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The liver performs a vast arrayof physiological functions that
are key to maintaining systemic health. These functions are
supported by a unique microanatomical division of labor
that allows the liver to carry out various metabolic, xenobi-
otic, and immunological tasks.1,2 As the liver is key to many
systemic physiological processes, hepatic dysregulation is
implicated in several chronic illnesses. With a mortality rate
of 2 million people a year globally and few therapeutic
interventions, chronic liver disease (CLD) is the 11th most
leading cause of death worldwide.3 CLD occurs on a back-
ground of several diseases including chronic hepatitis C virus
(HCV) or hepatitis B virus (HBV) infections, alcoholic liver
disease (ALD), and nonalcoholic fatty liver disease (NAFLD)
which can progress into nonalcoholic steatohepatitis
(NASH).4 Untreated, CLD can lead to pathological changes
in the liver, such as cirrhosis, and hepatic malignancies, such
as hepatocellular carcinoma (HCC) and intrahepatic cholan-
giocarcinoma (ICC).4 Beyond the liver, CLD can also promote
severe and sometimes life-threatening systemic diseases,
such as abnormal coagulation and hepatic encephalopathy,
which could result in coma and death.5 Current treatment
options for patients with CLD and liver cancer rely on the
treatment of the underlying cause of liver damage or on liver
transplantation.3 However, the demand for livers greatly
outweighs the donor organ supply. Furthermore, an incom-
plete understanding of the biological circuits driving liver
disease at the cellular level means that there is a lack of
effective therapies to reduce morbidity and mortality as a
result of CLD.

Our understanding of liver biology has been informed via
histological and molecular biology techniques using cell
lines, animal models, and human tissues. However, key
questions, such as the role of rare-cell populations in the
development and severity of liver disease, have been limited
by a lack of appropriate animal models and molecular
biology tools. Recent advances in single-cell technologies
limit the cellular examination of solid organs only by tissue
resources and our imagination. The purpose of this review is
to (1) examine single-cell atlasing through the lens of liver
disease and (2) revisit open questions that might benefit
from such approaches. Particular attentionwill be paid to the

unique features of liver disease pathology and progression
that might profit from multimodal examinations.

The functional unit of multicellular organisms is the cell.
Single-cell genomics and transcriptomics allow us to unbias-
edly capture the functional diversity and molecular features
present in the liver at a single-cell resolution. Multiple omics
features (e.g., genome, epigenome, transcriptome, and pro-
teins) can also bemapped for the same cells using a variety of
experimental methods (►Fig. 1; ►Tables 1 and 2).6 These
approaches enable a deep characterization of rare human
tissue samples and have been applied to many major organs
across multiple disease contexts.7–12 Within the liver, an
explosion of single-cell research has provided insight into
cellular heterogeneity, cell-to-cell communication and dis-
ease-associated reprogramming. While single-cell RNA se-
quencing (scRNA-seq) has been heavily relied on to map the
transcriptomic cellular landscape in liver development,
health, CLD, and cancer, recent publications have adopted
multimodal single-cell approaches to generate more com-
prehensive atlases.13–17 Previous reviews have described the
recent efforts towardgenerating a liver cell atlas using single-
cell genomics in detail.18 This review highlights the unique
challenges in studying the liver at a single-cell level, dis-
cusses new insights revealed by such approaches, and future
opportunities for the application of single-cell technologies
to pave the way for effective disease interventions.

Transcriptomic Profiling Reveals Liver-Cell
Heterogeneity and Zonation

Identities and Functions of the Cells in the Liver
The liver is the largest solid organ in the human body. It is
composed of hepatocytes, cholangiocytes, and nonparenchy-
mal cells including liver sinusoidal endothelial cells (LSECs),
hepatic stellate cells (HSCs), and recruited and tissue resi-
dent immune cells.19 ScRNA-seq has allowed the examina-
tion of parenchymal and nonparenchymal cells in thehealthy
liver, revealed new insights into hepatocyte phenotypic
zonation, and refined our understanding of LSECs, cholan-
giocytes, and hepatic progenitor cells (►Table 3).2,17,20–22

These studies have elucidated zonated functional pathways

Keywords

► single-cell
transcriptomics

► liver cancer
► hepatitis

Abstract The human liver is a complex organmade up ofmultiple specialized cell types that carry
out key physiological functions. An incomplete understanding of liver biology limits our
ability to develop therapeutics to prevent chronic liver diseases, liver cancers, and
death as a result of organ failure. Recently, single-cell modalities have expanded our
understanding of the cellular phenotypic heterogeneity and intercellular cross-talk in
liver health and disease. This review summarizes these findings and looks forward to
highlighting new avenues for the application of single-cell genomics to unravel
unknown pathogenic pathways and disease mechanisms for the development of
new therapeutics targeting liver pathology. As these technologies mature, their
integration into clinical data analysis will aid in patient stratification and in developing
treatment plans for patients suffering from liver disease.
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Fig. 1 Single-cell experimental and analysis workflow. (A) Spatial transcriptomics: liver tissue samples are sectioned, and transcripts are
barcoded according to their location based on a matrix of spots. These barcodes are then used to spatially resolve gene signatures across the
tissue section. (B) Droplet-based experimental workflow: dissected tissues are dissociated into either single-cell or single-nucleus suspensions.
CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing): cells can be tagged using oligo-labeled antibodies to link protein to
RNA expression. ScATAC-seq: (single-cell assay for transposase-accessible chromatin with sequencing) is an unbiased, epigenetic regulation
discovery tool that determines regions of open chromatin genomic DNA that are accessible to transcriptional machinery. Tn5 is used to
sequentially cleave accessible DNA regions and to attach PCR amplification primers to generated barcoded accessible DNA fragments. RNA from
single cells, DNA-oligomer labeled antibody-tagged cells, and single-nuclei or DNA from transposed nuclei are used to generate gene expression
and accessible DNA libraries at a single-cell resolution through droplet-based experimental workflows such as the 10� genomics platform.
Amplification of T and B cell receptor regions is used to link adaptive lymphocyte transcriptomes to their receptor sequences and determines
clonal expansion. (C) Downstream analysis of these data relies on clustering to group cells together based on similarity of transcriptomic,
proteomic, or epigenetic features. Trajectory inference analysis orders cells along a smooth continuous path of transcriptomic changes and can
help deepen our understanding of cellular differentiation pathways and how cell states change with conditions. Differential gene expression
analysis helps determine the genes directing these differences in cell type and or state and intracellular interaction analysis can be used to infer
the pathways that cells use to communicate with each other in health and disease. GEX, gene expression; PCR, polymerase chain reaction; RT,
reverse transcription; scRNA-seq, single-cell RNA-sequencing; snRNA-seq, single-nucleus RNA-sequencing; Tn5, Transposon Tn5.

Seminars in Liver Disease Vol. 42 No. 3/2022 © 2022. Thieme. All rights reserved.

Unraveling the Complexity of Liver Disease Atif et al.252

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f T

or
on

to
 L

ib
ra

rie
s.

 C
op

yr
ig

ht
ed

 m
at

er
ia

l.



Table 1 Single-cell modalities and their applications

Single-cell
modalities

Molecular layer Molecular features Applications and challenges

ScRNA-seq Transcriptomic Whole cell: mature mRNA gene
expression, captured via poly-A tail

Best suited for analysis of highly expressed genes. Can
be coupled with protein quantification using CITE-seq.
Application to fresh tissue, cell types can be enriched
using fluorescence-activated cell sorting if necessary.

SnRNA-seq Transcriptomic Nuclear mRNA fraction: primary,
unspliced mRNA

Application to fresh and frozen samples, particularly
those that are difficult to dissociate into single-cell
suspensions. Can provide data on difficult to isolate
cells with some loss of transcriptional depth and the
cytoplasmic RNA fraction.

ScATAc-seq Epigenetic Captures open chromatin,
transcriptional machinery
accessible genomic DNA regions
with single-cell resolution

Unbiased detection of epigenetic landscape across the
human genome. Capture of early lineage-determining
epigenetic features may allow for a higher resolution
when identifying cell subsets than with transcriptomic
data.

CITE-seq Multiomic:
transcriptomic,
proteomic

DNA-oligomer tagged antibodies
are used to label proteins on the
cell surface and protein and mRNA
are simultaneously quantified in
the same cell at a single-cell
resolution

CITE-seq provides important immunophenotyping
information for each cell that can help determine cell
sorting and isolation strategies and to reconstruct
signaling networks. Protein characterization is limited
to specific molecules with validated antibodies.

Spatial
transcriptomics
(e.g., �10
genomics Visium
spatial gene
expression)

Transcriptomic Spatially barcoded spots are used
to capture tissue-derived mRNA
and reverse transcribed to
generate a spatially resolved cDNA
library

Current technologies are not yet at single-cell
resolution. In the future, spatial transcriptomics has the
potential to deliver on-slide transcriptome wide
information at single-cell resolution. Preserves the native
architecture and interactions of cells and algorithms can
be used to deconvolve the constituent cells.

Single-cell
immune profiling

Transcriptomic,
TCR sequencing

Targeted amplification of TCR and
B-cell receptor sequences enables
the matching of adaptive immune
receptors with gene expression
patterns in source cells.

Enables annotation of invariant T-cells, tracking the
expansion of T- and B-cells and the linking of antigen
receptor sequences to lymphocyte transcriptome.
Challenges in computationally predicting antigen-
specificity using T- and B-cell receptor sequences remain.

Single-cell
immune receptor
mapping (e.g.,
barcoded dCODE
Dextramer
[�10]) 127

Multi-omic:
transcriptomic,
antigen
specificity, TCR
sequences

Multimeric MHC—peptide
complexes are used to integrate
TCR data, preselected epitope
specificity and RNA gene
expression analysis

Provides insights into how T-cell phenotype is linked to
antigen specificity. Expanded TCR and epitope pair
information will be helpful for generating machine
learning algorithms for the prediction of TCR antigen
specificity. These data may also be used to identify new
TCRs for engineering a CAR T-cell therapy.

Single-cell whole
genome
sequencing128

Genomic Physical isolation of cell types is
followed by single-cell whole
genome amplification technology
and next generation sequencing

Characterizing mutations, copy number variants and
genetics is applicable to the study of cancer genetics
and in revealing rare genetic variants associated with
disease.

ScNMT-seq Multiomic:
epigenetic and
transcriptomic

mRNA, DNA methylation and
nucleosome sequencing
simultaneously in the same single
cell

Critical for understanding the association between
epigenetic regulation and transcription in different cell
types.

scATAC-seq þGEX Multiomic:
epigenetic and
transcriptomic

Simultaneous characterization of
DNA chromatin accessibility and
mRNA gene expression in the
same cell

Critical for understanding the association between the
epigenome and transcriptome. Increased molecular
features leads to increased resolution of cellular
heterogeneity.

Single-cell
CRISPR screens

Transcriptomic Perturbations using feature
barcoded CRISPR guide RNAs at a
single-cell resolution and
downstream combined capture of
gene expression and guide RNAs

Enables exploration of mammalian gene function and
genetic regulatory networks resulting from
perturbations to gene expression using guide RNAs.
Determines which perturbations result in similar gene
expression signatures.

Abbreviations: CAR T-cell, chimeric antigen receptor T-cell; CITE-seq, cellular indexing of transcriptomes and epitopes by sequencing; CRISPR,
clustered regularly interspaced short palindromic repeats; GEX, gene expression; IPSC, induced pluripotent stem cell; miRNA, microRNA; ScATAc-
seq, single-cell assay for transposase-accessible chromatin with sequencing; ScNMT-seq, single-cell nucleosome, methylation and transcription
sequencing; scRNA-seq, single-cell RNA-seq; SnRNA-seq, single-nucleus RNA-seq; TCR, T-cell receptor.
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Table 2 Key steps in single-cell analysis

Analysis Exemplar tools Summary

Raw databased analyses

Detection of viral genes Viral-Track129 Detection of viral RNA gene expression and viral-human gene fusion events in single-cell RNA
sequencing data using a database of viral genomes and sequence alignment technology.

HLA-typing ArcasHLA130 Human HLA genotyping of single-cell data using genome alignment files.

CNV analysis inferCNV131 Identification of large genomic deletions, and duplication events between normal and tumor
samples to trace tumor-cell lineages and to identify sets of genes that may be responsible for
the aberrant gene expression in tumor cells.

RNA velocity scVelo132,
Velocyto133

Inferreing cell fate, and assigning directionality to cell differentiation dynamics by assessing
the ratio of spliced to unspliced mRNA molecules within each single cell.

Data preprocessing

Genome alignment and
molecular counting

Cell Ranger134 Raw reads are aligned to a reference genome, filtered based on quality and alignment score,
and then assigned to cells. mRNA molecules per cell are counted. The output is a feature-
barcode matrix and preliminary clustering and gene expression analysis results.

Doublet removal Scrublet135,
DoubletFinder136

Removal of heterotypic doublets based on additive gene expression signatures of the other
clusters present in the data.

Ambient RNA correction SoupX137 Estimation of ambient RNA using sequencing data from empty droplets and correcting the
gene expression matrix of cells for the ambient RNA.

Removal of low quality cells Cell Ranger134,
Seurat138

Distinguishing between empty droplets with ambient RNA and droplets containing cellular
material (cellranger) is used to generate a filtered cell x gene matrix. Downstream removal of
cells with high mitochondrial content as a signature of cell death, and outlier cells with very
small or large library sizes is carried out to retain high quality data for biological analysis.

Data integration Harmony139, Seurat138 Correcting for technical effects across samples to resolve the shared biological signals present
across samples.

Cellular level analysis

Dimensionality reduction
and visualization

Seurat138, scanpy 140 High dimensional gene expression and epigenetic data is reduced into a few dimensions (2D
with UMAP) while maintaining as much variation or biological signal present in the original
dataset as possible. This is useful for data visualization, reducing the noise in the data, and
reduces the computational resources required for analysis.

Clustering Seurat138, scanpy 140 Grouping cell types based on similarity of transcriptomic or epigenetic features.

Cluster annotation Scmap141, singleR142 Annotations of cell types present in single-cell data using automated annotation methods,
literature based landmark genes and differential gene expression analysis as we recently
summarized in Nature Protocols.143

Trajectory inference Slingshot144,
Monocle145

Orders cells along a smooth continuous path of transcriptomic changes to help deepen our
understanding of cellular differentiation pathways and changes in cell state as a result of
stimulation.

TCR clonality Gliph146,
scRepertoire147

Algorithms to query, cluster and visualize TCR sequences and their distribution and clonality
across different clusters in scRNA-seq gene expression data.

Gene and pathway level analysis

Gene set enrichment
analysis

GSEA148,149 Identify phenotype or function associated gene sets that are overrepresented in cell clusters by
using custom or curated gene set databases like gene ontology.

Gene regulatory network
analysis

SCENIC150 Reconstruction of cell identity determining gene regulatory networks in transcriptomic and
epigenetic data by assessing the coexpression of transcription factors and downstream target
genes.

Ligand-receptor analysis CellPhoneDB151,
NicheNet152

Identifying potential ligand-receptor interactions and mechanisms between different cell
types in a complex molecular environment.

Differential gene expression
analysis

Seurat138, EdgeR153 Determining genes unique to cell types or those that show perturbed expression with a change
in conditions.

Spatial transcriptomics
deconvolution

MuSiC154, Giotto 155 Deconvolution of spots in spatial transcriptomics into constituent cell types based on reference
gene signatures.

Downstream data usage

Deconvolution of bulk data:
clinical outcome

CIBERSORT 155,156 Use of gene signature determined by scRNA-seq in deconvolution algorithms, to assess the cell
type composition of whole-tissue biopsy samples that have been subjected to bulk
transcriptomic profiling. These analyses can be run on RNA-seq data from large cohorts of
patients at different disease stages.

Cross species analysis – Querying the physiological relevance of animal models to human disease by comparing the
transcriptomic signatures present across species.

Abbreviations: 2D, two-dimensional; CNV, copy number variant; HLA, human leukocyte antigen; scRNA-seq, single-cell RNA-seq; TCR, T-cell
receptor; UMAP, uniform manifold approximation and projection.
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present in LSECs that mirror hepatocyte heterogeneity.2,20,22

Furthermore, distinct transcriptomes of vascular endothelial
cells that line the central vein and the hepatic artery and
PDPNþ hepatic lymphatic vessels that expand in fibrosis have
been noted.2,21

A meta-analysis of immune cells from these studies
established stable features of the liver at steady state and
together, these signatures are reference points for compari-
son to disease states.23,24 There has been particular interest
in the roles of resident and recruitedmyeloid cells in the liver
microenvironment. Kupffer cells (KC), tissue resident macro-
phages residing within the liver sinusoid, are key to support-
ing organ function and immunological tolerance by
scavenging gut-derived pathogens and damaged erythro-
cytes, and regulating iron and lipidmetabolism.25 In addition
to highlighting hepatocyte, macrophage, and endothelial cell
zonation, scRNA-seq has provided evidence for the presence
of distinct inflammatory (LYZþ, HLA� , and DPB1þ) and
immunoregulatory (CD163þ, MARCOþ, and CD5Lþ) myeloid
subsets in the healthy human liver.2,20,21 Guilliams et al

recently developed a workflow integrating cellular indexing
of transcriptomes and epitopes by sequencing (CITE-seq),
single-nucleus RNA-sequencing (snRNA-seq), spatial tran-
scriptomics (see ►Fig. 1; ►Tables 1 and 2 for an explanation
of these terms), and spatial proteomics to build atlases of the
human and murine liver and determine spatial distributions
and distinguishable markers for all hepatic cell types.16

These data were then leveraged for a cross-species analysis
to determine an evolutionarily conserved KC and bile-duct
macrophage signature and to propose the microenviron-
mental signals necessary for imprinting their cell identity.
Additionally, conventional and plasmacytoid dendritic cells
(DC), cells that link the innate and adaptive arms of the
immune system, were profiled in healthy and diseased
mouse and human livers.20,21,26 Hepatic lymphocyte pop-
ulations that are transcriptionally distinct from circulating
cells have also been characterized. These include resident αβ
CD4þ and CD8þ T-cells, γd T-cells, natural killer (NK)-like
cells, mature and antibody secreting B-cells, and innate
lymphoid cells.2,23 In the future, the incorporation of CITE-

Fig. 2 Single-cell technologies allow for a characterization of the molecular signals involved in spatial zonation across the hepatic lobule. As
blood, oxygen and nutrients flow from the portal triad (made up of the portal vein, bile duct, and hepatic artery) to the central vein, functional
specialization of major liver cells are mediated by key signaling pathways as indicated and intracellular crosstalk. Gene set enrichment analyses
have revealed the biological pathways present in each zone of the liver, lending an insight into the changing functional specialization of
hepatocytes with the gradient of oxygen and nutrients. In the healthy liver, fenestrations in the LSECs allow for the communication between
Kupffer cells (yellow), hepatic stellate cells (blue), and hepatocytes. Panel: With fibrosis, there is a loss of fenestrations in the LSEC layer that
prevents communication of hepatocytes and macrophages. Hepatic stellate cells secrete extracellular matrix proteins leading to a buildup of
collagens in the tissue microenvironment. As a response to liver injury, chemokine release by LSECs and stellate cells results in increased
monocyte (green) and T-cell infiltration (purple) to respond to and clear pathogens. HSCs: hepatic stellate cells; LSEC: liver sinusoidal endothelial
cells; RBS: red blood cells.
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seq and the analysis of the T-cell receptor (TCR) repertoire
will allow a detailed annotation of helper and innate T-cell
subsets and enable the concurrent mapping of T-cell clon-
ality and antigen specificity.27–29

What is the impact of tissue dissociation on the cellular
atlases generated? One of the challenges of scRNA-seq is the
requirement of fresh tissue and the relative loss of enzymatic
dissociation-sensitive cells. As an alternative, snRNA-seq
does not include an enzymatic dissociation step and relies
on nuclei extracted using detergents from either fresh or
flash frozen tissue samples tomap the nuclear transcriptome
present in each cell.30 To address these issues, we performed
a systematic comparison of scRNA-seq and snRNA-seq in
profiling the healthy human liver.17 We found that cell
frequencies were less impacted by dissociation in snRNA-
seq enabling us to identify previously unprofiled subsets of
cholangiocytes, hepatic progenitor cells, and mesenchymal
cells such as HSCs.17 Further, scRNA-seq was determined to
be crucial for the characterization of immune cells, particu-
larly lymphocytes present in the liver.

Spatial Organization of the Cells of the Liver
The liver receives a dual blood supply from the portal vein
and the hepatic artery. Blood flows from the portal triad to
the central vein, creating a gradient of nutrients, oxygen, gut-
derivedmicrobial products, and hormones.1 These gradients
shape the molecular and functional heterogeneity of hep-
atocytes and establish a division of labor across three zones
to carry out a variety of functions (►Fig. 2). The functional
units of the liver are the hepatic lobules wherein sinusoids
radiate from the central vein towards the portal triads
between plates of hepatocytes.19 Our understanding of the
organization of hepatic cells within these zones was sup-
ported by histological studies and is now informed by
spatially resolved transcriptomic assays through the appli-
cation of unbiased bulk RNA-seq or scRNA-seq.31 Halpern et
al measured the mRNA expression of zonated landmark
genes using single-moleculefluorescent in situ hybridization
(smFISH) and applied these patterns through a probability
inference method to predict the likelihood of expression of
each genewithin amurine liver scRNA-seq dataset across the
portocentral lobule axis.31 This analysis determined key
zonation signaling pathways and revealed that 50% of liv-
er-expressed genes are spatially zonated. Wnt and hypoxia
signaling pathways were identified in the pericentral region,
whereas Ras signaling was enriched in periportal zonation
profiles. Notably, the majority of spatially zonated genes
were not predicted downstream targets of these signaling
pathways, indicating that many molecular pathways, key to
liver zonation, remain to be elucidated. Intriguingly, this
work identified mouse interzonal hepatocyte marker genes,
however, these genes are not applicable to human liver
data.2,17

Building off of this work, Ben-Moshe et al used zone-
specific markers, CD73 and E-cadherin, to isolate distinct
mousehepatocyte subgroups andgenerate a complementary
spatial map of micro-RNA (miRNA) expression patterns and
proteomic profiles.32 As expected, in most cases, protein

zonation that closely mirrors mRNA levels was observed,
while miRNA expression patterns were inversely zonated to
their target genes in hepatocytes. However, the hepatocyte
zonation signatures inferred from spatially zonated gene,
miRNA, and protein expression datamay be less predictive in
disease and in knockout mice, especially whenWnt signaling
is perturbed. Spatial transcriptomic approaches, while not
yet at single-cell resolution, have the capacity to unbiasedly
reconstruct metabolic liver zonation as recently shown by
Sun et al.33 Moreover, scRNA-seq has been employed at
different time points across the diurnal circadian cycle to
highlight the spatiotemporal metabolic organization of the
liver.34 These approaches have reinforced our understanding
of functional specialization of hepatocytes in human livers
and could be used to determine how this division of labor
may be restored after perturbations due to liver injury.2,20

Just like hepatocytes, LSECs are exposed to varying con-
centrations of nutrients and hormones from the blood.
However, zone-specific markers for LSECs were unknown
before the application of scRNA-seq. Using their previously
identified zone-specific hepatocyte signatures, Halpern et al
inferred the transcriptomic signature of spatially distinct
LSEC subsets byexaminingmousehepatocyte–LSEC doublets
in paired-cell sequencing.22 Pseudospatial trajectory bioin-
formatic analysis (►Fig. 1; ►Table 2) confirmed these
zonated gene expression patterns in human hepatocytes
and LSEC scRNA-seq data.20 Human periportal and pericen-
tral LSECs and portal endothelial transcriptomic signatures
were further spatially validated using spatial transcriptom-
ics.17 Similarly, macrophage zonation has been examined in
healthy human liver as measured by MARCO expression
through immunohistochemistry.2 A closer examination of
macrophage signatures using spatial transcriptomics
revealed that inflammatory/recently recruited monocytes/
macrophages and noninflammatory macrophages are dis-
tributed within the pericentral and periportal regions, re-
spectively.17 Additionally, through the application of a
murine reporter system and different mesenchymal-cell
isolation techniques, two HSC phenotypes were revealed
that are distinctly associated with the pericentral and peri-
portal regions of the hepatic sinusoid.35 Zonation in LSEC,
HSC, and KCs are perturbed in CLD and understanding the
mechanisms will reveal new targets for therapeutic
interventions.

Microenvironmental Reprogramming in
Chronic Liver Disease

Transcriptomic Profiling of Hepatic Inflammation
What are the experimental challenges to profiling the in-
flamed liver with single-cell resolution? Liver inflammation
as a result of HBV or HCV infection, ALD or NAFLD leads to
hepatic inflammation as a response to necrotic hepatocyte
death.4 Repetitive liver damage results in progressive fibro-
sis, a disrupted hepatic architecture, and the loss of the
regenerative capacity of the liver resulting in cirrhosis and
eventually HCC. The characterization of cellular reprogram-
ming through the course of CLD is impeded by insufficient
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access to human liver tissue longitudinally over time and,
until recently, limited options for examining rare, and,
potentially, disease-driving cell populations. However, sin-
gle-cell genomics has shed new light on the mechanisms of
liver disease.

Determining the impact of viral infections and liver cancer
on immune diversity and virus-specific immunity is a poten-
tial avenue for the application of single-cell technologies.37–43

ScRNA-seq combinedwith serial sampling of the liver viafine-
needle aspiration biopsies has been recently employed to
longitudinally study hepatic immune diversity during the
course of HBV infection.36 Several studies in humans and
mice have also employed transcriptional and epigenetic
approaches to examine the cellular programs and effector
functions of virus-specific CD8þ T-cells before and after viral
antigen clearance.37–40,42 Furthermore, the impact of direct
acting antiviral therapy for chronic HCV infection has been
mapped transcriptionally, revealing treatment-induced alter-
ations in innate immune and interferon signalling.42 Yates and
colleagues employed assay for transposase-accessible chro-
matinwith sequencing (ATAC-seq) to examine the presence of
exhausted HCV-specific T-cells during longitudinal follow-up
of HCV treatment and found that virus-specific T-cell exhaus-
tion was irreversible after treatment-induced clearance, a
phenomenon labeled epigenetic scarring.38 This finding was
also reflected inparallel studies examining transcriptional and
phenotypic changes in HCV-specific T-cells using scRNA-seq
with TCR sequencing and mirrors T-cell dynamics in chronic
LCMV infection in mice.37–40,42

How CLD, particularly steatosis, impacts systemic immu-
nity and metabolism remains to be characterized and
presents an opportunity for the application of multiomic
modalities. Hepatic steatosis is observed in ALD and in diet
and obesity-induced NAFLD.44 Alcohol stimulates hepatic
lipogenesis and inflammation by its toxicity to hepatocytes,
and by causing increased leakage of gut-derived microbial
byproducts such as LPS to the liver.45,46 Using scRNA-seq, it
was shown that individuals with ALD had a higher propor-
tion of circulating nonclassical monocytes, and blood-de-
rived monocytes displayed a higher inflammatory response
to LPS stimulation compared with healthy control donors.47

However, scRNA-seq data comparing hepatic myeloid pop-
ulations present during NAFLD in mice described a decrease
in inflammatory gene expression across both macrophages
and dendritic cells.48 This signature was also present in the
bone marrow myeloid compartment and could be recapitu-
lated in vitro after lipid treatment and in vivo using a model
of acute liver injury as a result of acetaminophen poisoning.
These studies raise the question of the systemic impact of
CLD and fatty liver disease on global immune-cell phenotype
and metabolism as the organ is responsible for carrying out
key metabolic tasks to maintain overall bodily function.

Macrophage, Hepatic Stellate Cells, and Liver
Sinusoidal Endothelial Cells Heterogeneity in Liver
Fibrosis and Cirrhosis
Fibrosis results in major alterations to tissue architecture,
intercellular interaction networks, and cellular transcrip-

tional programs in the liver. Capillarization of LSEC fenestra-
tions results in the interruption of KC contact with HSCs and
hepatocytes leading to the loss of KC identity and the
activation of resident HSCs.49,50 Ramachandran et al de-
scribed the emergence of disease-specific PLVAPþ LSEC
populations, found in the fibrotic niche that enhance leuko-
cyte migration to fibrotic lesions.21 Furthermore, in NASH,
LSEC vascular signaling is downregulated in favor of lipid
metabolism relative to healthy LSEC cells, contributing to
disease pathogenesis.51 An expansion of lymphatic vessels
has been noted in NASH patients and single-cell examination
of associated lymphatic endothelial cells indicate expression
of potent leukocyte attracting chemokines (CCL21) and
fibrogenic cytokines (interleukin [IL]-13).52While rare, these
cells likely play a key role in regulating in situ immune
activity but, their role in the development of tertiary lym-
phoid structures in CLD remains to be explored. As the scale
of scRNA-seq datasets increases, the roles of rare subpopu-
lations of liver cells in health and disease, like specialized
endothelial cells and components of the hepatic nervous
system, will be revealed.

In multiple murine models of liver fibrosis, resident KC
frequencies are lower and the recruitment of bone marrow–

derivedmacrophages is observed.21,49,51 Thesemacrophages
are extremely plastic and are imprinted by features of the
hepaticmicroenvironment to occupy the KC niche in homeo-
stasis.50 Murine and human transcriptomic studies have
identified the emergence of TREM2þ CD9þ macrophages in
CLD of various etiologies.14,21,49,51 Diet-induced NASH has
been shown to lead to changes in KC enhancers and gene
expression resulting in the partial loss of KC identity and cell
death.49 A study which paired scRNA-seq with lineage
tracing in mice showed that the transcription factor gene
ZEB2 and downstream expression of the transcription factor
LXRα was key in maintaining the tissue specific identity of
liver macrophages.25 In diet-induced NASH, aberrations in
KC gene expression and enhancers as measured by scRNA-
seq and ATAC-seq identified that a reprogramming of LXRα
functions drive a TREM2þ CD9þ phenotype.49 Pseudotime
analysis suggests that NASH and scar-associated macro-
phages are derived from monocytes and are distinct from
embryonic KCs.21,49 In NASH-associated mouse fibrosis and
in human fibrosis, these macrophages express genes for
lysosomal degradation, phagocytosis, and antigen presenta-
tion, suggesting that they may play a role in the clearance of
apoptotic hepatocytes.21,51 These cells colocalize to the
fibrotic niche, display a profibrogenic phenotype, promote
scar deposition by activating mesenchymal cells and are
good candidates for future targeted cell therapeutics in CLD.

Activation of quiescent HSCs into proliferative, fibrogenic
myofibroblasts has been identified as a central driver of liver
fibrosis through the deposition of extracellular matrix pro-
teins.53 Myofibroblasts represent an effective target for
antifibrotic therapies but have been difficult to characterize
due to challenges in cell isolation. Mesenchymal cells can be
captured using scRNA-seq in healthy and fibrotic human
liver, and collagen-producing myofibroblasts are enriched
for and localize to the fibrotic niche.2,21 In carbon
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tetrachloride (CCl4) murine liver fibrosis, retinol-positive
HSCs transition into a heterogeneous population, with vari-
ably increased expression of α-smooth muscle actin, colla-
gens, and immunological effector proteins.54 In centrilobular
CCl4 injury, RNA velocity and pseudotemporal trajectory
analysis of scRNA-seq data suggested that HSCs, and no other
mesenchymal populations like vascular smooth muscle cells
(VSMCs) or portal fibroblasts, are the dominant source of
pathogenic collagen producing cells.35 Activated pericentral
HSCs specifically express LPAR1, a receptor for lipid-signaling
molecules which could be a potential antifibrotic therapeu-
tic target. In murine amylin diet-induced NASH, interactome
mapping has been employed to characterize the local regu-
latory role of myofibroblasts in fibrosis.51 This mapping
suggested that HSCs act as a central regulator of immune
cells and endothelial cells by secreting cytokines, growth
factors, and chemokines during liver injury, impacting vas-
cular signaling and lymphocyte recruitment, survival, and
activation.51 Mesenchymal populations have been previous-
ly masked by hepatocytes in tissue profiled by bulk RNA-seq,
and application of snRNA-seq in the healthy liver has
revealed previously unprofiled portal fibroblasts and
VSMCs.17 Application of snRNA-seq to fibrotic liver samples
may uncover targetable pathways in myofibroblasts to treat
CLD.

Potential Application of Transcriptomics to Map
Cholestatic Liver Disease
Can single-cell genomics help us characterize disease mech-
anisms in cholestatic liver disease? Primary biliary cholan-
gitis (PBC) and primary sclerosing cholangitis (PSC) are
examples of autoimmune liver diseases in which necroin-
flammatory injury of the bile ducts lead to bile leakage and
cholestatic liver disease.55 Autoimmune-mediated injury of
bile ducts, remodeling of the ductal network, periductal
fibrosis, molecular alterations in ATP-binding cassette trans-
porters at the bile canaliculi membranes of hepatocytes, and
activation of KCs and HSCs have all been implicated in the
pathophysiology of cholestatic liver disease.55 In PBC, the
small and intrahepatic bile ducts are the principal targets of
disease. By contrast, in classical PSC, the large bile ducts are
predominantly injured. In both diseases, immune infiltrates
are featured and an associationwith typical immune-related
pathways, encoding human leukocyte antigens, cytokines,
interferon, and immune-regulatory genes, have been identi-
fied.56,57 Recent scRNA-seq studies described transcriptomic
signatures present in PBC and PSC. Interrogation of PBC
susceptibility-associated gene variants in an scRNA-seq
dataset revealed the immune-modulatory role of ORMDL3
expression in cholangiocytes.58 ORMDL3þ cholangiocytes
were highly metabolically active and interacted with macro-
phages and monocytes via the vascular endothelial growth
factor (VEGF) pathway. In PSC, scRNA-seq studies identified
the expansion of a unique population of naive-like CD4þ

T-cells with the potential to develop into Th17 cells.27 More
comprehensive atlases of patient-derived samples from var-
ious stages of disease are required to understand the patho-
genic dynamics at play in these diseases

Cholestatic liver diseases have been challenging to profile
due to patchy liver pathology, as well as a high degree of
fibrosis that limits access to larger vessels and release of cells
during dissociation. Recent advances in single-cell genomics,
like snRNA-seq and spatial transcriptomics, are making it
possible to overcome dissociation-related challenges and
characterize the underlying pathology in PSC and PBC. In
these contexts, tissue sampling will need to be preselected
based on pathological presentations in histology to over-
come biases associated with localized, patchy disease.

Manyopen questions in cholestatic liver disease remain to
be addressed. Pathway analysis from RNA-seq data of forma-
lin-fixed liver tissue from PSC patients have identified the
downregulation of fibrosis-independent disease pathways,
such as transcription and protein folding, in response to
endoplasmic-reticulum stress.59 Furthermore, genetic risk
factors in both PSC and PBC overlap with other autoimmune
disorders such as ulcerative colitis, psoriasis, and rheumatoid
arthritis.60 PBC is associated with vitiligo and Sjörgen’s
syndrome, while ulcerative colitis has been hypothesized
to be involved within the disease pathogenesis of PSC
through increased gut permeability.61 Previous studies
have shown that immune-competent gut-homing T-cell
lymphocytes may traffic from the gut to the bile ducts and
cause an immune-mediated injury to large and intermediate
ducts.62 Application of single-cell genomics can uncover the
link between cholestatic liver diseases and other autoim-
mune disorders and the fibrosis-independent and gut-axis
related etiological pathways in PSC. Moreover, distinct lipid
associated and decreased immunoregulatory macrophage
phenotypes were identified in pediatric cholestasis due to
extrahepatic (biliary atresia) and genetic (Alagille’s syn-
drome) clinical etiologies.63 A comparison of these popula-
tions to those in PSC and PBC using single-cell genomics may
reveal cholestatic liver macrophage pathways that can be
targeted mechanisms for treatment.

Transcriptomic Profiling in Liver Cancer

The Current State of Liver Cancer Therapy
Liver cancer is the second most common cause of cancer-
associated mortality worldwide.64 Unchecked, cycles of pro-
gressive injury and activation of repair pathways in CLD
result in the accumulation of DNA damage in hepatocytes
which is a major risk factor to develop HCC. The most
effective treatment options for HCC are surgical resection,
localized ablation, or liver transplant which are only curative
with early diagnosis.65 However, 70 to 80% of resection and
ablation patients and 10 to 20% of liver transplant patients
relapse within 5 years after surgery, and HCC is most
frequently diagnosed at advanced stages.64 In general,
systemic, targeted therapy remains essential. Advanced
HCC is usually treated by transarterial chemoembolization,
radiation, and protein kinase inhibitors such as sorafenib.66

Targeting the tumor immunemicroenvironment is a current
area of research with encouraging results from phase-III
clinical trials of treatment of advanced HCC with anti PD-1
antibodies (nivolumab and pembrolizumab), in combination
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with anti-VEGF antibodies.67 This combination had additive
effects on limiting tumor growth, and led to an immunosti-
mulatorymicroenvironment.67 The application of single-cell
genomics will support new prognostic algorithms and lead
to the development of more effective immunotherapy strat-
egies for cancer patients.

ICC are rare and aggressive malignancies, and the 5-year
survival rate for metastatic disease is at best 2%. Surgery is
the only curative treatment but is again only possible in
early-stage disease. Unfortunately, the majority of patients
with cholangiocarcinoma (60–70%) present with advanced
ormetastatic disease, and in these patients palliative, locore-
gional, and systemic therapy are the only options for treat-
ment.68,69 Patients harboringmutationswithin FGFR2,NTRK,
or mismatch repair genes are suitable for targeted therapies
such as infigratinib, an FGFR2-specific tyrosine kinase inhib-
itor, entrectinib, a tropomyosin kinase receptor inhibitor,
ivosidenib, an IDH1 inhibitor and pembrolizumab, and an
immune checkpoint inhibitor.70–73 Therefore, immune
checkpoint inhibition may be common pathways to target
the tumor microenvironment (TME) in both HCC and ICC.

Heterogeneity and Phenotype of Malignant Cells in
Hepatocellular Carcinoma and Intrahepatic
Cholangiocarcinoma
Using strategies that provide single-cell resolution, tumor
heterogeneity and development can be deeply characterized.
The HCC tumor is composed of aberrant hepatocyte lineage
cells that evolve at various stages of hepatic maturity.
Comparing nonmalignant tissue to the tumor core can reveal
cancerous clonal development and changes in biological
function with oncogenesis. Healthy hepatocytes are largely
well differentiated, while HCC tumor cells exhibit a range of
undifferentiated and stem cell-like features. These cells are
highly heterogeneous at the transcriptomic level, both across
different regions of the tumor, and between patients as
shown by scRNA-seq.74,75 For example, an examination of
the tumor stem-cell heterogeneity in HCC revealed a hetero-
geneous population of CD24, CD133, and EPCAM expressing
cells with distinct molecular signatures.74,76 These gene
signatures were enriched within the tumor relative to the
uninvolved nonmalignant liver and were independently
associated with HCC outcomes.74,76

Recently, an integration of bulk RNA-, DNA-, TCR-sequenc-
ing data and single nucleotide polymorphism data across
multiple regions of HCC patient samples was employed to
map the spatial and temporal interactions between cancer
and immune cells.77 Spatially restricted subclone mutations
were associatedwith distinct adaptive immune responses as
opposed to early somatic driver mutations in HCC driver
genes like TP53, CTNNB1, and NFE2L2. Gene regulatory
network analysis of scRNA-seq showed that distant regions
within the same tumor display wildly different transcription
factor networks and even different molecular subclasses of
HCC.77 To reconstruct the clonal evolution of single-cell
mutational profiles in HCC samples, custom primers for
somatic mutation sites, and mutational signatures were
used for targeted gene scRNA-seq.78 This analysis indicated

that mutations in early clones were carried down the lineage
and that other cloneswere derived from additional subclonal
mutations. In parallel, scRNA-seq analysis showed that the
phenotypic heterogeneity of patient specific tumor cells was
mirrored by their genetic heterogeneity. It is becoming clear
that tumor cells across patients do not necessarily share
transcriptomic signatures but have patient-specific tran-
scriptomic profiles.15,75,78 These studies raise questions
regarding the link between HCC driver mutations and the
tumor immune signature that may be queried using single-
cell genomics.

HBV integration into the human genome leads to genomic
instability and is a key mechanism of HCC development in
the absence of cirrhosis.79 An analysis of the HBV integration
sites in single-nodule HCC using single-cell whole genome
sequencing found that identical integration sites were pres-
ent across all tumor cells, indicating that HBV integration is
likely a key, early step in tumor development.80 Questions
regarding the proportion of virally infected cells in HBV and
HCV positive livers and the impact of HBV and HCV infection
on individual cell transcription remain unanswered. A small
study quantifying viral reads in HBV-induced HCC deter-
mined that viral read expression was correlated with the
degree of hepatocyte differentiation and activation of down-
stream pathways associated with adipogenesis and cell
stemness.81Amore comprehensive analysis, in a large cohort
of patient-derived tumor and matched adjacent tissue, is
needed to further elucidate the impact of HBV infection on
hepatocyte function and oncogenesis.

An analysis of tumor cell evolution in response to immu-
notherapy in HCC and ICC using core needle biopsies, and
using transcriptomic clusters as a measure of functionally
similar tumor clusters determined that the degree of tumor
cell state heterogeneity was tightly linked to patient progno-
sis.41 Analyzing evolutionary trajectories from RNA velocity
within one patient-identified osteopontin (SPP1) as a major
factor driving tumor evolution. In the future, studies with
these approaches could be used to model the prognosis of
patients with different classes of cancer stem cell molecular
signatures and to further stratify patients based on expected
treatment response.

Targeting the Tumor Microenvironment in
Hepatocellular Carcinoma and Intrahepatic
Cholangiocarcinoma
Evolution of tumor cell genetics is linked to the temporal and
spatial evolution of the TME, which consists of the extracel-
lular matrix, and infiltrating mesenchymal and immune
cells. The TME in multiple types of cancer shares the accu-
mulation of regulatory T-cells, CD8þ T-cell exhaustion, and
tumor-associated macrophage (TAM) expansion with an
immunoregulatory phenotype.12,82 These cells interact
with tumor-derived antigens and drive tumor cell evolution
and are in turn reprogrammed by tumor cells. Single-cell
technologies enable us to take a snapshot of the TME and
how the cellular compositions and intercellular communica-
tion differ from the healthy and the adjacent, nontrans-
formed liver.
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TCR- and scRNA-seq of sorted T-cells from HCC patient-
derivedperipheral blood, uninvolvednormal and tumor tissue
from6HCCpatients characterized the lymphocyte response in
HCC.28 Cytotoxic T-cells displayed increased exhaustion and
TCR clonal expansion in the tumor site and there was an
accumulation of regulatory T-cells in the tumor region. This
suggestsan immunosuppressiveenvironmentwithin theTME.
BothexhaustedCD8þ T-cells and tumor-infiltrating regulatory
T-cells expressed LAYN which inhibited activated CD8þ T-cell
function invitro andmaybea future clinical target forHCC.28A
follow-up study of all sorted immune cells in HCC from the
tumor region, the adjacent uninvolved liver, blood, ascites, and
the hepatic lymph node determined that these lymphocyte
populations interacted with antigen presenting DCs through
immunosuppressive pathways.83 Using evolutionary model-
ing through RNAvelocity, LAMP3-expressing DCs were shown
to be activated within the tumor region and to migrate to
hepatic lymph nodes where they can regulate lymphocyte
activation via immunosuppressive ligand-receptor signal-
ing.83 Additionally, genes that are associated with worse out-
comes, such as GPNMB and SLC401, were identified in TAM
clusters.83

Tumor cell signatures and diversity clearly impact the
reprogramming of the TME in liver cancer. For example,
single-cell genomics studies have revealed that there are
distinct T-cell signatures present in a dataset of HCC and ICC
tumors with high or low biodiversity.84 Low-biodiversity
tumors tend to be associated with cytotoxic T-cells and
immune checkpoint molecules, whereas high-biodiversity
tumors are associatedwith an increased number of regulatory
T-cells andworse patient prognosis. This finding suggests that
tumors of high diversity adapt aggressive characteristics
through the alteration in T-cell composition and reprogram-
ming. Large, multiomic surveys of HCC relying on mass
cytometry, single-cell transcriptomics,andmassspectrometry
based proteomics and metabolomics of HCC samples allowed
the identification of HCC TME subtypes.15 A detailed analysis
of these datasets may identify new therapeutic targets within
the TME of each subtype with regard to immune cells, cyto-
kines, and metabolism. For example, markers of immune
infiltration and T-cell tolerance are of value as therapeutic
targets for future prognostic prediction and guidance of deci-
sion-making for therapeutic interventions.

A comparison of signatures present across the fetal mouse
and human liver, and normal and HCC tumor tissues by
Sharma et al demonstrated a reprogramming of the TME that
mimics those of early organ development.85 Spatial colocal-
ization of PLVAPþ endothelial cells, FOLR2þ TAMs, and TIGITþ

Treg cells, as revealed by nanostring spatial transcriptomics,
suggest a shared immunosuppressive transcriptional signa-
ture between fetal liver and liver cancer. While spatial
analyses of liver cancer are not yet at a single-cell resolution,
the application of identified cell state signatures in spatial
transcriptomics should identify pathogenic, disease-driving
cellular niches within liver disease, even if the liver architec-
ture is massively reorganized.

To address the issue of patchy liver pathology, Massalha et
al used bulk RNA sequencing of laser capture microdissected

tissue regions from the tumor core, margin, and fibrotic liver
regions of patients with ICC or liver metastases to determine
the gene signatures associated with these niches.86 Using
scRNA-seq, the proportions of individual cell types were
then deconvoluted and showed an enrichment of T-cells at
the tumor border and highly overlapping spatial abundance
of tumor-derived LSECs and pericytes like cancer-associated
fibroblasts (CAFs). A closer examination at fibroblast hetero-
geneity in ICC using scRNA-seq determined that CAFs are
reprogrammed by tumor cells through effectors like VEGF to
form various distinct subpopulations enriched for functions
such as vascular development, extracellular matrix protein
deposition, antigen presentation, and immune modulation.
In response to tumor exosomal miRNAs, CD146þ CAFs se-
crete IL-6 to promote tumor stemness and epigenetic alter-
ations via the IL-6/IL-6R axis in vitro.75

The value of these studies in determining disease mech-
anisms and developing prognostic signatures in ICC is high. A
recent multicenter study identified a uniformmolecular and
histological signature similar to extrahepatic cholangiocar-
cinoma in PSC patients with bile duct carcinoma.87 Genomic
analysis identified high frequency of genomic alterations
typical of extrahepatic cholangiocarcinoma, such as TP53,
KRAS, CDKN2A, SMAD4, as well as potentially druggable
mutations. An evaluation of the prognostic value of differen-
tially expressed genes in ICC using scRNA-seq described a
nine-gene prognostic signature with enrichment of immune
response-activating signal transduction, immune response–
regulating cell surface receptor signaling pathway, and lym-
phocyte activation that predicted longer survival.88 Applica-
tion of single-cell genomics will lead to the development of
more accurate prognostic signatures and uncover targetable
disease pathways in HCC and ICC leading to the development
of effective cell-specific anticancer therapies.

Liver Development and Regeneration

How can we leverage rich transcriptomic datasets to define
and promote liver regeneration? The liver possesses an
impressive regenerative capacity which translates to the
ability to recover its complete weight 8 to 15 days after
losing up to 66% of the liver mass (through two-thirds
partial hepatectomy).89 However, the regenerative poten-
tial of the liver is impaired during CLD and is an avenue for
therapeutic targeting. Transcriptomic profiling has broad-
ened our understanding of cell circuits involved in fetal liver
hematopoiesis, development, and regeneration.90 Within
the fetal liver, Segal et al, employed scRNA-seq to identify
a hybrid hepatic progenitor with the potential to become
either a hepatocyte or a cholangiocyte and future studies
characterizing sequential specification of hepatobiliary pro-
genitors may lead to the development of cell-based regen-
erative therapies.91 ScRNA-seq can be employed to explore
the similarities in cell identity and differentiation in devel-
oping adoptive cell therapies to the native liver tissue. These
comparisons have been applied to induced pluripotent stem
cell (IPSC)-derived hepatic endothelial cells, cholangiocytes,
and hepatocytes.89,92–94
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For example, a comparison of IPSC-derived two-dimen-
sional (2D) monocultures to three-dimensional (3D) multi-
cellular organoids containingmesenchymal, endothelial, and
IPSC-derived hepatic parenchymal cells using scRNA-seq
determined that while monocultures are able to recapitulate
many features of in vivo hepatogenesis, organoid systems are
better able to reconstruct liver cell intercellular cross-talk
during development.95 Within the organoid system, an
epithelial migratory signature reminiscent of the liver bud
during development is seen, potentially coordinated by
intracellular cross-talk, such as VEGF signaling, that pro-
motes endothelial cell network formation and hepatoblast
differentiation. Another interesting observation is that IPSC-
derived hepatocytes are more similar to fetal liver hepato-
cytes than adult hepatocytes.95

The source of hepatocyte replenishment in the injured
liver is an ongoing debate. Using sophisticated imaging and
lineage tracing technology inmice, it has been demonstrated
that interzonal hepatocytes are capable of proliferating and
maintaining hepatocyte numbers at baseline and during
regeneration in mice.96,97 To examine the dynamics of cell
proliferation after injury, Pepe-Mooney et al performed
scRNA-seq before and after chemical injury to the mouse
liver and, using smFISH, found that yes-associated protein 1
(YAP) expression is enriched in EPCAMþ cells at steady-state,

and that YAP signaling is upregulated in cholangiocytes and
periportal hepatocytes after injury.98,99 Hepatocyte-specific
YAP inactivation revealed the role of YAP signaling in hep-
atocytes for the generation of a ductular reaction and in the
reprogramming of hepatocytes toward a biliary-like cell
fate.99 In humans, scRNA-seq analysis of the EPCAMþ com-
partment in the liver revealed bipotent progenitor cells that
reside in proximity to the bile ducts and are able to differen-
tiate into either hepatocyte or cholangiocytes in vitro.20

These cells are able to repopulatemousehepatic parenchyma
in NASH, thioacetamide injury, and in models of chemical
injury to the bile ducts.20 Bipotent progenitor cells are better
captured by snRNA-seq, and validation using spatial tran-
scriptomics and histology data from theHuman Protein Atlas
indicate that they are present in the portal region.17 Uncov-
ering the mechanisms of hepatocyte replenishment after
injury could be harnessed to stimulate liver regeneration.

Future Perspectives

Understudied Aspects of Liver Biology
There remain many aspects of our understanding of the liver
that could benefit from the application of single-cell omics
(►Fig. 3). For example, genome-wide association studies
(GWAS) have clarified the role of the host genetic

Fig. 3 Future perspective in liver diseases: themes with potential applications of single-cell genomics. Hepatic lobules indicate different liver
states in (A) steady state, (B) viral hepatitis, (C) fatty liver disease, (D) fibrosis, (E) cirrhosis, (Fi) hepatocellular carcinoma, and (Fii) intrahepatic
cholangiocarcinoma and (G) autoimmune cholestatic liver diseases like primary sclerosing cholangitis (PSC) and primary biliary cholangitis
(PBC). HBV, hepatitis B Virus; HSC: hepatic stellate cells; IBD, Inflammatory bowel disease; LSEC, liver sinusoidal endothelial cells.
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background in many disease states, like ulcerative colitis,
PSC, PBC, and CLD.58,100–103 In the future, a unique applica-
tion of scRNA-seq in combination with such GWAS analyses
could delineate the precise cellular source of such disease-
associated gene variants.104,105 While these combined anal-
yses are still being refined, they have previously clarified the
cellular origins for genetic alterations of interest in ulcerative
colitis105 and could be applied to autoimmune liver diseases.

A comprehensive characterization of the events leading
up to acute liver failure in humans remains to be performed.
ScRNA-seq applied to murine acute liver failure identified a
MYC-dependent activation signature in KCs, HSCs, LSECs, and
recruited monocytes and neutrophils that were regulated by
the gut microbiome.106 A detailed report on the cellular
landscape in human acute liver failure may reveal potential
targets for interventions to ultimately forgo the need for liver
transplantation. However, much remains to be learned about
host and donor cell interactions in liver transplantation.
Recently, in an orthotopic murine liver transplant model,
scRNA-seq was used to track the perioperative recipient and
donor macrophage dynamics. It was noted that recipient
derived macrophages, DCs, and granulocytes took over the
transplanted liver by day 30 (� 99%), but that graft-derived
macrophages still contributed to the immunoregulatory KC
niche.107 These dynamics remain unexplored in humans and
single-cell modalities can be used to monitor hepatocyte
proliferation, graft, and recipient immune cell seeding and to
determine the genetic and cellular features associated with
transplant rejection.

Future Clinical and Therapeutic Applications
In addition to atlasing the diseased liver to elucidate cellular
drivers of liver pathogenesis, single-cell transcriptomics
offer an avenue to improve the efficacy of and track the
response to treatment modalities that target the liver. In a
similar manner towhat has been performed in the context of
breast cancer, multiomic machine learning could be
employed to predict treatment response to immune oncolo-
gy therapies.108 For example, prognostic modeling of tumor
cell stemness and intratumoral heterogeneity signatures in
liver cancer have future relevance in patient stratification for
treatments.43,76,88,109 Moreover, these unbiased analyses
enable the identification of immune markers for molecular
classification of HCC patients through immunophenotyp-
ing.15,110Deep characterization of diseased liver tissue using
single-cell omics has highlighted diagnostic markers and
gene signatures, pathogenic cellular subsets, and potential
targetable pathways.28,59 However, in order to bring this
potential to reality, additional interrogation in preclinical
lineage-tracing and gene knockout studieswith clinical trials
are required to identify druggable mechanisms for future
therapeutic applications.

Single-cell genomics are already being employed to track
disease trajectories before and after HCV treatments and
cancer immunotherapy signifying future clinical applica-
tions of single-cell technologies as a precision medicine
approach.39,41,42 Specifically, these studies aim to determine
whether antiviral interventionsmight lead to the restoration

of T-cell responsiveness and to identify the potential drivers
of tumor evolution in response to immunotherapy. Further-
more, an examination of the tumor ecosystem in early-
relapse HCC identified new mechanisms of immune evasion
as a step toward developingmore effective immunotherapies
against HCC.43 Single-cell genomics can be used to evaluate
treatment efficacy and disease progression in clinical trials of
a variety of liver diseases to generate frameworks for genetic,
transcriptional, epigenetic, and cellular landscape-based
treatment regimes.111 For example, application of scRNA-
seq in clinical trials of multiple myeloma patient cohorts
have identified novel mechanisms and biomarkers of drug
resistance to stratify patients and guide personalized thera-
peutic decisions.112,113 In the future, case-specific single-cell
analysis of patient liver biopsies have the capacity to reveal
opportunities for personalized oncoimmunology byaiding in
the prediction of patient outcomes and treatment effects.87

Widespread clinical application of single-cell genomics will
revolutionize our ability to track the efficacy and tailor
treatment regimens for understudied liver pathologies.

Current Challenges in Single-Cell Genomics
Challenges in the implementation of single-cell processing
platforms and analysis pipelines make a complete analysis a
nontrivial task. However, with newmethods of development,
alternative approaches are becoming available. In addition to
the problemof limited access to human liver tissue in various
diseases, the dissociation and handling of liver tissue, par-
ticularly in the case of difficult to dissociate fibrotic tissue
remains a challenge. SnRNA-seq can be employed as an
approach to capture hard to dissociate and fragile cell types
like cholangiocytes and mesenchymal cells.17 As well, cap-
turing neutrophils in droplet-based single-cell datasets has
proved challenging. A full length, well-based and deep
sequencing approach is required to gain insight into the
role of these cells in various liver pathologies.36 Patchy liver
pathology can lead to sampling bias and allow certain gene
signatures to be overrepresented and other features to be
entirely overlooked. This problem arises specifically in
locoregional liver diseases, like liver cancer and scarring,
where the regular lobular structure of the healthy liver is
disrupted. However, an integrated approach utilizing a mul-
tifocal sampling strategy with validation of cell signatures
using spatial transcriptomics can enable a more complete
and unbiased characterization of the liver in disease.16,86

Current single-cell genomics studies have relied heavily
on end-stage disease tissues. However, the cellular landscape
in these contexts may not be a good representative of early
disease dynamics and early disease time points should be
considered. In addition, integrative approaches using single-
cell multimodal omics such as mass cytometry, spatial tran-
scriptomics, CITE-seq, TCR and BCR-seq, scDNA-seq, and
scATAC-seq enable the layering of multiple molecular fea-
tures on cells derived from the same sample to comprehen-
sively profile tissue samples.14 This datamay be used to build
models for future deconvolution of large-scale bulk RNA and
ATAC-seq patient databases.86,114 Furthermore, data that
bridges the transcriptome, proteome, and spatial localization
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of cells in understudied liver pathologies would aid in the
discovery of reliable surface markers to identify, purify, and
locate these cells using flow cytometry, immunohistochem-
istry, and confocal microscopy. Defined disease-associated
markers would further help differentiate specific liver dis-
eases, like PSC and PBC, during diagnosis.

While these technologies remain expensive, the costliest
step remains sequencing and hosting the infrastructure to
carry out the more computationally taxing steps in the
analysis. In addition, the bioinformatics expertise required
to carry out these analyses is not trivial. However, standardi-
zation of single-cell analyses and the establishment of se-
quencing and analysis cores at major research institutes
enable the clinical biologist to bypass these obstacles. Fur-
ther, efforts towardgenerating a single-cell atlas of thewhole
body with the aim to provide a reference map of all human
cells in every organ across various contexts will greatly
increase our understanding of human health and disease.115

Developing NewMethods to Map the Cellular Etiology
of Liver Disease
The human body is composed of trillions of cells that work
together to execute many high-level functions. Most bio-
medical research has focused on how individual cells or
anatomical and physiological systems work, leaving a gap
of knowledge in between about how cells coordinate to give
rise to tissue-level functions and how these fail and cause
disease. To address this to better understand the liver, we
need to map the activities of dozens of cell types and
subtypes, learned frommillions of single-cell measurements.
Large, international projects, like theHumanCell Atlas project,
have the goal to map all cell types in the healthy human body,
including the liver.116 The main take home message of the
analysis and interpretationofhundredsof thousandsof single-
cell transcriptomes thus far is that human tissues are dramati-
cally more heterogeneous than previously understood. This is
also seen at the epigenome, protein expression, and somatic
mutation levels.117–119 Much of what we have learned from
bulk genomics technologies that average signals across tens of
thousands to millions of cells must now be reevaluated using
single-cell genomics.

A major challenge with using single-cell genomic tech-
nology to profile human tissues is in interpreting themassive
data produced. For example, one scRNA-seq experiment
frequently profiles more than 5,000 cells, conceptually
matching the complexity of 5,000 traditional RNA-seq
experiments. Interpreting this data will need new analysis
methods that consider the function of many cells cooperat-
ing within an ecosystem of cells to implement physiological
functions. This ecosystem includes a variety of rare and
common cell types, differentiated cells, pathways, somatic
mutations, gene regulatory networks, epigenomes and a
network of cell-to-cell interactions that together define the
tissue and its functional potential over its lifespan. The
cellular ecosystem approach, combined with the power of
single-cell genomics and state-of-the-art computational
analysis, brings heterogeneity to the forefront of our think-
ing, and enables us to better model the biology of human

body systems in contrast to previous approaches based on
bulk genomics. This approach will also be useful to identify
disease ecosystem properties that are predictive of outcome
(e.g., biomarkers composed of groups of different cell types
interacting), as well as novel therapeutic targets.

New analysis methods are starting to be developed to
address the challenge of mapping the function of cellular
ecosystems. For example, EcoTyper was recently developed
to automatically define cellular ecosystems.120 Using it to
analyze a large cancer genomics database uncovered 10
ecosystems across 16 types of carcinoma, including two
proinflammatory communities with canonical T-cell state
that correlated with favorable overall survival. Another
example is the covarying neighborhood analysis method
which identifies sets of covarying cells that correlate with
specific sample level information such as disease out-
come.121 Spatial transcriptomics data provides an excellent
opportunity to study cellular communities and histological
patterns associatedwith disease. Genomics analysis recently
identified a PSC-associated ICC-specific genomic signature
and histological subtypes which were not prevalent in ICC
with non-PSC etiology.87 Therefore it would be of interest to
merge spatial transcriptomic data in nonneoplastic CLD to
identify specific histological patterns and spatially resolved
disease-specific transcriptional signatures. Current tools,
such as ImageCCA, may be adaptable for this purpose.122

Additionally, it is becoming evident that mapping parenchy-
mal and nonparenchymal cells in the diseased liver may
require paired single-cell approaches selected based on the
capacity of each approach to capture populations of interest.
For example, scRNA-seqappears to better capture intrahepatic
immune cells while snRNA-seq better captures dissociation-
sensitive cells such as hepatocytes.17 With that in mind, new
algorithms, supporting the examination of cell-to-cell inter-
actions between populations identified by different techni-
ques in the same liver sample, would be highly valuable.
Current cell-to-cell interaction inference tools, such as Cell-
Chat, could likely be adapted for this purpose.123

Current technologies using oligo-labeled major histocom-
patibility complex (MHC)-peptide complexes and scRNA-seq
enable mapping of T-cell phenotype to TCR antigen specifici-
ty.29However, these technologies rely on the prior knowledge
of peptides of interest, and there is a need for new algorithms
that reliably model TCR and predict neoantigen peptide inter-
actions in cancer samples. Recentmachine learningalgorithms
using TCR-α and -β sequenced data have begun the develop-
ment of these methods but their effectiveness remains to be
evaluated.29,124–126 Not only will these algorithms provide
insight intoT-cell function and therapeutics in viral CLD, liver
cancer, and other inflammatory disorders, they would also
help identify new TCRs that could be adapted for use in
chimeric antigen receptor T-cell therapy.

Conclusion

In conclusion, single-cell genomics and transcriptomics are
revolutionizing our understanding of liver biology, at steady
state and during disease. These ever-expanding approaches
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have rapidly accelerated our ability to examine rare and
disease-driving cell populations within the hepatic micro-
environment. As we continue to master this technology,
expand efforts to map early stages of CLD in human tissue
and to longitudinally sample liver tissue through disease
development, we will uncover new therapeutic targets and
treatment options for patients suffering from liver disease.
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