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SUMMARY

Cell reprogramming, which guides the conversion between cell states, is a promising technology for tissue
repair and regeneration, with the ultimate goal of accelerating recovery from diseases or injuries. To accom-
plish this, regulators must be identified andmanipulated to control cell fate. We propose Fatecode, a compu-
tational method that predicts cell fate regulators based only on single-cell RNA sequencing (scRNA-seq)
data. Fatecode learns a latent representation of the scRNA-seq data using a deep learning-based classifica-
tion-supervised autoencoder and then performs in silico perturbation experiments on the latent representa-
tion to predict genes that, when perturbed, would alter the original cell type distribution to increase or
decrease the population size of a cell type of interest. We assessed Fatecode’s performance using simula-
tions from a mechanistic gene-regulatory network model and scRNA-seq data mapping blood and brain
development of different organisms. Our results suggest that Fatecode can detect known cell fate regulators
from single-cell transcriptomics datasets.

INTRODUCTION

In tissue development, specific gene regulators control how

cells change state and type to form a complete tissue.1 These

gene regulators are also important because they can be used

to control cell fate for multiple applications, including in regen-

erative medicine and cancer.2 However, it remains a challenge

to identify these regulators within complex and dynamic tissue

systems.1

Cell fate regulators can be identified using experimental

methods such as high-throughput genetic perturbation screens

(e.g., CRISPR-based) with single-cell gene expression (single-

cell RNA sequencing [scRNA-seq]) readouts.3,4 However, these

methods are challenging to run on arbitrary biological systems.

MOTIVATION How stem and progenitor cells decide which cell types they will generate via cell division is
crucial for understanding tissue development and engineering cell types for use in regenerative medicine
or cancer therapies. However, the identification of the regulators of these cell fate decisions within the com-
plex and dynamic systemof tissues is amajor challenge. Experimental high-throughput perturbation screens
can help to dissect regulators, but these are not practical or easy to implement in every context of interest. To
address this challenge, we developed a computational method, Fatecode, to predict master regulators and
key pathways controlling cell fate based on any single-cell transcriptomics dataset.
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Figure 1. Fatecode workflow for in silico perturbation experiments and cell fate regulator detection

The 3D model (top) represents a Waddington-like landscape depicting cellular reprogramming processes. We seek to identify genes (question marks) that

regulate paths on this landscape (wavy lines) by transitioning them to another path (red arrows). A classification-supervised autoencoder learns a latent space

representing the original data, optimized for both input reconstruction and cell type classification. The latent layer is systematically perturbed, and by investigating

all resulting perturbation-generated cell type distributions, distributions with an increase or decrease in a cell type of interest are identified. Perturbation output is

(legend continued on next page)
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Computational methods have been developed to predict gene

expression programs that explain the difference between per-

turbed and unperturbed states5–8 or to predict the linear effect

of perturbing a particular transcription factor.9 Also, computa-

tional methods that determine the ordering of cell states along

a trajectory, based on their gene expression profiles using a

pseudotime or actual time approach,10–14 have been used to

examine the cell decision-making process by identifying genes

that are differentially expressed between trajectory branches.

However, these latter methods often have trouble identifying ac-

curate trajectories and branchpoints.15,16 Furthermore, none of

the above methods are designed to identify cell fate regulators

in normal developmental processes.

We developed Fatecode, a computational method to predict

important cell fate regulator genes for cell types of interest. Fate-

code predicts cell fate regulators based only on scRNA-seq data

covering a given range of cell types to be analyzed. Fatecode

learns a latent representation of the scRNA-seq data using a

deep learning-based classification-supervised autoencoder17,18

and then performs in silico perturbation experiments on the latent

representation to predict genes that, when perturbed, would alter

the original cell type distribution to increase or decrease the pop-

ulation size of a cell type of interest. Fatecode can be thought of

as an in silico CRISPR perturbation screen that identifies genes

that influence cell fate, based on a cell type readout. These genes

can be traditional (e.g., transcription factors) or non-traditional

regulators (any other genes). We assessed Fatecode’s perfor-

mance using simulated data produced by a mechanistic model

based on pre-defined gene-regulatory networks with known

cell fate regulators19 and tested it on scRNA-seq maps of blood

and developing brain from zebrafish and mouse.20–23

RESULTS

Fatecode method overview
Fatecode uses a classification-supervised autoencoder to

detect key genes that can shift the cell type frequencies in an

input scRNA-seq dataset toward a desired distribution of cell

types. Taking single-cell gene expression profiles as input, the

autoencoder learns a latent space with reduced dimensions

capturing the input information (reduce gene dimension x cell

matrix). A supervised cell type classifier is included as part of

the loss function to create a latent space composed of features

that support optimal cell type classification in addition to input

data reconstruction. Known cell type annotations in the input

data are used to train the classifier. This ensures that the latent

space is relevant for cell type classification used in later stages.

Each latent layer node of the autoencoder, which represents a

reduced dimension of the input, is systematically perturbed to

simulate altering key gene expression programs (sets of genes

that are correlated with each other that are represented by indi-

vidual learned latent layer dimension). Cell types are then reclas-

sified to characterize the effect of the perturbation, and the

autoencoder’s decoder uses the perturbed and unperturbed

latent embeddings to generate a gene-by-cell matrix of gene pri-

oritization scores. This matrix is used to identify genes important

for the perturbation effect (STAR Methods; Figures 1 and S1).

Resulting cell type distributions are generated for each possible

perturbation and then manually evaluated to identify those that

increase or decrease proportions of desired cell types. In this

way, regulator genes are identified to increase or decrease a

given cell type proportion relative to all other cell types, and

these are predicted to be cell fate regulators for the given cell

type. An average of the cell fate regulator prioritization scores

across cells for the cell type is computed to produce a final regu-

lator list for each cell type.

Our latent layer perturbation approach is inspired by latent

vector operations used in natural language processing and com-

puter vision applications to generate novel text and images.24–26

In those applications, perturbation operations performed on the

latent layer generally yield superior results compared to opera-

tions performed directly in the input space. The classification

component of Fatecode is used to exclude possible latent space

regions that do not conform to the overall structure of the data.

This helps in learning a model that is more representative of

the underlying data distribution.27

Optimizing model architecture and hyperparameters
Fatecode relies on the latent embedding of an autoencoder,

but different types of autoencoders may produce different

results, depending on the input data (see supplemental infor-

mation).6,28–30 To investigate this in our problem context, we

evaluated the performance of three common autoencoder

architectures: under-complete autoencoder (AE), variational

autoencoder (VAE), and conditional VAE (CVAE).31 The first

step of Fatecode evaluates these three autoencoder architec-

tures and other hyperparameters (see the Hyperparameter

search section) to find the ones that best reconstruct the input

data, measured by mean squared error for reconstruction and

cross-entropy for cell type classification. To illustrate the impor-

tance of this step, we compared how the choice of autoen-

coder affects learning the underlying representation for two sin-

gle-cell gene expression datasets in adult zebrafish blood20

and murine pancreatic development.32 AE produced the lowest

reconstruction error for the zebrafish data (averaged over cell

types) (Figures 2A and 2B). AE also produced a latent layer

that successfully reduces the dimension and cleanly separates

the five known cell types in the data (Figure 2C), and its cell

type classifier yields a high accuracy (Figure 2D). However,

for the mouse data, VAE achieved a higher accuracy compared

to the other autoencoders (Figure S2).

Fatecode accurately detects known regulators from
simulated scRNA-seq data
To assess the accuracy by which Fatecode identifies cell fate

regulators using gene expression profiles, we applied the

simulated by subtracting the perturbed from unperturbed latent layers and feeding it to the decoder to identify a cell-by-gene matrix of prioritization scores that

can help us to prioritize genes predicted to be important for achieving a desired cell population distribution. An average of the cell fate regulator prioritization

scores across cells in each cell type is computed. By sorting these genes based on their prioritization scores for a cell type of interest, the model predicts genes

that are important for regulating the levels of a given cell type.
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method to simulated scRNA-seq data generated from known

gene regulatory network (GRN) structures using SERGIO.19

SERGIO allows users to specify the number of cell types and

key regulators in the simulated GRN (Figure 3A). While Fatecode

is not specific to GRNs (i.e., it can identify a list of genes of any

type, not just transcription factors), a GRN-based simulation is

expected to provide a good benchmark for our method. A matrix

of 400 cells and 2,700 genes with 20 known regulators and 9 cell

types was generated and run through Fatecode. Predicted

cell fate regulator genes and their prioritization scores were

compared to the known SERGIO regulator list. The number of

known regulator genes identified increases as more genes are

prioritized (Figure 3B). Almost all of the known regulator genes

(18 of 20) were identified when 150 genes were prioritized (of

2,700). To compare with a naive baseline, we identified cell

type markers (top 20 genes) using differential gene expression

(DGE) analysis on the same data using Seurat’s non-parametric

Wilcoxon rank-sum test.33 Fatecode identifies a larger number of

known regulators compared to DGE analysis when examining up

to 150 prioritized genes (Figure 3B). As SERGIO is a stochastic

method, we analyzed five additional simulated datasets of the

same size, all of which yielded similar results (plotted as shading

in Figure 3B). We repeated this analysis on a larger dataset con-

sisting of 2,700 cells, 1,200 genes, with 65 predefined regulators,

and 9 distinct cell types. We used Fatecode to identify the top

180 key genes of these data, and DGE analysis to identify the

top 20 differentially expressed genes from each cell type. Also,

for comparison, we included scFates, a method specifically de-

signed for trajectory-based DGE analysis.34 Fatecode consis-

tently outperformed both DGE methods in detecting known reg-

ulators. We further evaluated performance by varying the top k

gene threshold of DGE, and Fatecode consistently outperformed

A

DC

B

Figure 2. Comparison of autoencoder architectures for analyzing data for hematopoiesis regulation in zebrafish blood

(A) Comparison of correlation between input and output of AE, variational autoencoder (VAE), and conditional variational autoencoder (CVAE).

(B) MSE between input and output of the three autoencoder architectures, showing that AE produces the lowest error rate for this dataset.

(C) Uniform Manifold Approximation and Projection (UMAP) visualization of the latent layer of the under-complete autoencoder (AE).

(D) Confusion matrix for the classifier connected to the latent layer of AE demonstrating excellent classification performance.
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DGE across all tested thresholds, demonstrating its robustness

while varying the number of genes considered (Figures 3C and

S3). Thus, Fatecode performs well at identifying known regula-

tors in simulated scRNA-seq data.

We also examined the sensitivity of ourmodel by the size of the

latent layer in the autoencoder by training Fatecodewith different

latent layer sizes (n = 50, 75, and 100 dimensions) using the

2,700-cell simulated data (Figure 3D). Our results show general

consistency across the different latent layer sizes, indicating

that Fatecode exhibits robustness across a range of latent layer

sizes.

Fatecode identifies known cell fate regulator genes
in mouse hematopoiesis
Hematopoiesis is a cell differentiation process bywhich the body

produces mature blood cells from stem cells. We applied Fate-

code to a published mouse hematopoiesis single-cell differenti-

ation dataset, which involves the differentiation of myeloid pro-

genitors into 9 cell types (Figure 4A).22 We then examined

Fatecode’s accuracy in predicting cell fate regulators that lead

to the desired cell type distribution by comparing the results

with ground-truth experimental perturbation data and known

regulator genes.9,22,35,36 Fatecode learned a latent node that,

when perturbed, simultaneously increases the monocyte popu-

lation and decreases erythrocytes and granulocytes (Figure 4B).

Previous studies have demonstrated that Irf8 is important in

promoting the differentiation of the GM (granulocyte-monocyte)

lineage, particularly monocytes, and functions as a key regulator

in determining the fate between granulocytes and monocytes.

Fatecode accurately predicted Irf8 as an important cell fate

regulator in the monocyte differentiation process. It correctly

assigned a high positive score for monocytes and late_GMP

(granulocyte-macrophage progenitor) and negative scores for

granulocytes and MEP (megakaryocyte-erythroid progenitor)

A

DC

B

Figure 3. Fatecode detects known regulators using simulated data generated by SERGIO

(A) The schematic structure of the GRN to generate scRNA-seq. Red nodes are known regulators, and green nodes are non-regulators whose production rates

are determined by their associated regulators. Our goal is to identify known regulators from the generated scRNA-seq data using Fatecode.

(B) Benchmark comparisons of the detection rate of predefined regulators generated by SERGIO using Fatecode compared with a naive differential gene

expression (DGE) baseline. The red and green areas represent the performance of Fatecode and DGE, respectively, on the simulated data with 400 cells.

(C) Benchmark comparisons of the detection rate of known regulators using Fatecode, scFates, and DGE on simulated data with 2,700 cells.

(D) Venn diagram showing the similarity between the number of known regulators uncovered by Fatecode across various latent layer sizes.
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lineages, consistent with previous studies (Figure 4C). Next, we

investigated the prediction results for Cebpa, knockout of which

leads to a decline in the population of differentiated myeloid

cells, while concurrently increasing the number of erythrocytes.

Fatecode accurately assigned a high positive score to Cebpa

for monocytes and granulocytes and a negative score to erythro-

cytes and MEPs (Figures 4D and 4E). In another example, Klf1 is

a key regulator in driving differentiation toward theME (megakar-

yocyte-erythroid) lineage, specifically promoting the develop-

ment of erythrocytes, while simultaneously inhibiting the GMP

lineage. Fatecode correctly assigned a set of positive scores to

Klf1 for erythrocytes and MEPs, indicating its ability to capture

a key regulator in ME lineage differentiation (Figure S4A). We

also tested Fatecode’s ability to detect genes that are known

to be important in maintaining stemness and inhibiting differen-

tiation. Fatecode correctly predicted Runx1 as a candidate that

has negative scores for perturbations that increase all mature

cell types (all cell types expect MEPs and GMPs) (Figure S4B).

Last, we examined the prediction results for Fli1, which has

diverse effects on differentiation. Fatecode accurately gives

A

D

E F

C

B

Figure 4. Fatecode accurately detects regulators and predicts the effect of single-cell perturbations

(A) Hematopoiesis data from Paul et al.,22 visualized as a UMAP and clustered into 9 cell types.

(B and D) The results of in silico perturbations that change the initial cell frequency to the desired distribution. For (B), our objective was to promote monocytes

while reducing the number of erythrocytes. For (D), we aimed for an increase in the erythroid population and a decline in MEPs and megakaryocytes.

(C and E) Gene prioritization scores per cell type for Irf8 and Cebpa.

(F) Pathway enrichment analysis results. Gene Ontology biological processes show significant processes related to cell development and hematopoiesis.
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positive scores for the association between Fli1 andmegakaryo-

cytes, monocytes, and granulocytes and also assigns a notable

negative score to erythrocytes, in agreement with the litera-

ture9,37 (Figure S4C). These simulations show that Fatecode

accurately identifies known cell fate regulators that have been

reported in previous perturbation-based experimental studies.

Furthermore, to evaluate the role of the top 200 genes de-

tected by Fatecode for monocytes, we performed pathway

enrichment analysis. Pathways that are significantly enriched

in these 200 genes include those related to the immune system,

hemopoiesis, cell development, and cell differentiation, which

agrees with their Fatecode-predicted role in monocyte develop-

ment (Figure 4F).

We extended our analysis to larger hematopoiesis single-cell

differentiation data that involve differentiation into 12 cell types

(Figure S5A).23 We applied Fatecode to detect genes that can

increase the pool of undifferentiated cells in this system (Fig-

ure S5B). One candidate detected by Fatecode in this process

is Entpd8, the deletion of which in mice elevates the neutrophil

and monocyte population.38 Fatecode predictions are consistent

with this experimental result. Fatecode also predicted Nlrp6 as

a regulator of neutrophil and monocyte differentiation. Cai et al.

showed that the number of hematopoietic stem cells and GM

progenitors is reduced in Kp-infected Nlrp6�/� mice, while the

survival of mature neutrophils in bone marrow is increased.39

We repeated gene set enrichment analysis using the top 200

genes detected by Fatecode. Biological processes related to

mouse hematopoiesis, stem cell development, and metabolic

signaling were enriched, showing that Fatecode can again cap-

ture relevant pathways for this biological process (Figure S5C).

Fatecode detects important regulators in cell
differentiation and lineage commitment in zebrafish
We applied Fatecode to zebrafish hematopoiesis data20 as an

additional demonstration and test. From all possible perturba-

tions on the latent layer performed by Fatecode, we selected

ones that resulted in the greatest predicted relative increase in

hematopoietic stem and progenitor cells (HSPCs) (Figure 5A).

As shown in Figure 5B, following the perturbation, some cells

(mostly monocytes) are predicted to switch to HSPCs (Fig-

ure 5B). Fatecode gives a significant score to signal transducer

and activator of transcription 5A (stat5a) as one of the most

important genes for HSPCs. Stat5a is a key regulator of normal

hematopoiesis, with pleiotropic roles in hematopoietic stem

cells.40 Also, knockout studies have shown that the deletion of

stat5a led to an increase in HSPC cycling, gradually reduced sur-

vival, and depleted the HSPC pool.41 Next, Fatecode gives irf8 a

high positive score for monocytes. Irf8 is a key regulator of

monocyte development, and it has been known to be important

for myelopoiesis in different model organisms.42,43 It functions at

an early step of the transcriptional program that governs differ-

entiation from myeloid progenitors to monocytes/macrophages

and plays a key role in stem cell renewal and maintenance.43,44

Fatecode also identified a strong negative connection between

foxo3 and myeloid cell differentiation, consistent with foxo3

knockout studies, which show a significant increase in granulo-

cyte/monocyte progenitors in the spleen, bone marrow, and

blood and enhance short-term hematopoietic stem cell prolifer-

ation.45–47 Fatecode found an important role played by the otud

gene family, a subgroup of deubiquitination enzymes, by assign-

ing a high positive score betweenHSPCs and the otud gene fam-

ily. Consistent with our prediction, knockout of otud genes in

Xenopus results in developmental impairments.48 Also, elevated

expression of otud genes leads to the acquisition of stem cell

properties.49 Fatecode also predicted the negative score be-

tween thbs1 and HSPCs, where thbs1 has been shown previ-

ously to limit the expression of essential self-renewal transcrip-

tion factors, including oct3 and oct4, sox2, klf4, and c-myc,

within cells.50 Other key gene candidates identified by Fatecode

for this perturbation are also known to be involved in hematopoi-

esis (Table 1).

Fatecode identifies cell fate regulators in mouse
hippocampus development
To demonstrate Fatecode on a larger biological dataset, we

applied it to developing mouse hippocampus scRNA-seq

Figure 5. In silico experiments to induce hematopoietic stem/progenitor cells using hematopoiesis in zebrafish

(A) A series of latent layer perturbations and their effect on cell distribution.

(B) Cells that switch from their initial cell type to HSPCs are highlighted.
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data,21 composed of 18,213 cells and 3,001 genes. The data are

clustered in 14 annotated cell types (Figure 6A). We first sought

to identify regulators in the differentiation process that preferen-

tially increase mature granule cells (Figure 6B). Fatecode pre-

dicts the ZFP gene family (Zfp94, Zfp189, and Zfp706) as posi-

tively important in granule cell differentiation. The Zfp family is

a definitive marker for the cerebellar granule neuron lineage

and plays a critical role in granule cell specification within the

developing cerebellum.51 For example, lack of Zfp521 results

in a significant reduction in the number of granule cells.52 Id2

and Id3 are important in maintaining the size and cellular struc-

ture of the brains of adult mice. It has also been shown that the

absence of Id2� =� leads to a decrease in the number of granule

neurons.53,54 In line with this earlier research, Fatecode assigns a

high positive score between both Id2 and Id3 for mature granule

cells. These two transcriptional regulators have also been found

to determine the fate of differentiating CD8+ T cells.55

Next, we applied Fatecode to determine regulators that

mediate the differentiation process, which preferentially in-

creases oligodendrocyte progenitor cells (OPCs), and decreases

granule cells (both mature and immature) and oligodendrocytes.

Fatecode predicted Igfbpl1 as having an impact on OPC-to-

oligodendrocyte differentiation, which is consistent with pub-

lished experimental studies.56,57 Furthermore, we considered

Fth1, which provides neuroprotection and is enriched in oligo-

dendrocytes. Mice lacking Fth1 have more microglia cells

compared to the control and a significant reduction in neurons

and oligodendrocytes.58 Fatecode accurately assigned a high

positive score linking Fth1 to oligodendrocytes and mature

granule cells and a negative score for Fth1 and microglia cells,

showing that knocking out of Fth1 leads to an increase in micro-

glia cells, consistent with the experimental studies. Thymosin

beta 4 (Tmsb4x) is a key candidate in the context of neurogenesis

during brain development.59 Its expression is linked to neuro-

genic processes and exerts regulatory control over the expan-

sion of the stem cell pool within the early neuroepithelium.

Tmsb4x gene knockout elicits a pronounced effect on the differ-

entiation process in vitro. Specifically, it significantly promotes

the differentiation of stem cells, further emphasizing its role in

orchestrating cellular fate determination.60 Our method correctly

assigns a negative score for Tmsb4x and all cells except neuro-

blasts and radial glia-like cells. To further validate the perfor-

mance of Fatecode in detecting key genes, we performed

pathway enrichment analysis on the top 200 Fatecode-predicted

regulators. This analysis showed that pathways related to brain

development, synaptic signaling, and protein synthesis were

significantly enriched in these genes (Figure 6C).

To illustrate further downstream analysis that is possible

based on Fatecode results, we applied single-cell regulatory

network inference and clustering (SCENIC) on the mouse hippo-

campus development dataset to construct a GRN consisting of

the top 2,000 interactions based on their SCENIC importance

measure scores, which shows the significance of the input

gene (referred to as the ‘‘TF’’) in determining the prediction

outcome for the target.61 We then mapped the top 400 Fate-

code-predicted regulators to the SCENIC-inferred GRN. The re-

sulting networks can be used as a guide for identifying specific

GRN mechanisms to target in follow-up experiments (Ybx1

example, Figure S6) to test the regulatory relationships and po-

tential roles of regulators in cellular reprogramming. While

SCENIC predicts useful additional information to support exper-

iment planning, it only considers transcription factor regulators.

Other types of genes in Fatecode’s output can be identified as

cell fate regulators and should also be examined.

DISCUSSION

Cell reprogramming is a promising technology for tissue repair

and regeneration, with the ultimate goal of accelerating recovery

from diseases or injuries, as well as the development of novel

therapies.62 An important component in successful cell reprog-

ramming is to correctly identify the regulators and trajectories

from single-cell transcriptomics data. However, the number of

genes in these datasets is large, and the number of underlying

regulatory interactions is much larger. Recent studies have

demonstrated that the expression of a single regulator is insuffi-

cient to produce an endpoint phenotype.63 Instead, a group of

control networks acts together across a variety of biological pro-

cesses and pathways to induce a complete lineage conver-

sion.64 To efficiently and accurately map these control networks,

we developed a deep learning method, Fatecode, which we

have successfully applied to analyze diverse datasets. First,

Table 1. List of zebrafish hematopoiesis regulator genes predicted by Fatecode, with literature evidence for involvement in this

process

Gene Roles Reference

cdk1 plays an important role in the maintenance of pluripotency and genomic

stability in human pluripotent stem cells

Neganova et al.70

top2a controls the survival of human pluripotent stem cells Ben-David et al.71

hmgb2a regulates hematopoietic stem cell maintenance Zhang et al.72

ube2c highly expressed in human embryonic stem cells (hESCs) and a biomarker of cancer stemness Fatima et al.73; Liu et al.74

fbxo11 depletion leads to the hematopoietic population with stem cell characteristics Mo et al.75

hmgn2 facilitates the maintenance of active chromatin states required for stem cell

identity in a pluripotent stem cell model

Garza-Manero et al.76

aspm regulates symmetric stem cell division by tuning Cyclin E ubiquitination Capecchi et al.77

myb regulates hematopoietic stem cell and myeloid progenitor cell development Baker et al.78

kpna2 exhibits strong interactions with oct4 in embryonic stem cells Li et al.79
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our method discovers an efficient architecture and latent layer

for an input single-cell dataset. Then, by performing operations

on the latent layer, it is able to predict perturbations for cell

fate reprogramming. Fatecode was validated using simulated

scRNA-seq data with predefined regulators and by predicting

regulators in a variety of biological scRNA-seq data and manu-

ally comparing the results to the literature.

The fundamental idea in Fatecode is similar to the minimum

Hamiltonian in physics and the potential energy landscape

concept and representation learning.27,65 These authors have

shown that the most common autoencoders are naturally asso-

ciated with an energy function, independent of the training pro-

cedure. This reasoning suggests that regulators can be seen

as genes that allow the system to achieve a target cell type dis-

tribution via the most efficient path through the energy land-

scape. Fatecode uses the classifier as a guide to determine

what node in the latent layer must be perturbed to achieve the

desired reprogramming effect. Then the decoder maps the

modified latent layer to gene space for gene identification. It is

also useful to understand whether regulators are cell type spe-

cific. For example, the mammalian target of rapamycin complex

(mTORC1) is widely important in cell fate decision-making and

also important in the regulation of T cell fate.66–69 Running Fate-

code for different cell conversions can help identify cell-type-

specific and non-specific regulators.

In conclusion, we developed an effective computational

framework for predicting key players in cell fate control and

the consequences of perturbations on cell type frequencies.

Fatecode’s modular design enables users to select an

autoencoder architecture that produces an accurate model

for their data. By leveraging the power of classification-super-

vised autoencoders and the associated energy manifold

learning process, Fatecode generates useful hypotheses

about genes that could be manipulated to achieve desired

cell transitions. We hope this method accelerates the discov-

ery of novel cell fate regulators that can be used to engineer

and grow cells for therapeutic use in regenerative medicine

applications.

A

C

B

Figure 6. Fatecode identifies key genes in mouse neurogenesis

(A) UMAP embedding of fourteen major cell types.

(B) Latent layer node perturbation leads to an increase in mature granule cells while a decrease in immature granule cells.

(C) Pathway enrichment analysis shows the relevant biological process using the top 200 genes selected based on their prioritization scores for mature granule

cells.
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Limitation of study
Fatecode can be thought of as an in silico CRISPR perturbation

screen that identifies genes that can influence cell fate. Unfortu-

nately, we were not able to find a published genome-wide

CRISPR perturbation screen of an appropriate cell line and with

a cell fate readout.Most genome-wideCRISPR-screensuse stan-

dard cell lines that are not naturally multi-potent and, thus, are not

expected togeneratemultiplecell fates.CRISPRhasbeenused to

evaluate cell fate regulators, but only by examining one or a few

candidate genes in a single paper. We used these latter small-

scale results toverify thatFatecode resultsagreewith theseexper-

iments.Becausewecould not findgenome-wideCRISPRscreens

with a cell fate readout, we usedGRN simulations with predefined

regulators and small-scale CRISPR experiments to validate our

findings. In the future, we hope genome-scale CRISPR screens

for cell fate regulators will be published for us to compare to.

Despite offering a useful input data representation, how the

autoencoder latent layer represents the input data may be diffi-

cult to understand. Future work will need to better understand

how the input data are represented and learned in the latent layer

given diverse input data. However, our results showed that

Fatecode predictions are relatively stable when changing the

size of the latent layer, indicating that latent information is likely

captured consistently.
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Materials availability
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Data and code availability
d The datasets used in the present study are openly accessible in public repositories. The zebrafish hematopoiesis data can be

found under the accession number E-MTAB-5530 on ArrayExpress. We downloaded a preprocessed version of the ‘‘Dentate

Gyrus neurogenesis’’ data (under accession number GSE95753) from https://scvelo.readthedocs.io/en/stable/. The hemato-

poiesis Paul et al. data can be downloaded from the GEO under accession code GSE72859 and the preprocessed version was

downloaded from https://celloracle.org/. To generate simulated data, we used the same parameters for the differential equa-

tions as in https://github.com/PayamDiba/SERGIO.19 The hematopoiesis Weinreb et al. data can be downloaded from GEO

under accession number GSE140802 and the preprocessed version was downloaded from https://cospar.readthedocs.io/

en/latest/.

d Code supporting this study is available on: https://github.com/MehrshadSD/Fatecode and https://doi.org/10.5281/zenodo.

11511340.

d Any additional information required to re-analyze the results reported by this study are available from the lead contact upon

request.

METHOD DETAILS

Deep representation learning
Autoencoders are a class of neural networks with a latent layer capable of learning nonlinear representations of the input data in an

unsupervised manner. An autoencoder consists of an encoder that maps the input to the latent space and a decoder which transfers

the latent space back to the original space. It can be used for denoising, reducing dimensionality, or learning the representation (or

manifold) of the data.We implemented three autoencoder architectures: under-complete AutoEncoder (AE), Variational AutoEncoder

(VAE), and Conditional VAriational Encoder (CVAE)31 (Figure 1). AE has a single latent layer. VAE constrains the latent layer by

modeling the latent space as a multivariate Gaussian distribution with a mean and a standard deviation. CVAE conditions the latent

space on class labels and thus can generate data based on a given class label. The biological task for our autoencoder is to learn a
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Deposited data

Zebrafish hematopoiesis data Athanasiadis et.al.20 E-MTAB-5530
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Hematopoiesis Weinreb et al.23 GSE140802

SERGIO Dibaeinia et al.19 https://github.com/PayamDiba/SERGIO

Software and algorithms
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Cytoscape Franz et al.81 https://doi.org/10.1093/bioinformatics/btad031

scFates Faure et al.34 https://doi.org/10.1093/bioinformatics/btac746

Scenic Aibar et al.61 https://doi.org/10.1038/nmeth.4463
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reduced dimension representation of a cell by gene matrix capturing measurements of a single-cell transcriptomics experiment

mapping cellular trajectories. Only the gene dimension is reduced, so the latent space describes a reduced representation of

each input cell transcriptome. To make the latent layer more specific for our biological task, we added a cell type classification

task to the standard regression tasks. The classification task, described in more detail below, predicts the type of each latent cell

and compares it to a known input cell type. The training process works to optimize both classification and regression performance

simultaneously. This reduces the space of latent layer candidates since not all possible latent layers are useful for the classifica-

tion task.

VAE
VAE is a type of autoencoder that estimates a latent set of probability density functions that model the input data. Unlike AE, which

learns an unconstrained representation of the data, VAE assumes a Gaussian distribution for the prior. An input gene by cell matrix X

is run through an encoder, which generates parameters for the set of distributionsQ(z |X). Then, fromQ, a latent k-vector z is sampled

and the decoder transforms z into an output, with the condition that the output is similar to the input, where k equals the number of

components (or distributions) in the VAE. The VAE total loss consists of the reconstruction loss (first term) and the KL-divergence loss

(second term):

E½log PðXjzÞ� � DKL½QðzjXÞkPðzÞ�

DKL½QðzjXÞkPðzÞ� = � 1

2

XK

k = 1

�
1 + log sk

2 � mk
2 � sk

2
�

where mk and sk are the k-th components of output vectors mk (X) and sk (X), respectively.

CVAE
CVAE is distinguished from VAE by its embedding of conditional information in the objective function. CVAE relies on two inputs:

the features and the class labels, c, instead of using only the features, as is done with a VAE and AE. The CVAE architecture allows

the encoder and the decoder to be conditioned by c. Hence, the variational lower bound objective is changed to the following

form.

E½log PðXjz; cÞ� � DKL½QðzjX; cÞkPðzjcÞ�;

Overall network architecture of Fatecode
The Fatecode autoencoder architecture was chosen for each of the datasets analyzed in this study using a hyperparameter search

(More details in Hyperparameter search section). Encoder and decoder architectures are constrained to have the same number of

outer and inner layer nodes. For the analysis of hematopoiesis regulation in zebrafish, Fatecode consists of a fully connected encoder

and decoder. The encoder and decoder are both two-layer networks of 92 (outer layer) and 48 (inner layer) nodes with the LeakyReLU

activation function and the latent layer has 18 nodes. For the analysis of hematopoiesis in mouse data by Weinreb et al.,23 the

encoder/decoder has a 506-node outer layer and a 253-node inner layer, and the latent layer has 125 nodes. For the mouse hema-

topoiesis data by Paul et al.22 the encoder/decoder has a 100-node outer layer and a 40-node and the latent layer has 20 nodes. For

the developing mouse hippocampus data, we used a two-layer encoder/decoder of 50 (outer), 26 (inner), and a latent layer of 15 no-

des. Our model was built using software packages and libraries, including TensorFlow V2.10.0, scikit-learn V1.1.3, scanpy V1.9.1,

numpy V1.23.4, and pandas V1.5.1.

Classification
The classifier determines cell types using the latent layer as input to a single hidden layer and then an output layer (with one node per

cell type), all fully connected. ReLu and softmax activation functions are used for the hidden and output layers, respectively. The num-

ber of nodes in the hidden layer is varied during the hyperparameter optimization. For adult zebrafish blood data,20 we use 15 and

5 nodes for the hidden and output layers, respectively. We use 25 and 12 nodes for classifying hematopoiesis in mouse data by

Weinreb et al.,23 20 and 9 nodes for data from Paul et al.,22 and 22 and 14 for the developing mouse hippocampus data.21 All cell

labels are assigned by using the predefined cell type labels of the original studies.

Identifying key regulators in cell differentiation
Consider adjustments (e.g., one or more gene knock-outs or over-expressions) that will transition a baseline cell type distribution

(‘‘A’’) to a given desired target distribution (‘‘B’’). For example, in the target cell distribution, our objective is to increase the number

of cell type Nwhile decreasing the number of cell type P (Figure S1). To detect genes that are important in a given transition, Fatecode

analyzes the effects of perturbations on cell fate by systematically perturbing individual autoencoder latent nodes learned from a sin-

gle-cell transcriptomics data capturing cellular trajectories. Each latent variable perturbation results in a single-cell transcriptome

through the decoding process and a corresponding cell type distribution, proceeding as follows after training Fatecode.
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(1) The gene expression data, denoted as E, corresponding to a mixture of cells with cell type distribution A, undergoes encoding

to produce a matrix of latent variables represented as X (X = encoderðEÞ). Each column of X is associated with a cell in E;

each row corresponds to a latent variable).

(2) In a series of simulations, finite perturbations of different sizes K (e.g., from a 50% reduction to a 10-fold increase) are applied

to each row j (number of latent variables) in X sequentially. For each perturbed latent layer row, Xj
�

Xj
� = kXj

(3) We then run the cell type classifier trained within Fatecode on the perturbed latent layer to predict the cell type distribution for

each across all perturbation conditions.

New cell type distribution = classifierðXj
�Þ

(4) Then, we can identify a perturbed latent layer row, Xj
�, and its associated perturbation size, k, that is closest to the desired

target distribution B.

(5) To identify genes important for the transition from cell type distributions A to B, we compute the difference between the

selected X� and the X latent layers. For instance, if increasing latent node #9 5-fold can best approximate the desired distri-

bution B, then the difference between the selected X� and X latent layers is a latent node by cell matrix with all zero entries,

except for the 9th row, which is 5 times X9.

(6) With this selected perturbation matrix ðX� � XÞ, the decoder produces a gene-by-cell matrix. Then the average gene expres-

sion profile of all cells in each cell type is computed, resulting in a gene by cell_type matrixM. The (i,j)-th entry ofM is the pri-

oritization score for the i-th gene in cell_type j.

(7) To identify the regulators predicted to be important for transitioning initial cell type distribution A to target B, we rank the genes

based on their prioritization scores for a cell type of interest.

Regulators = sort
�
Mdesired celltype

�

We note that M does not directly specify how much each gene should be perturbed to yield target B. Nonetheless, M contains

information about genes that are important in transitioning cell type distribution from initial state A to the desired state B. This

idea is similar to potential energy in physics and representation learning.27,65

We also examine the model’s performance in detecting regulators when operating on the output of the decoder compared to

the latent layer. To achieve this, we feed the perturbed vector to the decoder and subtract the result from the unperturbed con-

dition. We then investigate the genes that show significant changes. Our results indicate that working on the latent layer leads to

better outcomes in detecting regulators than operating on the output of the decoder. This observation is in line with previous

research in computer vision and natural language processing, where using the latent space consistently yields superior results

compared to the original data space.25,80 We assume this is true in general when using an autoencoder with a non-linear acti-

vation function with reasonably complex data, as we have in biology (in contrast to the linear activation function case where

DecoderðXperturbedÞ � DecoderðXÞ = DecoderðXperturbed � XÞ).

Hyperparameter search
Hyperparameter tuning was conducted using a grid search approach. We explored various combinations of hyperparameters,

including learning rate, batch size, number of layers, number of neurons per layer, and activation functions. The hyperparameter

space for each parameter was defined as follows.

(1) Autoencoder type: [AE, VAE, CVAE]

(2) Activation function: [LeakyReLU, Relu, linear]

(3) Learning rate: [0.001, 0.01, 0.1]

(4) Batch size: [400, 500, 600]

(5) Number of hidden layers (encoder): [1, 2]

(6) Number of neurons in latent_layer: [input_size/40, input_size/60, input_size/80, input_size/100, input_size/125, input_size/150]

Data visualization
Python package ‘‘UMAP’’ was used to visualize the latent layer as a reduced dimensionality space and for network visualizations we

used Cytoscape.81

Data preprocessing
The scRNA-Seq gene expression data is log normalized, scaled, and centered. In the training process, 80% of the data is allocated

for training the classification-supervised autoencoder, while the remaining 20% is used for testing purposes.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Differential gene expression analysis was performed using the Wilcoxon rank-sum test. To account for multiple testing, we applied

the Benjamini–Hochberg correction to the calculated P-values obtained from the DEG analysis. Genes with a corrected p-value

below 0.05 were considered statistically significant. For scFates we used the default parameters. For the identification of enriched

gene ontology terms in our study, we used the GSEApy package V1.0.4 with its default parameter settings.
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Supplementary Fig. 1: Gene expression perturbations to change the cell-type distribution 

This figure demonstrates the transition of an initial cell type distribution to a desired target 

distribution through gene-level adjustments. The circles represent the system's state, with the 

frequencies of cell types indicated below. 

 

 

 

 

 

 

 



 

Supplementary Fig. 2: Comparison of autoencoder architectures for analyzing data for 

endocrine development in the mouse pancreas a, comparison of the input-output correlation for 

the AE, the variational autoencoder (VAE), and the conditional variational autoencoder (CVAE). 

b, the mean square error of the three autoencoder architectures' input and output. VAE performs 

better than other architectures for this data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Fig. 3: Performance comparison of Fatecode and DGE in detecting 

predefined gene regulators across different DEG thresholds. The bar plot shows the 

comparative performance of Fatecode (red) and DGE (green) in detecting known gene regulators. 

Performance is evaluated based on the number of top differentially expressed genes (DEGs) 

considered for analysis (30, 50, and 75). The height of each bar represents the accuracy of each 

method in identifying these predefined key regulators. 

 



 
Supplementary Fig. 4: Gene prioritization score for the mouse hematopoiesis data. 

a, b, c, Fatecode accurately determines gene prioritization scores for various genes, including Klf1, 

Runx1, and Fli1, across different cell types. 



 

 

Supplementary Fig. 5: Fatecode analysis of hematopoiesis data identifies master regulators 

governing cell switching dynamics. a, visualization of the hematopoiesis dataset from Weinreb et al.  

hematopoietic progenitors differentiate into different cell types such as mast cell (Ma), basophil (Ba), 

eosinophil (Eos), megakaryocyte (Mk), lymphoid precursor (Ly), migratory dendritic cell (mDC) and 

plasmacytoid dendritic cell (pDC), erythrocyte (Er), neutrophil (Neu), monocyte (Mo). b, The effect of 

different perturbation sizes of a node in the latent layer on the cell distribution. c, gene set enrichment 

analysis results. Gene ontology (GO) biological processes enrichment analysis shows significant process 

terms related to mouse hematopoiesis, stem cell development, and mesenchymal cell differentiation. 

 

 

 

 

 

 

 

 

 

 

 

 



 
Supplementary Fig. 6:  Gene Regulatory Network of Ybx1 and its downstream target genes along 

with gene prioritization scores. The GRN was constructed using SCENIC, by filtering the top 2000 

interactions with the highest SCENIC Importance Measure (IM) scores. Additionally, the top 400 predicted 

master regulators from Fatecode were mapped onto the GRN, and the resulting network is presented here 

using a network bar chart in which each value of a bar plot shows the Fatecode gene prioritization score of 

the gene for that cell type. 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 1- Hyperparameter search  

Hyperparameter tuning was conducted using a grid search approach. We explored various 

combinations of hyperparameters, including learning rate, batch size, number of layers, number of 

neurons per layer, and activation functions. The hyperparameter space for each parameter was 

defined as follows: 

● Autoencoder type: [AE, VAE, CVAE] 

● Activation function: [LeakyReLU, Relu, linear] 

● Learning rate: [0.001, 0.01, 0.1] 

● Batch size: [400, 500, 600] 

● Number of hidden layers (encoder): [1, 2] 

● Number of neurons in latent_layer: [input_size/40, input_size/60, input_size/80, 

input_size/100, input_size/125, input_size/150] 
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