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Abstract

The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting
cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with ,10% of the
proteome in the model yeast Saccharomyces cerevisiae, while only two interactions have been identified in Candida albicans,
the leading fungal pathogen of humans. Utilizing a chemical genomic approach, we mapped the C. albicans Hsp90
interaction network under diverse stress conditions. The chaperone network is environmentally contingent, and most of the
226 genetic interactors are important for growth only under specific conditions, suggesting that they operate downstream
of Hsp90, as with the MAPK Hog1. Few interactors are important for growth in many environments, and these are poised to
operate upstream of Hsp90, as with the protein kinase CK2 and the transcription factor Ahr1. We establish environmental
contingency in the first chaperone network of a fungal pathogen, novel effectors upstream and downstream of Hsp90, and
network rewiring over evolutionary time.
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Introduction

Hsp90 is an essential and highly conserved molecular chaperone

in all eukaryotes that specializes in folding metastable client

proteins, many of which are signal transducers [1,2]. Together

with co-chaperones, Hsp90 interacts dynamically with client

proteins regulating their stability and activation. Hsp90 function

is subject to complex regulation by post-translational modification,

including phosphorylation and acetylation, and depends upon an

ATP binding and hydrolysis cycle [3,4]. Hsp90 is generally

expressed at much higher levels than required for basal function,

however, environmental stress can induce global problems in

protein folding and thereby overwhelm Hsp90’s functional

capacity [5]. As an environmentally contingent hub of protein

homeostasis and regulatory circuitry, Hsp90 has profound effects

on biology, disease, and evolution. Hsp90 modulates the

phenotypic effects of genetic variation in an environmentally

responsive manner [6,7,8,9], influencing ,20% of observed

natural genetic variation and serving both to maintain phenotypic

robustness and promote diversification [7].

Hsp90’s broad influence on current genomes in part reflects its

extensive connectivity in interaction networks and its profound

impact on cellular circuitry. A global analysis of the Hsp90

chaperone network has thus far only been achieved in S. cerevisiae.

Systematic proteomic and genomic methods have been applied to

map physical, genetic, and chemical-genetic interactions, revealing

that Hsp90 interacts with ,10% of the proteome [10,11]. In

addition to identifying known co-chaperones and client proteins,

these network analyses identified new Hsp90 client proteins as well

as novel co-factors that link Hsp90 with chromatin remodeling

and epigenetic gene regulation. A subsequent chemical-genetic

screen identified distinct Hsp90 interactions at elevated temper-

atures, suggesting that specialized chaperone functions mediate

responses to environmental stress [12]. While there are numerous

conserved client proteins between S. cerevisiae and other eukaryotes,

there is evidence for plasticity in the Hsp90 chaperone machine,

with differences in co-chaperones even between S. cerevisiae and

another model yeast, Schizosaccharomyces pombe [13]. The extent to

which the Hsp90 chaperone network has been rewired over

evolutionary time remains unknown.

Fungi provide not only the most powerful eukaryotic genetic

model systems, but also a major threat to human health, and

Hsp90 holds great promise as a therapeutic target [14,15].

Invasive fungal infections are a leading cause of mortality among

immunocompromised individuals, including those with cancer and

HIV [16]. Treatment of fungal infections is hampered by the

limited number of antifungal drugs, host toxicity, and the

emergence of drug resistance [14,17]. We previously established

that Hsp90 regulates the emergence and maintenance of resistance

to the most widely deployed classes of antifungal drugs in the

clinic, the azoles and echinocandins [6,15,18,19]. Compromising

Hsp90 function can transform antifungals from ineffective to

highly efficacious in combating otherwise lethal infections caused

by the most prevalent fungal pathogens of humans, Candida albicans
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and Aspergillus fumigatus [15]. In C. albicans, Hsp90 regulates not

only drug resistance, but also morphogenesis and virulence [20].

Despite the therapeutic potential of targeting Hsp90, mouse model

studies revealed that Hsp90 inhibitors in clinical development as

anti-cancer agents have toxicity in the context of an acute fungal

infection [15], motivating the search for fungal-selective Hsp90

inhibitors and fungal-specific components of the Hsp90 chaperone

network.

C. albicans provides the ideal fungal pathogen with which to

dissect the Hsp90 chaperone network given its clinical relevance

and its dependence on Hsp90 for drug resistance, virulence, and

temperature-dependent morphogenesis. Candida species account

for 88% of all hospital-acquired fungal infections [16]. C. albicans is

the leading fungal pathogen of humans worldwide with mortality

rates approaching 50%, and is the fourth most common cause of

hospital-acquired infections [16,21,22]. Hsp90 regulates resistance

to both azoles and echinocandins by stabilizing the protein

phosphatase calcineurin and the terminal mitogen-activated

protein kinase (MAPK) in the Pkc1 cell wall integrity pathway,

Mkc1 [18,19]. To date, these are the only two Hsp90 interactors

identified in a fungal pathogen. Although genetic analyses with C.

albicans have been hampered by its obligate diploid state and lack

of a complete sexual cycle, recently homozygous mutant libraries

have been developed to enable systematic screens and genomic

analyses [23,24,25,26].

Here, we mapped the first Hsp90 genetic interaction network in

a fungal pathogen. We conducted a chemical-genetic screen with

the first C. albicans homozygous transposon insertion mutant

library containing 1,248 strains and covering ,10% of the

genome. Growth was scored under standard conditions as well as

five stress conditions, both in the presence and absence of the

Hsp90 inhibitor geldanamycin. Hypersensitivity to geldanamycin

is indicative of an Hsp90 genetic interaction. The resulting

network of interactions was extensively contingent on the

environment. Most of the 226 genetic interactors were identified

as important for growth only under specific conditions, suggesting

that they operate downstream of Hsp90. Consistent with this

model, Hsp90 depletion led to reduction in protein levels of several

candidate interacting kinases, including Hog1 for which protein

levels were reduced and stress-induced activation was abolished.

Only a few genetic interactors were identified in many of the

screens, and these likely operate upstream of Hsp90. Consistent

with this model, interactors identified in five of the six screens

include the regulatory subunits of casein kinase CK2, which

governed function of the Hsp90 chaperone machine, and the

transcription factor Ahr1, which promoted HSP90 expression. The

C. albicans Hsp90 genetic interaction network has been rewired

relative to its S. cerevisiae counterpart, with a small but significant

set of interactions conserved. Thus, we establish environmental

contingency in the first Hsp90 chaperone network of a fungal

pathogen, novel effectors upstream and downstream of Hsp90,

and rewiring over evolutionary time.

Results

Chemical genetic screening reveals an environmentally
contingent Hsp90 genetic interaction network

We conducted a chemical genetic screen employing a stationary

liquid assay with the first C. albicans homozygous mutant library

that covers ,10% of the genome (661 genes) [23,25]. To identify

Hsp90 genetic interactors, the library was screened for mutants

hypersensitive to pharmacological inhibition of Hsp90 with

geldanamycin, which binds with high affinity to Hsp90’s unusual

ATP binding pocket and thereby blocks ATP-dependent chaper-

one function [27]. The screen was conducted under standard

growth conditions (37uC), general stress conditions (elevated

temperature of 41uC or osmotic stress exerted by sodium chloride

(NaCl)), and specific stress conditions exerted by drugs targeting

the endoplasmic reticulum (nucleoside antibiotic tunicamycin), the

cell wall (echinocandin caspofungin), or the cell membrane (azole

fluconazole) (Figure S1A, Table 1). Following incubation, growth

was monitored by optical density and normalized relative to the

geldanamycin-free control (Figure S1). Control strains with

different geldanamycin sensitivities were included in each screen

(Figure S1B).

The six screens yielded a total of 226 distinct Hsp90 genetic

interactors (Figure 1 and Table S1). These were displayed as a

network showing relationships between interactors and the screen

conditions in which they were identified (Figure 1). The number of

interactions differed widely between screens, as did the extent of

overlap (Table 1). The cell wall stress screen (caspofungin) revealed

the most interactions with 73 in total, 52 of which were unique;

this screen was negatively correlated with all of the other screens

(Figure 1), a unique pattern. Most genetic interactions identified

were specific to one or two conditions, and very few were common

to four or more conditions tested. Only nine interactions were

identified in at least four screens; four of these were identified in at

least five screens (AHR1, CKB1, CKB2, and HOS2) and only one in

all six screens (HOS2).

Next, we tested the Hsp90 genetic interactors for enrichment of

gene ontology (GO) gene function categories relative to the

composition of the library. C. albicans Hsp90 genetic interactors

were enriched for macromolecular complexes (P = 0.005), protein

complexes (P = 0.005), protein modification processes (P = 0.018),

biopolymer modification (P = 0.018), and post-translational pro-

tein modifications (P = 0.018). Kinases comprised 34 of the 226

Hsp90 genetic interactors identified (Figure 2), and were enriched

from 10% of the library to 15% of the genetic interactors; 29 of the

kinases were specific to one or two screens. The high temperature

and tunicamycin screens identified the largest number of kinases,

Author Summary

Hsp90 is an essential and conserved molecular chaperone in
eukaryotes that assists with folding diverse proteins,
especially regulators of cellular signaling. By activating
signaling in response to environmental cues, Hsp90 has a
profound impact on myriad aspects of biology. In fungi,
Hsp90 influences development, drug resistance, and
evolution. In the model yeast Saccharomyces cerevisiae,
Hsp90 interacts with ,10% of proteins. In the leading
human fungal pathogen, Candida albicans, only two
interactions have been identified. We conducted a chemical
genetic screen to elucidate the C. albicans Hsp90 interaction
network under diverse stress conditions. The majority of the
226 genetic interactors are important for growth under
specific conditions, suggesting that they act downstream of
Hsp90 and that the network is environmentally contingent.
For example, the kinase Hog1 depends upon Hsp90 for
activation. Only a few interactors are important for growth
in many conditions, suggesting that they act upstream of
Hsp90. For example, the protein kinase CK2 regulates
function of the Hsp90 chaperone machine and the
transcription factor Ahr1 governs HSP90 expression. Thus,
we identify novel effectors upstream and downstream of
Hsp90, and establish the first chaperone network of a fungal
pathogen, with evidence for environmental contingency
and network rewiring over evolutionary time.

The C. albicans Hsp90 Chaperone Network
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with seven each and three shared between them. Screen-specific

GO enrichment varied (Table 1), consistent with the distinct suite

of Hsp90 interactors identified as important for growth in the

specific conditions.

Next, we examined whether our approach to map Hsp90

genetic interactions could also reveal proteins with functional

dependence on Hsp90. Reassuringly, our screens identified both of

the established C. albicans Hsp90 client proteins, Cna1 and Mkc1.

Table 1. Hsp90 genetic interactions identified in six screens.

Stress condition Screen
Incubation
time (d)

Total number of
interactions

Number of
unique
interactions GO category enrichment (P-Value)

No stress 37uC 2 69 27

General stress 41uC 4 64 32 Phosphorylation (0.005)

Protein amino acid phosphorylation (0.005)

Phosphorus metabolic process (0.024)

Phosphate metabolic process (0.024)

Regulation of cellular process (0.007)

Regulation of biological process (0.03)

0.55 M NaCl 3 27 5 SAGA complex (0.033)

SAGA-like and SAGA-type complex (0.033)

CK2 complex (0.033)

UTP-C complex (0.033)

Protein complex (0.015)

Macromolecular complex (0.036)

Post-translational modification (0.043)

Nucleolar part (0.033)

Drug response (0.001)

Specific stress 1 mg/ml 5 57 29 Cell cortex (0.04)

Tunicamycin (T) Protein complex (0)

Protein amino acid phosphorylation (0)

Protein modification process (0)

Macromolecule modification (0)

Macromolecular complex (0)

Macromolecule metabolic process (0)

Cellular macromolecule metabolic process (0)

Phosphorylation (0)

Phosphorus metabolic process (0.005)

Phosphate metabolic process (0.005)

Cellular protein metabolic process (0)

Protein metabolic process (0)

Post-translational protein modification (0)

Drug response (0.001)

Stimulus response (0.005)

Chemical stimulus response (0.021)

0.1 mg/ml 9 73 52

Caspofungin (C)

0.1 mg/ml 3 32 12

Fluconazole (F)

doi:10.1371/journal.pgen.1002562.t001

The C. albicans Hsp90 Chaperone Network
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Figure 1. Global C. albicans Hsp90 genetic interaction network. The network comprises a total of 226 genetic interactions (circles, diamonds)
as identified in six different experimental conditions (black boxes). In addition to interactions required for normal growth in RPMI (37uC), the network
includes interactions identified during general stresses (41uC, NaCl) and specific stresses (tunicamycin (T), caspofungin (C), and fluconazole (F);
Table 1). Each interaction is color-coded to reflect its degree of connectivity (frequency of occurrence in the six screens). Connectivity ranges from
one (grey) to six (red). Every interactor is connected by edges to the one or more screens it had been identified in. An interaction that occurred
multiple times has multiple edges. Eight interactors, with varying degrees of connectivity, were subsequently tested for protein levels upon Hsp90
depletion to determine if Hsp90 affects expression or stability of the interactor (diamonds). Pearson correlation coefficients are color-coded
depending on the strength of the interaction (lower right).
doi:10.1371/journal.pgen.1002562.g001

The C. albicans Hsp90 Chaperone Network
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Figure 2. Hsp90 kinase genetic interaction network. Of the 226 interactions, 34 are with kinases. Kinases are color-coded depending on their
degree of connectivity, ranging from grey for one connection to orange for five connections. Kinases and test conditions (black squares) are
connected with each other via edges. While the caspofungin screen shared only one of its kinase interactors (CKB2) with another screen, every other
screen shared half or more of its interactors with another screen. For six kinases (diamonds), protein levels were measured upon Hsp90 depletion.
doi:10.1371/journal.pgen.1002562.g002

The C. albicans Hsp90 Chaperone Network

PLoS Genetics | www.plosgenetics.org 5 March 2012 | Volume 8 | Issue 3 | e1002562



Hsp90 physically interacts with and stabilizes the catalytic subunit

of the protein phosphatase calcineurin, Cna1, such that depletion

of Hsp90 leads to depletion of calcineurin, blocking calcineurin-

dependent stress responses [19]. Hsp90 also stabilizes the MAPK

Mkc1, such that depletion of Hsp90 leads to depletion of Mkc1,

blocking downstream stress responses [18]. CNA1 and MKC1 were

identified as Hsp90 interactors in our tunicamycin screen,

consistent with their role in mediating responses to endoplasmic

reticulum stress [28,29].

To determine if we could identify novel functional dependence

of a C. albicans protein on Hsp90 based on our dataset we turned to

Hog1. Hog1 is a MAPK involved in osmoregulation that was

identified as an Hsp90 interactor in our high temperature screen,

and connections between Hog1 and Hsp90 have been established

in other eukaryotes. In S. cerevisiae, Hog1 interacts with Hsp90 and

co-chaperone Cdc37, which facilitates Hsp90’s kinase specificity,

and mutation of Cdc37 leads to reduced Hog1 levels and impaired

downstream stress responses [30]. The mammalian homolog of

Hog1, p38, is an Hsp90 client and interacts with Hsp90 via Cdc37

[31]; inhibition of Hsp90 leads to autoactivation of p38, suggesting

that the Hsp90-Cdc37 complex functions as a negative regulator

of p38 in mammalian cells as opposed to its role as a positive

regulator in S. cerevisiae. We tested the impact of Hsp90 depletion

on levels of both total Hog1 protein and activated dually

phosphorylated Hog1 in response to osmotic stress induced by

exposure to hydrogen peroxide (Figure 3A). To deplete Hsp90, we

used a strain with its only HSP90 allele driven by a doxycycline-

repressible promoter (tetO-HSP90/hsp90D). In the presence of

doxycycline, Hsp90 levels were depleted in the tetO-HSP90/hsp90D
strain and not the wild type. Depletion of Hsp90 led to a ,60%

reduction in the levels of total Hog1 and abolished stress-induced

Hog1 activation (Figure 3A). Transcript levels of HOG1 were

reduced by ,30% upon Hsp90 depletion (Figure S2), suggesting

that Hsp90 affects expression as well as activation, or stability of

the activated form, of this MAPK. These results confirm that our

chemical genetic screen can identify client proteins with functional

dependence on Hsp90.

Hsp90 affects stability or expression of low-connectivity
genetic interactors

Given that our chemical genetic screens identify Hsp90 genetic

interactions based on importance for growth under distinct

environmental conditions, we hypothesized that low-connectivity

interactors act downstream of Hsp90 to mediate specific responses,

whereas high-connectivity interactors act upstream of Hsp90 to

regulate its function or expression. To test this hypothesis, we

determined the impact of Hsp90 depletion on three high- and five

low-connectivity interactors (Figure 3B). The high-connectivity

interactors (HOS2, CKB1, and CKB2) were identified in five or six

conditions and the low-connectivity interactors (CKA1, MKK2,

CMK1, CDR1, and HOG1) in up to three. With the exception of

Hog1, which was discussed above, all candidate interactors were

TAP-tagged to monitor protein levels upon Hsp90 depletion.

Consistent with our hypothesis, depletion of Hsp90 caused greater

reduction of protein levels for low-connectivity interactors than

high-connectivity interactors (P = 0.0430); protein levels of four of

the five low-connectivity interactors were reduced by greater than

25%, while none of the high-connectivity interactors exhibited this

magnitude of reduction (Figure 3C). To distinguish more indirect

effects on gene expression from effects on protein stability, we

monitored transcript levels for all interactors that showed

substantial reduction in protein levels. Of the five low-connectivity

interactors tested, only one had significantly reduced transcript

levels upon Hsp90 depletion, HOG1 (Figure S2). Both established

C. albicans client proteins that require Hsp90 for stability, Cna1

[19] and Mkc1 [18], were also low-connectivity interactors. These

findings suggest that low-connectivity interactors depend on

Hsp90 for stability or expression while high-connectivity inter-

actors do not.

A striking observation was that two of the high- (CKB1 and

CKB2) and one of the low-connectivity interactors (CKA1) are

subunits of protein kinase CK2. CK2 is a serine/threonine protein

kinase and phosphorylates many substrates including yeast and

human Hsp90, thereby regulating its function [32]. Like many

kinases that phosphorylate Hsp90, CK2 is also an Hsp90 client in

mammalian cells [33], suggesting that feedback loops might enable

kinases to modulate their chaperoning and activation. In C.

albicans, depletion of Hsp90 leads to reduced levels of both Cka1

and Cka2 catalytic subunits. Cka1 was identified as low-

connectivity in our screens and Cka2 was not identified although

it was present in the library (Figure 3B, 3C). Hsp90 depletion did

lead to reduced levels of Cka2 protein (Figure 3C) and CKA2

transcript (Figure S2). Protein levels of the two high-connectivity

regulatory subunits, Ckb1 and Ckb2, remained relatively stable

despite Hsp90 depletion (Figure 3C). These findings suggest that

the catalytic CK2 subunits may be more dependent upon Hsp90

than the regulatory subunits, and that the regulatory subunits may

act upstream to modify Hsp90 function. If the regulatory subunits

function with the catalytic subunits to phosphorylate Hsp90, one

would expect the catalytic subunits to have been high-connectivity

interactors; that they were not could be due to their partial

redundancy [34,35]. To test this, we constructed a strain lacking

Cka1 and in which Cka2 could be depleted by doxycycline-

mediated transcriptional repression (cka1D/cka1D tetO-CKA2/

cka2D, Figure S3). We repeated all six screens with the CK2

transposon mutants, clean deletion mutants, and our catalytic

subunit depletion strain. The deletion mutants phenocopied the

transposon mutants, confirming that the screens were reproducible

and the original phenotypes of the transposon mutants were valid

(Figure 3D). Further, depletion of the CK2 catalytic subunits

conferred hypersensitivity to geldanamycin in all six screens

(Figure 3D), confirming that the catalytic subunits would indeed

have been high-connectivity interactors if not for their redundan-

cy. Thus, we establish important functional connections between

Hsp90 and CK2 in C. albicans.

CK2 regulatory subunits affect phosphorylation of Hsp90
or Cdc37, or protein levels of Hsp90, Cdc37, and Hog1

Next, we tested whether CK2 phosphorylates threonine and

serine residues of Hsp90 and Cdc37 in C. albicans. In S. cerevisiae

Hsp90 is phosphorylated on at least 11 residues [36], including

threonine 22 by CK2 [32]. CK2 also phosphorylates the Hsp90

co-chaperone Cdc37, which is critical for proper binding to

kinases and for their stability [37]. To determine if CK2

phosphorylates Hsp90 and/or Cdc37 in C. albicans, we immuno-

precipitated either Hsp90 or Cdc37 from the wild type and

mutants lacking CK2 components and monitored levels of

threonine and serine phosphorylation relative to total immunoc-

precipitated Hsp90 or Cdc37 protein. Threonine phosphorylation

of Hsp90 was reduced by 90% in the ckb1D/ckb1D mutant and

serine phosphorylation was reduced by 68% (Figure 4A). That

phosphorylation was not reduced in the catalytic subunit mutants

could be due to their partial redundancy [34,35], consistent with

our screen results (Figure 3D). That phosphorylation was not

reduced in the ckb2D/ckb2D mutant might suggest that Ckb2

directs phosphorylation of fewer threonine or serine residues than

Ckb1 under these conditions, or that it plays a more important

role in phosphorylation of other targets. Consistent with the latter

The C. albicans Hsp90 Chaperone Network
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Figure 3. Analysis of high- and low-connectivity Hsp90 genetic interactors. (A) Hog1 (a low-connectivity interactor) protein levels and
activation depend upon Hsp90. The wild type (WT, SN95) and tetO-HSP90/hsp90D (CaLC1411) strains were exposed to doxycycline, hydrogen
peroxide (H2O2), or the combination, as indicated. Levels of Hsp90, Hog1, and activated phosphorylated Hog1 were monitored by Western analysis.
Tubulin served as loading control. Protein levels were quantified, normalized to wild type and untreated controls and displayed above each blot.
Hog1 levels were reduced by .50% (pink boxes) and activation was entirely abolished when Hsp90 was genetically compromised. (B) Nine candidate
interactors, seven of which are kinases or kinase subunits, were selected for analysis of protein levels upon Hsp90 depletion based on their

The C. albicans Hsp90 Chaperone Network
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possibility, threonine and serine phosphorylation of Cdc37 was

largely abolished in the ckb2D/ckb2D mutant (Figure 4A).

Threonine phosphorylation of Cdc37 was also reduced by greater

than 90% in the ckb1D/ckb1D mutant, while serine phosphoryla-

tion was reduced by 44% (Figure 4A). Complementation of the

ckb1D/ckb1D and ckb2D/ckb2D mutants with wild-type alleles of

CKB1 or CKB2 restored phosphorylation of Hsp90 and Cdc37

(Figure S4A and data not shown). Thus, C. albicans CK2 regulates

serine and threonine phosphorylation of both Hsp90 and Cdc37.

Given that phosphorylation of Hsp90 [32] or its co-chaperone

Cdc37 [37] can affect stability and function of target kinase client

proteins in S. cerevisiae, we assessed the impact of deletion of each of

the four C. albicans CK2 subunits on levels of Hsp90, Cdc37, and

target kinase Hog1, as well as on Hog1 activation. Cells were

grown in standard conditions or with a short burst of oxidative

stress in order to monitor Hog1 activation via phosphorylation.

Consistent with our hypothesis that the high-connectivity regula-

tory subunits of CK2 function upstream of Hsp90, protein levels of

Hsp90, Cdc37, and Hog1 were reduced substantially in the ckb1D/

ckb1D and ckb2D/ckb2D mutants (Figure 4B). Interestingly, there

was a stress-dependent difference in the impact of CK2 subunit

deletion. During standard growth conditions, the only change in

proteins levels greater than 25% was that Cdc37 levels were

reduced by 71% in the ckb2D/ckb2D mutant (Figure 4B, left panel).

In response to oxidative stress, Hsp90 levels were reduced in both

the ckb1D/ckb1D (38%) and ckb2D/ckb2D (29%) mutants

(Figure 4B, right panel). Hog1 levels were also reduced in response

to oxidative stress in both the ckb1D/ckb1D (34%) and ckb2D/ckb2D
(35%) mutants (Figure 4B, right panel). Hog1 activation was not

abolished (Figure 4B), unlike with depletion of Hsp90 (Figure 3A).

Complementation of key mutants with a wild-type allele of CKB1

or CKB2 fully restored Hsp90 and Cdc37 protein levels, and

partially restored Hog1 protein levels (Figure S4B), confirming

that the observed effects are indeed due to the specific gene

deletions. Thus, modification of the Hsp90-Cdc37 complex via the

CK2 regulatory subunits is stress-dependent, such that Ckb2 is

required for Cdc37 levels in the absence of stress, while Ckb1 and

Ckb2 are both required for Hsp90 and Hog1 levels during

oxidative stress.

If the regulatory subunits of CK2 regulate function of the

Hsp90-Cdc37 complex and downstream clients such as Hog1,

then one would predict that deletion of these CK2 subunits would

phenocopy deletion of Hog1. To test this, we monitored growth

during osmotic stress exerted by sorbitol, given Hog1’s importance

for osmotic stress responses. We found that the ckb1D/ckb1D,

ckb2D/ckb2D and hog1D/hog1D mutants were equally hypersensi-

tive to high osmolarity (Figure 4C). Complementation of the

mutants with a wild-type allele of CKB1, CKB2, or HOG1 restored

high osmolarity growth, confirming that the phenotypes observed

are a consequence of the specific gene deletions (Figure S4C).

Taken together, our results support the model that function of the

Hsp90-Cdc37 chaperone complex is modulated in a stress-

dependent manner by the high-connectivity interactors Ckb1

and Ckb2, thereby affecting target kinases (Figure 4D).

,17% of the C. albicans Hsp90 genetic interactions are
conserved in S. cerevisiae

To date, the most extensive studies of the Hsp90 chaperone

network have been carried out in S. cerevisiae [11,12]. Chaperone

networks have been examined in the protozoan parasite

Plasmodium falciparum [38], but comparative analysis was limited

due to high protein interaction network divergence from other

eukaryotes [39,40]. As of yet, comparative analysis of Hsp90

genetic interaction networks has not been feasible due to the lack

of large-scale interaction data in species other than S. cerevisiae.

Comparison of our C. albicans Hsp90 genetic interaction set with

those from S. cerevisiae genetic screens [11,12] revealed a small but

significant overlap (Hypergeometric, P = 0.004), despite their

highly similar co-chaperone machineries (Figure S5). The C.

albicans library screened contains insertions in 428 genes that have

homologs in S. cerevisiae, 59 of which are genetic interactors in S.

cerevisiae; of these 59, 30 were unique to S. cerevisiae (Figure S5). The

29 Hsp90 interactors that were conserved out of 171 C. albicans

Hsp90 interactors that have a S. cerevisiae homolog indicate that

only ,17% of C. albicans Hsp90 genetic interactions are conserved.

Thus, the chaperone network has been rewired considerably over

evolutionary time.

The conserved interactors were distributed throughout the C.

albicans Hsp90 network but differences in the extent of conserva-

tion were observed in different stress conditions. While ,25% of

Hsp90 genetic interactions identified in the cell membrane stress

screen (fluconazole) were conserved, less than 10% of the those

from the cell wall stress screen (caspofungin) were conserved

(Figure S5, left insert). Despite the low level of conservation, both

S. cerevisiae and C. albicans networks exhibited similar responses to

elevated temperature in that they both maintained a large fraction

of their interactions (roughly a half [12] and a third, respectively)

(Figure S5, right insert). While the particular interactions involved

may differ, similar proportions of the genome remains associated

with Hsp90 during high temperature growth in C. albicans and S.

cerevisiae.

We tested whether the conserved Hsp90 genetic interactors

might reflect dependence of the corresponding proteins on Hsp90.

We monitored the impact of Hsp90 depletion on protein and

transcript levels of three conserved genetic interactors (CKB2,

CKA1, and CDR1). Cka1 protein levels were reduced by .25%

and Cdr1 levels by .50% upon depletion of Hsp90 (Figure 3), and

transcript levels of both CKA1 and CDR1 remained unchanged,

suggesting that some but not all of the conserved Hsp90 genetic

interactions may also reflect a physical interaction.

A novel high-connectivity interactor affects HSP90
expression and morphogenesis

Given the considerable rewiring of the Hsp90 chaperone network,

we sought to characterize a novel Hsp90 interactor in C. albicans. We

focused on AHR1, as it was identified as an Hsp90 genetic interactor

in five out of our six screens. This zinc finger transcription factor

binds to target promoters to regulate transcription of genes involved

connectivity pattern in the global network. Three interactions occurred in five or six screens, and the remaining five occurred in three or less screens.
(C) Three high-connectivity (Hos2, Ckb1, and Ckb2) and four low-connectivity (Cka1, Mkk2, Cmk1, and Cdr1) interactors, including six kinases or kinase
subunits (Cka2), were tested for protein levels upon Hsp90 depletion. Relative protein levels are provided above each blot. High-connectivity
interactors exhibit little dependence on Hsp90 with no reduction of protein levels by .25%. Low-connectivity interactors exhibit marked
dependence on Hsp90, with reduction in proteins levels of .25% (yellow boxes) or even .50% (pink boxes) upon Hsp90 depletion. Tubulin served
as loading control, and a representative blot is shown here. (D) Validation of screen results with CK2 transposon mutants, clean deletion mutants, and
a catalytic subunit depletion strain. The deletion mutants phenocopy the transposon mutants, and doxycycline-mediated depletion of CK2 catalytic
subunits confers hypersensitivity to geldanamycin in all six conditions.
doi:10.1371/journal.pgen.1002562.g003
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in adherence, morphogenesis, and virulence [24,41]. Consistent with

the expectation that high-connectivity interactors function upstream

of Hsp90, we found that HSP90 transcript levels were reduced in an

ahr1D/ahr1D mutant (Figure 5A, t-test, P = 0.0298). Strikingly,

deletion of AHR1 phenocopies compromise of Hsp90 function

leading to filamentation in rich medium at 30uC, canonical

conditions for yeast growth (Figure 5B). Complementation with a

wild-type allele of AHR1 restores wild-type HSP90 transcript levels

and morphology (Figure 5). Thus, Ahr1 is a novel high-connectivity

C. albicans Hsp90 interactor that influences HSP90 expression and

morphogenesis, a trait of central importance for virulence.

Discussion

Our results establish the first Hsp90 chaperone network of a

fungal pathogen, novel effectors upstream and downstream of

Figure 4. The protein kinase CK2 regulatory subunits regulate function of the Hsp90/Cdc37 protein complex. (A) Hsp90 serine and
threonine phosphorylation is severely reduced in the ckb1D/ckb1D mutant, and Cdc37 serine and threonine phosphorylation is severely reduced in
both the ckb1D/ckb1D and ckb2D/ckb2D mutants. Hsp90 or Cdc37 were immunoprecipitated and Western blots were hybridized with CaHsp90, TAP
(to detect Cdc37-TAP), phosphothreonine, or phosphoserine antibodies. The ratio of phosphorylated to unphosphorylated Hsp90 or Cdc37 in each
CK2 mutant was quantified relative to the wild type. (B) Western analysis demonstrates that Cdc37 levels are severely reduced (.50%, red box) in the
mutant lacking the regulatory subunit Ckb2 (ckb2D/ckb2D) in the absence of external stress compared to the wild type (WT, BWP17); Hsp90 and Hog1
levels, however, are reduced (.25%, yellow box) in strains that lack the regulatory subunits (ckb1D/ckb1D or ckb2D/ckb2D) in response to oxidative
stress in the form of a 10 minute treatment with 1 mM hydrogen peroxide. Actin served as loading control. (C) Deletion of CK2 regulatory subunits,
CKB1 or CKB2, phenocopies deletion of HOG1 in terms of hypersensitivity to high osmolarity stress exerted by sorbitol. Growth is quantitatively
displayed with color as indicated with the color bar. (D) Our results support a model in which the regulatory subunits of CK2 (Ckb1 and Ckb2) affect
phosphorylation of Hsp90 and Cdc37, protein levels of the Hsp90-Cdc37 complex under basal or stress conditions, and levels of the target kinase
Hog1.
doi:10.1371/journal.pgen.1002562.g004
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Hsp90, environmental contingency in the network, and network

rewiring over evolutionary time. Based on our chemical genetic

screen with the first C. albicans homozygous transposon insertion

mutant library [23,25], Hsp90 interacts with ,4% of the genome

(Figure 1), including many kinases (Figure 2). The proportion of

the genome that interacts with Hsp90 is expected to increase upon

screening additional mutants or stress conditions. The chaperone

network is environmentally contingent, and most of the 226

genetic interactors are important for growth only under specific

conditions, suggesting that they operate downstream of Hsp90, as

with Hog1 (Figure 3A and Figure 6). Few genetic interactors are

important for growth in many environments, and these are poised

to operate upstream of Hsp90 to regulate its function or

expression, as with the protein kinase CK2 and transcription

factor Ahr1 (Figure 4, Figure 5, and Figure 6). The C. albicans

Hsp90 genetic interaction network is rewired relative to its S.

cerevisiae counterpart (Figure S5), emphasizing the importance of

dissecting the chaperone network in the pathogen to elucidate

circuitry through which Hsp90 regulates key traits important for

virulence.

Our study provides the first unbiased analysis of C. albicans Hsp90

interactors, and a glimpse of the circuitry through which Hsp90

governs drug resistance, morphogenesis, and virulence. Prior to this

work, only two Hsp90 interactors were identified in C. albicans, the

protein phosphatase calcineurin [19] and MAPK Mkc1 [18]. Both

are Hsp90 genetic interactors in our tunicamycin screen (Figure 1

and Figure 2), consistent with their role in mediating responses to

endoplasmic reticulum stress [28,29], and validating that the genetic

interactors we identify here also include physical interactors with

functional dependence on Hsp90. The MAPK Hog1, an Hsp90

genetic interactor in our high temperature growth screen (Figure 1

and Figure 2), has been previously connected with Hsp90 in other

eukaryotes. In S. cerevisiae and mammalian cells, Hog1/p38 interacts

with Hsp90 via the co-chaperone Cdc37. In S. cerevisiae, Hog1 levels

decrease upon compromising Hsp90-Cdc37 function and canonical

(stress-induced) levels of Hog1 phosphorylation are reduced by

,20% [30]. In mammalian cells, Hsp90-Cdc37 is dispensable for

canonical activation of p38 and inhibition of Hsp90 leads to auto-

activation of p38 [31]. In C. albicans, depletion of Hsp90 reduces

Hog1 protein by ,60% and abolishes stress-induced Hog1

activation (Figure 3A), suggesting that regulation of Hog1 activation

in C. albicans is similar to that in S. cerevisiae but perhaps more

dependent upon Hsp90. Hog1 is itself a global regulator of the C.

albicans proteome induced in response to diverse stresses [42], and

mutants lacking Hog1 display hypersensitivity to stress, altered

morphogenesis, attenuated virulence in mouse models of systemic

disease, and enhanced vulnerability to killing by phagocytes [43,44].

Our identification of Ahr1 as a novel regulator of HSP90 expression

and morphogenesis (Figure 5) further validates that our chaperone

network reveals novel regulators through which Hsp90 governs

stress response, drug resistance, morphogenesis, and virulence.

There are distinct sets of Hsp90 genetic interactions under

different conditions, establishing that the network is environmen-

tally contingent and suggesting specialized Hsp90 functions in

mediating responses to specific stresses. We reasoned that

interactors that are low connectivity in the network, identified in

only one to three screens, likely function downstream of Hsp90 to

regulate cellular processes important for growth in specific

environments. Indeed, depletion of Hsp90 causes greater reduc-

tion of protein levels for low-connectivity than high-connectivity

interactors; protein levels for four (Hog1, Cka1, Mkk2, and Cdr1)

out of the five low-connectivity interactors tested are reduced by

greater than 25% (Figure 3C); out of these four only one showed a

significant reduction in transcript levels (Figure S2), suggesting that

low-connectivity interactors depend upon Hsp90 for stability or

expression. The level of reduction of low-connectivity interactors

upon Hsp90 depletion ranges from 28% to 61%, suggesting that

additional factors contribute to their stability. The one low-

connectivity interactor that does not show reduced protein levels

upon Hsp90 depletion, a calmodulin-dependent kinase Cmk1,

could still rely on Hsp90 for activation rather than stability,

consistent with the finding that Cmk1 interacts with Hsp90 in the

Figure 5. The high-connectivity interactor Ahr1 influences HSP90 expression and morphogenesis. (A) HSP90 transcript levels are reduced
in the ahr1D/ahr1D mutant. HSP90 transcript levels were measured in the wild type (SN152), the ahr1D/ahr1D mutant, and the AHR1 complemented
strain by quantitative RT-PCR and normalized to GPD1. Data are means 6 standard deviation for triplicate samples. (B) The ahr1D/ahr1D mutant
filaments in rich medium at 30uC, consistent with the effects of compromised Hsp90 function. Differential Interference Contrast microscopy of strains
incubated in rich medium at 30uC for 24 hours with or without 10 mM geldanamycin (GdA). Scale bar is 10 mm.
doi:10.1371/journal.pgen.1002562.g005
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fungal pathogen Sporothrix schenckii [45], or alternatively could

function in a pathway with which Hsp90 interacts. Thus,

connectivity in the network can reveal functional properties of

Hsp90 interactors in terms of the environmental conditions for

which they enable adaptive responses.

Interactors that are high connectivity in the network are likely to

function upstream of Hsp90 and thereby regulate its function or

expression, impacting on growth in diverse conditions. None of the

three high-connectivity interactors tested (Hos2, Ckb1, and Ckb2)

show reduced proteins levels upon Hsp90 depletion (Figure 3C),

consistent with the hypothesis that they function upstream of

Hsp90. Since three out of the four protein kinase CK2 subunits

interact genetically with Hsp90 in our screens, we tested the

hypothesis that high-connectivity interactors regulate Hsp90

function by focusing on the high-connectivity CK2 regulatory

subunits, Ckb1 and Ckb2. CK2 phosphorylates many cellular

targets, including a conserved threonine in Hsp90 of S. cerevisiae

(T22) and mammalian cells (T36 in hHsp90a) [32]. CK2-

dependent phosphorylation of Hsp90 modulates chaperone

activity, affecting the stability and function of diverse clients.

CK2 also phosphorylates Cdc37, a prerequisite for proper binding

to kinases and for their stability [37]. There is feedback such the

Hsp90-Cdc37 chaperone also binds CK2 thereby promoting its

stability and activation [33]. We provide the first evidence for a

functional relationship between CK2 and Hsp90 or Cdc37 in C.

albicans. Hsp90 serine and threonine phosphorylation is dramat-

ically reduced in the ckb1D/ckb1D mutant (Figure 4). Cdc37 serine

and threonine phosphorylation is also reduced in the ckb1D/ckb1D
mutant, and is largely abolished in the ckb2D/ckb2D mutant

(Figure 4). Redundancy of the CK2 catalytic subunits could

explain why Hsp90 phosphorylation was not reduced in these

mutants, consistent with our screen results (Figure 3D). Cdc37

levels depend on Ckb2 during standard growth, while Hsp90 levels

depend on both Ckb1 and Ckb2 during oxidative stress (Figure 4).

The ckb1D/ckb1D and ckb2D/ckb2D mutants have reduced levels of

the Hsp90-Cdc37 target kinase Hog1 and phenocopy a hog1D/

hog1D mutant in terms of hypersensitivity to oxidative stress

(Figure 4), supporting the model that the high-connectivity CK2

regulatory subunits influence Hsp90-Cdc37 function. Taken

together, our study reveals CK2 as the first regulator of C. albicans

Hsp90 function and suggests that additional high connectivity

interactors might also serve to regulate Hsp90 function or

expression, as with Ahr1 (Figure 5).

Although Hsp90 is highly conserved, the Hsp90 chaperone

network has been rewired over evolutionary time. Akin to the S.

cerevisiae Hsp90 network, the C. albicans network prominently

Figure 6. Model of high- and low-connectivity interactors identified in this screen that either modify the Hsp90/Cdc37 complex or
are affected by it. The high connectivity interactors (red) modulate gene expression, protein levels, or phosphorylation of Hsp90 and Cdc37, while
the chaperone complex regulates gene expression, protein levels or activation of low-connectivity interactors (blue).
doi:10.1371/journal.pgen.1002562.g006
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featured kinases, which were enriched from 10% in the library to

15% in the network. Enrichment for transcription factors [11],

however, was not detected in C. albicans, despite transcription

factors being well represented in the library. This may be due to

network rewiring since the species diverged, as only ,17% of the

genetic interaction network is conserved (Figure S5), suggesting

network remodeling during adaptation to specific ecological

niches. Rewiring in response to selective pressure could also

explain the large set of 73 Hsp90 interactors important for growth

during cell wall stress (caspofungin), 52 of which are specialized for

that stress, given our tested set of conditions (Figure 1, Table 1).

Notably, Hsp90 governs survival in response to echinocandin-

induced cellular stress in C. albicans, but not in S. cerevisiae [19].

Further, signaling pathways governing cell wall integrity pathways

have been rewired between C. albicans and S. cerevisiae [23]. The

fungal cell wall is essential for viability of fungal cells and is an

elaborate structure, components of which are recognized by the

vigilant cadre of immune cells in the human host [46]. As a

commensal and opportunistic pathogen, C. albicans is likely to

harbor circuitry orchestrating cell wall structure that was subject to

strong selection in response to challenge by the host immune

system. Indeed C. albicans can evade immune recognition and

attack by masking its b-glucan [47]. The finding of evolutionary

reconfiguration of the Hsp90 chaperone network in a fungal

pathogen motivates future studies to map the chaperone network

in diverse eukaryotic pathogens in which Hsp90 has been

implicated in governing drug resistance, development, or viru-

lence, such as the fungal pathogen Aspergillus fumigatus and the

protozoan parasites Plasmodium falciparum and Trypanosoma evansi

[15,48]. Identifying pathogen-specific components of the Hsp90

chaperone network offers great therapeutic potential for the

development of inhibitors to minimize host toxicity and cripple

diverse eukaryotic pathogens.

Materials and Methods

Chemical genetic screen
The C. albicans transposon insertion mutant library was

generously provided by Aaron Mitchell (Carnegie Mellon

University) with additional plates obtained from the Fungal

Genetics Stock Center and pinned onto YPD agar plates (1%

yeast extract, 2% peptone, 2% dextrose, 2% agar). Strains were

inoculated in 100 ml RPMI-1640 pH 7 (10.4 g/l RPMI-1640,

3.5% MOPS, 2% glucose, 20 mg/ml histidine, 80 mg/ml

uridine), sealed with Adhesive Plate Seals (Thermo Scientific)

and incubated overnight at 37uC while shaking at 200 rpm. Cells

were then diluted twice. First, 1:1,000 using the VP 408 96 Pin

Multi-Blot Replicator (VP Scientific) in 16 phosphate buffered

saline (PBS). Second, the PBS – Candida mixture was diluted 1:10

in a total volume of 200 ml RPMI-1640, RPMI with 3 mM

geldanamycin, RPMI with stressor (Table 1), and RPMI with

3 mM geldanamycin and stressor in flat bottom 96-well plates.

Plates were incubated at 37uC for between two and nine days,

depending on the stressor (Table 1). Following incubation, optical

densities (ODs) were measured at l= 600 nm.

ODs were recorded for RPMI alone, RPMI with geldanamycin,

RPMI with stressor, and RPMI with geldanamycin and stressor,

and normalized. The normalized values were transformed into

heat maps, which represent growth as a function of color using

Java TreeView 1.1.3. [49]. For each library plate, the RPMI alone

was compared with the geldanamycin and the stress alone plates

and the combination of both. A genetic interactor was defined

as a mutant that responded with a severe growth defect or death

to the combination of geldanamycin and stressor when neither

geldanamycin alone nor the stressor alone impaired growth of the

mutant. Genetic interactors were scored depending on the number

of mutants available for a particular ORF: ‘1R0’ indicates that

only one mutant was available and that mutant was severely

hypersensitive to geldanamycin; ‘2R0’ indicates that both avail-

able mutants were severely hypersensitive to geldanamycin; and

‘1/2R0’ indicates that one of two available mutants was severely

hypersensitive to geldanamycin with no growth and the other had

impaired growth in the presence of geldanamycin compared to the

wild-type strain Day 286. In the rare cases that more than two

mutants for a particular gene were present in the library, at least

two mutants had to exhibit severe hypersensitivity to geldanamy-

cin to be scored as a genetic interaction.

Network analyses and GO category enrichment
Networks of 226 global interactions and 34 kinase interactions

were visualized with Cytoscape [50] and the layout manually

improved for readability and clarity. A Fisher’s Exact Test

followed by a correction for multiple testing (empirical resampling)

was used to identify GO terms that were enriched in the complete

data set, in the different screens, and in the genetic interaction sets

that were either unique to C. albicans, to S. cerevisiae, or shared by

both. The GO enrichment analysis was performed with FuncAs-

sociate [51] (download date April 13, 2011) using the program’s

default parameters on C. albicans gene lists and GO terms. All C.

albicans-specific analyses were performed against a background of

661 genes in the library. When comparing C. albicans with S.

cerevisiae, gene orthology information was obtained from the

Candida Genome Database (http://www.candidagenome.org/).

Strain and plasmid construction
All strains used here that were not part of the library (Table S2)

were maintained in cryo-culture at 280uC in 25% glycerol. Genes

of candidate interactors were tagged with the tandem affinity

purification (TAP) tag [52] in the wild-type strain SN95 and its

derivative CaLC1411 using a PCR-based strategy [53]. The tag

and a selectable marker (ARG4) were PCR amplified from pLC573

(pFA-TAP-ARG4 [53]), 200 to 400 ml of PCR product were

ethanol precipitated, dissolved in 50 ml sterile water and

transformed into C. albicans using standard protocols. Oligonucle-

otides used in this study are listed in Table S3. Correct genomic

integration was verified using appropriate primer pairs that anneal

,500 bp up or down stream from both insertion junctions

together with primers oLC1593 (TAP-R) and oLC1594 (ARG4-F)

that target the TAP tag and the selectable marker. The same TAP

tagging strategy using pLC572 (pFA-TAP-HIS1 [53]) was

employed to tag CDC37 and HSP90 in the CK2 subunit deletion

mutants. Details regarding TAP tagging of HOS2, complementa-

tion of CK2 subunits, and required strains and plasmids can be

found in Text S1.

Protein extraction, immunoprecipitation, and immune
blot analysis

C. albicans CaLC239 (SN95) and CaLC1411 (tetO-HSP90-

hsp90D) with and without TAP tagged interactors (Table S2) were

grown overnight at 37uC in RPMI-1640 while shaking at

200 rpm. Stationary phase cultures were split, adjusted to an

OD600 of 0.2 and one culture was treated with 10 mg/ml

doxycycline (BD Biosciences), while the other was left untreated.

After 24 hours of incubation at 37uC in RPMI-1640, cultures were

re-adjusted to OD600 of 0.2 with and without doxycycline and

grown to mid-log phase (OD600 0.6–0.8). Between 15 and 50 ml

were harvested from each culture, centrifuged for 10 minutes at
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3000 rpm at 4uC, and washed once with ice-cold 16PBS. Pellets

were resuspended in 200 ml lysis buffer (50 mM Hepes pH 7.5,

150 mM NaCl, 5 mM EDTA, 1% Triton X100, protease

inhibitor cocktail (Roche Diagnostics)) together with acid-washed

glass beads and cells were mechanically disrupted by bead-beating

for 3 minutes. To test for Hog1 activation via phosphorylation,

proteins were extracted as described by LaFayette et al. [18].

Whole cell protein samples were diluted 1:10 in water and

subjected to Bradford analysis to determine protein concentra-

tions. For separation by 8% or 10% SDS-PAGE, protein

concentrations were adjusted in 66 Laemmli buffer and lysis

buffer, between 1 mg and 50 mg loaded (Table S4) and separated

at constant 120 Volts. Tub1 and Act1 served as loading controls.

Details on antibodies used are provided in Table S4. To purify

Hsp90 and Cdc37, Hsp90-TAP and Cdc37-TAP were immuno-

precipitated with anti-IgG agarose as described by Singh et al.

[19], with two modifications: phosphatase inhibitors were added to

the lysis buffer (PhosStop, Roche Diagnostics) and protein samples

were incubated with IgG-agarose for 2.5 hours at 4uC. After the

final wash, 40 ml of 26 Laemmli buffer was added and 3 ml and

30 ml of the protein samples were separated by 10% SDS-PAGE

for hybridization with CaHsp90, anti-TAP, PhosphoThreonine

Q7, and PhosphoSerine Q5 antibodies, respectively.

Following separation, proteins were wet-transferred to a PVDF

membrane (Bio-Rad Laboratories, Inc.) over night at 4uC and

30 V. Cdr1 was transferred for an additional hour at 100 V.

Membranes were blocked for one hour in 16PBS-T (16PBS with

0.1% Tween 20 with 5% skimmed milk, washed for 5 minutes in

16PBS-T and probed with the respective antibody. Primary

antibodies were dissolved in 16PBS-T, 2.5% skimmed milk and

0.003% sodium azide. All primary antibodies, except p38 MAPK

and PhosphoThreonine Q7, and PhosphoSerine Q5, were left on

the membrane for one hour at room temperature. p38,

PhosphoThreonine, and PhosphoSerine antibodies were incubat-

ed over night at 4uC. Primary antibodies were washed off twice

with 16PBS-T for ten minutes and the membrane probed for one

hour with secondary antibody, dissolved in 16 PBS-T and 5%

milk. The secondary antibody was washed off twice with 16PBS-

T for five minutes and once with 16 PBS for five minutes.

PhosphoThreonine Q7 and PhosphoSerine Q5 hybridizations

were conducted according to the manufacturers instructions.

Following exposure and development, films were scanned and

protein levels compared using ImageJ (http://imagej.nih.gov/ij/

index.html).

RT–PCR
To monitor gene expression changes in response to HSP90

depletion, strains SN95, CaLC1411, SN152, CaLC2114, and

CaLC2115 were cultured as described above in preparation for

protein extraction. To measure CKA1 and CKA2 expression levels,

overnight cultures were diluted to an OD600 of 0.2 with or without

20 mg/ml doxycycline, grown for 24 hours and diluted again and

cultured to mid-log phase. Upon reaching mid-log phase, RNA

was then isolated using the QIAGEN RNeasy kit and cDNA

synthesis was performed using the AffinityScript cDNA synthesis

kit (Stratagene). PCR was carried out using the SYBR Green

JumpStart Taq ReadyMix (Sigma-Aldrich) with the following

cycle conditions: 94uC for 2 minutes, and 94uC for 15 seconds,

60uC for 1 minute, 72uC for 1 minute, for 40 cycles. All reactions

were done in triplicate using the following primer pairs: GPD1

(oLC752/753), HSP90 (oLC754/755), HOG1 (oLC1968/1969),

CKA1 (oLC1964/1965), CKA2 (oLC1966/1967), MKK2

(oLC1970/1971), CDR1 (oLC1972/1973) (Table S3). Data were

analyzed in the StepOne analysis software (Applied Biosystems).

Morphogenesis assay and microscopy
Strains SN152 (WT), CaLC2114 (ahr1D/ahr1D) and CaLC2115

(ahr1D/ahr1D::AHR1) were grown for 24 hours in YPD at 30uC
with and without 10 mM GdA while shaking at 200 rpm. Cells

were then imaged using Differential Interference Contrast

microscopy using a Zeiss Axio Imager.MI microscope and images

analyzed with Axiovision software (Carl Zeiss, Inc.).

Statistical analyses
To determine if protein levels differed significantly between

high- and low-connectivity interactors, an unpaired t-test with

Welch’s correction was carried out. Expression level differences in

low-connectivity interactors in response to Hsp90 depletion were

evaluated with a one-way ANOVA with Bonferroni correction.

Differences in HSP90 expression levels were assessed using paired

t-tests. All analyses were done using GraphPad Prism 4.0.

Supporting Information

Figure S1 The homozygous transposon insertion mutant library

composition and screen set up. (A) The majority of the transposon

insertion mutant library is capable of growth during the different

stress conditions tested, such that the library composition remains

stable over screens. The majority of genes are represented by either

one or two independent insertion mutants. (B) A color-coded

example library plate. Each well is colored according to how many

mutants are available for the relevant ORF. This plate contains a

mixture of genes that are represented by one, two, or more than two

mutants, as indicated by the color key on the right. To illustrate

differences in growth that were observed during the screen, the

photograph shows the control strains, included in each experiment,

growing with and without geldanamycin. Wells were photographed

after 48 hours of incubation at 37uC, and reduced growth in

response to geldanamycin can be clearly seen in columns 3, 4, and 6.

(C) The heat map was generated by normalizing ODs from strains

grown with geldanamycin to those grown without. Duller shades of

green indicate reduced growth and black represents lack of growth.

A gene was considered a genetic interactor if: (i) the one available

mutant was hypersensitive to geldanamycin (grey square); (ii) both

available mutants were hypersensitive to geldanamycin (yellow

rectangle); (iii) only one of two mutants showed no growth in

response to geldanamycin (blue rectangle); or (iv) at least two of

more available mutants were hypersensitive to geldanamycin.

(PDF)

Figure S2 Expression levels of low-connectivity interactor genes

and CKA2 in the wild type (SN95) and tetO-HSP90/hsp90D
(CaLC1411) strains in response to depletion of Hsp90. Shown are

the mean of three technical replicates and the standard deviation

for each gene. P-values indicate statistical significance as calculated

in a one-way ANOVA analysis.

(PDF)

Figure S3 Expression levels of CKA1 (top panel) and CKA2

(bottom panel) in the wild type (BWP17), deletion mutants, and

the tetO-CKA2/cka2D strain. The wild type and the tetO-CKA2/

cka2D strain were additionally treated with 20 mg/ml doxycycline.

(PDF)

Figure S4 Complementation of CK2 regulatory subunits

restores Hsp90 threonine phosphorylation, as well as Hsp90,

Cdc37, and Hog1 protein levels. (A) Hsp90 threonine phosphor-

ylation is reduced in the ckb1D/ckb1D mutant but restored in the

ckb1D/ckb1D::CKB1 complementation strain. (B) Complementa-

tion of CKB1 and CKB2 fully restores Hsp90 and Cdc37 protein

levels, and partially restores Hog1 levels. (C) Growth in 1 M
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sorbitol is restored upon complementation of CKB1, CKB2, or

HOG1. Top row represents growth in the absence of sortbitol, and

bottom row represents growth in the presence of sorbitol. Data

were analyzed as in Figure 4C.

(PDF)

Figure S5 Hsp90 genetic interactions shared between C. albicans

and S. cerevisiae. C. albicans Hsp90 genetic interactors that have a

homolog in S. cerevisiae (blue) and have been shown to genetically

interact with Hsp90 in S. cerevisiae (red) are mapped onto the global

network. Of the high connectivity interactors, only CKB1 is shared

between both species. A quarter of the C. albicans genetic

interactions identified in the fluconazole screen are shared with S.

cerevisiae (left insert), while less than 10% of the caspofungin

interactions are shared. Temperature-dependent genetic interaction

profiles are similar between both species (right insert). About a third

of the genetic interactions from the 37uC screen (standard C. albicans

growth temperature) are maintained at elevated temperature (41uC)

and close to half of the genetic interactions from the 30uC S. cerevisiae

screen are maintained at elevated temperatures (37uC).

(PDF)

Table S1 Hsp90 genetic interactors.

(XLS)

Table S2 Strains used in this study.

(DOC)

Table S3 Oligonucleotides used in this study.

(DOC)

Table S4 Antibodies and conditions used in this study.

(DOC)
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