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Protein phosphorylation is a prevalent reversible post-translational modification that
influences protein functions. The advent of phospho-proteomic technologies now en-
ables proteome-wide quantitative detection of residues phosphorylated under different
physiological conditions. The functional consequences of the majority of these phospho-
rylation events are unknown. This calls for endeavors to characterize their molecular
functions and cellular effects. This can be facilitated by systematic approaches to cat-
egorize phosphorylation events, interpret their importance and infer their functions. I
carried out comparative, evolutionary and integrative analyses on in wvivo phosphory-
lation events to address these challenges. First, I performed cross-species comparative
phospho-proteomic analysis to identify evolutionarily conserved phosphorylation events
in human. A sequence alignment approach was used to identify phosphorylation events
conserved at similar sequence positions across orthologous proteins and a network align-
ment approach was applied to identify potential evolutionarily conserved kinase-substrate
interactions. Conserved human phosphoproteins identified are found enriched for pro-
teins encoded by known cancer- and disease-associated genes. Next, I developed a new
approach to analyze the sequence conservation of known phosphorylated residues on
human, mouse and yeast proteins that factored in the background mutational rates of

protein and phosphorylatable residue. Furthermore, sites were analyzed according to (i)
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characterized functions, (ii) prevalence, (iii) stoichiometry, their occurrence in (iv) struc-
turally disordered/ordered protein regions, in (v) proteins of various abundance and in
(vi) proteins with different protein interaction propensity to identify the factors influenc-
ing sequence conservation of phosphorylated residues. Importantly, my analysis suggests
that false positives and randomly phosphorylated residues are present in existing phos-
phorylation datasets and they are more common on high abundance proteins. Lastly, I
characterized the theoretical maximum phosphorylation capacity in terms of phospho-
rylatable residues and discovered that genomic tyrosine frequency correlates negatively
and significantly with tyrosine kinase frequency and cell type in metazoan. This observa-
tion suggests that fidelity of phosphotyrosine signaling occurred partially through global

tyrosine depletion.
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Chapter 1

Introduction

Section 1.3.1, 1.4 and 1.5 were published in:
C. S. Tan and R. Linding. Experimental and computational tools useful for (re)construction

of dynamic kinase-substrate networks. Proteomics, 9(23):5233-42., 2009 Dec.



1.1 Protein phosphorylation

Protein phosphorylation is arguably the most prevalent reversible post-translational mod-
ification (PTM) as it is estimated to occur on approximately one-third of all human
proteins [30]. Phosphorylation is known to modulate the enzymatic activity, three-
dimensional structure, degradation, subcellular localization, and biomolecular interaction
of phosphorylated proteins. In eukaryotes, the process, catalyzed by a protein kinase,
involves the attachment of a phosphate group from adenosine-5’-triphosphate (ATP) to
serine, threonine or tyrosine typically but aspartate, histidine and arginine can also be
phosphorylated. On the other hand, dephosphorylation (the removal of phosphate from
a phosphorylated residue) is catalyzed by protein phosphatases. Protein phosphoryla-
tion allows cell to dynamically modulate protein functions [160] in response to extra-
and intracellular cues, so as to elicit appropriate cellular behaviors (e.g. proliferation,
differentiation, migration and apoptosis) needed for survival and proper morphological
development.

The dynamic balance between protein phosphorylation (by protein kinases) and de-
phosphorylation (e.g. by protein phosphatases or through protein degradation) in re-
sponse to combinatorial intra- and inter-cellular cues imposes dynamic structures in sig-
naling networks which function as molecular switches or logic gates to regulate cellular
activities [37]. Errors in protein phosphorylation or dephosphorylation often result in
dysfunctional cellular processes leading to cancer and complex regulatory diseases [205].
Hyper-phosphorylated retinoblastoma protein, for instance, is linked to multiple cancers
(87, 28, 22] while hypophosphorylated retinoblastoma protein is implicated in adult T-
cell lymphoma progression [121]. In brief, identifying phosphorylated proteins and their
sites of phosphorylation provides important clues for understanding cell biology.

Phosphoproteins are routinely detected by isotopic labeling using inorganic phos-
phate isotopes *?P or 33P. The isotopes, in the form of ATP, are often added in in

vitro kinase assays to detect phosphorylation on purified proteins of interest. Antibodies



(Ab) that target phosphoresidues can be used in place of radioactive isotopes to detect
phosphorylated proteins. However, these methods are typically not scalable for simulta-
neous detection of thousands of phosphoproteins needed for a system-level understanding
of how protein kinases and phosphatases influence cellular behavior. A protein can be
phosphorylated at multiple sites, and each site individually and in combination may have
different functional consequences. Knowing the site of phosphorylation on a protein can
help in deciphering the molecular effect of phosphorylation. It is, therefore, important to
identify the exact site of phosphorylation on proteins. This can be achieved by Edman
sequencing [40] and mutagenesis genetic experiments, but the techniques are generally

time-consuming.

Various proteome-wide techniques have been developed to identify phosphoproteins
and their phosphorylated sites. Among them, mass spectrometry has recently emerged
as a popular choice for at least two reasons [138, 155]. First, it is a high-throughput
(HTP) identification method that can detect thousands of phosphorylation sites in a
single experiment [155]. Second, coupled with good separation techniques, it can detect
phosphoproteins and their phosphorylated sites from complex samples such as cell lysate.
The underlying principle behind phosphorylation site detection by mass spectrometry is
that phosphorylated peptides produce unique tandem mass spectra (MS/MS) that help
in their identification. First, proteins are broken down into peptides, typically by trypsin,
which are then separated and ionized prior to m/z (mass-to-charge) measurement by mass
spectrometer. The ionized peptides are subsequently isolated and broken down into ion
fragments at amide bonds. From each ionized peptide, an ensemble of ion fragments each
with different M/Z value is generated that collectively produce a unique mass spectrum
useful for determining the sequence of the peptide [171]. A phosphorylated peptide
will have a detectable 80 Da mass shift per phosphate in its mass spectrum over its
unphosphorylated form due to the additional phosphate group. Hence, a phosphorylated

peptide can be identified from its MS/MS spectrum. The exact site of phosphorylation



on a phosphorylated peptide can also be determined from its mass spectrum albeit at a
higher degree of error. Another common proteome-wide technique useful for identifying

substrates of individual kinases is protein/peptide array (described in later section) [137]

As a result of these proteome-wide techniques, there has been an explosion of known
phosphorylation sites in the last five years or so. The first proteome-wide screen was
carried out in S. cerevisae that identified 383 phosphosites [42]. Subsequently, proteome-
wide screens for phosphorylation sites using phosphoproteome technologies were deployed
on various human cell lines [129, 83], mouse [187], fly [203], plant [91] and bacteria [105].
To date, human-focused phosphoproteome studies have detected more than 50,000 phos-
phorylation sites of which at least half have not been detected in directed experiments
(personal analysis). The identification of these phosphorylation sites provide new infor-
mation that can enhance our understanding of how protein kinases and phosphatases
regulate cellular processes and dictate cell behavior. In this chapter, I survey the various
proteome-wide techniques used for profiling phosphoproteins and phosphorylation sites,
and their applied biological studies. I also survey various reported evolutionary analysis
of protein phosphorylation sites. Finally, in the last section, I highlight the challenges in
exploiting the new information for understanding phosphoregulation of cellular activities,

outline my research objectives and summarize my research work.

1.2 Technologies for high-throughput protein phos-

phoprofiling

1.2.1 Phosphopeptide enrichment techniques

Mass spectrometry has emerged as a popular method for identifying phosphoproteins and

their sites of phosphorylation. The key steps in the identification process can be sum-
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Figure 1.1: Main steps in the identification of phosphorylated peptides and phos-
phorylation sites by tandem mass spectrometry analysis.

marized as follows (Figure 1.1): (i) breaking down of proteins in a sample into peptides,
typically by trypsin, (ii) enrichment of phosphorylated peptides, (iii) purification of pep-
tides using separation techniques like high-performance liquid chromatography (HPLC),
(iv) generation of mass spectra for separated peptides using mass spectrometer and fi-
nally, (v) matching of mass spectra to a spectra database to identify peptide sequences

and its corresponding proteins.

A key advancement in recent years that greatly facilitates phosphopeptide detection
by mass spectrometry is the development of phosphopeptide enrichment techniques. As
many phosphoproteins are of low abundance, their detection by mass spectrometry is a
challenge. In addition, only a few copies of a cellular protein may be phosphorylated
at one time (phosphorylation stoichiometry) especially for phosphotyrosines. This can
result in the signal from phosphopeptides being completely masked by its more abundant

unphosphorylated forms. In many situations, the ability to identify minute phosphopro-



teins and phosphopeptides in a complex mixture (such as cell lysate) is desirable. Thus,
in recent years, techniques for phosphopeptide enrichment prior to identification by mass
spectrometry have emerged that greatly facilitate the identification of phosphorylation

sites. Some of these techniques are:

Immobilized Metal Affinity Chromatography (IMAC)

One of the first phosphopeptide enrichment techniques applied in genome-wide detection
of phosphorylation events is immobilized metal affinity chromatography (IMAC). The
technique was first described in 1999 [136], and was subsequently adapted for large-scale
detection of phosphorylation events in S. cerevisiae [42]. The technique exploits the
affinity of phosphate for immobilized metal. However, unphosphorylated peptides that
contain acidic residues (like glutamic and aspartic acids) can also bind to the immobilized
metals. To prevent this, all peptides in a sample may first be converted to corresponding
peptide methyl esters prior to phosphopeptide enrichment by IMAC. The enrichment
technique has been coupled with liquid chromatography (LC)-tandem mass spectrometry

(MS/MS) to detect phosphorylation events in cancerous cells [83, 118].

Strong Cation Exchange Chromatography (SCX)

Another chromatographic method used for phosphopeptide enrichment is strong cation
exchange chromatography (SCX). The technique was first applied in a proteome-wide
manner to detect phosphorylation events in a HeL.a cell line [10] where proteins in a cell
lysate were first separated by SDS-PAGE followed by in-gel trypsin digestion. This tech-
nique produces mostly peptides with +2 net charge at low pH. Singly-phosphorylated
peptides, on the other hand, have a +1 net charge due to the presence of the negatively
charged phosphate group. Phosphopeptides were then separated from non-phosphorylated
peptides by SCX on the basis of charge difference. A total of 2002 sites from 976 proteins

were identified in the experiment. It should be noted that the approach cannot detect



doubly-phosphorylated peptides which have a net charge of 0 at low pH. It addition,
it was found that phosphorylation sites with proline and acidiphilic amino acids in its
flanking sequence make up a large fraction of the identified sites, suggesting a possible
bias in the technique [10]. Like IMAC, the SCX had been applied on lysate from whole

tissue, e.g. [9].

Antibody-based Enrichment Techniques

Antibodies (Ab) against phosphoresidues have also been used to enrich for phospho-
proteins and phosphopeptides. In Grgnborg et al. [54], proteins were immunoprecip-
itated with anti-pSer Ab and anti-pThr Ab followed by matrix-assisted laser desorp-
tion/ionization time-of-flight (MALDI-TOF) and nanoelectrospray tandem mass spec-
trometry to detect serine and threonine phosphorylation events. Other works used anti-
pTyr Ab to profile tyrosine phosphorylation in epidermal growth factor receptor signaling
pathway [170] and in Jurkat leukemia T-cell line [151]. As tyrosine phosphorylation is a
rare event compared to serine/threonine phosphorylation and that anti-pTyr Ab generally
has higher efficiency than anti-pSer Ab and anti-pThr Ab, enrichment techniques using
anti-pTyr Ab has emerged as a common experimental strategy to study phosphotyrosine
signaling pathways [156]. In addition to antibodies targeting phosphoserine, phospho-
threonine and phosphotyrosine generically, antibodies that target phosphoresidues with
specific consensus sequence or motif had been used to identify proteins potentially phos-

phorylated by specific kinases or specific classes of kinases [54, 110].

Chemical Modification

Phosphorylated peptides can also be chemically modified to facilitate their enrichment.
One approach involves replacing the phosphate moiety on phosphorylated peptides with
biotinylated moieties [128]. The phosphorylated biotinylated peptides are then enriched

with immobilized avidin and characterized by mass spectrometry. The shortcoming of



this technique is it is not applicable to phosphotyrosine [53]. Another technique involves
converting phosphopeptides into covalent tethers for attachment to a polyamine den-
drimer [183]. The phosphopeptides with its high molecular mass dendrimer are then

separated from non-phosphorylated peptides by size exclusion filtering.

Combinatorial Approach

Various phosphopeptide enrichment techniques have been combined to improve enrich-
ment. For example, IMAC was used in conjunction with immunoprecipitation to profile
tyrosine phosphorylation events in Jurkat cells [153] and in the interferon-« signaling
pathway [206] using mass spectrometry. In another work, IMAC, SCX and immunopre-
cipitation were used in combination to detect phosphorylation events occurring in mouse
liver [187]. Phosphopeptide modification by dendrimer coupled with immunoprecipita-

tion has also been used to characterize tyrosine phosphorylation in T-cells [183].

1.2.2 Quantitative mass spectrometry techniques

The ability to quantify the amount of phosphoproteins and phosphorylation sites in ad-
dition to their detection provides further insight into how protein kinases and protein
phosphatases regulate cellular activities. While there are methods to measure the ab-
solute quantity of peptides (e.g AQUA [46]), they are presently not commonly used for
quantifying phosphopeptides. Instead, techniques for relative quantification of phospho-
peptides in one sample compared to the same phosphopeptides in another sample are
more commonly used. The key step is often to differentially label proteins/peptides
from different samples with isotopes or special chemical reagents such that the same
phosphopeptide from different samples are of different mass that can be differentiated
and quantified. Once samples are differentially labelled, they are mixed together before
identification by mass spectrometry. While the term “quantitative phosphoproteome” is

commonly used in literature, the quantitative measurements were often relative in nature.



When Forest White and his colleagues first applied the IMAC technique for detect-
ing phosphorylation events [42], they also incorporated a quantitative approach in the
technique. They showed that peptides of same sequence converted to methyl esters using
methanol and deuterated methanol separately produces different mass spectra that is de-
tectable by mass spectrometry. Another approach uses whole-cell stable isotope labeling
by incorporating °N isotope into cell culture for quantification [127]. Here, I surveyed

the more commonly used labeling methods.

1.3 Technologies for high-throughput protein phos-

phoprofiling

Stable Isotope Labeling by Amino acids in Cell culture (SILAC)

The SILAC technique, first described in 2002, involves growing cells in media with an
isotopically-labeled form of an essential amino acid until the amino acid is incorporated
into the proteome of the cell ([131], see Figure 1.2 for an overview). Isotope-labeled
peptides produce different mass spectra compared to normal peptides. The method was
adopted to elucidate the tyrosine phosphorylation state in HeLa cells at different time
points after epidermal growth factor (EGF) stimulation [14]. To enable comparison of
phosphorylation state across three different time points after EGF stimulation, three
different isotope-labeled arginines (12Cg'*Ny-Arg, 3Ce1Ny-Arg, BCs!°Ny-Arg) are used.
Cells grown in media separately with each of the isotope-labeled arginines were mixed and
lysed. Tyrosine-phosphorylated proteins were then purified with anti-pTyr Ab, digested
and then identified/quantified with LC-MS.
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Figure 1.2: Stable Isotope Labeling by Amino acids in Cell culture (SILAC). Main
steps in quantifying relative phosphorylation states of protein/peptide/site from two samples
using SILAC. In isobaric tagging, peptides from different samples are labelled with different
isobaric tags like iTRAQ reagents before they are mixed together.
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Isobaric Tag for Relative and Absolute Quantitation (iTRAQ)

Rather than culturing cells to incorporate isotopes into their proteome, peptides can
be directly labeled using iTRAQ reagents. Each iTRAQ reagent consists of a protein-
reactive group that attaches to protein/peptides and a reporter group that fragments to
produce different m/z value, allowing identification and quantification directly from the
MS? spectrum [149]. There are up to eight different iTRAQ reagents, each producing
different mass spectra for peptides of the same sequence. Thus, up to eight samples can
be simultaneously assessed using iTRAQ. The technique has been applied to compare
phosphorylation profiles of parental human mammary epithelial cells after 0, 5, 10 and
30 minutes of EGF simulation [204]. In this example, phosphopeptides were enriched
with IMAC, and the temporal profiles of 104 phosphotyrosine sites on 76 proteins were

generated.

1.3.1 Protein and peptides microarrays

Multiple putative protein substrates of protein kinases can be immobilized on a solid sup-
port, such as glass slide or streptavidin-coated membrane, as miniature protein array or
proteome chip [104]. They can then be overlaid with isotope-labeled ATP and a protein
kinase of interest to perform an in wvitro kinase reaction assay [208, 207] . Phospho-
rylated substrates can be subsequently detected using high-resolution phosphorimaging
[76]. This approach allows rapid screening for putative substrates of a specific kinase us-
ing a small amount of reagents and can be scaled up for proteome-wide assays [104]. For
example, using microarrays containing 4400 unique S. cerevisiae proteins [104], Ptacek
and colleagues tested 82 S. cerevisiae protein kinases and identified 4200 phosphoryla-
tion events on 1325 proteins [137]. In another study, potential substrates of Abl and
Abl-related gene (Arg) tyrosine kinases were assessed using a microarray containing 2400

different human proteins [20].
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Kinase-substrate interactions detected using protein microarray as described above
may not occur physiologically due to lack of biological context, such as cellular colo-
calization and/or protein coexpression between kinases and their detected substrates.
Moreover, high kinase concentration, which does not reflect physiological or cellular lev-
els, is often used to increase sensitivity of these assays. In addition, many physiological
kinase-substrate interactions can be missed because contextual factors like adaptor pro-
teins or coactivators (e.g. cyclins) and priming phosphorylation sites or kinases are often
not present in the arrays. Nevertheless, a protein microarray assay serves to identify
potential kinase-substrate relations that can either be validated through downstream
biochemical and genetic experiments or corroborated with biological data from other

studies.

Peptides with a phosphoacceptor residue at a fixed position can be immobilized on a
chip just like full-length proteins, and subsequently incubated with isotope-labeled ATP
and kinase of interest, followed by phosphorimaging to identify phosphorylated peptides.
Peptides spotted on microarrays can be random sequences [152], from degenerate oriented
peptide libraries [167] or are subsequences found in proteins [52, 94, 89]. If peptides cor-
responding to subsequences in proteins are used, the precise sites of phosphorylation on
substrates can be determined. However, both false positive and false negative phospho-
rylation sites can be detected by this approach, as the 3-D structural context of the
phosphoacceptor residues which can affect phosphorylation are not represented in the
assays. On the other hand, if peptides of random sequence or degenerate oriented pep-
tide libraries are used, the observed phosphorylated peptides can be used to derive a
position-specific scoring matrix (PSSM), as a statistical model, to quantify the phos-
phorylation propensity of a phosphoacceptor residue based on amino acids flanking the
residue [114, 200]. The PSSM can then be used to scan a proteome to identify putative
substrates for the kinase assayed [114, 200]. Exact sites of phosphorylation are pre-

dicted using this bioinformatics approach although the approach is known to have high
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false positive rate presumably because non-naturally occurring peptides devoid from the
content /context of whole protein sequences were used.

A challenge for peptide chips based on random sequence peptide is the huge surveyable
peptide sequence space. An alternate approach is to incubate the kinase of interest
and isotope-labeled ATP in solution with a large set of fixed-length peptides of different
sequences. To facilitate the identification of sequence patterns needed for phosphorylation
by a protein kinase of interest, peptides can be divided into pools such that peptides in
each pool match a consensus pattern. Such an approach was taken by Cantley, Yaffe,
Turk and coworkers to determine the sequence specificities of serine/threonine kinases
[200, 68, 117]. Unique peptide pools were generated such that in each pool, all peptides
have a common amino acid at one of the residue position while amino acids in other
positions are degenerated. In Turk’s approach, a total of 198 unique peptide pools
were generated as phosphothreonine, phosphotyrosine and the 20 naturally occurring
unmodified amino acids were individually fixed at each of the nine residue positions
flanking a central phosphoacceptor residue. Each peptide in the pools is biotin-tagged,
allowing the peptide to be spotted onto a streptavidin-coated membrane. Phosphorylated
peptides can subsequently be detected by autoradiography or phosphorimaging. Amino
acids preferred by the kinase of interest at each position flanking the phosphoacceptor
residue can then be determined. In addition, the fixation of a phosphorylated residue
at one of the positions flanking a phosphorylated phosphoacceptor residue allows the

detection of phosphorylation that requires priming phosphorylation sites [143].

1.4 Applied proteome-wide phosphoprofiling of bio-
logical systems

The experimental techniques and technologies described in the previous section had been

adapted to study signal transduction, in particular to identify the phosphorylation sites
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targeted by different kinases. Here, we surveyed some of the strategies adopted toward

this goal.

1.4.1 Perturbation-based assays

Protein or peptide chips can be applied to identify putative substrates of kinases. How-
ever, they are in vitro experimental techniques that do not necessarily capture the phys-
iological /cellular concentration and co-localization factors of protein kinases and their
substrates [98]. Instead, Smolka et al. [166] combined quantitative MS techniques with
perturbation studies to identify cellular phosphorylation sites and substrates of yeast
DNA damage checkpoint kinases Mec1/Tell and Rad53 upon induction of DNA damage.
Quantitative MS techniques can detect sites that are differentially phosphorylated across
two or more cellular conditions/perturbations but do not directly identify their effec-
tor kinases. However, by detecting phosphorylation sites that were specifically altered
between kinase-null (Mecl/ Tell and Rad53) and wild-type S. cerevisiae, Smolka et al.
identified 62 putative target sites of Mecl/Tell and Rad53 on 55 proteins. These differ-
entially phosphorylated sites were enriched in the known phosphorylation motifs (linear
motifs) of Mecl/Tell and Rad53, which further suggest that many identified targets are
physiological substrates of the kinases.

A quantitative MS approach was also adopted to identify proteins in zebrafish Fyn/Yes
morpholino knockdown embryos that were differentially phosphorylated compared to
those in wild-type embryos [93]. Using similar approaches, Matsuoka et al. identified
putative ATR and ATM phosphorylation sites that were altered upon DNA damage in
human embryonic kidney 293T cells, and thus, should correspond to physiological tar-
gets of the two kinases [110]. Putative phosphorylation sites of ATR and ATM were
identified using antibodies against pSQ or pTQ sites that are known to be targeted by
ATM and ATR kinases. Among the phosphorylation sites detected, 905 sites from among

700 proteins were found up-regulated fourfold after induction of DNA damage, of which
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55 sites were found on 31 ATR and ATM substrates known to be implicated in DNA
damage signaling. Hence, the 700 proteins are possible physiological substrates of ATM
and ATR. The accuracy and scalability of this approach depend on the availability of
suitable antibodies and their qualities. In addition, the specificity of the antibody is
an important consideration in such assays, as many protein kinases are known to have
similar specificities.

A potential pitfall in the above-mentioned approaches is that not all perturbed sites
identified are direct targets of the deleted kinase. Instead, they could be targets of other
kinases that are activated downstream of the deleted kinases in signaling cascades. For
example, in Smolka et al. [166] , about half of the sites down-phosphorylated in Mecl/
Tell mutant are also down-phosphorylated in a Rad53 mutant. As these sites express
Rad53 phosphorylation motifs and given that Rad53 acted downstream of Mecl/ Tell,

they are likely targets of Radb3.

1.4.2 Chemical-genetics approaches

As mentioned above, a challenge in perturbation approaches is that one cannot always
be certain which kinase(s) phosphorylated the observed altered sites as many protein
kinases could share similar consensus motifs or targets. By structural alteration of a ki-
nase (through mutagenesis) such that it can incorporate a specific modified form of ATP,
a detected phosphorylated protein containing the modified ATP is most likely targeted
by the mutant kinase [162, 102, 39]. Cells (NIH 3T3) with such analogue-sensitive (AS)
mutants of v-Src kinase were generated, lysed and incubated with analog ATP to identify
putative substrates of v-Src with in vivo concentration of proteins [163]. An AS mutant
of Pho85 kinase was generated similarly and assayed for putative substrates in whole-
cell extracts of S. cerevisiae [34]. A similar approach was combined with computational
search by Ubersax et al. to identify in vivo substrates of Cdk1 [70]. The phosphorylation

detection was performed on potential substrates expressing a Cdkl consensus phospho-
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rylation motif (S/T-P-x-K/R) using cell lysate incubated with purified AS mutant Cdk1
with analog ATP to identify 181 proteins that were efficiently phosphorylated by the AS
mutant Cdkl. To validate some of the identified substrates in vivo, small molecules that
inhibit the AS mutant Cdkl were added to cultures of S. cerevisiae AS mutant Cdkl
strains to detect proteins with decreased phosphorylation as likely targets of Cdkl in
vivo. A total of 12 high confidence in vivo substrates of Cdkl were identified in this
manner. Similar approach was adopted by Holt et al [62] to identify phosphorylation
sites targeted by Cdkl during cell cycle. Two issues with these approaches are that it can
not be ruled out that the ATP analog may be picked up and utilized by other distantly
related kinases, and that the structural change in the AS kinase may alter its in vivo
specificity. Another concern is the scalability of the assay for proteome-wide studies as

it is unclear presently whether AS mutants can be created for most kinases.

1.5 Computational analysis of phosphoproteomic data

Recent advancement in technologies described now permits the identification and quan-
tification of thousand of phosphorylation sites in a single experiment. The relative differ-
ences in phosphorylation level of multiple sites between cell samples subjected to different
treatments, or at different time points after treatment can now be surveyed in a high
throughput manner. Computational data analysis and modeling approaches are needed
to organize and interpret the large datasets of site- and context-specific in vivo phos-
phorylation events assembled in various HTP phosphoproteomic studies. One of the key
challenges is to delineate detected phosphorylation sites to their effector kinases. This
is important for inferring the kinase-substrate interaction networks that are essential for
mechanistic understanding of cell behavior and for therapeutic intervention [78, 133].
Here, I survey some of the computational data analysis and modeling approaches that

have been used to analyze large-scale phosphorylation data sets (see Figure 1.3, and

16



Data Type Method Output

@g

Time dynamics
F> Phosphorylation level of sites
at different time points

. pS/pTP
Motif pS/pTXXD
Discovery RxxpS/pT
PhospS:tlzllatlon —l= Site sequence

Regression
Analysis

=—3»-| Phosphorylation level Cell Survival

Motif Phosphorylatin
e

Figure 1.3: An overview of computational analysis performed on large scale phos-
phorylation data.

the computational tools for infering transient kinase-substrate interaction networks.

1.5.1 Clustering of phosphorylation sites with similar temporal

profiles

Surface receptor kinases belong to a class of protein kinases that assimilate extracellular
signals to initiate appropriate cell behaviors. Proteome-wide studies of phosphorylation
events initiated by one such receptor kinase, epidermal growth factor (EGF) receptor,
have been conducted where sites differentially phosphorylated at time points 1, 5, 10
and 20 min after EGF activation in HeLa cells were probed using quantitative phos-
phoproteomic techniques [129, 13]. These studies revealed the dynamic temporal nature
of protein phosphorylation in which many sites are either up- or down-phosphorylated
at different times after EGF stimulation. Phosphorylation sites with similar temporal
profiles were grouped using Fuzzy c-means (FCM) clustering to facilitate biological anal-

ysis and interpretation [129]. Unlike other hard-partition methods like k-means and
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self-organizing map (SOM), FCM allows an instance to belong to different clusters with
different scores that add up to 1.

In a similar work, the temporal dynamics of a large number of tyrosine phosphoryla-
tion sites were analyzed at four time points (0, 5, 10 and 30 min) after 5, 10 and 30 min
incubation of human mammary epithelial cell line with 25nM EGF using untreated cells
as a control [204]. SOM with U-matrix method [186] of visualizing was used to identify
coregulated phosphorylation sites. In essence, SOM is a technique for mapping high-
dimensional data (in this case, each phosphorylation site has 16 features corresponding
to the four time points under the four different treatments) to lower dimension, often
2-D, that facilitate manual grouping of clusters by visual inspection. An advantage of

SOM is it allows an overview of similarity between clusters.

1.5.2 Regression analysis of phosphorylation data to predict

cell fate

Partial least-square regression (PLSR) is a class of regression technique that combines
a data compression technique (through principal component analysis) with regression to
predict dependent variables using input variables from limited samples. In situations
where the number of input variables exceeds the number of observations, or when the
input variables exhibit multi colinearity (meaning some variables are highly correlated),
or when there are missing data, PLSR is an adequate choice for regression analysis over
other conventional regression techniques. In a landmark paper, PLSR was used to predict
cell fate of individual HT-29 cell with high accuracy after stimulation by combination of
three cytokines (tumor necrosis factor, EGF and insulin). The inputs to the PLSR are
the quantitative experimental readouts of 11 signaling proteins at multiple time points
after cytokine stimulation [71]. The work highlights the value of including the dynamic
response of signaling molecules upon cytokine stimulation in regression analysis, as using

only the input cytokine concentration failed to correctly predict cell fate. PLSR was also
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applied to correlate the temporal dynamics of phosphotyrosine sites with migration and
proliferation cell behaviors mediated by the ErbB2 family of tyrosine receptors [195, 88].
Other applications of PLRS include correlating multiple signaling events to observed cell
behaviors [115, 52]. Most importantly, these studies showed that apparently genetically
identical cells can react differently to the same stimulus depending on the physiological

state of the proteins in the cells.

1.5.3 Site prediction and motif discovery from phosphorylation

sites

Another common data analysis strategy is the identification of over-represented sequence
patterns among detected phosphorylation sites that may correspond to phosphorylation
motifs of some kinases. This strategy can be used to detect novel phosphorylation mo-
tifs of uncharacterized kinases [80] or novel binding motifs of phosphoresidue-binding
domains like SH2 and PTB [160]. Although phosphorylation or binding motifs could
be determined by in vitro methods such as protein microarray and degenerate oriented
peptide libraries (see below), these experiments are conducted in vitro and thus may not
fully reflect bona fide motifs. Motif discovery tools such as Gibbs motif samplers [92],
MEME [7], PRATT [77], TEIRESIAS [146] and D-STAR [181] can be used to discover
motifs [123] from sets of phosphorylation sites determined in phosphoproteomic experi-
ments. For example, PRATT was previously used to identify phosphorylation motifs of
kinases from the sequences of substrates detected in protein chip experiments [137].
Many generic motif discovery algorithms do not explicitly correct for unbalanced dis-
tribution of amino acids found in proteins that contribute to spurious motifs. To address
this shortcoming, MotifX, a recent motif discovery algorithm, incorporated background
frequencies of amino acids in proteins to improve the extraction of phosphorylation mo-
tifs from phosphoproteomic data [158]. MotifX was applied in various studies to identify

known and novel motifs in mammalian species [165, 132, 8] and in Arabidopsis [175].
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Motif patterns extracted by MotifX are restricted with either all amino acids or a sin-
gle amino acid at each position, thus motifs with degenerate positions like the pY-x-x-
[LIV] motif of JAK2 kinase [4] were excluded. Moreover, the greedy iterative nature of
the algorithm could potentially exclude the discovery of some motifs. MoDL is a motif
discovery algorithm created to extract degenerated motifs found in phosphorylation data
[148] using the principle of minimum description length.

Motif extraction from phosphorylation sites detected in HTP phosphoproteomic stud-
ies coupled with downstream experimental validation could lead to discovery of novel
in vivo phosphorylation motifs of protein kinases and phosphoresidue-binding domains.
This is exemplified in Miller et al. [113] where a novel binding motif for a SH2 domain
in inositol 5-phosphatase 2 (SHIP2) was discovered. In the work, 481 unique tyrosine-
phosphorylated peptides detected by tandem MS experiments in mammalian cell lines
were grouped into 20 clusters, followed by motif extraction using TEIRESIAS [146]. A
novel N-terminal hydrophobic motif [DE}-x-xx-[ILV]-[ILV]-pY was extracted from one of
the clusters, in which three out of the four peptides expressing the motifs were validated
to bind SHIP2 in pull-down assays. Mutational analysis on two amino acid positions
immediately N-terminal to the phosphotyrosine confirmed the generality of the motif.
Interestingly, proteins expressing the motif are enriched with cell surface receptor linked
signal transduction function, in agreement with known association of SH2-containing pro-
tein with receptor-linked signaling. The work is probably the first system-wide approach
that combined both bioinformatics analyses and experimental validation to discover novel

motifs.

1.5.4 Computational identification of protein kinases targeting

MS-derived phosphorylation sites

One of the key challenges is to delineate MS-derived phosphorylation sites to their effector

kinases. Here, I survey the computational methods and tools that have been developed or
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conceptually can be used for this purpose. Simple consensus motif searching using known
phosphorylation motifs of kinases can be used to associate MS-identified phosphorylated
sites or proteins to their effector kinases [166, 185, 110]. However, relying on simple
regular expression search can be highly unspecific [114]. Thus, several computational
methods had been developed to better identify potential targeting kinases (or kinase

family) of MS-identified phosphorylation sites.

Machine-learning approaches

A subset of these tools deployed machine-learning algorithms to predict novel phospho-
rylation sites. The basic methodology involves training machine-learning models using
known positive and negative examples of sites phosphorylated by kinases of interest,
and then testing the capability of the models to differentiate both positive and negative
samples in separate data sets. The resulting computational models can subsequently be
applied to new data to predict potential phosphorylation sites of specific kinases. Support
vector machines, a statistical machine learning method, have been used in KinasePhos
[196] and PredPhospho [84] for predicting kinase-specific phosphorylation sites. Simi-
larly, artificial neural networks and Bayesian Decision theory were employed in NetPhosK
(60, 15], GANNPhos [182] and PPSP [198] to predict kinase-specific phosphorylation sites.
MetaPredPS [192], a meta-predictor, combined predictions from GPS [199], KinasePhos,
PPSP, PredPhospho and Scansite [200] through a generalized weighted voting strategy
to improve prediction for phosphorylation sites targeted by four protein kinase families

(CDK, CK2, PKA and PKC).

Similarity based approaches

Alternative approaches have been adopted to predict kinase-specific phosphorylation
sites: GPS 2.0 predicts kinase-specific phosphorylation sites in a query sequence based

on the sequence similarity to known sites of kinases [199]. To improve prediction perfor-
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mance, a derivative of the BLOSUM 62 substitution matrix was derived for each kinase
group to optimize similarity comparisons between the sites. Predikin employs sequence-
structure analysis of protein kinases to infers phosphorylation motifs for uncharacterized
serine/threonine kinase sequences submitted by user [21]. The pkaPS method uses a
simplified analytical model to score physical and chemical requirements at amino acid
positions from 18 to 123 of phosphoacceptor residues to predict putative phosphorylation
sites of protein kinase A (cAMP-dependent kinase, PKA) [126].

Contextual modeling of kinase specificity — Networ KIN

Computational and in vitro experimental detection of kinase substrates and their phos-
phorylation sites often omit contextual factors like subcellular compartmentalization and
differentiated protein expression that can prevent phosphorylation. In addition, positive
factors that coregulate phosphorylation such as colocalization via anchoring proteins,
scaffolds and substrate capture by non-catalytic interaction domains and docking mo-
tifs are typically not captured in these experiments. These factors, in combination with
the challenges of mapping transient and context-dependent kinase-substrate interactions
using current protein-interaction assays, have in part led to a large gap between the
understanding of in wvivo phosphorylation sites and the kinases that modulate them.
Currently, in the Phospho.ELM database [36], there are thousands of annotated in vivo
phosphorylation sites, of which only about 25% have been linked to at least one in vivo
kinase [99]. To address this problem, the NetworKIN algorithm was developed to pre-
dict in vivo kinases for identified phosphorylation sites [98]. The principle behind this
algorithm is to model kinase specificity using contextual information for phosphoproteins
and kinases in combination with sequence models of kinase consensus motifs [114]. By
combining probabilistic modeling of network context with the linear motifs recognized
by the catalytic kinase domain, it has been shown that NetworKIN can assign a specific

kinase to an observed in vivo phosphorylation site with a 2.5-fold higher accuracy than
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previous methods such as Scansite and NetphosK.

The human kinome specificity atlas — NetPhorest

NetPhorest is a database containing specificity motifs of protein kinases and phosphoresidue-
binding protein domains derived using peptide arrays. The database currently contains
consensus motifs for 179 human protein kinases and 104 human SH2 and PTB domains.
It also consists of an ensemble of probabilistic classifiers for inferring which protein ki-
nase or phosphoresidue-binding protein domain likely targeted experimentally observed
phosphorylation sites. Hence, predictors in NetPhorest are unlike existing predictors
that were developed to predict novel phosphorylation sites of kinases or novel binding
sites of phosphoresidue-binding protein domains. NetPhorest has a framework to auto-
mate data set construction and training of sequence models for linear motifs involved in

phosphorylation mediated signaling.

1.6 Evolutionary and functional analysis of phospho-
proteomic data

As I seek to study the evolutionary dynamics of protein phosphorylation for interpreting
the importance and functions of newly discovered protein phosphorylation events, here,
I survey related work on the conservation of phosphorylation sites.

At the level of phosphoprotein conservation, Mann and colleagues [50] reported that
phosphoproteins are more likely to have homologs in other eukaryotes than proteins not
known to be phosphorylated, based on the phosphoproteomes identified by mass spec-
trometry in 5 eukaryotes (Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila
melanogaster and Mus musculus). Higher conservation of phosphoproteins over non-
phosphorylated proteins are also reported for prokaryotes for MS-identified phosphopro-

teins in Escherichia coli and Bacillus subtilis [107]. However, in another study, Mann
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and colleagues reported that phosphoproteins identified in 4 prokaryotes (Escherichia
coli, Bacillus subtilis, Lactococcus lactis and Halobacterium salinarium) are rarely ho-
mologous to each other and are relatively sparse compared to eukaryotes [50]. Conserva-
tion analysis of phosphoproteins in Saccharomyces cerevisiae also revealed that protein
phosphorylation may have been a factor influencing the retention of duplicated genes

after WGD (Whole Genome Duplication) in yeast [82].

In addition to higher conservation of phosphoproteins reported for both prokaryotic
and eukaryotic species, phosphorylation sites have been reported to be more conserved
than their non-phosphorylated counterparts. Gnad et al. reported higher conservation of
fly’s phosphoserines in human over other serines while Malik et al. [107] observed overall
higher conservation of human phosphorylation sites (without distinguishing between pS,
pT and pY) in rat, mouse, cow, chicken, zebrafish and Xenopus for 1744 phosphoryla-
tion sites identified on mitotic spindles isolated from cultured human cells. Similarly,
phosphorylation sites in Escherichia coli and Bacillus subtilis are reported to be more
conserved than other phosphorylatable residues in various species, although statistical
significance could not be established due to the small number of phosphorylation sites.
However, conservation rate of phosphorylation sites has been reported to be similar to
other solvent accessible phosphorylatable residues [75]. It should be noted that in this
particular study, conservation of phosphorylation sites and phosphorylatable residues
were not computed between homologous sequences and protein structures from across
diverse species. Observations from such a conservational analysis approach can therefore
be skewed by varying divergence rates of different lineages. In addition, occurrence of
most known phosphorylation sites in unstructured regions in proteins [75, 90, 62, 159],
which in general are evolving faster than structured protein regions [23], can contribute
to the lower conservation rate observed for phosphorylation sites over other phospho-
rylatable residues [90]. Boekhorst et al. [18] compared phosphorylation sites from six

eukaryotes to identify conserved phosphorylation events occurring at similar positions
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across homologous proteins, as determined from sequence alignments, and found the

overlap to be statistically significant.

While many studies analyzed the conservation of large sets of MS-identified phos-
phorylation sites, a few focused on the conservation of phosphorylation sites with char-
acterized functions. Conservational analysis of a set of 249 functionally characterized
phosphorylation sites in Saccharomyces cerevisiae across Saccharomyces bayanus, Sac-
charomyces paradozus, and Saccharomyces mikatae revealed that phosphorylation sites
are generally more conserved than the residues flanking them on primary sequences [6].
Looking specifically at phosphorylation sites demonstrated experimentally to be tar-
geted by CDK1 (cyclin-dependent kinase 1) [185], Ba and Moses further observed that
the residues flanking the phosphorylated residues that are known to influence phospho-
rylation by CDK1 are more conserved than other flanking residues [6]. Comparing func-
tionally characterized to uncharacterized MS-identified phosphorylation sites on mitotic
spindles, Malik at al. [107] found that the former are significantly more conserved than
the latter but noted that potential preferences by experimentalists to study well-conserved
phosphorylation sites may have biased the observation. Similarly, Landry et al. [90] ob-
served that phosphorylation sites characterized to have functional roles as annotated in
HPRD (Human Protein Reference Database) are more conserved than phosphorylation

sites identified in large scale phosphoproteomic studies.

Many phosphoserines/threonines expressing similar consensus motifs were found lo-
cated in close proximity to each other as cluster on primary protein sequences, a phe-
nomenon that is not observed for phosphotyrosines [159]. Many proteins targeted by
CDK1 are known to contain clusters of CDKI1 consensus phosphorylation motifs that
are observed across orthologs in different numbers and at different positions [120, 62].
Such phenomena have been exploited to improve identification of substrates targeted by
specific kinases [119, 6, 25]. In a systematic analysis on conservation degree and phos-

phorylation likelihood, Budovskaya et al. observed that proteins in which PKA (Protein
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Kinase A) consensus motifs are conserved over longer evolutionary time are more likely

to be targeted by PKA based on in vitro assays [25].

Tracing CDK1 consensus motifs in known CDK1 targets and non-targets with their
inferred ancestral sequences across Saccharomyces cerevisiae, Saccharomyces bayanus,
Saccharomyces paradozus, and Saccharomyces mikatae, Ba and Moses concluded that
the CDK1 consensus motifs are evolutionary conserved on bona fide targets of CDK1 [6]
which is not unexpected. However, they also observed constrained appearance of CDK1
consensus motifs in CDK1 bona fide targets compared to non-targets. The authors rea-
soned that this can arise if new CDKI sites disrupt functions of CDKI1 targets while
the appearance of CDK1 consensus motifs on non-targets are not evolutionarily con-
strained because CDK1 does not target these sites[6]. Correlating microarray expression
data across Homo sapiens, Saccharomyces cerevisiae, Schizosaccharomyces pombe and
Arabidopsis thaliana with phosphorylation data, Jensen et al. observed that although
periodically expressed and constitutively expressed subunits in evolutionary conserved
cell cycle protein complexes differ considerably among the four species, protein phospho-
rylation occurs preferentially on periodically expressed proteins in each species[73]. In
a comparative analysis of phosphoproteomes across three yeast species (Saccharomyces
cerevisae, Candida albicans and Schizosaccharomyces pombe), it was observed that the
intensity level of phosphorylation is highly conserved within different cellular activities
although the intensity can vary considerably among individual proteins within each func-

tional group across the three species [11].

1.7 Thesis summary

Mass spectrometry and related technologies have unveiled many novel phosphorylation
sites that can potentially provide insight to the regulation of cellular activities. How-

ever, many phosphorylation sites will need further experimental characterization to elu-
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cidate their functional roles. Following the rationalization behind the term ”functional
genomics”, a field that seeks to characterize the function of each gene, I termed this
research endeavor broadly as ”functional phosphoproteomics”. Some key issues can slow
down the discovery process. First, there could be many false positives in the present
set of phosphorylation sites from large-scale mass spectrometric screens [125, 35]. Sec-
ond, some phosphorylation events may be silent (as coined by Philip Cohen [31]) that,
although genuine, have no or little functional consequences. Lastly, the identification of
promising targets for studies from the large list of phosphorylation site is a daunting task

for biologists.

Hence, for my thesis research, I investigated the evolution of experimentally deter-
mined protein phosphorylation sites with the objective to assess the utility of sequence
conservation profiling for interpreting the importance and function of uncharacterized
phosphorylation sites. Specifically, 1 asked whether sequence conservation can be used
to identify functional phosphorylation sites. To begin, I identified a set of human phos-
phorylation sites in which similar positions in orthologous proteins, as determined by
sequence alignments, are phosphorylated in fly, worm or budding yeast. I subsequently
investigated the sequence conservation profiles of residues with such conserved phos-
phorylation events (Chapter 2). Some phosphorylation sites may have been identified
with the help of sequence conservation analysis. To exclude these sites in our analysis,
we specifically obtained phosphorylation sites identified in untargeted proteomic-wide
screens for our analysis. In the same work, I also explored and devised a non-alignment
approach to identify phosphorylation events on orthologous proteins that are likely me-
diated by orthologous protein kinases but may not occur at similar sequence positions

across orthologous proteins.

Next, I extended my conservational analysis to a larger set of human phosphorylation
sites (Chapter 3) for which I do not have data to validate that similar positions of

these sites in orthologous proteins are also phosphorylated. I reasoned that the larger
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dataset and rich annotation available for some of these sites could provide insight into
the evolution of phosphorylation sites. Specifically, for this part of my work, I seek
to understand how various factors, such as site prevalence (as gauged by its detection
frequency across multiple studies), stoichiometry and occurrence in disordered/ordered
protein regions influence its sequence conservation. I also seek to know whether sites
with characterized functions exhibit unique sequence conservation patterns. In the last
part of my work, I analyzed the maximum phosphorylation propensity (as gauged by
frequency of phosphorylatable residues) encoded in the proteomes of various metazoan
species with the aim of understanding how it might have shaped the frequency and
conservation patterns observed for the various phosphorylatable residues (Chapter 4).
In the last chapter, I summarized my findings and perspectives, and proposed future
research endeavors that may help identify more important phosphorylation events and

uncover their functions.
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Chapter 2

Comparative phosphoproteomics to
identify evolutionary conserved

phosphorylation events

Work presented in this chapter was published as:
C. S. Tan*, B. Bodenmiller*, A. Pasculescu, M. Jovanovic, M. O. Hengartner, C. Jgrgensen,

G. D. Bader, R. Aebersold, T. Pawson, R. Linding, Sci Signal., 2(81):ra39, 2009 Jul.

I performed all the computational analysis in the paper except for 1) Section 2.2.10 and the
associated analysis presented in Figure 2.12, which were performed by A. Pasculescu, 2) Net-
worKIN and NetPhorest prediction in Section 2.2.8, which were generated by R. Linding, and
3) the generation of phosphorylation site data described in Section 2.2.2; which was carried out
by B. Bodenmiller and M. Jovanovic.

* denotes co-first authors
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2.1 Introduction

Protein kinases recognize and phosphorylate linear motifs in proteins [114]. These molec-
ular events can directly control the activities of other proteins and the dynamic assembly
of directional protein-protein interaction networks. In combination with phosphatases,
kinases regulate the phosphorylation dependent binding of linear motifs to modular pro-
tein domains, such as the Src homology 2 (SH2) domain that recognizes phosphorylated
tyrosine motifs and the BRCA1 C-terminal (BRCT) domain that recognizes phosphory-
lated serine and threonine motifs, and thereby create logic gates [38, 12] that enable the
cell to swiftly and precisely respond to both internal and external perturbations [160, 115].
Although interaction maps [150, 45, 172, 191] provide useful information, it is the network
dynamics and utilization that mediate cellular processing of environmental cues [65, 72].
Quantitative mass spectrometry (MS) measurements of phosphorylation networks and
their dynamics are now rapidly unraveling thousands of cellular phosphorylation sites
(194, 10, 17, 110, 147, 129]. With the functional and phenotypic characterization of pre-
viously unknown sites lagging behind their detection, a systematic way to highlight and
prioritize important phosphorylation events is needed to guide functional experimental
studies.

In addition, the conservation and evolutionary trace of most sites remain largely
unknown. Unlike protein domains, which are conserved over long evolutionary distances,
phosphorylation motifs are short and often reside in disordered fast-evolving regions
[100, 139, 124, 120, 73|. These properties render phosphorylation sites difficult to align
and trace evolutionarily [75, 107, 105, 18]. Here, I assembled human phosphorylation
sites previously identified in both large scale MS [high throughput (HTP)] and low-
throughput (LTP) targeted experiments [36, 64] and explored their conservation with
the phosphorylated proteins (phosphoproteomes) of three target model organisms (fly,
worm, and yeast) that were measured with a similar experimental and computational

pipeline. Through a combination of sequence-alignment and reconstructive, network-
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alignment approaches, I investigated the conservation of protein phosphorylation events
at two distinct levels: sites that are conserved at similar positions (termed positionally
conserved) in orthologous proteins between human and at least one target species (such
sites are termed “core sites” for the purpose of communication in this work) and those
that are involved in conserved kinase-substrate regulatory networks but that are not
necessarily constrained to the same location within phosphoproteins from humans and

the model organisms (such proteins are termed ”core net proteins” in this work).

To identify human sites that are conserved in distantly related model organisms
and thereby likely to be important for fundamental cellular activities, I first identi-
fied positionally conserved sites with a full-length (global) sequence-alignment algo-
rithm [81] to map the experimentally identified phosphorylation sites from the target
species (Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae)
to orthologous human phosphoproteins (Figure 2.1). This approach led to a conserva-
tive assessment of conserved sites because it requires the position of a site to be fixed
within a multiple-sequence alignment. However, kinases can regulate cellular activities
in ways that do not require their sites to occur at precise positions in protein sequences
[123, 120, 73, 62|, as is the case in the threshold dependent regulation of the Sicl pro-
tein [122], for which phosphorylation at each of several sites promotes binding to Cdc4.
Similarly, the ultrasensitive inactivation of Weel kinase is mediated by cyclin-dependent
kinase 1 (Cdkl) decoy sites in both Weel and other proteins that distract CDK1 away
from the causal sites in Weel [85]. Therefore, we aimed to identify conserved human
phosphorylation events that are not necessarily conserved at the same sites between or-
thologous kinases and substrates in the target species by deploying the NetworKIN [98]
algorithm in combination with NetPhorest [114] to infer the relevant protein kinases for
substrates identified in the phosphosphoproteomes of human and each target species. The
computationally reconstructed human kinase-substrate network was subsequently over-

laid with that of the target species to identify conserved kinase-substrate relationships.
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By taking two distinct approaches to assess phosphorylation conservation, we provide
insight into the evolution of phosphorylation-based regulation with potential impact for

our understanding of normal biological processes and complex diseases.

2.2 Materials and methods

2.2.1 Assembly of non-redundant human phosphorylaton data

Human phosphorylation sites were collected from the two major online databases Phos-
phoSite (release 2.0 [64]) and Phospho.ELM (release 7.0 [36]). As the two databases use
protein sequences from different releases of SwissProt to track the positions of phospho-
rylation sites, all data were mapped into a reference sequence set from Ensembl (release
46, 2007 [43]). This helped to resolve cases where identical sites had different positions
due to revisions of the SwissProt sequence referenced and to identify and remove redun-
dant sites. The mapping between SwissProt primary accessions and its corresponding
Ensembl human protein identifiers (release 46) was obtained from Ensembl through its
BioMart interface. Finally, the positions of the phosphorylation sites in the Ensembl pro-
tein sequences were identified by exact string matching (using the peptide from -7 to +7
surrounding the phosphorylated central residue as defined in the Phospho.ELMor Phos-
phoSite database). This procedure resulted in 23,977 nonredundant (at 100% identity

level) human phosphorylation sites for the comparative analysis.

2.2.2 Generation of phosphorylation data in fly, worm and yeast

Phosphorylation sites in D. melanogaster, C. elegans and S. cerevisiae were identified
using mass spectrometry by our collaborators, Bernd Bodenmiller and Marko Jovanovic,
from the University of Zurich, Switzerland. Here, I described the experimental procedures

they adopted.
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Generation of peptide samples

The D. melanogaster phosphorylation data was generated as follows: Kcl67 cells were
grown in Schneiders Drosophila medium (Invitrogen) supplemented with 10% fetal calf
serum, 100 U penicillin (Invitrogen) and 100 g/ml streptomycin (Invitrogen, Auckland,
New Zealand) in an incubator at 25°C. To increase the number of mapped phospho-
rylation sites, different batches of cells were pooled. Cells were either: 1) grown in
rich medium, 2) serum-starved, 3) treated for 30 min with 100 nM Rapamycin (LClabs,
Woburn, MA, USA) in rich medium, 4) treated for 30 min with 100 nM insulin (serum
starved), or 5) treated for 30 min with 100 nM Calyculin A (rich medium). Then the
cells were washed with ice-cold phosphate-buffered saline and resuspended in ice-cold
lysis buffer containing 10 mM HEPES, pH 7.9, 1.5 mM MgCl,, 10 mM KCI, 0.5 mM
dithiothreitol and a protease inhibitor mix (Roche, Basel, Switzerland). To preserve pro-
tein phosphorylation, several phosphatase inhibitors were added to a final concentration
of 20 nM calyculin A, 200 nM okadaic acid, 4.8 gum cypermethrin (all bought from Merck
KGaA, Darmstadt, Germany), 2 mM vanadate, 10 mM sodium pyrophosphate, 10 mM
NaF and 5 mM EDTA. After 10 min incubation on ice, cells were lysed by douncing.
Cell debris and nuclei were removed by centrifugation for 10 min at 4°C at 5500 g. Then
the cytoplasmic and membrane fraction were separated by ultracentrifugation at 100000
g for 60 min at 4° C. The proteins of the cytosolic fraction (supernatant) were subjected
to acetone precipitation. The protein pellets were resolubilized in 3 mM EDTA, 20 mM
Tris-HCI, pH 8.3, and 8 M urea. The disulfide bonds of the proteins were reduced with
tris (2-carboxyethyl) phosphine at a final concentration of 12.5 mM at 37°C for 1 h. The
produced free thiols were alkylated with 40 mM iodoacetamide at room temperature for
1 h. The solution was diluted with 20 mM Tris-HCI (pH 8.3) to a final concentration
of 1.0 M urea and digested with sequencing-grade modified trypsin (Promega, Madison,
WI) at 20 pg per mg of protein overnight at 37°C. Peptides were desalted on a C18
Sep-Pak cartridge (Waters, Milford, MA) and dried in a speedvac.
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The S. cerevisiae phosphorylation data was generated as follows: Wild type (BY7092:
canlA his3A leu2A ura3A met15A) were grown to OD ~0.8 at 30°C in synthetic dened
(SD) medium (per liter 1.7 g YNB, 5 g ammonium sulfate, 2% glucose, 0.03 g isoleucine,
0.15 g valine, 0.04 g adenine, 0.02 g arginine, 0.1 g leucine, 0.03 g lysine, 0.02 g methionine,
0.05 g phenylalanine, 0.2 g threonine, 0.02 g histidine, 0.02 g tryptophane, 0.03 g tyrosine,
0.02 g uracil, 0.1 g glutamic acid and 0.1 g aspartic acid). Cells were harvested at 30°C
by centrifugation at 850 g and then washed once in SD medium. Finally, they were
collected by centrifugation and shock-frozen in liquid nitrogen. Pellets were thawed in
ice cold lysis buffer (20 mM Tris/HCI pH 8.0, 100 mM KCI, 10 mM EDTA, 0.1% NP40,
20 nM calyculin A, 200 nM okadaic acid, 4.8 uM cypermethrin (all obtained from Merck
KGaA, Darmstadt, Germany), 2 mM vanadate, 10 mM sodium pyrophosphate and 10
mM NaF) using 1 mL of lysis buffer per gram of yeast. The cells were lysed by glass-bead
beating (using acid-washed glass beads), the protein supernatant was precipitated using
ice-cold acetone, and the pellet was resuspended in 8 M urea, 20 mM Tris/HCI at pH 8.3.
After dilution to < 1.5 M urea with 20 mM Tris/HCI at pH 8.3, proteins were digested
using trypsin in a w/w ratio of 1:125 and puried using C18 reverse phase chromatography

(Sep-Pack, Waters).

The C. elegans phosphorylation data was generated as follows: Wild-type C. elegans
strain N2 (Bristol) was grown on 9-cm nematode growth medium (NGM) agar plates
seeded with a lawn of the E. coli strain OP50 or in 100-ml liquid cultures in S-basal
buffer in bevelled flasks (with concentrated E. coli NA22 as a food source). Worms
were harvested from plates or liquid culture and separated from the bacteria by washing
with M9 buffer three times. The worms were harvested by centrifugation at 500 g and
shock frozen using liquid nitrogen. Subsequently, the worms were homogenized with glass
beads (diameter of 212-300 pm, Sigma-Aldrich, St Louis, MO, USA) in the ratio of 1:1:2
(worms:beads:buffer) in a cell disrupter (FastPrep FP120, Thermo Savant, Qbiogene
Inc., Carlsbad, CA, USA) at 4°C three times for 45 s at level 6. The buffer used was
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50 mM Tris/HCI, pH 8.3, 5 mM EDTA, 8 M urea. After glass bead beating treatment,
0.125% SDS was added and the homogenate was incubated for 1 h at room temperature
to solubilize proteins. Cell debris was removed by centrifugation. The peptides were

produced from the proteins in the supernatant as described above.

Peptide separation by isoelectric focusing

All peptides were separated according to their isoelectric point. For the D. melanogaster
this was performed using an free-flow electrophoresis instrument, type prometheus from
FFE Weber Inc. (now BD-Diagnostics, PAS) and FFE-Weber reagent basic kit (Prolyte
1, Prolyte 2, Prolyte 3 and Prolyte 4-7 and pl markers) (BDDiagnostics, NJ, USA).
The digested peptides were diluted in separation media containing 8 M Urea, 250 mM
Mannitol and 20% ProLyte solution at a concentration of 10 mg/ml. This sample was
loaded continuously for 1 h at 1 ml/h. Total collection time was 24 h and the volume
of each collected fraction was about 25 to 50 ml. A Thermo Orion needle tip micro pH
electrode (Thermo Electron Corporation, Beverly, MA) was used to measure the pH value
of each fraction. Peptides from the FFE fractions 18-60 were purified on a C18 Sep- Pak
cartridge (Waters Corporation, Milford, MA, USA) (1). For C. elegans and S. cerevisiae
the dried-down peptide samples (15 mg and 20 mg, respectively) were seperated with
an Offgel fractionator and therefore resolubilized to a final concentration of 1 mg/ml
in off-gel electrophoresis buffer containing 6.25% glycerol and 1.25% IPG buffer (GE
Healthcare). The peptides were separated on pH 3-10 IPG strips (GE Healthcare) with a
3100 OFFGEL fractionator (Agilent) as previously described (4; 5). We performed a 1-
hour rehydration at maximum 500 V, 50 mA, and 200 mW followed by the separation at
maximum 8000V, 100 mA, and 300 mW until 50 kVh were reached. Following isoelectric
focussing, the fractions were concentrated and cleaned up by C18 reversed-phase spin

columns according to the manufacturers instructions (Sep-Pack, Waters).
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Phosphopeptide isolation

Phosphopeptides were isolated using a titanium dioxide resin as follows: 1-3 mg of dried
peptides were reconstituted in 280 ul of a washing solution (WS), containing 80% ace-
tonitrile and 3.5% TFA, which is saturated with phtalic acid (~100g phtalic acid per ml).
Then 1.25 mg TiO, (GL Science, Saitama, Japan) resin was placed into a 1-ml Mobicol
spin column (MoBiTec, Gottingen, Germany) and was subsequently washed with 280
!l water, 280 pl methanol, and finally was equilibrated with 280 pul WS for at least 10
minutes. After removal of the WS by centrifugation using 500 x g, the peptide solution
was added to the equilibrated TiO, in the blocked Mobicol spin column and was incu-
bated for > 30 min with end-over-end rotation. After this step, the peptide solution was
removed by centrifugation, and the resin was thoroughly washed two times each with
280 pl of the WS, with a 80% acetonitrile, 0.1% TFA solution, and finally with 0.1%
TFA. In the final step, phosphopeptides were eluted from the TiO5 resin using two times
150 pl of a 0.3 M NH4OH solution (pH ~10.5). After elution, the pH of the pooled elu-
ents was rapidly adjusted to 2.7 with 10% TFA, and the phosphopeptides were purified
with an appropriate reverse-phase column suitable for up to 20 ug peptide. Besides the
separated peptides, this procedure was also performed on yeast and worm whole-cell or
whole-organism lysates.

Alternatively, phosphopeptides were also isolated with immobilization by metal affin-
ity chromatography (IMAC). In detail, 1-3 mg of peptides were reconstituted in 280 pl
of a WS, consisting of 250 mM acetic acid with 30% acetonitrile at pH 2.7. Then 60 pul
of uniformly suspended PHOS-Select iron affinity gel (Sigma Aldrich), corresponding to
~30 pl resin, was placed into a 1-ml Mobicol spin column. The resin was equilibrated
three times with 280 ul of the WS. After removal of the WS by centrifugation at 500 x
g, the peptide solution was added to the equilibrated IMAC resin in the blocked Mobicol
spin column. To obtain reproducible results, it is crucial that the pH in all replicate

samples is maintained at ~2.5. The affinity gel was then incubated with the peptide
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solution for 120 min with end-over-end rotation. After the incubation, the liquid was
removed by centrifugation and the resin was thoroughly washed two times with 280 ul of
the WS, and once with ultra pure water. In the final step, phosphopeptides were eluted
once with 150 pl of a 50 mM phosphate buffer (pH 8.9) and once with 150 ul of a 100
mM phosphate buffer (pH 8.9), each time incubating the resin < 3 min with the elution
buffer. Both elutes were pooled, the pH were rapidly adjusted to 2.7 using 10% TFA,
and the phosphopeptides were purified with an appropriate reverse-phase column. This
procedure was performed on separated fly and worm peptide samples and yeast whole-cell

lysates.

Finally, phosphoramidate chemistry (PAC) was used in the case of D. melanogaster for
phosphopeptide isolation on the peptide samples after isoelectric focusing (1; 2). Phos-
phopeptides were isolated with phosphoramidate chemistry as follows: 1 mg of dried
peptide was reconstituted in 750 ul of methanolic HCIl, which was prepared by slowly
adding 120 pl of acetyl chloride to 750 ul of anhydrous methanol. The methyl ester-
ification was then allowed to proceed at 12°C for 120 min. The solvent was quickly
removed in a cool vacuum concentrator and peptide methyl esters were dissolved in 40
1l methanol, 40 pl water, and 40 ul acetonitrile. Then 500 ul of a solution containing
50 mM N-(3-Dimethylaminopropyl)-N ethylcarbodiimide (EDC), 100 mM imidazole pH
5.6, 100 mM 2-(N-Morpholino)ethanesulfonic acid (MES) pH 5.6, and 2 M cystamine was
added to the peptide solution. The reaction was allowed to proceed at room temperature
with vigorous shaking for 8 hours. The solution was then loaded onto an appropri-
ate reverse-phase column and the derivatized peptides were subsequently: First, washed
with 0.1% TFA; second, treated with 10 mM TCEP (pH should be adjusted to ~3 using
sodium hydroxide (NaOH)) for 8 minutes, in order to produce free thiol groups; third,
washed again with 0.1% TFA to remove residual TCEP. Finally, the derivatized pep-
tides were eluted with 80% acetonitrile, 0.1% TFA and the pH was adjusted to 6.0 with

phosphate buffer. Then acetonitrile was partially removed in the vacuum concentrator
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to yield a final concentration of ~30%, and the derivatized phosphopeptides were incu-
bated with 5 mg maleimide functionalized-glass beads for 1 h at pH 6.2 in a Mobicol
column. (The beads were synthesized by dissolving 120 pmol hydroxybenzotriazole, 120
pmol of 3-maleimidopropionic acid, and 120 pmol diisopropylcarbodiimide in 1 ml of
dry dimethylformamide, completely. After 30 minutes of incubation, 100 mg CPG beads
(Proligo Biochemie, Hamburg, Germany) corresponding to 40 pmol free amino groups
were added for 90 minutes. After the reaction, beads were washed with dimethylfor-
mamide and dried with a vacuum concentrator. Beads were stored dry at 4°C. The
derivatized beads were washed two times sequentially with 300 pul 3 M NaCl, water,
methanol, and, finally, with 80% acetonitrile to remove nonspecifically bound peptides.
In the last step, the beads were incubated with 5% TFA, 30% acetonitrile for 1 h to re-
cover the phosphopeptides. The recovered sample was dried in the vacuum concentrator.

This procedure was also performed on yeast whole-cell lysates.

Mass spectrometry data analysis and sampling depths

The liquid chromatography-tandem mass spectrometry (LC-MS, on a Thermo Fisher
Scientic LTQ ORBITRAP XL) analysis and database searches were performed as de-
scribed in [17]. The S. cerevisiae and C. elegans MS spectra were searched against the
SGD (release October 10th 2007) and WormBase (release WS183) databases and the
D. melanogaster data were searched against the FlyBase database v4.3. In addition to
the data stored in the PhoshoPep database, we added in the case of S. cerevisiae elec-
tron transfer dissociation (ETD) fragmentation data from [29], although these data only
constitute 19% of the total dataset. In this study, the D. melanogaster phosphopep-
tide isolates were most extensively analyzed in terms of the total number of LC-MS/MS
runs employed and consequently larger coverage was achieved than for the other target
species. Finally, the expected sizes of the phosphoproteomes of yeast, worm, and fly

strongly differ, simply due to differences in their genome sizes and repertoires of kinases
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Figure 2.1: Number of phosphorylation sites assembled.

and phosphatases.

2.2.3 Identification of phosphorylated orthologs for human phos-

phoproteins in the three query species

Ortholog information of human phosphoproteins inferred by Ensembl (release 46) or-
tholog detection pipeline was obtained from Ensembls BioMart interface. Specifically,
Ensembl identifiers of genes orthologous to human genes together with identifiers of their
translated protein products were retrieved. The details of the ortholog detection pipeline
are described at http://aug2007.archive.ensembl.org/info/data/compara/homology_meth
od.html. Briefly, gene families are identified from all sequences in the database by WU-

Blastp and Smith-Waterman searches, followed by construction of a phylogenetic tree
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for each gene family to identify orthology and paralogy relationships between gene pairs.
Finally, we used this information to identify human phosphoproteins with orthologs that
were phosphorylated in at least one of the target species (we termed these phospho-
orthologs). Subsequently, the sequences of these human phosphoproteins were aligned
with those of their target species phosphoorthologs to identify positionally conserved

phosphorylation events (such phosphorylation sites are termed “core” sites).

2.2.4 Identification of core sites

The phosphorylation core sites were detected from multiple sequence alignments (MSAs)
of each human phosphoproteinwith all its detected phosphoorthologs (as described above).
To improve each MSA, we included the protein sequence of the longest splice variant
(or an arbitrarily chosen longest if several exist with identical length) of one-to-one or-
thologous genes from 19 eukaryotic species spanning the evolution between Homo sapi-
ens and D. melanogaster (Aedes aegypti, Anopheles gambiae, Bos taurus, Canis famil-
1aris, Ciona intestinalis, Ciona savignyi, Danio rerio, Gallus gallus, Gasterosteus ac-
uleatus, Macaca mulatta, Monodelphis domestica, Mus musculus, Ornithorhynchus anat-
wnus, Oryzias latipes, Pan troglodytes, Rattus norvegicus, Takigufu rubripes, Tetraodon
nigroviridis, and Xenopus tropicalis). For the sake of completeness, we also included
the orthologous protein sequences for each target species that had no detected phos-
phorylation. Finally, these sequences were aligned using the MAFFT (v6.240, E-INS-i
option with default parameters) algorithm on an IBM x366 running CentOS (LINUX).
The resulting MSAs were subsequently processed by a Perl script to identify the human
phosphoresidues that are aligned in the same column with a phosphoresidue observed in
any target species (we termed these phosphorylation sites core sites). We did not require
the aligned phosphoresidues to be identical amino acids to allow detecting cases where

one phosphoresidue is converted to another during evolution (for example, pT to pS or

PY).
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Figure 2.2: Schematic overview of core site detection.
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2.2.5 Assessing local alignment quality of core sites with shuf-

fled phosphoortholog sequences

We repeated the MSA with shuffled sequences of phosphoorthologs to identify spurious
core sites that could arise from poorly aligned regions in the sequence alignment by ran-
domchance alone. First, we identified pairs of aligned phosphoresidues lying in potential
poorly aligned regions, which we defined as those having less than 50% identity between
human and the target species in the sequence region —5 to +5 (excluding position 0)
relative to the human phosphoresidue. For each of these pairs of aligned phosphoresidues,
we then computed the BLOSUMG62 alignment score between human and target species
of sequence region —5 to +5 relative to the human phosphoresidue, and repeated the
MSA, as outlined above, 500 times but with the sequence of the phosphoortholog shuf-
fled randomly each time. We then computed the empirical P value for the BLOSUMG62
computed alignment score of the aligned phosphoresidues as the fraction of trials in which
the shuffled phosphoortholog sequence aligned to the same region in the human phos-
phoprotein to a phosphorylatable residue (S, T or Y) with equal or better BLOSUMG62
score than the actual phosphoortholog sequence. Finally, we used these values to only

consider core sites that have an empirical P value < 0.05 resulting in 479 core sites.

2.2.6 Assessing the statistical significance on the number of ob-

served aligned phosphoresidues

We adopted a simple probabilistic model to estimate the statistical significance of the
number of observed aligned phosphoserine, phosphothreonine, and phosphotyrosine residues
between human and each target species. First, we computed the number of aligned phos-
phoresidues expected by random chance between human and each target species in the
nonshuffled MSA (separate analyses were performed for phosphoserine, phosphothreo-

nine, and phosphotyrosine). Here, we illustrate, as an example, how the number of aligned
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phosphotyrosines expected by random chance between human and fly was derived: Let
A be the set of human tyrosine-phosphorylated proteins whose orthologs in fly are ty-
rosine phosphorylated. Correspondingly, let B be the set of fly tyrosine-phosphorylated
proteins that correspond to A. Next, let P4 and Pg be the proportion of tyrosines in
protein set A and B, respectively, that are phosphorylated, and let N,p be the total
number of tyrosines in A that are aligned to tyrosines in B as observed in the MSA
(described above). It then follows that the number of human phosphotyrosines aligning
to phosphotyrosines in fly expected by random chance, assuming joint probability of two
independent events, is computed as P4, X Pg X N,p. Finally, we assessed the statistical
significance of the difference between expected random occurrence and observed number
of aligned phosphotyrosines by a X? test. Similar analyses were then performed between

human and each target species for serine, threonine, and tyrosine separately.

2.2.7 Phosphorylation motif discovery from positionally con-

served phosphorylation sites

For every pair of aligned phosphorylated residues, a consensus sequence of the local align-
ment from —5 to +5 of the aligned phosphorylated residues is first defined. For example,
..RK.SP..D. is the consensus pattern of GTRKGpSPLKDE aligned to NERKVpSPDEDM.
Next, a consensus pattern S encoded as a vector set V = (v_5,v_y4,,v4,v5) is defined,
where vector v; is a vector of the 20 elements coding for number of specific amino acids
appearing at position ¢ among the consensus sequences. Cosine similarity is a measure
of similarity between two vectors by measuring the cosine of the angle between them.
The similarity between vector set V,, and V}, is computed as the sum of cosine similarities
of all corresponding vectors across the two sets, as follows. This serves to quantify how
similar are two set of consensus sequences based on frequency of amino acids observed
at each position of the consensus sequences. First, a vector set is encoded for every con-

sensus sequence. Next, the similarity between pairs of vector sets are computed, and the
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Figure 2.3: Identification of potential conserved kinase-substrate interaction net-
work. NetworKIN and NetPhorest algorithms were applied to the target species phosphopro-
teomes to reconstruct kinase-substrate networks. Second, interactions within these networks
were superimposed (or aligned) with each other. Finally, for each substrate, we defined a phos-
phorylation conservation propensity k of the number of phosphorylation events supported by
orthologous kinase-substrate phosphorylation in the target species.

most similar pair is then merged into a new vector set by summing up the corresponding
vectors across the two old sets. The previous step is iteratively performed, and if the two
most similar vector sets at each iteration encode 10 or more core sites, they are output
and removed from further computation. Lastly, core sites in human and target species
represented by output vector sets are then visualized separately with sequence logos for

manual inspection and classification.
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2.2.8 Computational reconstruction of conserved human kinase-

substrate networks

Many cellular processes and behaviors are mediated by protein kinases through phos-
phorylation of its substrate proteins. Identifying these kinase-substrate interactions will
help to construct the signaling networks that relay extracellular signals to elucidate cel-
lular responses. We seek to identify such kinase-substrate networks in human that are
evolutionarily conserved in our query species. We used the NetworKIN algorithm (v2.0b
98, 99]) to predict the kinases that may phosphorylate the phosphorylation sites in the
four species (H. sapiens, D. melanogaster, C. elegans and S. cerevisiae), resulting in four
directed and weighted kinase-substrate networks. We used default parameters for Net-
worKIN; setting the ranking score cutoff to 0.7 for human and 0.5 for target species. This
setting was an empirical decision made on the basis of the relatively weak association
data in worm and fly compared to yeast and human. In addition, we expect conservation
to reduce spurious protein-protein associations. Many predictions from NetworKIN are
based on indirect probabilistic associations of proteins; thus, a direct physical interaction
is not an absolute prerequisite for the algorithm to associate a substrate with a kinase.
Because STRING [74] utilizes evidence transfer between the target species, our approach
will be somewhat biased toward these associations. However, the systematic analysis of
the phosphoproteomes of the target species and the use of linear motif from NetPhorest
[114] serve as unbiased starting material for the NetworKIN prediction algorithm, mini-
mizing this issue. NetPhorest database contain a set of probabilistic classifiers that infer
which protein kinase (or kinase family) and/or phosphoresidue-binding protein domain

most likely targeted a phosphorylation site given the known specificity of protein kinases.

Each edge in the networks represents a predicted kinase-substrate relationship. The
weight of the edge is proportional to the total number of sites among spliced variants of

the substrate gene product predicted to be phosphorylated by the kinase. The human
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kinase-substrate network is compared across the three target species to infer a network
of evolutionary conserved kinase-substrate relationships in human. Each inferred evolu-
tionary conserved kinase-substrate relationship in human is further scored (see Figure 2.4
for illustration). For each predicted human kinase-substrate relationship (a, b), kinase
a and substrate b that are orthologous to kinase-encoding gene set A, and substrate-
encoding gene set B, in target species x (fly, worm, or yeast), where A, and B, can be
an empty set. Let n be the edge weight of (a, b) and m, be the maximum edge weight
among kinase-substrate pairs from A, and B, in xs weighted kinase-substrate network.
The human kinase-substrate relationship (a, b) is considered conserved in target species
x if m, > 0 (kinase-substrate relationship between members of A, and B, is predicted
by NetworKIN based on phosphorylation data in target species z). The conservation
score C, of kinase-substrate relationship (a, b) across target species x is then selected as
the smaller number of n and m,, essentially requiring every predicted kinase-substrate
relationship inferred in human to be supported by similar one inferred in target species.
The final conservation score Cyyq of kinase-substrate relationship (a, b) in human across
the three target species is the sum of Cpyy , Cyorm, and Cyeqse which sum up the support
for the inferred kinase-substrate relationship from the 3 query species. Finally, the con-
served phosphorylation propensity k& of a substrate b is calculated as the sum of Ciyy
of each conserved kinase-substrate relationship that b is implicated in. Finally, we chose
not to compress multiple orthologous kinases into a single node, such as JNK1 and JNK2
into a JNK group [114], because it is possible for functional divergence to occur after
duplication such that the initial set of substrates targeted by an ancient kinase become

uniquely targeted among the duplicated kinases.
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Figure 2.4: Schematic diagram of how the conserved phosphorylation propensity k of each human substrate is computed.



2.2.9 Assessing statistical significance of inferred conserved kinase-

substrate relationships

To assess the statistical significance of the human kinase-substrate relationships inferred
to be conserved in the target species, we repeated the procedure described above in
Section 2.2.8 2,000 times, using randomized kinase-substrate networks of the three tar-
get species with the predicted human kinase-substrate network. Each time, randomized
kinase-substrate networks in target species are created by switching all originally pre-
dicted substrates of each kinase with that of another randomly selected kinase within
the same species. The empirical P value is then computed as the fraction of trials that
have the same or more inferred conserved human kinase-substrate relationships than the

original analysis.

2.2.10 Prediction of intrinsic disordered regions in human phos-

phoproteins

We used the DISOPRED2 predictor (http://bioinf.cs.ucl.ac.uk/disopred/) [193] to pre-
dict disordered regions in human protein sequences by inputting these to the predictor.
The nonredundant (NR) protein sequence database required for the predictor to run was
obtained from the National Center for Biotechnology Information in November 2007.
The NR database was filtered for transmembrane protein regions with the pfilt program
provided with DISOPRED?2. Subsequently, we analyzed the output with custom Perl

scripts and SQL queries.

2.2.11 Assembly of disease-associated gene data set

We obtained a list of cancer-associated genes annotated in four peer reviewed publi-
cations [56, 189, 116, 59] from CancerGene (http://cbio.mskcc.org/cancergenes) [59].

The first two publications reviewed genes important in cancer development, mainte-
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nance, and metastasis, and the last two reported genes with mutations causally im-
plicated in oncogenesis as observed in primary neoplasms. As the cancer-associated
genes reported in Futreal et al. [59] form the basis of cancer-associated genes in Can-
cer Gene Census (www.sanger.ac.uk/genetics/CGP/Census/), we obtained the latest list
from the database. Subsequently, the gene symbols and aliases obtained were mapped
to Ensembl gene entries with the alias mapping file provided by the STRING database
(http://string.embl.de) [190], resulting in a final set of 413 cancer-related genes. In ad-
dition we assembled a data set of genes involved in genetic diseases from the OMIM
database (www.ncbi.nlm.nih.gov/omim/). These genes were obtained from OMIM and
mapped to gene identifiers in the Ensembl database (release 46). This resulted in a total

set of 2174 human genes associated with disease.

2.2.12 Statistical and function enrichment analysis

Gene Ontology (GO) term enrichment analyses were performed with the BINGO (v2.00)
[106] plugin for Cytoscape (v2.5.2) [164]. The GO annotations of human genes were
retrieved from Ensembl (release 48) and the statistical significance of overrepresented
GO terms was determined with hypergeometric distribution tests (corrected for multiple
hypothesis testing with false discovery rate). The statistical significance of GO terms
associated with core site genes was estimated by comparing the GO terms of two sets of
human genes encoding phosphoproteins: those that have orthologs in at least one target
species and its subset of genes that have phosphoorthologs in the target species. The
statistical significance of GO terms associated with human core net genes (substrates
with inferred conserved kinase-substrate relationships in target species) was estimated
by comparing it to the entire set of human genes encoding phosphoproteins that have
phosphoorthologs in at least one target species, and the phosphoorthologs that have

kinase-substrate relationship predicted by NetworKIN.
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Figure 2.5: Number of human phosphorylation sites at different stages of conser-
vation detection.

2.3 Result

A total of 23,977 human phosphorylation sites found across 6456 phosphoproteins en-
coded by 6293 genes were assembled from the two primary online databases PhosphoSite
(release 2.0) [64] and Phospho.ELM (release 7.0) [36]. For D. melanogaster, C. elegans,
and S. cerevisiae, we used phosphorylation site data that were generated with a similar
experimental and computational pipeline (see Methods and Supplementary Materials)
and are available via the PhosphoPep database (www.phosphopep.org) [17, 16]. Our
study included 12,654, 4519, and 5071 phosphorylation sites for D. melanogaster, C.
elegans, and S. cerevisiae, respectively. We observed an exceptionally high fraction of
phosphotyrosine sites in the assembled human phosphorylation data that can largely be
attributed to HTP phosphotyrosine antibody-based studies [147, 151]. The portion of

phosphoserine, phosphothreonine, and phosphotyrosine is shown in Figure 2.1.
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Figure 2.6: Target species source of the 479 core sites.

2.3.1 Positionally conserved phosphorylaton events in human

and function enrichment analysis

Of all the human sites assembled, 39.7% were in found in proteins orthologous to phos-
phoproteins detected in at least one target species (Figure 2.5). Deploying a sequence-
alignment protocol (Figure 2.2, see Methods) with the MAFFT program [81] on the
three target phosphoproteomes and the human phosphorylation set (see Methods), we
identified 479 sites (termed core sites) that were conserved between human and at least
one target species in 344 proteins encoded by 337 human genes (termed core site genes,
Figure 2.1). Of these core sites, 73.7% are phosphoserines, 16.9% are phosphothreonines,
and 9.4% phosphotyrosines (Figure 2.5). These sites make up 10.8% of the 4448 human
phosphoresidues that were aligned to phosphorylatable residues in at least one target
species, and in most cases, these numbers are significantly higher than expected by ran-
dom chance from observed alignments (table 2.1).

Among the 479 sites, 139 (~29%) were found within 75 protein domain families
(compared to the global average of ~20% for all 29,977 human phosphorylation sites), 57

were conserved in at least two target species, and 17 were conserved in all three target
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Table 2.1: Observed versus expected of core sites by chance.

Between human and fly

Residue Expected Observed 0Odd Ratio p-value
pS 55.53 325 5.85 2.2e-16
pT 6.43 64 9.95 6.9e-12
pY 11.23 33 2.94 1.1e-3
Between human and worm
Residue Expected Observed 0Odd Ratio p-value
pS 14.9 116 7.79 2.2e-16
pT 0.89 7 7.87 -
pY 2.99 13 4.35 1.2e-2
Between human and yeast
Residue Expected Observed 0Odd Ratio p-value
pS 9.54 46 4.82 1.0e-07
pT 0.73 2 2.74 _
pY 1.48 5 3.38 -
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species (Figure 2.6). We observed that core sites shared between humans and more than
one target species have an increased tendency to be located within protein domains: 9
of the 17 omnipresent core sites occurred in domains from 6 families (dehydrogenase
E1, phosphoglucomutase-phosphomannomutase, glycogen synthase, PhoX homologous,
Cde37 N-terminal kinase binding, 60S acidic ribosomal, and serine-threonine protein ki-
nase catalytic domain), suggesting that the phosphorylation of these protein domains is of
ancient origin. It should be noted that not all the core sites identified are phosphorylated
by kinases; for example, phosphorylation of the core site Ser!”™ in the phosphoglucomu-

tase domain of human glucose-1,6-bisphosphate synthase likely happens by self-catalysis.

To analyze the functional context of core site genes, we constructed a functional
association network among these genes with the STRING resource (Figure 2.7). This
network revealed a tight cluster of functionally associated core site genes that encode
components of various protein complexes and signaling networks, as well as singleton
genes that were not confidently associated to any other core site gene. The (-catenin
destruction complex and clathrin coat proteins of coated pits appear to be heavily reg-
ulated by protein phosphorylation of ancient origin because they contain core sites in
four out of four and four out of five of their conserved protein components, respectively
(Table 2.3). Function enrichment analysis with Gene Ontology [5] annotation revealed
that core site genes are involved in fundamental cellular processes. For example, amino
acid phosphorylation, RNA splicing, cell division, and translation were statistically en-
riched over the super set of human phosphoproteins that have orthologs in target species
(P < 0.05, hypergeometric test, Benjamini and Hochberg false discovery rate correction).
Thus, the observed enrichment suggests that even processes not previously appreciated as
regulated by phosphorylation, such as the phosphorylation-mediated regulation of many
RNA splicing proteins observed in human cells, arose early during evolution before the

last common ancestor of fly and human.

Tracing the experimental sources of the core sites, we found that 65.3% of the core
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