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GreedyPlus: An Algorithm for the 
Alignment of Interface Interaction 
Networks
Brian Law1,2 & Gary D. Bader1,2,3

The increasing ease and accuracy of protein-protein interaction detection has resulted in the ability 
to map the interactomes of multiple species. We now have an opportunity to compare species to 
better understand how interactomes evolve. As DNA and protein sequence alignment algorithms 
were required for comparative genomics, network alignment algorithms are required for comparative 
interactomics. A number of network alignment methods have been developed for protein-protein 
interaction networks, where proteins are represented as vertices linked by edges if they interact. 
Recently, protein interactions have been mapped at the level of amino acid positions, which can be 
represented as an interface-interaction network (IIN), where vertices represent binding sites, such as 
protein domains and short sequence motifs. However, current algorithms are not designed to align 
these networks and generally fail to do so in practice. We present a greedy algorithm, GreedyPlus, 
for IIN alignment, combining data from diverse sources, including network, protein and binding site 
properties, to identify putative orthologous relationships between interfaces in available worm and 
yeast data. GreedyPlus is fast and simple, allowing for easy customization of behaviour, yet still 
capable of generating biologically meaningful network alignments.

A major objective of biology is to understand how complex biological systems are assembled from their 
components into functional units and how they evolve. In molecular biology, efforts have increasingly 
focused on how proteins and other molecules interact, and determining how their interplay affects 
biological phenotypes, including disease. This has driven work in interactomics, as better, cheaper 
high-throughput methodologies allow us to systematically map the dynamic molecular interactions in 
a cell1. To aid the evolutionary study of these networks, a number of network alignment methods have 
been developed2.

Recently, protein interactions have been mapped at the level of amino acid positions, which can 
be represented as an interface-interaction network (IIN), where vertices represent binding sites, such 
as protein domains and short sequence motifs3–7. These networks provide a more accurate picture of 
how protein interaction networks are organized in biological systems. Thus, studying the function and 
evolution of these higher resolution networks should provide new biological insights. However, current 
protein interaction network alignment algorithms are not designed to align these networks and generally 
fail to do so in practice. In response, we developed GreedyPlus, the first algorithm designed to align 
IINs. In the next sections, we provide background about the network alignment problem, introduce IINs 
and review existing algorithms. We then describe the GreedyPlus algorithm and associated input data, 
comparisons with existing protein-protein interaction network alignment methods and results aligning 
IINs from different species.
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Network Alignment Theory
In the trivial case of finding the ideal alignment of a network to itself, the network alignment problem 
is equivalent to the classic graph isomorphism problem, which is of unknown complexity8. However, as 
biological networks evolve, we expect divergence between the networks via the addition and deletion of 
both vertices and edges, and thus the objective of network alignment is to find similarity between net-
works rather than perfect isomorphisms. In the particular case where one network is a subnetwork of the 
other, the network alignment problem is specifically the subgraph isomorphism problem9. In the general 
case, the network alignment problem degenerates into many instances of the subgraph isomorphism 
problem with loosened constraints; particularly, the objective is to find a set of non-overlapping, partial 
isomorphisms of all possible subnetworks of both networks. Given that the complete protein-protein 
interaction networks (PPINs) of species such as human and yeast10,11 number in the thousands of verti-
ces and edges, and that the subgraph isomorphism problem is NP-complete, an optimal computational 
approach is unfeasible and heuristics and approximations must be used.

Interface-Interaction Networks. Interface-interaction networks (IINs) are a refinement of PPINs 
wherein proteins are subdivided into their separate interaction interfaces3. We choose to represent the 
IIN using a traditional graph model where a vertex represents a specific binding site and an edge rep-
resents a physical interaction between two binding sites on their respective proteins. The IIN is thus a 
higher resolution version of the PPIN.

The higher resolution of IINs allows for new biological insights that cannot be derived from stand-
ard PPINs. For example, IINs can distinguish between “date hubs” – proteins that interact with many 
partners, but at different times or in different locations - and “party hubs” – proteins that interact with 
many partners simultaneously12. While these distinct types of hub proteins will appear identically in a 
PPIN, in an IIN, the former will have few binding sites that are reused for many different interaction 
partners whereas the latter will have many binding sites that are specific for each interaction partner. This 
is useful to help elucidate the evolutionary processes and constraints acting on hub proteins. The study 
of IINs will also help interpret how domain and binding site gain and loss affect the PPIN, predict PPIN 
perturbations caused by sequence mutations that affect binding sites, and allow in-depth analysis of how 
protein-protein interactions are formed and lost5,13,14.

Topological differences between IINs and PPINs, however, mean that algorithms designed to operate 
on PPINs may not function properly with IINs. While PPINs are often sparse, IINs are much more so, 
with each PPIN vertex (protein) split into multiple vertices that represent the different binding sites 
on that protein. Similarly, while PPINs exhibit a hub and spoke topology, with many low-degree and 
fewer high-degree vertices, this characteristic is exaggerated in IINs. For example, protein-recognition 
modules, such as protein kinases or SH3 domains, are often capable of binding many different proteins, 
leading to relatively few high-degree vertices connected to many low degree vertices. Additionally, due 
to binding specificity similarities, different domains will often recognize the same ligands, forming a 
multi-fan topology. Methods that depend on the neighbourhoods of vertices being topologically distinct 
to generate their alignments get confused by these repeated patterns and thus perform inconsistently 
(see below for examples).

Experimentally mapped interface-interaction data across species have recently become available, 
such as a set of interactions mediated by SH3 domains in Saccharomyces cerevisiae (budding yeast)4 
and Caenorhabditis elegans (worm)5 SH3 domains are peptide-recognition modules that bind to short 
linear peptides with characteristic proline-rich motifs. The resulting IINs are bipartite, though this may 
not be generally the case. Due to their bipartite property, certain topological motifs, such as cliques, are 
absent while others, such as 4-cycles, are highly enriched. Existing PPIN alignment algorithms have not 
been designed for bipartite networks and can fail to align these networks. The graphlet degree signature 
similarity measure used by GRAAL15,16, for example, loses most of its resolution on a bipartite graph due 
to the absence of odd cycles. Alternatively, the bipartite nature of the networks confounds IsoRank17, as 
its vertex similarity measure can get stuck oscillating between domain and binding site vertices rather 
than converging.

To address the IIN alignment problem, we developed a new algorithm called GreedyPlus, which 
considers bipartite IINs by design.

Protein-Protein Interaction Network Alignment. Even though we argue that IIN alignment rep-
resents a different problem to PPIN alignment, the problems are related in their approach and we review 
PPIN alignment work here. Previous network alignment research has focused on protein-protein inter-
action networks, although other network types have been studied18. Previous PPIN alignment methods 
have sought to identify pairs of orthologous proteins and/or functionally orthologous proteins. Mirroring 
biological sequence alignment techniques, PPIN alignment methods have broadly taken two approaches: 
local alignment and global alignment. Local alignment algorithms seek small subnetworks that are topo-
logically similar, emphasizing regions of high-confidence alignment between the two networks. Typically, 
these methods use protein sequence alignment as a primary indicator of protein orthology, and then 
incorporate network information to identify clusters of sequence-similar proteins; these clusters in the 
network, then, are considered putatively orthologous functional units.
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PathBLAST19, one of the first published PPIN alignment methods, and its successor NetworkBlast20, 
are examples of local network alignment algorithms. Both methods begin by identifying all pairs of 
proteins between the two input networks with significant sequence similarity (using BLAST e-values)21, 
formulating each pair as nodes within a global alignment graph, and filling in the edges between these 
paired protein nodes using interaction data. In the global alignment graph, edges can be aligned (edges 
exist in both input networks), gapped (an edge exists in only one input network), or mismatched (no 
edge exists in either network), implying an abstract model of network evolution. A scoring model is then 
used to score the aligned proteins, and the high-scoring pairings are combined into a small pathway or 
complex as the final result.

Generally, the local network alignment strategy is similar to that for local sequence alignment, begin-
ning with a seed that can be aligned with high confidence, which is often based on BLAST scores. A scor-
ing scheme is defined, often based on an explicit evolutionary model, and then the alignment is extended 
outwards from the seed along network edges, incorporating as many other protein pairs as possible and 
optimizing on the score. NetAligner22, for example, assumes that interacting proteins evolve at similar 
rates as part of scoring edge mismatches and gaps. MaWISH23 formulates an evolutionary model consist-
ing of three events: match, mismatch, and duplication, which are used to develop a scoring scheme for 
optimization and thresholding. The explicit use of an evolutionary model to generate a scoring scheme 
is not novel; as with sequence alignment, any network alignment method implies an evolutionary model. 
However, as protein-protein interaction network evolution remains a largely mysterious process, the 
evolutionary models underlying the scoring schemes are diverse.

Otherwise, the local network alignment problem is well defined. The objective is to identify small, 
well-defined interactomic units – such as protein complexes or pathways – that are analogs within the 
input networks. However, by focusing on local regions, they may miss global aspects of network evolu-
tion. Additionally, as certain topological patterns appear frequently in PPINs, such as cliques and hubs, 
local network alignments can improperly align subnetworks corresponding to these patterns. This is 
typically prevented using minimum sequence similarity thresholds, explicitly or implicitly, to block the 
alignment of proteins with dissimilar sequences.

Global network alignment methods attempt to align all or most of the proteins in two or more PPINs. 
These methods typically build interactome-wide alignments either by seeding an initial alignment and 
then extending it or by seeking a global optimum according to some scoring mechanism using methods 
such as the Hungarian24 or the PageRank17 algorithms. Global alignments likely have much higher false 
positive rates than local alignments as they align many more protein pairs, even those for which evidence 
is weak. Still, global alignment methods have produced network alignments with significant levels of 
functional similarity between aligned proteins.

The IsoRank algorithms – IsoRank17 and its successor IsoRankN25 - adopt a global approach to the 
PPIN alignment problem, formulating a set of mathematical equations and solving them concurrently 
across the entirety of the two networks, in a manner similar to the PageRank algorithm. The intuition 
behind the IsoRank algorithm is that two vertices should be aligned if their respective neighbours should 
be aligned, considering similarities of neighbours and BLAST sequence similarity. To solve for all pos-
sible vertex pairings, the problem is reframed as an eigenvector, and approximated using the power 
method. Once convergence is achieved, the vertices are aligned greedily based on their similarity scores. 
Neither topological similarity nor an evolutionary model for networks are explicitly incorporated in this 
approach.

GRAAL16 and H-GRAAL24 focus on the use of graphlet degree signatures15 as a purely topology-based 
measure of vertex similarity. GRAAL and the related MI-GRAAL26 use a seed-and-extend approach 
aligning in expanding radii from the seed vertices in both input networks, aligning the vertices at 
each radius greedily. H-GRAAL, like IsoRank, formulates the global network alignment problem as a 
minimum-weight bipartite matching problem and solves this problem using the Hungarian algorithm. 
C-GRAAL27 uses BLAST sequence similarity in a seed-and-extend approach where nodes with high 
neighbourhood densities are selected as seeds, greedily aligning their neighbourhoods, and then using a 
common neighbourhood mechanism to align further.

Alternatively, network alignment algorithms can use evolutionary models to score possible alignments 
in terms of likelihood, as BLAST does with sequence alignments. Unlike the IsoRank and GRAAL algo-
rithms, Graemlin28 and Graemlin 2.029 explicitly formulate a model for network evolution, consisting 
of four distinct evolutionary events for Graemlin and six for Graemlin 2.0. These models are trained 
on pre-existing protein orthologies from KEGG30, and then used to score potential alignments between 
networks. However, even using a seed-and-extend method that takes an iterative approach to alignment 
creation, the number of possible events results in an exponential number of possible steps at each iter-
ation, requiring complicated heuristics to manage algorithm complexity. Furthermore, there is no gen-
erally accepted model of PPIN evolution and unlike with bases in sequence alignment, there is no clear 
synonymity between proteins.

Most PPIN alignment methods have attempted to align pairs of related proteins, analogously to pairs 
of similar amino acids in protein sequence alignment. However, many proteins are part of orthologous 
and paralogous groups. This has been only recently treated in network alignment, due to the signifi-
cant complications it creates in both the design of an algorithm and in the subsequent assessment of 
the algorithm’s effectiveness. Despite this, a few attempts have been made to create alignment methods 
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that produce many-to-many alignments between proteins; these are exclusively extensions of previous 
one-to-one alignment methods, such as IsoRankN25 and Graemlin 2.029 (which extend IsoRank17 and 
Graemlin28 respectively). In both of these cases, the later iteration was shown to be more effective, based 
on functional enrichment of aligned proteins.

Results
Comparison with PPIN Alignment Algorithms. To assess the GreedyPlus algorithm, we tested it, 
along with several algorithms for PPIN alignment, by aligning available worm and yeast SH3 domain 
IINs4,5. We first implemented two naïve alignment algorithms to serve as baselines. The first is a greedy algo-
rithm that aligns vertices solely in descending order of similarity score. The second is a seed-and-extend 
algorithm that initially picks the highest scoring vertex pair as an initial seed for the alignment. It then 
extends the alignment along the edges of the two networks by iteratively aligning the highest scoring 
pair of unaligned vertices connected to already aligned vertices. Thus the seed-and-extend algorithm 
always aligns two edges every time it aligns two vertices. We also used several other published network 
alignment algorithms – IsoRank, GRAAL, H-GRAAL, C-GRAAL, and Natalie 2.031. For fair comparison, 
the algorithms were prevented from aligning domain vertices and ligand vertices to each other; this was 
done either using negative scores for domain-ligand pairs or the algorithms were re-implemented with 
only this specific additional constraint added.

We compare these algorithms’ performance based on three metrics. The first two – represented pro-
tein orthologies (RPO) and orthologous vertex pairs (OVP) are measures of how well the algorithms 
reproduce known orthologous relationships (see Fig. 1). An RPO is a pair of orthologous proteins, one 
from each species aligned, which depends on alignment of at least one pair of corresponding inter-
faces (vertices). An OVP is a pair of aligned interfaces that implies a pair of orthologous proteins; thus, 
#RPO ≤  #OVP by definition for any alignment. Finally, we ask how well the networks align topologically, 
by counting the number of edges aligned (EA).

As IsoRank and Natalie 2.0 use BLAST protein similarity as their only similarity feature, our first 
comparison uses only BLAST protein similarity. C-GRAAL uses BLAST score among others, so we 
include it in these tests. The Edge Alignment Weight parameter for GreedyPlus was set to 0.5 after 
testing with several values (see Discussion). The Greedy, GreedyPlus, and IsoRank algorithms all align 
similar numbers of orthologous vertices (20, 18, and 19 OVPs respectively, out of a maximum of 22, see 
Table 1), capturing most of the orthologous protein pairs (RPO) present in our worm and yeast datasets 
(13, 14, and 12 respectively, out of a maximum of 16).

While the greedy algorithm was successful at aligning vertices from orthologous proteins, the low (27 
out of a maximum possible 466, 6%) number of edges aligned implies that it is a poor network alignment 
strategy. This may be expected, as the algorithm does not consider edges. The IsoRank algorithm also 
aligns edges poorly (96 of 466 EAs, 21%), as it primarily focuses on the alignment of similar nodes. The 
bipartite nature of the networks also causes unusual behaviour: the R similarity score in IsoRank fails 
to properly distribute itself throughout the networks, instead oscillating between domains and ligand 
sites rather than converging to a stable state. An examination of the resulting IsoRank alignment (see 
Fig. 2) reveals no connected concentrations of aligned vertices and edges, and thus no regions of similar 
topology between the C. elegans and S. cerevisiae networks.

Figure 1. Illustrative examples of represented protein orthologies (RPOs) and orthologous vertex pairs 
(OVPs). In each of the subfigures, the two proteins are assumed to be orthologous between Species 1 and 
2. The orange circles represent specific sites within each protein, depicted as blue ellipses in hypergraph 
form, and the dark orange arrows represent alignment of the two interfaces. Each pair of aligned interfaces 
between the two orthologous proteins is 1 OVP. However, regardless of the number of aligned interfaces 
between the two proteins, there can only be a maximum of 1 RPO, depicted as a dark blue arrow, indicating 
that the orthologous relationship between the proteins is represented in the alignment.
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Similar to IsoRank, the C-GRAAL algorithm also struggles with the topology of the network. The seeds 
it finds are invariably ligand sites adjacent to multiple domains, as domains have much higher degrees. 
However, domains share few common neighbours due to their binding specificity, and ligand sites have 
generally few neighbours. This limits the alignment expansion, based on its core common-neighbours 
concept, to less than half of the final alignment.

The seed & extend and Natalie 2.0 algorithms captured very few orthologies (1 and 0 of 16 RPOs, 
respectively) as they are primarily focused on edge alignment. Seed & Extend makes an early unrecov-
erable error, beginning alignment at the periphery of the worm network and then rapidly dead-ending, 
aligning only a total of ten vertices (see Supplementary Figure 1 and Supplementary Figure 2). Natalie 
2.0 utilizes a scoring scheme focused on maximizing edge-correctness, on which it performs well at the 
expense of orthology recovery, indicating that simply maximizing network overlap is insufficient for 
reproducing known biological relationships.

Finally, GreedyPlus performs best on RPO and second-best on both OVP and EA (14 of 16, 18 of 22, 
and 291 of 466 respectively). It is also the only algorithm that performs evenly across the three metrics, 
with performance each at > 60% of max, and thus generally performs the best in this comparison (see 
Fig. 3).

The GRAAL and H-GRAAL algorithms rely on a single vertex similarity feature, known as the 
graphlet degree signature16. Thus our second comparison uses only graphlet degree vertex similarity 

Alignment using BLAST 
vertex similarity Greedy

Seed & 
Extend GreedyPlus C-GRAAL IsoRank Natalie 2.0

#Represented Protein 
Orthologies (RPO) 13/16 (81%) 1/16 (6%) 14/16 (88%) 3/16 (19%) 12/16 (75%) 0/16 (0%)

#Orthologous Vertex Pairs 
(OVP) 20/22 (91%) 1/22 (5%) 18/22 (82%) 4/22 (18%) 19/22 (86%) 0/22 (0%)

#Edges Aligned (EA) 27/466 (6%) 9/466 (2%) 291/466 (62%) 221/466 (47%) 96/466 (21%) 354/466 (76%)

Table 1.  Comparison between GreedyPlus, C-GRAAL, IsoRank, and Natalie 2.0 with C. elegans and  
S. cerevisiae SH3-mediated IINs. Only BLAST protein scores were used as a similarity feature. The 
maximum possible values are RPO: 16, OVP: 22, and EA: 466. Bold numbers indicate maximums per 
column. RPO is the number of known protein orthologies that contain aligned interfaces. OVP is the 
number of aligned interfaces within orthologous proteins. By definition, OVP ≥  RPO.

Figure 2. IsoRank alignment of worm and yeast SH3-mediated IINs, using only protein BLAST. Domain 
interfaces are represented by triangular vertices, ligand interfaces by circular vertices. Yellow vertices are 
aligned and from orthologous proteins (OVPs), green vertices and edges are aligned but not orthologous, 
red are unaligned from worm, blue are unaligned from yeast. Vertex size indicates score. The fact that 
IsoRank largely ignores edge alignment is reflected in the low number of green edges. While there are more 
blue edges and nodes than red, due to the larger size of the yeast network, there are no large clusters of 
green (aligned regions).
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across all compared algorithms (Table  2), including C-GRAAL as it was also tested with just graphlet 
degree signature. This vertex similarity measure results in poor vertex alignment performance across all 
algorithms. For example, the GRAAL algorithm identifies no orthologous vertex pairs, though it does 
have a similar execution time as GreedyPlus. The generation of the graphlet degree signature for a given 
vertex involves counting the number of 2-, 3-, 4-, and 5-vertex graphlets in which the vertex partici-
pates. However, of the 29 graphlets of such size, 20 of them contain odd cycles not present in bipartite 
networks. This reduces the number of graphlet orbits, and the length of the graphlet degree signature 
vector, from 72 to 20. Due to this loss of resolution, the GRAAL algorithm loses power in discriminat-
ing between vertex pairings (see Fig.  4). Furthermore, the exaggerated spoke-hub network of IINs in 
comparison to PPINs, for which the GRAAL algorithm was designed, results in the GRAAL algorithm 
preferring to align non-orthologous vertices to orthologous ones.

H-GRAAL, which focuses on aligning vertices, also fails due to the loss of resolution, while the 
C-GRAAL algorithm suffers from the same issues as in the earlier tests. Thus, for graphlet degree, dif-
ferent network types require different topological considerations to be aligned properly.

Incorporating More Similarity Features. As seen in our comparisons above, the choice of similar-
ity feature can dramatically affect algorithmic performance across a range of algorithms for a given net-
work. In particular, the simple Greedy algorithm, using a highly informative similarity feature (BLAST), 
was more successful at recovering orthologous protein relationships than the more advanced GRAAL 

Figure 3. GreedyPlus alignment of worm and yeast SH3-mediated IINs, using only protein BLAST, 
EAW = 0.5. Domain interfaces are represented by triangular vertices, ligand interfaces by circular vertices. 
Yellow vertices are aligned and from orthologous proteins (OVPs), green vertices and edges are aligned but 
not orthologous, red are unaligned from worm, blue are unaligned from yeast. Vertex size indicates score. 
The GreedyPlus algorithm aligns many more edges than IsoRank, resulting in many fewer blue and red 
edges, as they are replaced by half as many green edges. However, there are still no large clusters of green, 
with red and blue edges dispersed throughout the alignment, indicating that interaction rewiring is both 
common and distributed.

Alignment using 
graphlet degree vertex 
similarity Greedy Seed & Extend GreedyPlus C-GRAAL GRAAL H-GRAAL

#Represented Protein 
Orthologies (RPO) 1/16 (6%) 0/16 (0%) 0/16 (0%) 0/16 (0%) 0/16 (0%) 1/16 (6%)

#Orthologous Vertex 
Pairs (OVP) 1/22 (5%) 0/22 (0%) 0/22 (0%) 0/22 (0%) 0/22 (0%) 1/22 (5%)

#Edges Aligned (EA) 91/466 (20%) 319/466 (68%) 298/466 (64%) 295/466 (63%) 157/466 (34%) 93/466 (20%)

Table 2.  Comparison between GreedyPlus, C-GRAAL, GRAAL, and H-GRAAL with C. elegans and 
S. cerevisiae SH3-mediated IINs. Only graphlet similarity scores were used as a similarity feature. The 
maximum possible values are RPO: 16, OVP: 22, and EA: 466. Bold numbers indicate maximums per 
column. RPO is the number of known protein orthologies that contain aligned interfaces. OVP is the 
number of aligned interfaces within orthologous proteins. By definition, OVP ≥  RPO.
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algorithm using a poor similarity feature (graphlet degree) for our IIN (13 RPOs, 20 OVPs vs. 0 RPOs, 
0 OVPs, respectively). To investigate the information content of diverse similarity features and their 
impact on network alignment, we gathered 29 vertex similarity features, based on sequence, functional 
annotation, and topological characteristics (see Supplementary Table 1, Methods), and attempted align-
ment with GreedyPlus using all these features, equally weighted with each other and the Edge Alignment 
Weight (EAW, see Methods).

In this comparison, with 29 equally weighted similarity measures, the H-GRAAL algorithm performs 
best in aligning orthologous vertices, with 11 RPOs and 15 OVPs, but it aligns only 10% (47) of the edges 
(Table  3). This performance is very similar to that of the Greedy algorithm in all respects, suggesting 
that edge alignment in H-GRAAL is largely by chance. Other than Natalie 2.0, which produces the exact 
same alignment as in the first comparison (Table 1), the Seed & Extend algorithm aligns the fewest ort-
hologous vertices (2 OVPs, 9%,), but aligns the most edges (306 EAs, 65%). As every pair of vertices the 
algorithm aligns must be connected to two previously aligned vertices, the algorithm tends to generate a 
high number of edge alignments, but this inflexibility causes it to ignore possible vertex alignments sup-
ported by high similarity scores when no neighbours have yet been aligned. The importance of the input 
similarity feature is shown by the improved performance of GRAAL due to the introduction of more 
informative similarity features, and the decreased performance of IsoRank, due to the dilution of the 
highly informative BLAST similarity feature. However, GreedyPlus had the best balanced performance in 
both properly aligning vertex pairs (44% RPOs, 45% OVPs) and the number of aligned edges (51% EAs).

Parameter Weight Tuning. Having established GreedyPlus’ performance using naïve parameteriza-
tions on the weights of each of the 29 similarity measures, we investigated how improved parameter-
izations would affect alignment quality. We used a random-restart hill-climbing strategy to search the 
high-dimensional parameter space for local maxima in orthology recovery (see Methods). This strategy 
was applied to all 29 similarity features plus the edge alignment weight together (resulting weights listed 
in Supplementary Table 1). Using this procedure, we found a set of parameters that can recover all pos-
sible orthologies (16 RPO, 21 OVP) with a high number of edges aligned (210/466, 45%).

However, several local maxima existed that each resulted in similarly high orthology recovery. Also, 
some parameters are similar to each other, thus not all 29 may be required. To address the possibility 
of overfitting, we gradually reduced the number of parameters while repeating the search/optimization 
procedure. In so doing, we found a set of 6 parameters still capable of producing high-quality alignments 
(16 RPO, 22 OVP, 218/466 or 47% EA), as shown in Table 4.

Sequence similarity features account for ~64% of the overall parameter weighting. Topological con-
siderations, including the closeness similarity features and the edge alignment weight – which is not a 
similarity feature and can be applied multiple times to the same pair of potentially aligned vertices – 
account for ~30%.

Including closeness and the edge alignment weight in addition to the sequence similarity features 
improved orthology recovery. When closeness was removed, the resulting alignment produces only 13 
RPO, 17 OVP, and 231 EA. Similarly, setting the edge alignment weight to zero results in a poorer align-
ment, in particular with edges: 13 RPO, 19 OVP, 34 EA. The small weight assigned to the functional 
similarity feature Topological Clustering Semantic Similarity (TCSS)32, however, is insignificant; setting it 
to zero did not change the overall alignment performance, despite TCSS being weighted relatively highly 

Figure 4. A density plot of graphlet similarity scores between orthologous vertices (in pink) and 
random vertex pairs (in blue). Orthologous vertex pairs do not demonstrate a characteristic graphlet 
similarity score; as such, graphlet similarity has reduced power in correctly aligning vertices. Note that many 
random vertex pairs have high graphlet similarity in the IINs under study; this is due to the prevalence of 
leaf vertices, which tend to exhibit similar graphlet degree vectors.
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when optimization was performed using all assembled features (Supplementary Table 1). Removing all 
non-sequence similarity features (i.e. using only BLAST and Smith-Waterman) results in 13 RPO, 19 
OVP, 29 EA. Given the decreased performance using just sequence similarity features, we conclude that 
non-sequence similarity features are useful in determining the similarity between vertices for the pur-
poses of network alignment.

A Zoom-in. As a snapshot of how GreedyPlus works in practice, we zoom in on the yeast protein 
BZZ1 (see Fig.  5), which has two domain vertices in our dataset. BZZ1 is a recruiter protein involved 
in regulating actin polymerization33, and is an ortholog of the worm protein SDPN-1; Gene Ontology 
identifies both genes as involved in endocytosis34. In this alignment, performed by GreedyPlus using its 
tuned similarity weights, one of the BZZ1 domains is aligned to SDPN-1’s single SH3 domain. However, 
because GreedyPlus cannot perform one-to-many alignments, BZZ1’s other SH3 domain is aligned 
to EPHX-1, which is not an identified ortholog. Neither SDPN-1 nor EPHX-1 are among BZZ1’s top 
BLAST scores, ranking 9th and 11th among our dataset; however, the other similarity features and the 
Edge Alignment Weight drive up their priority in alignment.

Interestingly, the EPHX-1 – BZZ1 alignment was performed first, as the neighbouring aligned pairs 
F22E12.1,377,394 - YTA12,151,171 and UNC-26,1085,1112 - INP53,960,975 boost its score, via the 
EAW, by ~36%, illustrating the additive effect of the EAW. Subsequently, the vertices LST-1,181,200 and 
STP22,187,204 are aligned, partially on the strength of the EAW from EPHX-1 – BZZ1, which then 
promotes the alignment of SDPN-1 to BZZ1. A number of other orthologous node alignments occur in 
the immediate neighbourhood, but do not contribute any EAW to the BZZ1 domain alignments because 
they are not adjacent in either the worm or yeast networks. For example, WSP-1 and LAS17 are ort-
hologs, but while LAS-17 interacts with BZZ1 in yeast, its worm ortholog WSP-1 does not interact with 
either SDPN-1 or EPHX-1 in our SH3 dataset, nor is such an interaction found in the interaction data 
iRefIndex35, hinting at a previously undetected interaction.

We also observe that while BNI1 is an interaction partner with BZZ1, with two sites targeted by the 
two BZZ1 SH3 domains, its worm ortholog CYK-1 does not interact with either EPHX-1 or SDPN-1. 
This non-interaction is also supported by iRefIndex. In our worm network, the respective CYK-1 sites 
are targeted only by Y106G6H.14 and TOCA-1, neither of which have functional annotations in GO, 

Alignment using 29 equal 
weight vertex similarity 
measures Greedy Seed & Extend GreedyPlus C-GRAAL GRAAL H-GRAAL IsoRank Natalie 2.0

#Represented Protein 
Orthologies (RPO) 10/16 (63%) 2/16 (13%) 7/16 (44%) 1/16 (6%) 4/16 (25%) 11/16 (69%) 7/16 (44%) 0/16 (0%)

#Orthologous Vertex Pairs 
(OVP) 13/22 (59%) 2/22 (9%) 10/22 (45%) 1/22 (5%) 5/22 (23%) 15/22 (68%) 9/22 (41%) 0/22 (0%)

#Edges Aligned (EA) 35/466 (8%) 305/466 (65%) 238/466 (51%) 293/466 (63%) 56/466 (12%) 47/466 (10%) 87/466 (19%) 354/466 (76%)

Runtime (ms) 766 794 2,719 2,755 2,695 84,722 112,289 1,804,620*

Table 3.  Alignment algorithm performance on C. elegans and S. cerevisiae SH3-mediated IINs using 
all similarity features. All 29 similarity features were used with naïve parameterization. The maximum 
possible values are RPO: 16, OVP: 22, and EA: 466. Bold numbers indicate maximums per column. RPO 
is the number of known protein orthologies that contain aligned interfaces. OVP is the number of aligned 
interfaces within orthologous proteins. By definition, OVP ≥  RPO. *The original distribution was used for 
Natalie 2.0. All other algorithms were implemented in Java by the authors.

Proteins

BLAST score 46.86 TCSS – molecular function 5.71

Domains

BLAST score 1.14 Closeness centrality 20.71

Ligands

Closeness centrality 1.71 Smith-Waterman score 16.00

Edge alignment weight 8.00

Table 4.  A reduced “optimal” parameter set for GreedyPlus, normalized out of 100. A reduced set of 
similarity features used by GreedyPlus to achieve “optimal” alignment performance, and their associated 
weights.
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though TOCA-1 is indicated to be involved in endocytosis as well36,37 (see Fig. 6). This extensive inter-
action rewiring suggests that IIN alignment approaches based on maximizing topological overlap may 
not be appropriate in identifying orthologs.

Yeast Subspecies Alignments. In addition to the C. elegans to S. cerevisiae IIN alignment, we tested 
GreedyPlus on published predicted SH3 IINs from 18 different yeast species38 (see Methods). All 18 
networks were pairwise aligned, using both the full set of features and the reduced set identified above. 
TCSS was removed as a similarity feature to remove circularity, as most GO annotations for these yeast 
species’ proteins are predicted via orthology with S. cerevisiae. The feature weighting identified in the 
above described optimization for GreedyPlus on C. elegans and S. cerevisiae was used.

As these species are more closely related than C. elegans and S. cerevisiae, we found, as expected, 
that GreedyPlus is able to recover more orthologous pairs in these pairwise alignments. When using a 
minimal set of similarity features with optimized weights (see Table 4), GreedyPlus alignments almost 

Figure 5. A zoom-in of the “optimal” GreedyPlus alignment of worm and yeast SH3-mediated IINs, 
consisting of the two yeast BZZ1 vertices and all their neighbours. Domain interfaces are represented by 
triangular vertices, ligand interfaces by circular vertices. Yellow vertices are aligned and orthologous; green 
vertices and edges are aligned, red are unaligned from worm, blue are unaligned from yeast. Vertex size 
indicates score. The two EAW contributors to EPHX-1,1010,1087 - BZZ1,568,633 are outlined in purple; the 
EAW contributor to SDPN-1,420,502 - BZZ1,478,572 is outlined in orange.

EPHX−1,1010,1087 
− BZZ1,568,633 

Y106G6H.14,10,86 
− MYO3,1119,1195 

CYK−1,765,779 − 
BNI1,1275,1290 

CYK−1,708,722 − 
BNI1,1235,1257 

TOCA−1,520,592 − 
PIN3,53,122 

B0303.7,184,261 − 
HSE1,208,285 

SORB1,407,483 − 
MYO5,1072,1160 

SORB1,206,282 − 
SHO1,287,367 

CYK−1,721,735 − 
BNR1,639,653 

ITSN−1,953,1043 − 
FUS1,432,512 

ITSN−1,654,743 − 
BBC1,1,78 SDPN−1,420,502 − 

BZZ1,478,572 

Y37A1B.17,161,237 
− SLA1,1,140 

Figure 6. A zoom-in of the “optimal” GreedyPlus alignment of worm and yeast SH3-mediated IINs, 
consisting of the three worm CYK1 vertices and all their neighbours. Domain interfaces are represented 
by triangular vertices, ligand interfaces by circular vertices. Yellow vertices are aligned and orthologous; 
green vertices and edges are aligned, red are unaligned from worm, blue are unaligned from yeast. Vertex 
size indicates score.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 5:12074 | DOi: 10.1038/srep12074

always recovered more than 70% of the known orthologous protein pairs while still maintaining a high 
percentage of edges aligned (mean 50.6% of maximum possible, see Fig. 7). Using all the gathered simi-
larity features, except TCSS (26 features), GreedyPlus still performed well, aligning an average of 56% of 
orthologous protein pairs (see Fig. 8).

In both cases, a high percentage of the edges were aligned; notably, more edges were aligned when the 
full set of 26 similarity features were considered. This result is contrary to what would be expected; given 
equal weights, with more similarity features, the relative weight of the EAW is decreased from 1/5th of the 
overall scoring function to 1/26th. This suggests that the additional similarity features – almost all based 
on network topology – increase the alignment of edges by promoting the alignment of topologically 
similar vertices. This may be due to the inferred nature of these networks from relatively closely related 
species which lead to more topologically similar networks.
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Figure 7. Percent RPO and EA achieved for pairwise yeast species alignments. Using the optimized 
parameters from Table 4, GreedyPlus was run on each pair of yeast networks (see Methods). The percent of 
represented protein orthologies and edges aligned for each alignment was retrieved and plotted on the same 
scale.
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Figure 8. Percent RPO and EA achieved for pairwise yeast species alignments. Using the full set of 
similarity features and no optimization, GreedyPlus was run on each pair of yeast networks (see Methods). 
The percent of represented protein orthologies and edges aligned for each alignment was retrieved and 
plotted on the same scale.
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Discussion
We have described GreedyPlus, a network alignment algorithm that is effective, flexible in terms of input 
data, and fast, outperforming traditional network alignment methods in aligning IINs. With feature opti-
mization, made easier by GreedyPlus’ speed, we identified a set of data features and their weights that 
proved highly effective in guiding network alignment.

Unlike other network alignment algorithms, GreedyPlus explicitly specifies a trade-off between a ver-
tex alignment and edge alignment via the EAW parameter. This means that a priori knowledge about the 
networks being aligned can be used to control alignment. Lower EAW values should be more suitable for 
dissimilar networks, to force the algorithm to focus on vertices, whose similarity scores should already 
be sufficiently differentiated to distinguish proper from improper alignments. On the other hand, higher 
EAW values should be more suitable for highly similar networks, resulting in a stricter alignment, which 
would highlight the few areas of difference.

This feature makes the GreedyPlus algorithm suited for evaluating the relative importance of vertex 
versus edge alignment in network alignments. Identifying the correct parameterisation for the alignment 
of different types of networks is in itself an interesting research problem capable of informing us on how 
networks evolve.

Another important feature of GreedyPlus is that it is mostly agnostic to the topological nature of the 
networks being aligned, other than the assumption that neighbours of aligned vertices should more likely 
be aligned themselves. As our SH3 domain data set does not contain domain-domain or ligand-ligand 
interactions, the IINs we studied were bipartite, which confounded several of the algorithms tested. 
Though the current GreedyPlus implementation is specialized to handle bipartite networks, it is not 
dependent on the bipartition, and the approach could be adapted to different network types. For exam-
ple, domain-domain interactions are possible with other domains, such as SAM and coiled-coil, and so 
IINs are not necessarily bipartite.

Though we lack sufficient IIN data to make a general statement, we observed a trade-off between the 
alignment of biologically verified vertex pairs and the alignment of edges with a number of algorithms, 
including our own. Notably, an increase in the number of edges aligned did not necessarily lead to an 
increase in the number of vertices properly aligned. Some brief experiments with the Edge Alignment 
Weight parameter showed that, with GreedyPlus, attempting to maximize the number of aligned edges 
results in a distinct decrease in the number of properly aligned vertices (see Fig. 9).

Despite this trade-off, our results show that including topological similarity features improves the 
orthology predictions of network alignment, demonstrating their relevance, and hinting that network 
alignment may complement sequence alignment as a bioinformatics tool to study evolution, but the 
significance of edge alignment in constructing network alignments is unclear. While aligning two edges 
implies similarity between their endpoints, simply maximizing the number of edges aligned clearly does 
not result in a biologically relevant and informative alignment. Though it would be a simple extension, 
GreedyPlus does not currently implement edge similarity features, and treats all interactions as function-
ally identical, because while some are available, such as PPI confidence estimates39, binding affinity, tissue 
specificity, or the types of interacting residues, they are not currently prolific enough to be generally 

Figure 9. Trade-off in GreedyPlus performance between orthologous vertices aligned and edges aligned. 
Using BLAST score between proteins as the only similarity feature, we ran GreedyPlus with the edge 
alignment weight set at values ranging from 0% to 100% of the protein BLAST score weight, and plotted 
its performance. If the plots were tightly correlated, it would indicate that successfully aligning networks 
topologically would be equivalent to aligning vertex pairs successfully. However, we observe a distinct trade-
off between aligning edges and aligning orthologous vertices.
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useful. It is possible that with discriminatory information about the interactions that edges represent, 
a method based on optimizing edge alignments may prove effective for aligning entire networks as 
well. Using this information, a PPIN alignment algorithm, for example, could preferentially align two 
SH3-mediated interactions, rather than an SH3-mediated interaction and a WW-mediated interaction, 
or could avoid aligning a structural interaction to a transient enzymatic interaction.

We selected a broad set of similarity features to investigate their utility in network alignment. Sequence 
similarity, in particular BLAST-based, is ubiquitous in network alignment research; ligand sequences, 
however, are too short for BLAST, so Smith-Waterman was used instead. GO functional annotations are 
often used to validate network alignments; we were interested in examining whether they could be used 
as an input feature as well. Topological features other than graphlet signatures have had some treatment 
in the literature; Kuchaiev et al.26 have previously evaluated graphlet signature, vertex degree, clustering 
coefficient, and eccentricity. As such, we opted to incorporate many different topological features to 
assess their utility (see Supplementary Table 1). In general, the features are of two types: centrality or 
clustering. Average shortest path length, betweenness, closeness, eccentricity, radiality, and stress are all 
measures whether a vertex is located in the centre or on the periphery of a network. The alignment of a 
central vertex to a peripheral vertex would, given our current knowledge of network evolution, imply a 
highly improbable evolutionary history, involving a large redistribution of vertex and edges about a pre-
viously peripheral vertex. Degree, graphlet signature, neighbourhood connectivity, stress, and topological 
coefficient are all measures of connectedness in the neighbourhood around a vertex. These measures 
should distinguish a vertex in a highly connected neighbourhood from one in a sparse neighbourhood, 
providing regional information to guide alignment. Clustering coefficient was not used, as the vertices 
in a bipartite graph always have a clustering coefficient of zero40.

Notably, using BLAST score for full-length proteins alone as the single distinguishing similarity 
feature results in substantial orthology recovery in the alignment (see Table  5). Conversely, using the 
sequence similarity scores of the vertices - BLAST for domains and Smith-Waterman for ligands – alone 
resulted in no orthology recovery. Various combinations of the topological and functional similarity 
features, as determined using TCSS32, also resulted in low orthology reproduction. This seems to suggest 
that while non-sequence-based information has a role to play in network alignment, its direct contribu-
tion is not obvious.

Many measures of network alignment quality are also dependent on BLAST similarity. In addition to 
orthologs, some measure of coherence between the GO terms of aligned vertices is often used to verify 
the biological quality of an alignment. However, many GO terms are inferred from another protein 
based on sequence similarity, either directly or indirectly. Even experimentally derived GO terms may be 
subject to BLAST-derived confirmation bias, as experimental design could be guided by BLAST results. 
Notably, while using functional features alone generates an alignment with orthology reproduction (see 
Table 5), they played close to no role in our optimized parameter set (see Table 4); this may be explained 
by a duplication of information between sequence- and function-based similarity features. If network 
alignment is to serve as an independent tool alongside BLAST, the development of assessment measures 
that don’t involve BLAST-based confirmation bias will be essential.

Finally, network alignments, consisting of at least two networks plus the alignment between them, 
present a challenging visualization problem. Even with the relatively small, sparse IINs, alignments pro-
duce networks exhibiting the same “hairball” nature characteristic of the PPIN visualization problem41. 
For instance, it would be useful to evaluate compound graph and hypergraph visualizations, similar to 
what is presented in Fig. 1. With the proliferation of network alignment research, improved visualization 
tools will be critical for the interpretation of generated alignments.

Conclusions
GreedyPlus is a novel algorithm useful for the alignment of interface-interaction networks, compatible 
with a range of vertex similarity measures. While vertex sequence information is dominant in its ability 
to align vertices properly, topological information is useful for improving alignment performance, even 

Represented Protein 
Orthologies

Orthologous Vertex 
Pairs

Edges 
Aligned

Protein BLAST 10 12 299

Domain BLAST / Ligand S-W 0 0 296

Protein & Domain BLAST / 
Ligand S-W 6 10 288

Topological Features 0 0 272

Functional Features 5 7 278

Table 5.  GreedyPlus performance using different similarity features. GreedyPlus was used to align the  
C. elegans and S. cerevisiae SH3 IINs, using different sets of similarity features under simple parameterization 
(all scoring weights, including EAW, are equal), and the results of each alignment are shown.
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if it is of low utility in isolation. We identify a reduced set of information types and a weighting of these 
types that can be used to generate relatively high performance alignments. The algorithm and our eval-
uation framework will be used to further investigate network evolution and how to best align biological 
networks.

Methods
Algorithm. We created a fast algorithm for the alignment of IINs, GreedyPlus, using a local network 
alignment approach. Additionally, alignments generated by GreedyPlus can easily be compared, on a 
stepwise basis, to identify when and why each alignment tuple was formed (or not), allowing us to spe-
cifically query how changes in parameterization and input data may lead to differences in the resulting 
alignment. Further, a key research question for network alignment is how to balance vertex-specific 
information versus topological information. The critical characteristic of network alignment is that edges 
must be aligned in addition to vertices; an alignment that has no aligned edges is, fundamentally, not 
a network alignment42. However, while there is a plethora of biological information regarding proteins, 
there is a dearth of information on protein-protein interactions that would assist in guiding or verifying 
an alignment. Thus, to investigate the interrelation and relative importance of vertex versus edge align-
ment, GreedyPlus explicitly models a balance between these two elements.

An interface interaction network can be modelled as an undirected graph G, consisting of a vertex set 
V and an edge set E, where each edge is a tuple of two vertices (v1, v2). An alignment of two PPINs G1 
and G2 is thus a set of 2-tuples A =  {[u1, v1], [u2, v2], …, [ui, vi]}, where ui ϵ V1 ϵ G1 and vi ϵ V2 ϵ G2, if 
the alignment is one-to-one. In this context, the goal of GreedyPlus, like most other biological network 
alignment algorithms, is primarily to align vertices [ui, vi] such that biological inferences can be drawn 
about one vertex from the other based on their alignment. If these vertices represent interfaces, such 
an inference might be that they are orthologous, or that they mediate functionally similar interactions, 
or that they evolved to occupy similar positions in their respective networks under similar selective 
pressures.

Though generalizable to other networks, GreedyPlus’ current implementation is tailored specifically 
to accommodate bipartite peptide-recognition module-mediated IINs, reflecting the current availability 
of IIN data. These networks, being bipartite, can be modelled in a similar manner as general IINs, as 
an undirected graph G, with a vertex set V =  {D, L}, where D and L are the sets of vertices representing 
peptide recognition domains (e.g. SH3) and ligands respectively, and ∀ v ϵ G, v ϵ D or v ϵ L. An align-
ment A of such networks is then restricted such that for each tuple [u, v] ϵ A, either (u ϵ D Λ  v ϵ D) or 
(u ϵ L Λ  v ϵ L).

The key intuition behind the GreedyPlus algorithm is that the presence of interaction is itself a bio-
logical evidence source pointing towards an orthologous relationship between a pair of proteins. That is, 
if there exists (u1, u2) ϵ G1 and (v1, v2) ϵ G2, and it is known that u2 and v2 are orthologous, then we can 
infer that u1 and v1 are more likely to also be orthologous. Furthermore, if there also exist (u1, u3) ϵ G1 
and (v1, v3) ϵ G2, this would provide even stronger evidence; thus the more edges that would be aligned 
by aligning vertices u1 and v1, the more likely that this is a good alignment of vertices.

The GreedyPlus algorithm is essentially a greedy algorithm that iteratively aligns pairs of vertices in 
descending order of similarity, defined by a given similarity score. However, when aligning two verti-
ces, GreedyPlus also considers the number of edges that would be aligned if the vertices were aligned, 
strengthening the respective vertex pair similarity score with more edges aligned (see Fig. 10 and Fig. 11). 
Thus, GreedyPlus will prefer to align vertex pairs that also align edge pairs over those that do not if the 
difference in similarity is small, but will align highly similar vertices irrespective of network topology. 
The preference of the algorithm in aligning edges or maximizing vertex similarity can be controlled 
using a defined parameter, named the edge alignment weight (EAW), providing flexibility and enabling 
investigation of the relative importance of aligning vertices versus edges.

The edge alignment weight (EAW) determines how strongly GreedyPlus prioritizes the alignment of 
edges compared to vertices. When the EAW is set to zero, GreedyPlus behaves identically to the greedy 
alignment algorithm, as it will ignore the alignment of edges. When the EAW is set to ∞, GreedyPlus 
behaves similarly to a seed-and-extend algorithm (see below), always choosing to align two edges when-
ever possible as the EAW will overwhelm any preference in aligning vertices, with the exception that it 
can resume alignment even if edge extension possibilities are exhausted. By tuning the EAW parameter 
to intermediate values, the preference between vertex or edge alignment can be balanced.

A naïve implementation of GreedyPlus runs in worst-case O(|D|3|E| +  |L|3|E|) time, though given the 
nature of domains and ligands, |L| >> |D|. In practice, GreedyPlus takes approximately two seconds to 
align two networks with |L| =  500 and |E| =  600, implemented in Java on a 3.4 GHz processor.

Network Creation. The S. cerevisiae and C. elegans networks were created using interaction data 
from Tonikian et al. and Xin et al.4,5. 24 SH3 domains were identified in S. cerevisiae, their 853 interac-
tions were experimentally identified, and then 497 ligand targets for those interactions were predicted. 
Similarly, 33 SH3 domains, 466 SH3-mediated interactions, and 433 SH3 ligands were identified in  
C. elegans. Each SH3 domain was represented by an individual vertex, with the exception of the first 
two SH3 domains on the Sla1 protein, which were treated as a single domain in the original prediction 
procedure, as the two domains could not be purified separately. These networks cover approximately half 
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of the SH3 domains in each species; the remainder failed for various experimental reasons and were thus 
excluded from our work.

Each predicted interaction included a target peptide sequence of length 15. When these peptide tar-
gets occupied non-overlapping positions in the target proteins, each peptide target was as an independent 
binding site represented as an independent vertex. When binding sites overlapped, they were merged, 
when possible, into a singular vertex representing no more than 30 amino acids. Overlapping binding 

Figure 10. A simple example of GreedyPlus in action. First, GreedyPlus finds the highest scoring pair 
of vertices (in yellow), in this case the pair (A, 1), and aligns them. Then the similarity matrix is updated, 
with the scores of all pairs of all neighbours of just-aligned vertices (in green) incremented by the Edge 
Alignment Weight (in this case, 1). Using the updated similarity matrix, GreedyPlus iterates until all vertices 
are aligned. In this example, the third vertex alignment [C, 3] is made as a result of the Edge Alignment 
Weight increasing its similarity score; otherwise, the pairing [E, 3] would have been made instead.

Figure 11. Pseudocode for the GreedyPlus algorithm. This pseudocode is not optimized, for clarity 
purposes. Note that EAW has an additive effect; the more edge alignments that support a given vertex 
alignment, the higher the corresponding score is boosted.
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sites with a combined length of more than 30 amino acids were manually separated into multiple vertices 
with minimum sequence overlap between vertices.

The interaction networks for the other yeast species were similarly created using interaction data from 
Sun et al.38. Each network contains approximately 500 predicted interactions, generated by using the 
30 position weight matrices created for 24 S. cerevesiae SH3 domains and mapping them to each yeast 
proteome in which an orthologous SH3 domain exists. The networks for three species – S. paradoxus,  
S. mikatae, and S. bayanus – the only three datasets sourced from Fungal Comparative Genomics (origi-
nal source: Kellis et al.43), were excluded due to unusual performance. In particular, pairwise alignments 
between the remaining 20 yeast species had an average protein orthology recovery rate of 56% and a 
minimum of 29%, compared to just 24% for alignments between the three excluded species and the 
remaining 20 yeast species.

Orthology Data. The orthology dataset for S. cerevisiae and C. elegans was created from a union of 
orthology mappings retrieved from Ensembl44, Inparanoid45, and OrthoMCL46. The orthology datasets 
for the yeast species were produced by Wapinski et al.47.

Similarity Feature Data. We began with 29 similarity features for assessing every pair of vertices 
from two separate networks. Sequence similarity was calculated between every pair of proteins using 
BLAST-P, taking both the raw score and the coverage as features, as well as every pair of domains. 
Sequence similarity between ligand sites was calculated using the Smith-Waterman algorithm with the 
BLOSUM62 scoring matrix, as implemented by JAligner48.

Functional similarity was calculated between proteins using TCSS32, taking the biological processes, 
cellular components, and molecular function scores as three separate similarity features. Graphlet degree 
similarity was calculated between all SH3 domain and between all ligand site vertices separately, as 
described by Przulj et al.49, as were the remaining 18 similarity features – betweenness, closeness, degree, 
eccentricity, neighbourhood connectivity, radiality, stress centrality, and topological coefficient. Raw val-
ues for these features were obtained using the NetworkAnalyzer plug-in in Cytoscape50,51, and a raw 
similarity value was calculated for each pair of domains [i, j], i ϵ D1, j ϵ D2, rawi,j =  max(scorex – sco-
rey) – (scorei – scorej) ∀ x ϵ D1, ∀ y ϵ D2, and then normalized logarithmically to the interval [0,1] using the 
formula: ∀ x ϵ D1, ∀ y ϵ D2, adji,j =  log(rawi,j)/log(max(rawx,y)). Similarity scores between ligand vertices 
were calculated similarly.

Parameter Training Procedure. The parameter training procedure used was a random hill-climbing 
heuristic, designed to find parameter sets that maximized the orthologies found (RPOs). For each set of 
similarity features trained, we randomly generated a weight parameter in the interval [0,1], and generated 
a corresponding alignment. We then randomly incremented or decremented the first parameter by a step 
value if the new value would remain within the interval [0,1] and generated a new alignment. If the first 
alignment had more RPOs, then the parameter change was reversed and another parameter chosen to be 
incremented or decremented. Otherwise, the new parameterization was kept, and the parameter stepping 
repeated until no further improvement could be achieved. Then every other parameter would be retested 
for possible improvement via incrementation or decrementation.

This process was continued until no parameter could be either incremented or decremented to 
improve the orthology reproduction of the alignment produced. This procedure was iterated four times, 
using increasingly precise step sizes: 4√0.01 ≈  0.32, 0.1, 0.03, and 0.01, until convergence was achieved, 
resulting in a parameterisation at a presumed local maximum for orthology recovery.

For each set of similarity features used, the training procedure was iterated at least 5,000 times, pro-
ducing at least 5,000 locally optimal parameter sets.

Similarity Feature Reduction. To reduce the full set of similarity features to a smaller set, redun-
dant similarity features were identified by calculating Euclidean distances between each similarity feature 
matrix and performing principal component analysis. Similarity features that were highly similar to 
another feature (Euclidean distance with another similarity feature <  =  0.10) were then removed, with 
preference given to removing the feature most similar to the other remaining features. The following 
features were removed: BLAST coverage, TCSS cellular component, and TCSS biological process for 
proteins, betweenness, BLAST coverage, eccentricity, and radiality for domains, average shortest length 
path, betweenness, eccentricity, degree, radiality, and stress for binding site.

To further reduce the similarity feature set, GreedyPlus was re-optimized with the remaining 18 
similarity features to identify features that could be removed without negatively impacting algorithmic 
performance. The similarity feature given the lowest weight in parameter sets associated with the top 
50 results from the training procedure was identified as the most uninformative feature and removed. 
This process was repeated until an effective minimal set of similarity features was identified, whereby the 
removal of any additional feature resulted in loss of orthology recovery.
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