly varying over time. The model fitting and sta-

tistical testing are done using the mgcv package in R.
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Evaluation and comparison with other methods

We evaluated Tempora by comparing its predicted cell lineages to known lineages manually

curated from the literature. The lineages are represented as directed acyclic graphs, with verti-

ces representing cell types and directed edges representing lineage connections. Two

approaches were used to measure the accuracy of Tempora and other methods in predicting

the known lineage: a mismatch score, implemented as the graph edit distance (GED), and

accuracy, implemented as the F1 score.

Model trajectory construction. We manually curated the model trajectories for the in
vitro differentiation of human myoblasts and murine cortical development through literature

search [23,26,27,28,38,39,40]. The gold standard trajectory for the murine cerebellum data set

is taken from the original publication [34]. All gold standards are established at cell population

(cluster) level. We represented the lineage relationships between different cell types in a system

as a directed acyclic graph. Each node in a model trajectory represents a distinct cell type as

noted in the literature and described in the Cell Ontology [54], while the edges represent line-

age connections (develops_from relationship in the Cell Ontology) between these cell types.

Mismatch (GED) score. We used the unweighted GED metric to measure the number of

mismatches between the predicted and known trajectory, both formalized as undirected

graphs to enable comparisons with methods that do not predict edge directions [55]. GED is

formally defined as the smallest total number of graph edit operations needed to transform

one graph into another. In this context, the permitted operations included insertion and dele-

tion of edges or vertices.

To calculate the mismatch score between a pair of graphs, we first take the cell cluster label-

ling outputs from GSVA [17], which we use as an automated cluster labeling process using

known marker gene sets for expected cell types in a data set taken from the original scRNA-

seq publication. We then calculate the number of differences in the cell types of the predicted

and known trajectories, as well as in the adjacency matrices of both trajectories. The sum of

these two differences is the mismatch score for each pair of graphs.

Accuracy (F1) score. To compare the accuracy of Tempora’s time-based direction infer-

ence with the model trajectory, we calculated the F1 score on each predicted trajectory as fol-

lows:

F1 ¼ 2 �
precision � recall
precisionþ recall

in which true positives (TP) are edges present in both the model and the predicted trajectory,

false positives (FP) are edges in the predicted trajectory but not in the model, and false nega-

tives (FN) are edges in the model but not in the predicted trajectory. An edge in the predicted

graph is considered true positive only when its two vertices and direction match those of an

edge in the model graph.

To calculate the accuracy score on undirected trajectories inferred by Monocle 2 and

TSCAN, we first determined the origin of the trajectories based on high expression of a set of

known early marker genes (CDK1, CCND5 for myoblasts in the HSMM data set [9], Sox2 for

apical precursors in the murine cerebral cortex data set [5] and Nes for neural stem cells in the

murine cerebellar data set [34]), then added directions to the inferred trajectories by directing

all edges to go outward from the origin.

Monocle 3. We applied Monocle 3 [14] on the validation data sets in this study using the

method’s recommended protocol. For each data set, the full normalized gene expression

matrix and meta data was used to construct the cell_data_set object for Monocle 3 analysis.

The data was then preprocessed to reduce its dimensionality using PCA. As the gene
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expression matrix we input was already normalized, it was not further log-normalized in the

preprocessing step. Following PCA, UMAP was applied on the data to further reduce its

dimensionality. The parameters for this step were set as Monocle 3’s default (umap.metric =

“cosine”, umap.min_dist = 0.1, umap.n_neighbors = 15, umap.fast_sgd = FALSE, umap.

nn_method = “annoy”). Cells in the data set were then clustered with the Louvain/Leiden

community detection method based on the PCA reduced dimensionality space. The parame-

ters for this step were set as Monocle 3’s default (k = 20, cluster_method = “leiden”, num_

iter = 2, partition_qval = 0.05, weight = FALSE). The fine-grained principal graph describing

potential paths cells could take through development was then constructed with the learn_-

graph() function, keeping all parameters as default. We then determined the root of the trajec-

tory by marker gene expression as described in the section on accuracy score calculation above

and used this information to order the cells in pseudotime.

To compare Monocle’s performance with and without batch effect removal, we additionally

corrected any batch effect using Monocle 3’s align_cds() function after preprocessing the data

and before dimensionality reduction with UMAP. The downstream steps after align_cds() are

the same for aligned and non-aligned data.

To formalize a Monocle trajectory as a graph, we considered each state, or segment of the

tree, as a vertex, and connected the vertices with appropriate edges to recapitulate Monocle’s

output.

TSCAN. We applied TSCAN [10] on the validation data sets in this study using Dyn-

verse’s wrapper, which takes the gene expression matrix of each data set as input and the Tem-

pora clustering solution of cells in each data set as an optional prior. The clusternum

parameter, whose domain is [2,20], was left at the default of [2,9] for the HSMM and murine

cortex data set, and set as [2,20] for the murine cerebellum data set to allow for more clusters

to be discovered in this large data set. Other input parameters to TSCAN were kept as Dyn-

verse’s default, including minexpr_value as 0, minexpr_percent as 0, cvcutoff as 0, cvcutoff as 0

and modelNames as VVV.

Slingshot. We applied Slingshot [11] on the validation data sets in this study using Dyn-

verse’s wrapper, which takes the gene expression matrix of each data set as input and the list of

start and end cells, as well as the Tempora clustering solution of cells in each data set as

optional priors. For each data set, cells from the earliest time point were designated as start

cells and cells from the latest time point as end cells. All parameters were kept as Dynverse’s

defaults (cluster_method = “pam”, ndim = 20, shrink = 1, reweight = TRUE, reassign = TRUE,

thresh = 0.001, maxit = 10, stretch = 2, smoother =“smooth.spline”, shrink.method =

“cosine”).

PAGA. We applied PAGA on the validation data sets in this study using Dynverse’s wrap-

per, which takes the gene expression matrix of each data set as input and the list of start cells as

well as the Tempora clustering solution of cells in each data set as an optional prior. The

embedding_type parameter was set as ‘umap’ for the murine cerebellum data set to accommo-

date for its larger size and ‘fa’ for the other two validation data sets. The connectivity cutoff for

each data set was determined by running PAGA on the data set with different cutoff between

0.05 and 0.6 at 0.1 increments and choosing the resulting trajectory with the highest accuracy

and lowest mismatch score. This cutoff is 0.3 for the HSMM and murine cerebral cortex data

set and 0.4 for the murine cerebellar data set. The rest of the parameters were left as Dynverse’s

default (filter_feature = TRUE, n_neighbors = 15, n_comps = 50, n_dcs = 40, resolution = 1).

Dynverse trajectory graph formalization. We formalized the trajectories output by Dyn-

verse as graphs by taking advantage of Dynverse’s milestone network data structure, which

describes connection between milestones in a lineage. The milestones are the vertices and the

connections between them are the edges in our graph formalization. To determine what
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cluster lies at each milestone, we identified cells that are closest to each milestone (highest

milestone percentage) and the cluster(s) they belong to according to our original clustering

resolution of a given data set. We then determined the roots and directions of the graphs as

described in the section on accuracy score calculation.

Trajectories obtained from Dynverse’s wrapper methods are plotted in a tSNE reduced

dimensionality space using Dynverse’s plot_dimred() function. Cells are colored with their

cluster assignments, which are the same cluster solutions input to Tempora.

CSHMM. We applied CSHMM [15] on the validation data sets using the method’s recom-

mended protocol. The full normalized gene expression matrix of each data set, along with the

cells’ collection times and the cell type labels of the clusters they belong to, as determined auto-

matically by GSVA (described under the Single-cell RNAseq data section of Methods), was

input to initialize scDiff. Afterwards, we trained the CSHMM model for each data set in five

iterations and selected the model with the highest accuracy and lowest mismatch score.

Supporting information

S1 Fig. The HSMM data set. a. tSNE plot showing 271 cells in the HSMM data set, colored by

cluster number. b-d. Visualization of known marker genes for b. myoblasts, c. myotubes and

d. fibroblasts on the HSMM data set.

(PDF)

S2 Fig. The murine cerebral cortex data set. a. tSNE plot showing the ~6,000 neural cells cap-

tured in the murine cerebral cortex data set, colored by cluster number. b-f. Visualization of

known marker genes for b. apical precursors (APs), c. radial precursors (RPs), d. cycling api-

cal/radial precursors (AP/RPs), e. intermediate progenitors (IPs), f. early neurons and g. neu-

rons in the murine cerebral cortex data set.

(PDF)

S3 Fig. The murine cerebellum data set. a. tSNE plot showing the ~55,000 neural cells cap-

tured in the murine cerebellum data set, colored by cluster number. b-i. Visualization of

known marker genes for b. neural stem cells. c. glutamatergic cells, d-f. GABAergic cells, g-i.

glias in the murine cerebellum data set.

(PDF)

S4 Fig. Correlation between gene expression and pathway enrichment. Correlation plots

showing cluster-average gene expression and pathway enrichment profiles in a. HSMM and b.

murine cerebral cortex data.

(PDF)

S5 Fig. The effects of sub-optimal clustering resolution choice on trajectory inference.

Over clustering (middle) can lead to complex lineages with converging connections, while

under clustering (right) can lead to oversimplified lineages.

(PDF)

S6 Fig. Effect of data alignment on Tempora performance on HSMM data. a-b. tSNE plots

of HSMM data a. with and b. without Harmony alignment, with cells colored by time points.

c. tSNE plot of clusters in HSMM data without alignment. d. Tempora trajectory and e-f. per-

formance evaluation of Tempora on HSMM data without alignment.

(PDF)

S7 Fig. Effect of data alignment on Tempora performance on murine cerebral cortex data.

a-b. tSNE plots of murine cerebral cortex data a. with and b. without Harmony alignment,
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with cells colored by time points. c. tSNE plot of clusters in murine cerebral cortex data with-

out alignment. d. Tempora trajectory and e-f. performance evaluation of Tempora on murine

cerebral cortex data without alignment.

(PDF)

S8 Fig. Effect of data alignment on Tempora performance on murine cerebellar data. a-b.

tSNE plots of murine cerebellum data a. with and b. without Harmony alignment, with cells

colored by time points. c. tSNE plot of clusters in murine cerebral cortex data without align-

ment. d. Tempora trajectory and e-f. performance evaluation of Tempora on murine cerebel-

lar data without alignment.

(PDF)

S9 Fig. Effect of batch effect correction on Monocle 3 performance. a, c, e. Monocle 3 trajec-

tories of a. HSMM, c. murine cerebral cortex and e. murine cerebellar data sets without batch

correction. b, d, f. Monocle 3 trajectories of b. HSMM, d. murine cerebral cortex and f.

murine cerebellar data sets with Batchelor batch correction. g-h. Performance evaluation of

Monocle 3 on the benchmarking data sets with and without batch effect correction.

(PDF)

S10 Fig. Effect of time point down sampling on Tempora performance on HSMM and

murine cerebral cortex data. a-b. Tempora trajectory of HSMM data when cells from a. 24

hours and b. 24 hours and 72 hours are removed. c. Mismatch score and d. accuracy score

evaluation of Tempora performance on the HSMM data set when time points are down sam-

pled. e-f. Tempora trajectory of murine cerebral cortex data when cells from e. E13 and f. E15

and E17 are removed. g. Mismatch score and h. accuracy score evaluation of Tempora perfor-

mance on the murine cerebral cortex data set when time points are down sampled. Scores rep-

resent an average of four experiments, in which all cells from a different time point or

combination of two time points are removed before running Tempora.

(PDF)

S11 Fig. Effect of time removal on direction determination of Tempora-inferred trajec-

tory. a-c. Tempora trajectories of a. HSMM, b. murine cerebral cortex and c. murine cerebel-

lum data set, with edge directions determined by identifying the root state(s) with known early

marker genes (CDK1, CCND5 for myoblasts in the HSMM data set, Sox2 for apical precursors

in the murine cerebral cortex data set and Nes for neural stem cells in the murine cerebellar

data set) and directing all edges outwards from the root states. d. Accuracy score of Tempora

trajectories with edge directions determined without time information.

(PDF)

S12 Fig. Tempora’s runtime scales with the number of cells and genes. Runtime of Tempora

when applied to a-b. murine cortex and c-d. murine cerebellum data set after downsampling

of a,c. cells and b, d. genes.

(PDF)

S1 Table. Marker genes used to annotate cell types.

(PDF)
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