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Large-scale cancer genome sequencing has uncovered thousands of gene mutations, but
distinguishing tumor driver genes from functionally neutral passenger mutations is a major
challenge. We analyzed 800 cancer genomes of eight types to find single-nucleotide variants (SNVs)
that precisely target phosphorylation machinery, important in cancer development and drug
targeting. Assuming that cancer-related biological systems involve unexpectedly frequent
mutations, we used novel algorithms to identify genes with significant phosphorylation-associated
SNVs (pSNVs), phospho-mutated pathways, kinase networks, drug targets, and clinically correlated
signaling modules. We highlight increased survival of patients with TP53 pSNVs, hierarchically
organized cancer kinase modules, a novel pSNV in EGFR, and an immune-related network of pSNVs
that correlates with prolonged survival in ovarian cancer. Our findings include multiple actionable
cancer gene candidates (FLNB, GRM1, POU2F1), protein complexes (HCF1, ASF1), and kinases
(PRKCZ). This study demonstrates new ways of interpreting cancer genomes and presents new
leads for cancer research.
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Introduction

A major goal of cancer research is to characterize somatic
molecular alterations in tumor cells and identify systems
driving cancer progression. These aberrations range from
small DNA mutations to genomic copy number alterations,
changes in chromatin structure and gene expression. To map
such changes, international research consortia are collecting
thousands of genome-wide molecular profiles of dozens of
cancer types (Collins and Barker, 2007; The International
Cancer Genome Consortium, 2010). Tumor genome sequen-
cing has revealed a complex landscape of somatic DNA
mutations in cancers of multiple types and tissues, including
breast, colon, lung, liver, brain, ovary, pancreas, and blood
(Wood et al, 2007; Cancer Genome Atlas Research Network,
2008, 2011; Ding et al, 2008; Jones et al, 2008; Parsons et al,
2008; Puente et al, 2011; Totoki et al, 2011). Most identified
somatic mutations are thought to be functionally neutral
‘passengers’, caused by the increased mutation rate in cancer
cells, whereas relatively few driver mutations provide selec-
tive advantages to tumor cells and are responsible for tumor
initiation, maintenance, progression, and metastasis. Discov-
ery of cancer drivers will provide insight into the biology of
tumor development, and reveal diagnostic or predictive
markers and new avenues of therapy development.

While a number of drivers are well recognized (e.g., TP53,
KRAS, and EGFR), due to their frequent mutation rate in
tumors and biological characterization, they are not sufficient
to explain the phenotypic diversity of cancer and many
more drivers likely exist. Of particular interest are driver
mutations that occur in multiple cancer types; for instance, the
druggable BRAF V600E mutation in melanoma and hairy
cell leukemia (Chapman et al, 2011; Tiacci et al, 2011). Targeted
drug development for such mutations may lead to effective
multi-cancer therapies. However, most cancer mutations
are not highly recurrent, and the observed long tail of
infrequently mutated genes indicates the heterogeneous
and complex nature of the disease. One likely explanation is
that a cancer-related cellular system can be modified in
multiple ways to create a neoplastic advantage, and therefore
different, rare mutations can have similar phenotypic
effects. Comprehensive systems-oriented analysis of inte-
grated cancer data sets may therefore reveal novel, therapeu-
tically relevant cancer driver genes, protein complexes,
and pathways.
Tumor development involves a number of pathways with

specific protein interactions and post-translational amino-acid
modifications (Hanahan and Weinberg, 2011). In particular,
protein phosphorylation is central in many hallmark
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cancer processes and is often misregulated in the disease.
Phosphorylation is a dynamic, reversible post-translational
modification involving three major activities. Protein kinases
act as writers by adding phosphate groups to serine (S),
threonine (T), and tyrosine (Y) residues in substrate proteins,
and phosphatases are erasers involved in dephosphorylation.
Proteins with phosphorylated residue binding domains (e.g.,
SH2, PTB, 14-3-3) are readers that mediate context-specific
protein interactions (Lim and Pawson, 2010). Phosphorylation
can also regulate proteins by causing a conformation change or
interfering with interactions with other molecules. Products of
known cancer genes are enriched in kinases such as EGFR and
SRC, while others such as TP53 and CTNNB1 are regulated
by phosphorylation (Morin et al, 1997; Chao et al, 2006).
Phosphorylation is a prime target of drug development, in
particular via protein kinases, and a growing class of
phosphorylation-related targeted agents such as EGFR inhibi-
tors are now in clinical use (Hynes and Lane, 2005). Many
focused studies and large-scale mass spectrometry experi-
ments have mapped thousands of phosphorylation sites in
human proteins (Dephoure et al, 2008; Nagano et al, 2009; Van
Hoof et al, 2009; Olsen et al, 2010). This information helps
establish a link between phosphorylation signaling and
genomic alterations that can be exploited to identify mutations
that affect signaling systems in cancer.
We performed a comprehensive analysis of somatic cancer

mutations affecting protein phosphorylation. We hypothesize
that statistically unexpected mutation rates in phosphoryla-
tion-specific regions within genes and pathways identify these
as cancer drivers. We systematically analyzed 800 cancer
genomes and thousands of somatic mutations in the context of
phosphorylation sites, protein kinase domains, pathways,
protein complexes, and kinase–substrate networks. We
applied a novel, sensitive statistical model to find genes with
unexpected phosphosite and kinasemutations, and carried out
pathway and network analyses to identify significantly altered
phosphorylation systems. We also detected network modules
that significantly correlate with clinical outcome that may be
helpful for diagnosis or prognosis.

Results

Global analysis reveals enrichment of cancer
mutations in phosphosites and signaling networks

To investigate alterations of phosphorylation signaling in
cancer, we integrated multiple data sets of somatic cancer
mutations, protein phosphorylation events, kinase–substrate
interactions and clinical data (Figure 1A–C). We accumulated
73 872 experimentally determined phosphorylation events
in 10 279 phosphoproteins from three public databases
(Keshava Prasad et al, 2009; Dinkel et al, 2011; Hornbeck
et al, 2012). We collected 10 900 missense single-nucleotide
variants (SNVs) from793 samples of eight cancer types: serous
ovarian adenocarcinoma (Cancer Genome Atlas Research
Network, 2011), breast and colorectal cancer (Wood et al,
2007), pancreatic cancer (Jones et al, 2008), lung adenocarci-
noma (Ding et al, 2008), glioblastoma multiforme (Cancer
Genome Atlas Research Network, 2008; Parsons et al, 2008),
chronic lymphocytic leukemia (Puente et al, 2011), and

hepatocellular carcinoma (Totoki et al, 2011) (Figure 1D). To
focus on phosphorylation-associated mutations, we only
considered SNVs that directly altered kinase domains or 15-
residue ‘phosphosites’ comprising a central phosphorylated S,
T or Y residue and two 7-residue flanking sequences.
Overlapping phosphosites were merged into continuous
regions, which covered B7% of the entire non-redundant
human proteome. This procedure highlighted 775 distinct
genes containing 949 phosphorylation-specific SNVs (pSNVs)
in one ormore cancer types (Figure 1E), covering 58% (459) of
all studied cancer samples. This set includes 650 genes
with phosphosite pSNVs, 189 genes with kinase domain
pSNVs and 63 genes with both types of pSNVs (Supplementary
Tables 1 and 2). We also compiled a kinase-substrate network
of 4823 interactions, 379 kinases, and 1879 substrates,
involving about 11% (7778) of phosphosites (Supplemen-
tary Table 3).
Several global trends confirm the functional significance of

phosphosite and kinase pSNVs in cancer. First, phosphosite
variants are more frequent than expected, given the genome-
wide somatic mutation rate of studied cancer samples (949
observed, 751±27 expected, s.d., P¼ 2.5#10$12, binomial
test, Figure 1F). Second, kinase-targeted phosphoproteins are
enriched in mutations: 44% (284) of genes with phosphosite-
specific mutations are substrates of known kinases, while only
18% (118±10) are expected (P¼ 1.0#10$ 54, Fisher’s exact
test). Consequently, 57% (2744) of kinase–substrate interac-
tions are affected by pSNVs (Supplementary Figure 1). Third,
pSNVs tend to affect topologically central and highly interact-
ing genes in the kinase–substrate network (P¼ 6.5#10$ 25

and P¼ 7.0#10$ 32, Wilcoxon test, Supplementary Figure 2).
While this could be due to ascertainment bias in network
determination, centrality in our network likely indicates
importance in cancer, as known cancer genes also show
increased centrality and betweenness (P¼ 2.3#10$13 and
P¼ 7.3#10$ 6, respectively). These results demonstrate the
general extent of somatically altered phosphorylation signal-
ing in tumor cells.
Focusing further on phosphosites, we observe 78 direct

phosphosite mutations that replace the central S/T/Y residue
with a non-phosphorylatable residue (Supplementary
Table 4). We also find 37 potentially phosphomimetic
mutations introducing negatively charged aspartic and gluta-
mic acid residues that physicochemically resemble residues
with constitutive phosphorylation (Supplementary Table 5).
Both lists are enriched in known cancer genes, suggesting that
pSNVs disable tumor-suppressing phosphorylation and
activate signaling that promotes tumorigenesis (n¼ 13,
P¼ 2.4#10$ 8 and P¼ 3.3#10$12, respectively, Fisher’s exact
test). However, most pSNVs occur in phosphosite-flanking
regions (Figure 1F). These may enhance or disrupt sequence
recognition and binding affinity of associated reader, writer or
eraser proteins, and modify signaling systems while still
maintaining the phosphorylation switch. Finally, genes with
phosphosite pSNVs are enriched in known drug targets from
the DrugBank database (n¼ 109, P¼ 2.5#10$11; Knox et al
(2011)). Druggable genes with pSNVs cover nearly two-thirds
(284) of phospho-mutated cancer samples and 36% of all
cancer samples, indicating the potential for therapy develop-
ment targeting affected genes.
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ActiveDriver—a novel gene-centric method to
identify significantly mutated protein sites

We developed a novel statistical method, named ActiveDriver,
to identify genes with significant pSNVs (see Materials and
methods). This gene-centric method is based on generalized
linear regression and tests the following pair of hypotheses for
a given gene and its phosphosite region. The null (expected)
model states that the phosphosite region follows the same
mutation rate as the gene sequence given its structured and
disordered regions. The alternative model states that the

phosphosite-specific mutation rate is higher or lower than the
gene-wide mutation rate. The twomodels are comparedwith a
likelihood ratio test that refutes the null hypothesis if a distinct
mutation rate is required to explain pSNVs observed in the
phosphosite region. We use a model-based approach rather
than a direct statistical test, as short phosphosites tend to
involve low mutation counts and numerous considered sites
would reduce statistical power due to multiple testing. To
establish the significance of a gene in a cancer type, we
multiply P-values of all its significantly mutated phosphosites
(Pp0.05). A gene is deemed significant if at least one of its
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Figure 1 Analysis overview. (A) Missense SNVs (crosses) were extracted from cancer genomes and classified as phosphorylation-associated (pSNVs; red crosses) if
they affected phosphosites (red P-circles) and their flanking regions (pink rectangles) or kinase domains (blue rectangles). We designed the statistical model ActiveDriver
to find cancer genes with significantly enriched or depleted pSNVs. Using pathway enrichment analysis, we identified GO terms, pathways and protein complexes with
over-represented pSNVs. (B) Phosphorylation network composed of experimentally determined kinase–substrate interactions. To find kinases important in cancer, all
kinase-centric signaling modules (light blue star) were tested for statistical enrichment of pSNVs. Each such module comprised a fixed central kinase (blue diamond) and
its direct upstream kinases and downstream substrates (black diamonds and circles within the light blue star). (C) To find clinically relevant signaling modules, we
designed a novel local network search algorithm HyperModules that combines pSNVs, kinase–substrate interactions, and patient survival. (D) Distribution of cancer
samples across cancer types. Two glioblastoma data sets are shown separately in green (Parsons et al, 2008) and purple (Cancer Genome Atlas Research Network,
2008). (E) Distribution of genes with pSNVs across cancer types. (F) Phosphosites are enriched in somatic cancer mutations in comparison to genome-wide mutation
rate averaged across cancer genomes (binomial test, error bars show s.d.).

Cancer mutations in phosphorylation signaling
J Reimand and GD Bader

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 3



phosphosites displays unexpected mutation rates, while its
non-significant sites do not contribute to the final composite
P-value. Finally, we correct the composite P-value for multiple
testing with the Benjamini–Hochberg false-discovery rate
(FDR) and select genes whose P-values exceed the significance
of a certain threshold (FDR Pp0.05).
ActiveDriver considers information on pSNV position

within a phosphosite, protein structured and unstructured
regions and cancer type specific mutation rate. First, the
functional impact of each pSNV is determined by the number
of adjacent phosphosites and their position relative to the
mutation. Direct mutations of S/T/Yare likely to have stronger
functional impact than immediate and proximal flanking
mutations, and single pSNVs can affect multiple clustered
phosphosites. We encode this information in three features of
the alternative regression model: for every position s in the
phosphosite region, we count (i) the number of phosphosites
at s (zero or one), and the number of phosphosites (ii) within
1–2 residues from s, and (iii) within 3–7 residues from s.
Second, post-translationalmodifications are known to occur in
unstructured (disordered) regions of proteins, and such
regions are also believed to evolve more rapidly than
structured regions. Therefore, we consider separate mutation
rates for disordered and ordered protein regions, and encode
this information as confounding factors in the null and
alternative regression models. Third, cancer genomes of
different types are biologically distinct and involve varying
sample sizes (e.g., 4–186 samples, leukemia versus ovarian
cancer), baseline mutation rates (e.g., 0.74–11 missense
mutations per million amino acids, pancreatic versus lung
cancer), and different mutation calling protocols. Cancer-
specific mutation rates are therefore compared in independent
models, and corrected separately for multiple testing. Such
data integration provides greater sensitivity than conventional
statistical tests, as we show below.

ActiveDriver identifies known cancer genes with
significantly mutated phosphosites

ActiveDriver analysis of pSNVs for nine separate cancer data
sets resulted in 44 genes with significantly unexpected
numbers of phosphosite mutations (FDR Pp0.05,
Figure 2A). We repeated the analysis with a merged collection
of SNVs from all cancer types and found 14 additional
phospho-mutated genes.
The results are enriched in known cancer genes from the

Cancer Gene Census and earlier review papers (n¼ 15,
P¼ 1.1#10$11, Fisher’s exact test), genes encoding kinase
proteins (e.g., KDR, EGFR, ABL1, FLT4; n¼ 9, P¼ 3.8#10$ 5),
and transcription factors (e.g., TP53, FOXO3,MLL,MET; n¼ 15,
P¼ 3.0#10$ 4). The gene list also includes 13 drug targets
(P¼ 1.3#10$ 3), nine of which are known cancer genes (Knox
et al, 2011). Ranked pathway enrichment analysis of Active-
Driver results using g:Profiler (Reimand et al, 2011) highlights
relevant pathways and Gene Ontology (GO) categories, includ-
ing cell motility, regulation of cell adhesion, regulation of
epithelial cell proliferation, and blood vessel development (all
FDR Pp0.05, Supplementary Table 6). Thus, ActiveDriver-
identified genes are enriched in cancer hallmark processes.

Our predictions include 15 genes with well-established roles
in cancer biology. For instance, b-catenin (CTNNB1) encodes a
transcriptional co-regulator and downstream target of the Wnt
pathway involved in organismdevelopment (FDR P¼ 9.8#10$ 4

from ActiveDriver). In the absence of Wnt signaling, CTNNB1
is phosphorylated by GSK3 kinase and continuously
degraded.Wnt pathway activation blocks the phosphorylation
of CTNNB1, leading to its accumulation in the nucleus and
transcriptional activity (van Noort et al, 2002). Aberrant
activity of CTNNB1 due to altered N-terminal target phospho-
sites of GSK3 has been observed in colorectal cancer (Morin
et al, 1997). In our data, all five SNVs in CTNNB1 are
specifically linked to phosphorylation. ActiveDriver highlights
the N-terminal region of CTNNB1 that includes phosphosites
S33, S37, T41 targeted by multiple kinases (CDK6, CHUK,
CSNK1/2A/2B, GSK3A/3B, MAPK8, PRKACA; Figure 2B).
These sites are affected by four pSNVs (two in lung and two in
liver cancer), including three phosphorylation-disabling muta-
tions (T41A, S37F, S37F) and one potentially phosphomimetic
mutation G34E. An additional pSNV in ovarian cancer
(G555A) affects three phosphosites that are known targets of
AKT1, AKT2 and PRKACA kinases. Consistent with previous
observations (Morin et al, 1997), we propose that lung and
liver cancer pSNVs in CTNNB1 disrupt its degradation and
enable downstream transcriptional programs to benefit cancer
progression. In this example, a small number of very specific
pSNVs appear in multiple types of cancer and have a
statistically significant pattern with a biologically meaningful
interpretation. Our strategy is therefore useful for interpreting
rare mutations.
About one-third (21) of detected genes have phosphosite-

specific mutations in multiple cancer types (Figure 2A),
potentially highlighting general cancer driver mechanisms.
As integration approaches are less explored in cancer
genomics studies, most of our additional findings from the
merged data set analysis represent novel candidate cancer
genes. Further, IRS1 (insulin receptor substrate 1) and GRM1
(glutamate receptor, metabotropic 1) are known drug targets
(Knox et al, 2011) and therefore may be directly actionable for
therapy development. KRAS is the only well-recognized cancer
gene in the merged analysis and is listed due to a less-than-
expected number of pSNVs (FDR P¼ 4.6#10$ 3 from Active-
Driver), indicating the role of phosphorylation signaling in its
oncogenic activities. These results illustrate the utility of data
integration from multiple cancer genomics projects.

ActiveDriver highlights phospho-mutated
candidate cancer genes FLNB, GRM1, POU2F1

Our findings also include geneswhose cancer-specific roles are
less recognized. The highest-ranking candidate cancer gene is
filamin-B (FLNB, FDR P¼ 5.4#10$7 from ActiveDriver) that
has been highlighted in the breast cancer genome project due
to frequent mutations (Sjoblom et al, 2006). All four SNVs in
breast cancer (A1565G, T703K, N663K, R566Q) alter phos-
phosite-flanking regions, although evidence for phosphoryla-
tion events comes from large-scale screens and no targeting
kinases are currently known. FLNB is an intracellular signaling
protein involved in organization of actin cytoskeleton as well
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as skeletal and neuronal development (Lu et al, 2007). In
particular, knockdown of FLNB has been shown to inhibit
VEGF-induced angiogenesis (Del Valle-Perez et al, 2010), a
hallmark of tumor cells. Further, knockdown of filamin genes
has been shown to reduce cell migration in cancer cell lines
(Baldassarre et al, 2009), and germline variants observed in
human developmental disorders have been linked to gain-of-
function phenotypes manifested in increased F-actin binding
(Sawyer et al, 2009). We therefore speculate that the observed
pSNVs may also act as gain-of-function mutations that
enhance angiogenesis, invasion or metastasis of tumor cells.
The G-protein-coupled receptor GRM1 (glutamate receptor

metabotropic 1) is identified in the merged data set analysis of
pSNVs due to two flanking pSNVs in glioblastoma (R684C)
and colorectal cancer (R696W) (FDR P¼ 0.047 from

ActiveDriver). The latter mutation directly flanks a phosphor-
ylation site of protein kinase C a (PRKCA) at T695 that is
involved in receptor desensitization in a feedback loop
(Francesconi and Duvoisin, 2000). We propose that the pSNV
disrupts inhibition of the receptor activity, leading to aberrant
activation of tumorigenic processes such as growth, survival,
and proliferation via the downstream phosphoinositide
3-kinase (PI3K) pathway. Overexpression of GRM1 was shown to
induce melanoma in mouse models (Pollock et al, 2003), and
GRM1mutations were linked to melanoma in a human genetic
association study (Ortiz et al, 2007). The family of metabo-
tropic glutamate receptors is also generally enriched in SNVs
across all cancer samples (n¼ 16 samples, P¼ 3.2#10$ 3,
Poisson exact test), suggesting the importance of GPCR
signaling in tumor biology. GRM1 is potentially actionable,
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as it is the target of several drugs according to Drugbank (e.g.,
acamprosate, 4-(1-amino-1-carboxy-ethyl)-benzoic acid; Knox
et al, 2011).
A final example is POU2F1 (FDR P¼ 0.024 from Active-

Driver), a POU domain transcription factor and a cell-cycle
regulator that undergoes phosphorylation-mediated inhibition
of DNA-binding activity during mitosis (Segil et al, 1991).
POU2F1 is highlighted in our model for two pSNVs in
glioblastoma (R296Q) and in breast cancer (S111F). The latter
mutation directly modifies a phosphosite targeted by PRKDC
kinase, involved in promoting cell survival in response to DNA
damage (Schild-Poulter et al, 2007).
The detection of many known cancer genes validates our

approach and the additional highlighted genes, some known to
be druggable, provide novel hypotheses for detailed, func-
tional experiments.

ActiveDriver is complementary to frequency-based
methods of global mutation significance

Conventional cancer genomics analysis focuses on frequently
mutated cancer genes instead of the long tail of genes with rare
mutations. In contrast, our ‘gene-centric’ model considers
each individual gene and detects signaling sites whose
mutations are unexpected given the gene-wide mutation rate.
We therefore find many genes that harbor infrequent, albeit
highly specific mutations that are missed when considering
mutation frequency alone (Figure 2C). In particular, our results
include nine known cancer genes not found among the top 58
genes ranked by mutation frequency (median rank 319,
Supplementary Figure 3).
State of the art global mutation assessment methods such as

MutSig compute significance of gene mutations by comparing
these with baseline mutation rates estimated from whole
genomes or exomes (Banerji et al, 2012). To compare
ActiveDriver with this general approach, we implemented a
simple global strategy similar to MutSig using a standard
binomial statistical test. This global strategy highlighted only
the four most frequently mutated genes as statistically signi-
ficant (TP53,KRAS, PTEN, EGFR; FDR Pp0.05, Supplementary
Figure 4). ActiveDriver identified many more, and also found
seven genes with significant pSNVs that have less mutations
than expected from the genome average of the corresponding
cancer type (PRKCI, PHF3, KTN1, MLL, AKAP13, MET,
CDK11A). Thus, genes with specific and significant phospho-
site mutations would remain unseen in a global analyses.
We further re-implemented ActiveDriver using binomial

statistics in place of our disorder-corrected regression model,
with all other factors unchanged, to test the effectiveness of
our model versus standard methods. This simplified strategy
only found five highlymutated genes as statistically significant
(EGFR, TP53, IDH1, KRAS, FLNB; FDR Pp0.05), the first four
of which are cancer genes (P¼ 2.0#10$ 6, Fisher’s exact test).
As all these were also found with ActiveDriver, we conclude
that modeling protein disorder and phosphosite position is
important for estimating cancer gene significance. Our method
is therefore more sensitive than standard approaches, as it
highlights 11 additional cancer genes and many novel
candidates with highly specific phosphosite mutations.

Phosphosite mutations of TP53 correlate with
extended survival in ovarian cancer and
glioblastoma

The tumor suppressor transcription factor TP53 is the
top-ranking gene in our pSNV analysis (167 pSNVs, FDR
P¼ 7.6#10$ 86 from ActiveDriver). It is an active phospho-
protein and a substrate of 43 kinases with 29 phosphosites in
nine regions. ActiveDriver revealed a statistically significant
mosaic of phosphosites and pSNVs (Figure 3A), including four
hotspot regions of phosphosites that are enriched in pSNVs in
eight cancer types.
To explore the functional and clinical significance of pSNVs,

we studied the survival rates of corresponding glioblastoma
and ovarian cancer patients. We found that phosphosite-
associated TP53 mutations significantly correlate to increased
survival among ovarian cancer patients (log-rank test P¼ 7.2
# 10$ 3, Cox regression P¼ 0.025, Figure 3B). The survival
correlation is evident even in comparison to patients with
wild-type TP53, suggesting that such pSNVs might be
beneficial for tumor suppression. A similar correlation
between pSNVs and better prognosis is seen among glioblas-
toma patients with long-term survival (41 year), although its
statistical significance is low due to small sample sizes (log-
rank test P¼ 0.066, Cox regression P¼ 0.17, Figure 3C). In
agreement with these data, phosphorylation of T155, S183,
S269, T284 by casein and aurora kinases has been associated
with TP53 inhibition via post-translational degradation and
transcriptional repression (Bech-Otschir et al, 2001; Wu et al,
2011). The highlighted pSNVs in 118 patients potentially
inhibit phosphorylation of these sites, meaning that TP53 will
no longer be degraded if mutated. Taken together, our data
suggest a double-negative mechanism in which phosphoryla-
tion-mediated inhibition of TP53 is potentially disrupted by
pSNVs, leading to reduced inhibition of TP53 tumor suppres-
sor function and increased survival.
In contrast to the above mutation hotspots, phosphosites in

TP53 termini appear as highly significant mutation deserts
(three pSNVs observed, 67±8 expected, P¼ 2.8#10$ 30 from
ActiveDriver). The observed negative selection indicates the
importance of these regions as tumorigenic signaling inter-
faces. The N-terminus of TP53 is the interaction interface of its
primary inhibitor MDM2, and TP53 phosphorylation of S15
and S20 inhibits MDM2 binding and leads to stabilization and
activation of TP53 (Chehab et al, 1999). The absence of
mutations in the region suggests that the sequence is required
for successful docking of MDM2 and inhibition of apoptosis.
This example demonstrates the utility of ActiveDriver in
interpreting somatic mutations in known cancer genes.

Pathway analysis of phosphomutated genes
reveals cancer hallmarks and predicts novel driver
systems

Next, we performed a pathway analysis to find systems of
functionally related genes with frequent pSNVs. We assumed
that frequent recurrence of cancer mutations in the same
biological system is unlikely unless the system is involved in
cancer. We searched for pSNV-enriched systems using GO
categories (Ashburner et al, 2000), Reactome pathways
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(Matthews et al, 2009), and human protein complexes from
the CORUM database (Ruepp et al, 2010). To reduce bias from
extremely highly mutated genes, we excluded TP53 and EGFR,
which together cover 39% (181) of the 460 phosphomutated
tumor samples.
Our initial pathway analysis revealed nearly 2000 GO terms

and pathways with statistically significant enrichment in
mutated cancer samples (FDR Pp0.05), many of which match
known hallmarks of cancer (Hanahan and Weinberg, 2011)
(Supplementary Figure 6). However, such broad themes are
also expected in a pathway analysis of standard mutation
frequency-ranked gene lists. To identify functional categories
specifically affected by phosphorylation mutations, we
repeated the pathway enrichment analysis considering all
SNVs and subtracted the list of 1590 categories detected in
both SNVand pSNVanalyses (all FDR Pp0.05). This produced
a final set of 400 phospho-specific enriched categories that are
not found by analyzing all SNVs (Supplementary Table 7).
The top 50 pSNV-focused GO categories highlight multiple

interesting functional themes (Figure 4A). The highest-ranking
categories are innate immune response (n¼ 52 samples, FDR
P¼ 3.7#10$ 4, Poisson exact test), cytokines, and specific
pathways for Toll signaling (n¼ 20, FDR P¼ 1.6#10$ 4,
Figure 4B) and IkB-NFkB cascade (n¼ 36, FDR P¼ 4.9#10$ 6),
all of which highlight the importance of altered phosphoryla-
tion in immune signaling. Avoiding immune destruction and
establishing tumor-promoting inflammation are emerging
hallmarks of cancer and important therapeutic target systems

(Hanahan and Weinberg, 2011). While such pathways are
generally expected to be enriched in cancer mutations,
the majority of specific pSNVs are infrequent and therefore
likely less understood. pSNVs appear in multiple cancer
types and affect different components of the same system,
suggesting that similar strategies could be applied for drug
development. Mutations in some pathways may already be
actionable due to existing drugs against known or candidate
cancer genes (Figure 4C). For instance, 23 patients associated
with the innate immune response category carry mutations in
17 druggable genes such as HCK, SRPK2, MAPK9, UBC and
HLA-A. Thus, pathway analysis of pSNVs may be useful in
developing personalized drug treatments based on known
drugs.
Our analysis also reveals 21 non-overlapping protein

complexes and 17 Reactome pathways with frequent pSNVs
(FDR Pp0.05, Figure 4C and D). The identified pathways are
often related to cancer hallmarks such as cell-cycle regulation,
but not always. For example, the HCF1 complex involves six
phospho-mutated genes in ovarian, liver, and brain cancer
patients: two transcriptional regulators (SP1, HCFC1), a
histone methyltransferase (ASH2L) and three druggable heat
shock proteins (HSP90AA1, HSP90AB1, HSPA8). HCF1 selec-
tively modulates chromatin structure and promotes cell
proliferation by transcriptional activation and repression
(Wysocka et al, 2003). Mutations in this complex may
therefore lead to aberrant expression of cell-cycle genes and
initiation or enhancement of malignant growth.
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As another example, the ASF1 chaperone complex regulates
chromatin assembly during DNA replication (Groth et al,
2005). The ASF1 complex is highlighted due to four
component genes with five pSNVs: the tumor suppressor
kinase CHEK2 and three H3 histones with pSNVs in tail regions
(HIST1H3A, HIST1H3D, HIST1H3H). Interestingly, H3 histone
phosphorylation at S10 has dual roles in chromatin condensa-
tion and transcriptional activation during different cell-cycle
phases (reviewed by Nowak and Corces, 2004), and we see
two flanking pSNVs in this site (R9G, R3C). These mutations
may also affect other modifications, in particular acetylation
and methylation that act as regulatory switches of transcrip-
tionally active chromatin structure. pSNVs in the ASF1
complex could therefore drive cancer using two mechanisms:
by altering DNA replication to introduce further mutations in
cancer genomes, and bymodifying gene expression during cell
cycle to increase proliferation.
In summary, functional analysis of pSNVs reveals known

and putative cancer driver pathways and complexes, not

apparent from standard global analysis of all somatic muta-
tions. All identified complexes, functions and pathways are
affected by mutations in multiple cancer types, indicating that
our approach is useful for uncovering general mechanisms of
tumor biology.

Network analysis of pSNVs reveals hierarchically
organized cancer kinases

To identify additional signaling systems important in cancer,
we analyzed pSNVs in the kinase–substrate network. The
network contains information from many proteomics experi-
ments and is therefore complementary to the known pathways
and complexes analyzed above. Multi-kinase signaling sys-
tems are enriched in mutations, as 74% of 725 kinase–kinase
phosphorylation interactions are altered in cancer (P¼ 1.9
# 10$ 25, Fisher’s exact test). These are expected to include
driver mutations, as alterations of inter-regulator signaling
likely affect multiple downstream processes.
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To study this further, we constructed kinase-centric network
modules containing three types of proteins: a central kinase, its
downstream substrates and upstream kinases. The modules
for all interacting kinases were studied with pSNVenrichment
tests to identify frequently phospho-mutated signaling sys-
tems. This analysis revealed 59 kinase-centric modules with
surprisingly high pSNV frequency (FDR Pp0.05; Figure 5A;
Supplementary Table 8). Many central kinases are associated
with cancer, validating our analysis method (n¼ 15,
P¼ 1.4#10$11, Fisher’s exact test). Further, many kinases
are also known drug targets, suggesting that they are potential
avenues for therapy development (n¼ 23, P¼ 2.7#10$10).
We grouped the modules according to frequency of pSNV

mutations among upstream and downstream interaction

partners and revealed a hierarchy of five distinct kinase
classes. ‘Master kinases’ are not highly phospho-mutated
themselves, but have numerous pSNVs in downstream
substrates (e.g., SRC, AKT1, ABL1). ‘Middle manager kinases’
include pSNVs in the gene of the central kinase as well as its
upstream and downstream interaction partners (STK11, MET,
ITK). ‘Local kinases’ mostly have pSNVs in genes of
downstream substrates (CDK6, ERBB2), while ‘managed
kinases’ are characterized by upstream pSNVs (FLT4, BCR).
‘Self-employed’ signaling systems of KDR and MAPK6 mostly
involve mutations in genes of central kinases. Thirteen
modules involve pSNVs in feedback loops where the mutated
protein is both upstream and downstream of the central
kinase.

P
R

K
C

Z
A

K
T1

G
S

K
3B

S
R

C
LC

K
A

B
L1

S
TK

11
G

S
K

3A
A

K
T

3
M

E
T

B
T

K
T

E
C

P
T

K
2

IT
K

F
G

F
R

4
P

D
G

FR
B

P
A

K
1

P
R

K
D

1
FG

FR
1

IK
B

K
B

P
LK

3
R

O
C

K
1

C
D

K
6

P
D

P
K

1
N

E
K

6
P

D
K

1
R

P
S

6K
A

5
E

R
B

B
2

F
E

R
C

S
N

K
2B

P
A

K
2

C
H

U
K

C
S

N
K

1E
R

P
S

6K
B

1
S

T
K

4
S

T
K

3
P

IM
1

N
U

A
K

2
M

E
LK

M
A

R
K

3
M

A
R

K
4

N
U

A
K

1
S

IK
1

M
A

R
K

1
FL

T4
S

IK
2

M
A

R
K

2
B

R
S

K
2

S
H

C
1

B
M

X
TG

FB
R

1
B

R
S

K
1

C
R

K
R

P
S

6K
B

2
B

C
R

M
A

P
4K

1
LA

T
S

2

K
D

R
M

A
P

K
6

N
um

be
r 

of
 m

ut
at

ed
 s

am
pl

es

0

10

20

30

40

50

60

70

G K Y S F G A C V K K C P R
V
V
V

L
V
V
D
V
V
V
T

T

PRKCD
ERBB2

ABL1
JAK2

EGFR

STAT1
PTK2

CTNNB1
VAV2

GBM1 GBM2 Lung

U
ps

tr
ea

m
ki

na
se

s
D

ow
ns

tr
ea

m
su

bs
tr

at
es

FDR
P-value

0.05

10–12

PRKCA

GEM

IRS1

AQP9

IKBKB

ADD2

MAPT

NCF1

GRM5PEBP1

PPP1R14A 

NUMB

NR1H4
HABP4PDPK1

RELA

PRKACA

RPS6KA5

RPS6KA3

RPS6KB1

ATM

PRKCZ 

CASP9

RPS6KB2 YWHAB
MYH10

CHAT

BRSK2

STK11SIK2

MELK

SIK1

STRADA

AKT3 TRAF2

ADD1

BAX
NCOA3

SP1

NUAK1
PAK1

LATS1 

MARK1SMAD4

BRSK1

SNRK NUAK2 

MARK4
TP53

PRKAA1

WWC1

MARK3

MARK2

PSEN1

PTEN

PRKCD

283 297

Master regulator
network

Middle manager
network

Breast cancer (n=1)
Colorectal cancer (n=2)
Glioblastoma (i) (n=4)
Glioblastoma (ii) (n=15)
Leukemia (n=0)
Liver cancer (n=1)
Lung cancer (n=15)
Ovarian cancer (n=5)
Pancreatic cancer (n=1)

pSNVs excl. TP53

59 kinase-centric network modules with enriched phosphosite mutations (pSNVs) FDR P!0.05

Master kinases Managed kinasesLocal kinasesMiddle manager kinases
Self-employed

kinases

D
pSNVs in PRKCZ-STK11 signaling

Upstream mutations
Mutations in central kinase
Mutations in feedback loop
Downstream mutations

B
Tissue-specific pSNVs in EGFR signaling module

Samples 5 13 22

A

Glioblastoma A289 SNVs in EGFR flank 
a novel putative phosphosite at T290 

C

EGFR protein sequence with phosphosite

M
ut

at
io

ns
 in

11
 g

lio
bl

as
to

m
a 

sa
m

pl
es

     Kinase–substrate 
     interaction
CANCER GENE
DRUG TARGET

* Known cancer gene (n=15, enrichment P=1.4×10–11); o known drug target (n=23, P=2.7×10–10)

pSNV type
Kinase domain

Phosphosite

Phosphosite in 
kinase domain

ActiveDriver FDR P=8.5×10–16 ActiveDriver FDR P=4.5×10–8

Figure 5 pSNVs in the kinase–substrate network. (A) The set of 59 kinase-centric signaling modules with significant pSNV enrichment (FDR Pp0.05), grouped
according to their positions in the defined kinase hierarchy. Bars show number of samples with pSNVs in upstream kinases (light blue), downstream substrates (dark
blue), and central kinase (yellow). Feedback loop mutations (orange) occur in proteins that are both upstream kinases and downstream substrates of the central kinase.
Color-strip under the bars shows statistical significance of pSNV enrichment in each module, asterisks denote known cancer genes, and circles denote known drug
targets. (B) Tissue-specific phosphosite mutations in EGFR. 14 lung cancer mutations occur in the kinase domain (diamonds), while 14 glioblastoma (GBM) pSNVs
associate to phosphosites. (C) Eleven glioblastoma pSNVs in EGFR (A289, C291) flank a novel extracellular phosphosite at T290 (shown in red). (D) Signaling network
of the master kinase PRKCZ and its downstream target STK11 is frequently phospho-mutated and involves several tumor suppressors such as PTEN, TP53, and LATS1.
The network involves pSNVs inB25% of cancer samples. Colored circles denote genes with pSNVs, small black circles denote genes with no pSNVs, and arrows denote
kinase–substrate phosphorylation events. Names of known cancer genes are underlined and printed in bold, and drug targets are shown on yellow background.

Cancer mutations in phosphorylation signaling
J Reimand and GD Bader

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 9



Analysis of kinase-centric modules provides phosphoryla-
tion-associated interpretation of recurrent mutations in well-
established cancer genes. For example, the majority
(56%¼ 29) of EGF receptor (EGFR) missense point mutations
associate with phosphorylation and appear in a tissue-specific,
mutually exclusive pattern (Figure 5B). The kinase domain of
EGFR is characterized by 15 lung cancer pSNVs (FDR P¼ 4.9
# 10$ 8 from ActiveDriver), including the well-studied L858R
mutation that affects EGFR autophosphorylation and is used as
a clinical marker for therapeutic outcome (Sharma et al, 2007).
In contrast, 14 SNVs in glioblastoma are associated to EGFR
phosphorylation sites, suggesting that the mutations play a
role in post-translational activation of this oncogene. Eleven
pSNVs alter the residue A289 that directly flanks a novel
putative phosphosite T290 (Ruse et al, 2008) in the extra-
cellular domain of the protein (FDR P¼ 8.5#10$16 from
ActiveDriver, Figure 5C). While extracellular phosphorylation
mechanisms are generally poorly understood, a recent study
has characterized a novel family of secreted kinases with a role
in human disease (Tagliabracci et al, 2012). Further study of
the role of phosphorylation at this site may help explain the
mechanism of highly recurrent glioblastoma mutations.

The master kinase PKC-zeta controls a frequently
phospho-mutated tumor suppressor network

Protein kinase C zeta (PRKCZ) is the master kinase with the
strongest enrichment of pSNVs among its interaction partners
(n¼ 30 samples, FDR P¼ 1.2#10$ 6, Poisson exact test;
Figure 5D). This kinase functions in the PI3K and MAPK
pathways and is involved in multiple cellular functions,
including cell cycle and proliferation, cell polarity, NFkB
signaling and inflammation. While these functions relate to
hallmark cancer pathways, the direct role of Protein Kinase C
zeta in tumor biology is less established.
Our network analysis suggests that the kinase is involved in

tumor-inhibiting signaling systems, as it directly phosphor-
ylates tumor suppressors PTEN and STK11 and may indirectly
affect signaling of TP53 and LATS1 via STK11. Altogether, the
PRKCZ-STK11 network module involves 44 pSNVs in 19 genes
and 7 cancer types. When considering the additional 157
pSNVs in TP53, every fourth tumor in our data set involves
aberrant signaling in this system. Mutation-ranked functional
enrichment analysis of genes in the network reveals categories
such as cell cycle (FDR P¼ 5.0#10$ 5 from g:Profiler), cell
differentiation (FDR P¼ 1.0#10$10), and protein phosphor-
ylation (FDR P¼ 3.8#10$ 29). These functions are consistent
with the proposed roles of PRKCZ. In particular, the master
kinase network involves a number of frequently mutated
downstream kinases that demonstrate the extent of altered
signaling in tumor cells. The network is also enriched in
specific cancer-related signaling pathways such as WNT
(FDR P¼ 1.2#10$ 3), MAPK (FDR P¼ 0.023), mTOR (FDR
P¼ 7.0#10$15), andNGF (FDR P¼ 5.5#10$ 9). PRKCZ has 11
human paralogs and the significant enrichment of pSNVs
and SNVs indicates the importance of PKC signaling in
cancer (n¼ 15 pSNVs, P¼ 7.6#10$13 and n¼ 27 SNVs,
P¼ 1.2#10$ 9, respectively). While PRKCZ is not a well-
known drug target, multiple inhibitors are available for its
immediate upstream kinase PDPK1.

Heuristic network search in the kinase–substrate
network identifies signaling modules associated
with increased patient survival in ovarian cancer

To explore the clinical relevance of our findings, we studied
correlation of pSNVswith patient survival data available in the
ovarian cancer genome project (Cancer Genome Atlas
Research Network, 2011). First, we repeated the pSNV
enrichment analysis for pathways and networks separately
for ovarian cancer, and interrogated the resulting 552 GO
terms, pathways, and protein complexes for correlations with
survival. This revealed seven significant GO categories,
however, all are related to survival-associated pSNVs in
TP53 (Figure 3B), and no significant correlations were found
after removing TP53 from the data set.
To discover modules in the kinase–substrate network that

correlate with clinical outcome, we designed a local network
search algorithm, called HyperModules, that extends concepts
from earlier methods (Chuang et al, 2007; Reimand et al, 2008;
Altmae et al, 2011). HyperModules starts from a singlemutated
‘seed’ protein and searches its interaction neighborhood for
paths of length two to find other proteins that correlate with a
given clinical variable (e.g., survival). Paths are merged into
larger modules if they improve the correlation, and the search
stops once no further improvements are found. Module
correlation with survival is assessed with an age-weighted
Cox proportional hazards regression model and a likelihood
ratio test. We also compute the significance of our findings by
evaluating the distribution of Cox P-values expected from the
network. Statistical significance of a module is assessed using
a permutation test in which the search is repeated in 10 000
random neighborhoods of the seed node. Each random
network precisely reflects the topology of the original seed-
centered network neighborhood, while node labels (protein
names) along with associated pSNV sets are shuffled globally
over the entire kinase–substrate network. This strategy is
useful for two reasons. First, permutations maintain protein-
based survival correlations and break down signals originating
from kinase–substrate interactions, therefore highlighting real
modules where such interactions are important. Second, the
strategy corrects for topological biases like hub proteins with
large network neighborhoods, as such neighborhoods produce
strong survival correlations even with permuted mutations
and are therefore considered less significant. Finally, to test
modules originating from a particular seed, we discard
modules whose survival significance is similar to P-values
obtained from random networks (FDR Pp0.05).
We searched for survival correlations across all 164 mutated

proteins in the network and found 16 significant signaling
modules (FDR Pp0.05, permutation test, Supplementary
Table 9). One of our top-ranking modules associates with
increased survival and describes mutations in eight patients
who were all alive at the end of the ovarian cancer study
(Figure 6A). This is highly significant according to the Cox
survival regression model used in the search (P¼ 4.3#10$ 5,
Figure 6B). In addition, the permutation test shows that such a
survival P-value is unlikely to be found in randomly mutated
networks (P¼ 2.2#10$ 3, FDR P¼ 0.015, Figure 6C). The
module comprises eight mutually exclusive pSNVs in phos-
phosites and kinase domains of eight proteins (Figure 6D).
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Correlations with other clinical variables further support the
module: alive patients and tumor-free patients are enriched in
the module (Fisher’s exact P¼ 6.8#10$ 4 and P¼ 8.0#10$ 3,
respectively), while subjects of additional chemotherapy are
depleted (P¼ 8.4#10$ 3, Figure 6E–G).
GO enrichment analysis links the survival module to

immune response-activating signal transduction and locomo-
tion, among other terms (FDR Pp10$ 4 from g:Profiler). The
network seed is the hemopoietic cell kinase HCKwith a highly
specific mutation E410K in its kinase domain that potentially
disables the adjacent autophosphorylation site at Y411,
required for kinase activity (Porter et al, 2000). HCK is
involved in immune signaling and cell proliferation in
hematopoietic cells and is linked to cancer. High levels of
HCK are associated with drug resistance in chronic myeloid
leukemia, and its constitutively active isoforms induce solid
tumors in mice (Poincloux et al, 2009; Pene-Dumitrescu and
Smithgall, 2010). These published findings, the likely inacti-
vating mutation in HCK and the observed mutation pattern
suggest that the pSNVs work to disable HCK signaling for the

benefit of patient survival. The positive survival correlation is
not surprising, as other cancer mutations with positive
prognosis are known, for example NPM1 mutations in acute
myeloid leukemia (Verhaak et al, 2005).
While the output of our network search algorithm is not

directly applicable for predicting clinical outcome, as it is
challenged by infrequent mutations and the small-world
property of interaction networks, it is useful as an exploratory
tool that helps discover and interpret rare, specific mutations
in signaling networks that are significantly correlated with
clinical outcome.

Discussion

Many cancer genes are discovered because of high mutation
frequency in tumor samples. Our analysis considers more
detailed information in the form of SNVs that specifically
target experimentally determined phosphosites and kinase–
substrate interactions. As a result, we are able to highlight
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potential cancer genes that would otherwise remain hidden in
the long tail of rare mutations. Pathway and network analysis
highlights similar patterns at higher levels of cellular
organization. The observed enrichment of known cancer
genes in our results validates the analysis, and lends
confidence to less-studied genes and systems that we predict
to be important in tumor development.
A major challenge in genomics is the functional interpreta-

tion of mutations. Functional mutations affect important
protein residues, but traditional mutation evaluation methods
generally focus on gene and protein specific information, such
as amino-acid conservation and DNA sites of alternative
splicing (Jordan et al, 2010). We can uncover additional
information about functional mutations by considering
protein sites related to molecular interactions. Protein inter-
action interfaces are often involved in cell signaling; therefore,
significant mutations in these sites are likely to be functional
and important in disease. A large class of protein sites in cell
signaling are short linear motifs bound by peptide recognition
domains (Pawson and Nash, 2003). The writers, readers, and
erasers of the phosphorylation machinery recognize phos-
phorylated motifs, but many other protein domains perform
similar functions using other types of sites (Pawson and Nash,
2003). For instance, SH3 domains recognize proline-rich
motifs and the histone code has its own set of reader, writer,
and eraser domains for post-translational acetylation and
methylation. Further, transcription factors recognize regula-
tory sites at the DNA level. These data are now increasingly
available for constructing binding site resolution molecular
interaction networks of many human proteins (Chua et al,
2004; Dinkel et al, 2012; Reimand et al, 2012;Wang et al, 2012).
Such networks allow functional interpretation of mutations
with much higher levels of precision than currently possible.
For instance, we can identify mutations that alter signaling
networks by disrupting or creating binding sites. Our methods
are a step in this direction and our future work will include a
wider array of signaling domains and their binding motifs.
Our current analysis involves several limitations. First, we

only analyzed missense point mutations that are the simplest
to interpret, and excluded other mutation types. Considering
the short-read DNA sequencing techniques employed by
cancer genomics projects, these types of mutations are also
likely to be the most accurate. Our methods can be extended to
include other mutation types in the future. Second, our
analysis treats all phosphosites equally, but phosphorylation
is only functional in a cell if the appropriate signaling
machinery is properly co-expressed and co-localized. Also,
our phosphorylation site data set is derived from a collection of
publications, represents a mixture of different cell types,
tissues and experimental conditions, and is not specific to the
cancer types we study. Cancer-specific phosphoproteomics
experiments will hopefully be available in the future to address
this limitation. We currently address this limitation by assign-
ing a higher score to genes with phosphorylation sites that are
mutated multiple times in different samples and also mutated
in multiple sites within the same protein. We thus assume that
the highest scoring proteins from our analysis are more likely
to be cancer relevant due to the repeated and statistically
significant mutation pattern. Finally, mutations in transcrip-
tionally active genes are more likely to be functional than

mutations in silent genes, and mutation calls combined with
RNA sequencing of corresponding samples therefore reveal an
‘active’ set of mutations. Mutation filtering will increase the
precision of our methods once these data become more widely
available. Our models can also consider additional factors
that indicate the importance of phosphorylation and other
functional sites, such as site conservation (Tan et al, 2009),
stoichiometry, and number of kinases targeting a site.
Protein phosphorylation machinery, in particular the

protein kinase family, is an important drug development
target, and several agents such as kinase inhibitors are
routinely used in the clinic. Phosphorylation-specific cancer
mutations are therefore likely to highlight potential drug
targets and may be useful as predictive markers of drug
response, or to identify alternate agents in primary-drug-
resistant tumors.
We present a wealth of hypotheses for cancer-related

discovery, and several novel analysis methods for interpreting
cancer genomes. Our approaches will become more powerful
as data accumulate from the expanding efforts to decipher
cancer genomes.

Materials and methods

Phosphorylation data
Experimentally determined phosphorylated residues and their flank-
ing regions of ±seven residues (referred to as phosphosites) and
phosphosite-associated kinases were retrieved from three curated
public databases: PhosphoSitePlus (Hornbeck et al, 2012), Phos-
phoELM (Dinkel et al, 2011), and Human Protein Reference Database
(HPRD) (Keshava Prasad et al, 2009) (all downloaded on 30 November
2011). Phosphosites were mapped to high-confidence protein
sequences from the Consensus Coding Sequence (CCDS) database
(Pruitt et al, 2009) (build 20110907, NCBI build 37.3). We mapped
phosphopeptides to CCDS sequences using exact sequence matching
to avoid discrepancies between protein isoforms, and discarded non-
matching peptides. Phosphosites with overlapping flanking sequences
were merged into continuous regions. Kinase domains were retrieved
from the HPRD database and mapped to protein sequences using a
similar procedure. We used HGNC symbols provided by all three
phosphosite databases, and retrieved all corresponding isoforms from
the CCDS data set after removing 1380 sequences with non-public
status and 16 pseudoautosomal genes.We selected the longest isoform
of every protein and discarded the remaining isoforms from further
analysis.

Somatic mutations in cancer genomes
Somatic mutations from nine cancer genomics projects (Wood et al,
2007; Cancer Genome Atlas Research Network, 2008, 2011; Ding et al,
2008; Jones et al, 2008; Parsons et al, 2008; Puente et al, 2011; Totoki
et al, 2011) were downloaded from the International Cancer Genome
Consortium (ICGC) data portal (The International Cancer Genome
Consortium (2010), version 4–6, downloaded on 30November 2011). A
subset of mutations matching the human genome build 36 were
mapped to build 37 with the LiftOver software of the UCSC Genome
Browser. We discarded all non-coding mutations, silent mutations,
multi-nucleotide substitutions, insertions and deletions from all data
sets, and retained only non-synonymous, missense SNVs. Further, all
mutations in a given gene and samplewere discarded if they contained
a mutation that created a premature stop codon or removed the
existing stop codon.
Phosphorylation-associated SNVs (pSNVs) comprised SNV mod-

ified phosphosites or kinase domains. Phosphosite-associated pSNVs
involved mutations that directly modified central, phosphorylated
serine (S), threonine (T), and tyrosine (Y) residues (i.e., direct pSNVs),
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as well as mutations flanking the central S/T/Y within seven residues.
Kinase-associated pSNVs were mapped to domains from HPRD. We
compared phosphosite-associated pSNVs with single-nucleotide poly-
morphisms (SNPs) published by the 1000 Genomes Project
Consortium (2010) and found a small set of 12 loci that overlap,
representing 1.5% of unique missense pSNVs.

Global analyses of phosphosite mutations
Global enrichment of SNVs in phosphosites was determined using
Fisher’s exact test, by considering the protein-coding sequence length
of all involved cancer samples as the background. The background
was corrected for each cancer data set independently, as some studies
sequenced all genes and some sequenced a focused set of genes. We
considered all genes described in the publication and any additional
genes indicated in the ICGC data sets.
Global phosphorylation network properties were evaluated with the

non-parametricWilcoxon test, by comparing the degree distribution of
mutated and non-mutated proteins in the kinase–substrate network.
To assess protein centrality, we compared the betweenness centrality
distribution of mutated and non-mutated proteins in the network with
the IGraph R package (Csardi and Nepusz, 2006). An edge in the
phosphorylation network was considered mutated if either the
kinase or substrate participants had at least one mutation in the
kinase domain or any phosphosite. The enrichment of mutated
kinase–kinase edges in the phosphorylation network was determined
with Fisher’s exact test, by taking the collection of all kinase–substrate
interactions as the statistical background.
The high-confidence collection of 555 cancer genes was defined as

the union of genes described in four review papers (Mitelman, 2000;
Hahn and Weinberg, 2002; Futreal et al, 2004; Vogelstein and Kinzler,
2004), as collected in the databases of Cancer Genes (Higgins et al,
2007), and the Cancer Gene Census (Futreal et al, 2004) (downloaded
on 15 December 2011). We also compared our list of phosphomutated
geneswith codingmutations from the Catalog Of SomaticMutations In
Cancer (COSMIC; Forbes et al (2010), downloaded on 5 April 2012) and
found that 99% were expectedly present as COSMIC contains data
from all published cancer genomics projects. The list of 1870 human
transcription factors was published by Vaquerizas et al (2009). The list
of 546 human kinases was compiled using kinase domain information
from the HPRD database (Keshava Prasad et al, 2009) as well as
kinase–substrate interactions from PhosphositePlus, PhosphoELM
and HPRD. The set of 1658 genes corresponding to known approved,
experimental, and illicit drug targets excluding nutraceuticals were
retrieved from the DrugBank database (Knox et al (2011), downloaded
on 16 October 2012). Paralogs for gene family analysis were retrieved
from Ensembl 69. Statistical analyses with these lists were performed
with the Fisher’s exact test, by considering the final set of unique CCDS
genes as the background. Protein disorder predictions were performed
with DISOPRED2 (Ward et al, 2004), using a local installation of the
software and the NCBI BLAST 2.26 NR data bank (downloaded on 21
June 2012).

ActiveDriver analysis of phosphosite mutations
We developed and applied a generalized linear regression model,
called ActiveDriver, to find phosphosites whose mutations are
unexpected given the background mutation rate. The model assumes
that missense mutations in a sequence of a particular gene and cancer
type follow the Poisson probability distribution

Poðy ; lÞ¼ ly expð$lÞ
y !

where yX0, yAN is the observed number of SNVs, and l40, lAR is
the missense mutation rate of the protein sequence of the gene. The
rate parameter l corresponds to the expected number of mutations per
residue E(Y)¼l, as well as its variance Var(Y)¼E(Y2)$ E(Y)2¼ l,
where Y¼ y1,y,yn is the vector of mutation counts per residue in the
protein sequence of n residues.
In a data set of n samples, generalized linear regression models

express the dependency between a response vector Y¼ y1,y,yn and k

predictor vectors X1¼ x11,y,xn1;y;Xk¼ x1k,y,xnk, as

gðEðY j XÞÞ¼ b0 þ
Xk

j¼ 1

bjXj ¼Xb

where b¼b1ybk is a vector of model coefficients and b0 is the model
intercept, X¼X1;y;Xk is the predictor matrix and XTb is the dot
product of the transposed predictor matrix andmodel coefficients, and
g() is a link function for non-linear transformation. Poisson regression
expresses the dependency between response and predictors through
the Poisson distribution, as

EðY j XÞ¼ expðXTbÞ

where YBPo(l) and the link function g()¼ ln() corresponds to the
natural logarithm.

The likelihood of a Poisson regressionmodel given data is computed
as the product of Poisson probabilities of response values yi of samples
indexed with i, given corresponding values xij of predictors indexed
with j, as

Lðb j Y; XÞ¼
Yn

i¼ 1

expðXT
i'bÞ

yi expð$ expðXT
i'bÞÞ

yi !

where Xi* is the vector of k predictor values xi1,y,xik for a given
sample i. The log likelihood of the model is equivalent and more
efficient in practice:

lðb j Y; XÞ¼ logðLðb j Y; XÞÞ¼
Xn

i¼ 1

yiX
T
i'b$ expðXT

i'bÞ$ logðyi ! Þ

Maximum likelihood estimation (MLE) is used to find model
coefficients b̂ that give the best agreement (i.e., smallest absolute log
likelihood) between response and predictor values,

l̂ðb̂ j Y; XÞ¼ argmax
b

lðb j Y; XÞ¼
XN

i¼ 1

yiX
T
i'b$ expðXT

i'bÞ

The factorial term yi! does not involve coefficients and can be
discarded from the estimation. While no analytical solutions exist
for the above equation, the Iteratively Reweighted Least Squares
algorithm is used to find optimal coefficients b̂ and a corresponding
MLE value l̂.

In our approach, we used Poisson regression to test whether a
specific phosphosite region in a given gene involves a significantly
different mutation rate than the gene on average. According to our null
hypothesis, mutations across the whole protein sequence of the gene
follow the Poisson distribution with the intercept coefficient reflecting
background rate b0 linearly combined with a structure parameter X(s)

and corresponding coefficient b(s). The null hypothesis is expressed as
the following intercept-only model

h0 : EðYÞ¼ expðb0 þ bðsÞ þXðsÞÞ

in which X(s) is set to one if the sequence position corresponds to
disordered protein sequence, and equals zero if the corresponding
region is structured (non-disordered). According to our alternative
hypothesis, the mutations in the phosphosite region q are generated by
rates l that are significantly different from the baseline rate l0 while
considering protein disorder:

h1 : EðY j XÞ¼ expðb0 þ bðsÞ þXðsÞ þbðqÞ þXðqÞÞ

In addition, our alternative model may include information about
phosphosite density if it significantly improves model fit. The
information is expressed in three additional predictor variables
X(d),X(v),X(w) that are set to zero in protein sequence positions outside
the phosphosite region of interest, and otherwise encode relative
phosphosite position within the region. Specifically, xi(d) equals one if
position i of protein sequence encodes a phosphosite, and zero
otherwise. The value xi(v) is set to express the number of nearby
phosphosites within a flanking region of ±(1y2) residues around
sequence position i. Similarly, the value xi(w) expresses the number of
distant phosphosites within a region of ±(3y7) residues. These
variables are added to the model one by one using a forward stepwise
model selection procedure that evaluates extended models with the
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Akaike Information Criterion (AIC):

AIC¼ $ 2#l̂ðh1Þþ 2#nh1

where l̂ is the MLE value and n is the number of degrees of freedom
(number of model coefficients). At every step, adjacency-encoding
predictors are added to the model one by one, corresponding AIC
values are computed, and the predictor that provides the greatest
increase in AIC is added to the model. If no additional factors are
sufficient for improvement, the original alternative hypothesis is used
for significance estimation.
To compare the null h0 and alternative h1 models, we use MLE to

determine model likelihoods at optimal coefficients, and compute the
deviance statistic, as

D¼ $ 2#ðl̂ðh0Þ$ l̂ðh1ÞÞ¼ $ 2#ðl̂ðb̂h0 j YÞ$ l̂ðb̂h1 j Y;XÞÞ
A high deviance statistic indicates that the alternative model of

phosphosite-specific mutation rates fits the observed mutations
considerably better than the null model of gene-wide mutation rate.
The deviance statistic approximately follows the w2 distribution with
n¼ nh1 $ nh0 degrees of freedom. The log-likelihood ratio test is used to
estimate the statistical significance of deviance

Pðh0 j X; YÞ¼Pw2 ðD; nÞ

and the null hypothesis is refuted if the P-value of the likelihood ratio
test is Pp0.05.
The alternative hypotheses in ActiveDriver are tested separately for

every phosphosite region, gene and cancer type. The cancer type-
specific composite P-value for a given gene is computed as a product of
significant P-values (only including Pp0.05) for all phosphosite
regions. We subsequently correct composite P-values with the
Benjamini–Hochberg FDR separately for each cancer type. Genes with
no phosphosites or no cancer SNVs are discarded prior to modeling
and not included in the multiple testing procedures.
To identify proteins with significant kinase domain mutations, we

implemented a version of ActiveDriver that considers a simplified
alternative hypothesis for pSNV enrichment detection, as

h1 : EðYÞ¼ expðb0 þ bðsÞXðsÞ þbðdÞXðdÞÞ

where xi,(d) is set to one if position i of protein sequence encodes a
kinase domain and zero otherwise. All other factors of our method
remain the same.We used the simplifiedmodel to analyze the subset of
kinase proteins with SNVs, and found that only EGFR involves a
significant enrichment of kinase domain-specific pSNVs in lung cancer
samples.

Comparison of ActiveDriver results with
alternative approaches
Cancer genes are traditionally identified based on high mutation
frequency in tumors. To compare our method to the traditional
approach, we first compared the genes ranked by ActiveDriver to all
genes with missense mutations ranked according to their mutation
frequency (number of missense point mutations) in all studied cancer
data sets.
Second, we compared gene mutation rates with global (exome-

wide) mutation rates using the binomial statistic. We computed
independent gene-based mutation rates for each cancer type using
distinct background rates and only genes and cancer samples
sequenced in corresponding projects. The two-tailed binomial test
was used to assess the number of observed missense mutations in a
gene, given the total number of missensemutations and total sequence
length (amino-acid positions times number of relevant samples). For a
particular cancer type, all sequenced genes were tested with the
binomial statistic and corrected for multiple testing (FDR Pp0.05).
Third, we designed a simplified gene-centric binomial statistic to test

phosphosite mutation rates in comparison to the Poisson regression
model in ActiveDriver. Except for the statistical model as well as
protein disorder and phosphosite density integration, all other aspects
of the method remained the same. Similarly to the global method, the
two-tailed binomial test was used to evaluate number of missense
mutations in a particular phosphosite region of a gene of interest, given
the number of missense mutations and total protein sequence length.

The final P-value for the gene was computed as the product of
significant P-values from site-specific tests (only including Pp0.05),
followed by multiple testing correction independently for each cancer
type.

Pathway enrichment analysis of phosphosite
mutations
Pathway enrichment analysis of phosphosite mutations involved
testing a given gene list for enrichment of biological process, molecular
function and cell component annotations from GO (Ashburner et al,
2000), curated human biological pathways from Reactome (Matthews
et al, 2009), and mammalian protein complexes from the CORUM
database (Ruepp et al, 2010). We also studied human disease genes
from the Human Phenotype Ontology (Robinson and Mundlos, 2010),
microRNA target genes from MicroCosm (Griffiths-Jones et al, 2008)
and transcription factor target genes from TRANSFAC (Matys et al,
2006); however, these data sets provided no significant categories after
multiple testing correction. Each type of gene set was analyzed and
corrected for multiple testing separately. All functional annotations
except protein complexes were retrieved from g:Profiler (Reimand
et al, 2011). We discarded small gene sets with less than three genes
and general sets with 41000 genes, and did not use KEGG pathway
information due to strong bias towards well-annotated cancer genes
(e.g., the ‘pathways in cancer’ pathway). Ordered functional enrich-
ment analyses were carried out with the g:Profiler software.
Pathway enrichment analysis was conducted across all cancer types

simultaneously. The enrichment P-value was computed using a one-
sample one-tailed Poisson exact test, using a null hypothesis of
uniform backgroundmutation rate across all genes l0¼m/n, wherem
and n reflect counts of all SNVs and genes, respectively. The P-value of
seeing mp or more mutations in a pathway of np genes, given the
background gene mutation rate l0, is computed as one minus the sum
of all less extreme events:

pðXXmp ; np j l0Þ¼ 1$
Xmp $ 1

k¼ 0

lk0n
k
p

k !
expð$ l0npÞ

Gene sets covering only a single mutated sample, or gene sets with
mutations in a single gene were discarded prior to statistical testing.
P-values were corrected for multiple testing with Benjamini–Hochberg
FDR and filtered for significant results (FDR Pp0.05). We considered
the set of genes with kinase domains or phosphosites as the statistical
background, after excluding EGFR and TP53 because of their excessive
mutation rate in phosphosites (181 samples) and in general (340
samples). The analysis was carried out on the full collection of SNVs to
identify gene sets with significant sample coverage, and also with only
pSNVs, finally keeping only terms uniquely significant in the pSNV
analysis. The non-specific SNV analysis used all unique genes in the
CCDS data set as statistical background, while the pSNV analysis
involved a more stringent set of genes with kinase domains or
phosphosites, both excluding EGFR and TP53. The analysis focusing
on all SNVs additionally excludedKRAS from significance tests, since it
introduced a functional bias due to SNVs in 187 samples (KRAS
involves no pSNVs and is highlighted in our model due to pSNV
depletion). Gene sets from GO and Reactome were filtered to reduce
redundancy, by keeping the most significant term among those with a
common ancestor. For significant CORUM protein complexes that
covered the exact same samples, only the complex with the strongest
P-value was retained in the analysis. A separate sequence of
permutation tests was carried out for ovarian cancer samples to
identify gene sets with clinical correlation.

Kinase-specific subnetwork analysis
Experimentally determined kinase–phosphosite interactions were
retrieved from three public databases PhosphoSitePlus (Hornbeck
et al, 2012), Phospho ELM (Dinkel et al, 2011) and HPRD (Keshava
Prasad et al, 2009). Kinase-specific subnetworks include (i) a central
kinase, (ii) all downstream substrates of the central kinase, and (iii)
upstream kinases phosphorylating the central kinase. Cancer samples
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were considered to be mutated in subnetworks if they contained at
least onemutation in any kinase domain or phosphosite in subnetwork
genes. Gene sets covering only a single mutated sample, or gene sets
with mutations in a single gene were discarded prior to statistical
testing. For evaluating statistical significance of pSNVenrichment, we
used a more stringent statistical background of all genes in the kinase–
substrate network. We employed the Poisson tests described above,
and identified kinases with more than the expected number of pSNV
mutations (FDR Pp0.05). As above, direct mutations of TP53 and
EGFRwhere excluded from the analysis and calculation of background
mutation rate. Hierarchical classes of kinases were defined as follows.
Master regulators are kinases whose modules involved 420 samples
with pSNVs (i.e., two-fold median sample coverage over all significant
modules) and at least two-thirds of pSNVs occurring downstream of
the central kinase. Local kinases, managed kinases and self-employed
kinases involved modules with at least two-thirds of pSNVs in
downstream targets, upstream targets, and central kinases, respec-
tively. The middle manager class covered the remaining kinases.

Discovery of clinically correlated modules in the
kinase–substrate network
Clinical annotation of ovarian cancer samples (Cancer Genome Atlas
Research Network, 2011) was retrieved from the Cancer Genome Atlas
(TCGA, downloaded on 21 December 2011). We only included the
patients that were screened for SNVs as the test set, and excluded
patients with missing values in the particular annotation type tested.
To test patient survival, we used a regressionmodel involving age, vital
status, time of follow-up and mutation status in the given module.
We developed a greedy algorithm to search the kinase–substrate

network for signaling modules that cover pSNVs that are maximally
informative of a given clinical outcome. We defined statistical
objective functions to determine the best steps in the search,
comparing (a) the clinical signal in the group of patients defined by
a set of pSNVs in a given signalingmodule and (b) the clinical signal in
the remaining patient cohort. For survival analysis, the objective
function uses the Cox Proportional Hazards (PH) framework of
generalized linear regression, as

lðt j XÞ¼l0ðtÞ expðXTbÞ

where l0 reflects constant positive baseline risk, t corresponds to
survival time, X is the matrix of predictor variables and b is the vector
of model coefficients. As the null hypothesis, survival is modeled in a
univariate regression model with patient age as the confounding
predictor. The alternative hypothesis includes an additional indicator
predictor that reflects the mutation status of each sample in the given
module. The significance of survival difference between the module-
related group and the remaining cohort is estimated in the likelihood
ratio test by comparing the fit and degrees of freedom of the null model
and the alternative model.
The network search starts from a given gene in the kinase–substrate

network as the ‘seed’ and constrains the search space to the
neighborhood of distance d¼ 2 from the seed. First, the algorithm
extracts all paths of length two, each comprising the seed and two
additional proteins. The set of paths is then filtered to reduce the
search space, so that only paths linking to additional pSNV mutations
are considered. Paths are then iteratively merged into modules
containing two or more paths. At each merging iteration, all possible
pairwise combinations of modules and/or paths are considered for
merging, and the pair with the greatest improvement in clinical
correlation according to Cox regression is merged into one module.
Merging stops when no such improvement steps are available.
The statistical significance of identified modules in a given seed

neighborhood is assessed using 10 000 permutations to evaluate the
non-random association between network topology, number of
proteins included and corresponding pSNVs. The interaction topology
of the neighborhood is retained during permutation, while node labels
(protein names) are shuffled globally across the entire kinase–
substrate network. This strategy preserves the gene-based correlation
with survival, while disrupting the correlation originating from
multiple closely interacting proteins. The search algorithm is executed
on the set of random neighborhoods with shuffled labels, and the

resulting modules and clinical correlations (Cox P-values) provide the
null model for statistical significance estimation. The significance of
eachmodule is computed as the fraction of P-values of randomly found
modules that have an equivalent or better clinical correlation Cox
P-value. The P-values of all modules originating from a single seed are
then filtered with multiple testing correction (FDR Pp0.05). To find all
survival-associated modules, we searched the network with every
mutated protein as a seed.

To validate survival modules, we also compared related patients and
mutations with other types of clinical information using Fisher’s
exact test, including vital status, neoplasm status, tumor stage,
and additional chemotherapy. To form larger sample groups for
statistical analysis, we simplified tumor stage classification by
removing alphabetical subclasses, resulting in three stages (II, III,
IV). Besides age-adjusted Cox regression, modules were validated
using alternative significance P-values of survival correlation, namely
likelihood ratio tests with unadjusted Cox regression and log-rank
tests. Clinical correlation tests for ovarian pSNV-enriched GO
categories, pathways, protein complexes and individual genes were
performed in a similar manner, followed bymultiple testing correction
and filtering (FDR Pp0.05). Survival correlation of TP53 pSNVs in
ovarian cancer was identified using Cox regression and log-rank tests.
A separate set of tests was used for the subset of glioblastoma patients
with long-term survival (follow-up time 41 year).

ActiveDriver availability
R Source code of ActiveDriver is available at the website www.
baderlab.org/Software/ActiveDriver.

Supplementary information
Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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